1
|
Arnold J, Ghosh S, Kasprzyk R, Brakonier M, Hanna M, Marx A, Shuman S. Chemical synthesis of 2″OMeNAD+ and its deployment as an RNA 2'-phosphotransferase (Tpt1) 'poison' that traps the enzyme on its abortive RNA-2'-PO4-(ADP-2″OMe-ribose) reaction intermediate. Nucleic Acids Res 2024; 52:10533-10542. [PMID: 39162230 PMCID: PMC11417386 DOI: 10.1093/nar/gkae695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
RNA 2'-phosphotransferase Tpt1 catalyzes the removal of an internal RNA 2'-PO4 via a two-step mechanism in which: (i) the 2'-PO4 attacks NAD+ C1″ to form an RNA-2'-phospho-(ADP-ribose) intermediate and nicotinamide; and (ii) transesterification of the ADP-ribose O2″ to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Although Tpt1 enzymes are prevalent in bacteria, archaea, and eukarya, Tpt1 is uniquely essential in fungi and plants, where it erases the 2'-PO4 mark installed by tRNA ligases during tRNA splicing. To identify a Tpt1 'poison' that arrests the reaction after step 1, we developed a chemical synthesis of 2″OMeNAD+, an analog that cannot, in principle, support step 2 transesterification. We report that 2″OMeNAD+ is an effective step 1 substrate for Runella slithyformis Tpt1 (RslTpt1) in a reaction that generates the normally undetectable RNA-2'-phospho-(ADP-ribose) intermediate in amounts stoichiometric to Tpt1. EMSA assays demonstrate that RslTpt1 remains trapped in a stable complex with the abortive RNA-2'-phospho-(ADP-2″OMe-ribose) intermediate. Although 2″OMeNAD+ establishes the feasibility of poisoning and trapping a Tpt1 enzyme, its application is limited insofar as Tpt1 enzymes from fungal pathogens are unable to utilize this analog for step 1 catalysis. Analogs with smaller 2″-substitutions may prove advantageous in targeting the fungal enzymes.
Collapse
Affiliation(s)
- Jakob Arnold
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Shreya Ghosh
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renata Kasprzyk
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Brakonier
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Markus Hanna
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
2
|
Wu H, Li W, Fan J, Jiang S, Li J, Hu P, Yu Z, Li Y, Pang R, Wu H. The hidden RNA viruses in Blattodea (cockroaches and termites). Microb Genom 2024; 10:001265. [PMID: 39037207 PMCID: PMC11316551 DOI: 10.1099/mgen.0.001265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
The insect order Blattodea (cockroaches and termites) has drawn substantial research attention for their dietary habits and lifestyle of living with or around humans. In the present study, we focused on the discovery of RNA viruses hidden in Blattodea insects using the publicly available RNA sequencing datasets. Overall, 136 distinctive RNA viruses were identified from 36 Blattodea species, of which more than 70 % were most closely related to the invertebrate-associated viral groups within Picornavirales, Sobelivirales, Bunyaviricetes, Jingchuvirales, Durnavirales, Lispiviridae, Orthomyxoviridae, Permutotetraviridae, Flaviviridae and Muvirales. Several viruses were associated with pathogens of vertebrates (Paramyxoviridae), plants (Tymovirales), protozoa (Totiviridae), fungi (Narnaviridae) and bacteria (Norzivirales). Collectively, 93 complete or near-complete viral genomes were retrieved from the datasets, and several viruses appeared to have remarkable temporal and spatial distributions. Interestingly, the newly identified Periplaneta americana dicistrovirus displayed a remarkable distinct bicistronic genome arrangement from the well-recognized dicistroviruses with the translocated structural and non-structural polyprotein encoding open reading frames over the genome. These results significantly enhance our knowledge of RNA virosphere in Blattodea insects, and the novel genome architectures in dicistroviruses and other RNA viruses may break our stereotypes in the understanding of the genomic evolution and the emergence of potential novel viral species.
Collapse
Affiliation(s)
- Haoming Wu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, PR China
| | - Wenxin Li
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, PR China
| | - Jingyan Fan
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, PR China
| | - Shengsheng Jiang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, PR China
| | - Jiaxin Li
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, PR China
| | - Peng Hu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, PR China
| | - Zejun Yu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, PR China
| | - Yang Li
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, PR China
| | - Rui Pang
- College of Plant Protection, South China Agricultural University, Guangzhou 510651, PR China
| | - Huan Wu
- Department of Laboratory Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430019, PR China
| |
Collapse
|
3
|
Ahammed KS, van Hoof A. Fungi of the order Mucorales express a "sealing-only" tRNA ligase. RNA (NEW YORK, N.Y.) 2024; 30:354-366. [PMID: 38307611 PMCID: PMC10946435 DOI: 10.1261/rna.079957.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Some eukaryotic pre-tRNAs contain an intron that is removed by a dedicated set of enzymes. Intron-containing pre-tRNAs are cleaved by tRNA splicing endonuclease, followed by ligation of the two exons and release of the intron. Fungi use a "heal and seal" pathway that requires three distinct catalytic domains of the tRNA ligase enzyme, Trl1. In contrast, humans use a "direct ligation" pathway carried out by RTCB, an enzyme completely unrelated to Trl1. Because of these mechanistic differences, Trl1 has been proposed as a promising drug target for fungal infections. To validate Trl1 as a broad-spectrum drug target, we show that fungi from three different phyla contain Trl1 orthologs with all three domains. This includes the major invasive human fungal pathogens, and these proteins can each functionally replace yeast Trl1. In contrast, species from the order Mucorales, including the pathogens Rhizopus arrhizus and Mucor circinelloides, have an atypical Trl1 that contains the sealing domain but lacks both healing domains. Although these species contain fewer tRNA introns than other pathogenic fungi, they still require splicing to decode three of the 61 sense codons. These sealing-only Trl1 orthologs can functionally complement defects in the corresponding domain of yeast Trl1 and use a conserved catalytic lysine residue. We conclude that Mucorales use a sealing-only enzyme together with unidentified nonorthologous healing enzymes for their heal and seal pathway. This implies that drugs that target the sealing activity are more likely to be broader-spectrum antifungals than drugs that target the healing domains.
Collapse
Affiliation(s)
- Khondakar Sayef Ahammed
- Department of Microbiology and Molecular Genetics, UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Abstract
Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
5
|
Nicastro GG, Burroughs AM, Iyer L, Aravind L. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Res 2023; 51:11479-11503. [PMID: 37889040 PMCID: PMC10681802 DOI: 10.1093/nar/gkad879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| |
Collapse
|
6
|
Jacewicz A, Dantuluri S, Shuman S. Structural basis for Tpt1-catalyzed 2'-PO 4 transfer from RNA and NADP(H) to NAD . Proc Natl Acad Sci U S A 2023; 120:e2312999120. [PMID: 37883434 PMCID: PMC10622864 DOI: 10.1073/pnas.2312999120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023] Open
Abstract
Tpt1 is an essential agent of fungal and plant tRNA splicing that removes an internal RNA 2'-phosphate generated by tRNA ligase. Tpt1 also removes the 2'-phosphouridine mark installed by Ark1 kinase in the V-loop of archaeal tRNAs. Tpt1 performs a two-step reaction in which the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate, and transesterification of the ADP-ribose O2″ to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Here, we present structures of archaeal Tpt1 enzymes, captured as product complexes with ADP-ribose-1″-PO4, ADP-ribose-2″-PO4, and 2'-OH RNA, and as substrate complexes with 2',5'-ADP and NAD+, that illuminate 2'-PO4 junction recognition and catalysis. We show that archaeal Tpt1 enzymes can use the 2'-PO4-containing metabolites NADP+ and NADPH as substrates for 2'-PO4 transfer to NAD+. A role in 2'-phospho-NADP(H) dynamics provides a rationale for the prevalence of Tpt1 in taxa that lack a capacity for internal RNA 2'-phosphorylation.
Collapse
Affiliation(s)
- Agata Jacewicz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Swathi Dantuluri
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| |
Collapse
|
7
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
8
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
9
|
Sekulovski S, Trowitzsch S. Transfer RNA processing - from a structural and disease perspective. Biol Chem 2022; 403:749-763. [PMID: 35728022 DOI: 10.1515/hsz-2021-0406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Transfer RNAs (tRNAs) are highly structured non-coding RNAs which play key roles in translation and cellular homeostasis. tRNAs are initially transcribed as precursor molecules and mature by tightly controlled, multistep processes that involve the removal of flanking and intervening sequences, over 100 base modifications, addition of non-templated nucleotides and aminoacylation. These molecular events are intertwined with the nucleocytoplasmic shuttling of tRNAs to make them available at translating ribosomes. Defects in tRNA processing are linked to the development of neurodegenerative disorders. Here, we summarize structural aspects of tRNA processing steps with a special emphasis on intron-containing tRNA splicing involving tRNA splicing endonuclease and ligase. Their role in neurological pathologies will be discussed. Identification of novel RNA substrates of the tRNA splicing machinery has uncovered functions unrelated to tRNA processing. Future structural and biochemical studies will unravel their mechanistic underpinnings and deepen our understanding of neurological diseases.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
10
|
Ohira T, Minowa K, Sugiyama K, Yamashita S, Sakaguchi Y, Miyauchi K, Noguchi R, Kaneko A, Orita I, Fukui T, Tomita K, Suzuki T. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature 2022; 605:372-379. [PMID: 35477761 PMCID: PMC9095486 DOI: 10.1038/s41586-022-04677-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
Post-transcriptional modifications have critical roles in tRNA stability and function1–4. In thermophiles, tRNAs are heavily modified to maintain their thermal stability under extreme growth temperatures5,6. Here we identified 2′-phosphouridine (Up) at position 47 of tRNAs from thermophilic archaea. Up47 confers thermal stability and nuclease resistance to tRNAs. Atomic structures of native archaeal tRNA showed a unique metastable core structure stabilized by Up47. The 2′-phosphate of Up47 protrudes from the tRNA core and prevents backbone rotation during thermal denaturation. In addition, we identified the arkI gene, which encodes an archaeal RNA kinase responsible for Up47 formation. Structural studies showed that ArkI has a non-canonical kinase motif surrounded by a positively charged patch for tRNA binding. A knockout strain of arkI grew slowly at high temperatures and exhibited a synthetic growth defect when a second tRNA-modifying enzyme was depleted. We also identified an archaeal homologue of KptA as an eraser that efficiently dephosphorylates Up47 in vitro and in vivo. Taken together, our findings show that Up47 is a reversible RNA modification mediated by ArkI and KptA that fine-tunes the structural rigidity of tRNAs under extreme environmental conditions. Reversible internal RNA phosphrylation contributes to thermal stability and nuclease resistance of tRNA, and cellular thermotolerance of hyperthermophiles.
Collapse
Affiliation(s)
- Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Keiichi Minowa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kei Sugiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Noguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akira Kaneko
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
11
|
Groslambert J, Prokhorova E, Ahel I. ADP-ribosylation of DNA and RNA. DNA Repair (Amst) 2021; 105:103144. [PMID: 34116477 PMCID: PMC8385414 DOI: 10.1016/j.dnarep.2021.103144] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022]
Abstract
ADP-ribosylation is a chemical modification of macromolecules found across all domains of life and known to regulate a variety of cellular processes. Notably, it has a well-established role in the DNA damage response. While it was historically known as a post-translational modification of proteins, recent studies have shown that nucleic acids can also serve as substrates of reversible ADP-ribosylation. More precisely, ADP-ribosylation of DNA bases, phosphorylated DNA ends and phosphorylated RNA ends have been reported. We will discuss these three types of modification in details. In a variety of bacterial species, including Mycobacterium tuberculosis, ADP-ribosylation of thymidine has emerged as the mode of action of a toxin-antitoxin system named DarTG, with the resultant products perceived as DNA damage by the cell. On the other hand, mammalian DNA damage sensors PARP1, PARP2 and PARP3 were shown to ADP-ribosylate phosphorylated ends of double-stranded DNA in vitro. Additionally, TRPT1 and several PARP enzymes, including PARP10, can add ADP-ribose to the 5'-phosphorylated end of single-stranded RNA in vitro, representing a novel RNA capping mechanism. Together, these discoveries have led to the emergence of a new and exciting research area, namely DNA and RNA ADP-ribosylation, that is likely to have far-reaching implications for the fields of DNA repair, replication and epigenetics.
Collapse
Affiliation(s)
- Joséphine Groslambert
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
12
|
Alphonse S, Banerjee A, Dantuluri S, Shuman S, Ghose R. NMR solution structures of Runella slithyformis RNA 2'-phosphotransferase Tpt1 provide insights into NAD+ binding and specificity. Nucleic Acids Res 2021; 49:9607-9624. [PMID: 33880546 PMCID: PMC8464070 DOI: 10.1093/nar/gkab241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2′-PO4 (mimicking the substrate RNA 2′-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ β-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Swathi Dantuluri
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Graduate Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA.,Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA.,Graduate Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
13
|
Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 2021; 19:2366-2383. [PMID: 34025930 PMCID: PMC8120803 DOI: 10.1016/j.csbj.2021.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
Collapse
Affiliation(s)
- Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
14
|
Dantuluri S, Schwer B, Abdullahu L, Damha MJ, Shuman S. Activity and substrate specificity of Candida, Aspergillus, and Coccidioides Tpt1: essential tRNA splicing enzymes and potential anti-fungal targets. RNA (NEW YORK, N.Y.) 2021; 27:rna.078660.120. [PMID: 33509912 PMCID: PMC8051265 DOI: 10.1261/rna.078660.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The enzyme Tpt1 is an essential agent of fungal tRNA splicing that removes an internal RNA 2'-PO4 generated by fungal tRNA ligase. Tpt1 performs a two-step reaction in which: (i) the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate; and (ii) transesterification of the ADP-ribose O2'' to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1'',2''-cyclic phosphate. Because Tpt1 does not participate in metazoan tRNA splicing, and Tpt1 knockout has no apparent impact on mammalian physiology, Tpt1 is considered a potential anti-fungal drug target. Here we characterize Tpt1 enzymes from four human fungal pathogens: Coccidioides immitis, the agent of Valley Fever; Aspergillus fumigatus and Candida albicans, which cause invasive, often fatal, infections in immunocompromised hosts; and Candida auris, an emerging pathogen that is resistant to current therapies. All four pathogen Tpt1s were active in vivo in complementing a lethal Saccharomyces cerevisiae tpt1∆ mutation and in vitro in NAD+-dependent conversion of a 2'-PO4 to a 2'-OH. The fungal Tpt1s utilized nicotinamide hypoxanthine dinucleotide as a substrate in lieu of NAD+, albeit with much lower affinity, whereas nicotinic acid adenine dinucleotide was ineffective. Fungal Tpt1s efficiently removed an internal ribonucleotide 2'-phosphate from an otherwise all-DNA substrate. Replacement of an RNA ribose-2'-PO4 nucleotide with arabinose-2'-PO4 diminished enzyme specific activity by ≥2000-fold and selectively slowed step 2 of the reaction pathway, resulting in transient accumulation of an ara-2'-phospho-ADP-ribosylated intermediate. Our results implicate the 2'-PO4 ribonucleotide as the principal determinant of fungal Tpt1 nucleic acid substrate specificity.
Collapse
|
15
|
Yang S, Qu G, Fu B, Yang F, Zeng W, Cai Y, Ye T, Yang Y, Deng X, Xiang W, Peng D, Zhou B. The function of KptA/Tpt1 gene - a minor review. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:577-591. [PMID: 32438974 DOI: 10.1071/fp19159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/06/2020] [Indexed: 06/11/2023]
Abstract
Rapid response of uni- and multicellular organisms to environmental changes and their own growth is achieved through a series of molecular mechanisms, often involving modification of macromolecules, including nucleic acids, proteins and lipids. The ADP-ribosylation process has ability to modify these different macromolecules in cells, and is closely related to the biological processes, such as DNA replication, transcription, signal transduction, cell division, stress, microbial aging and pathogenesis. In addition, tRNA plays an essential role in the regulation of gene expression, as effector molecules, no-load tRNA affects the overall gene expression level of cells under some nutritional stress. KptA/Tpt1 is an essential phosphotransferase in the process of pre-tRNA splicing, releasing mature tRNA and participating in ADP-ribose. The objective of this review is concluding the gene structure, the evolution history and the function of KptA/Tpt1 from prokaryote to eukaryote organisms. At the same time, the results of promoter elements analysis were also shown in the present study. Moreover, the problems in the function of KptA/Tpt1 that have not been clarified at the present time are summarised, and some suggestions to solve those problems are given. This review presents no only a summary of clear function of KptA/Tpt1 in the process of tRNA splicing and ADP-ribosylation of organisms, but also gives some proposals to clarify unclear problems of it in the future.
Collapse
Affiliation(s)
- Shiquan Yang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Gaoyi Qu
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Bixia Fu
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Feng Yang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Weixian Zeng
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Yunzhang Cai
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | - Tao Ye
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China
| | | | - Xiangwen Deng
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, Hunan, 410004, China
| | - Wenhua Xiang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, Hunan, 410004, China
| | - Dan Peng
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and Forestry Biotechnology Hunan Key Laboratories, Changsha, Hunan, 410004, China
| | - Bo Zhou
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology,410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, Hunan, 410004, China; and Forestry Biotechnology Hunan Key Laboratories, Changsha, Hunan, 410004, China; and Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; and Corresponding author.
| |
Collapse
|
16
|
Dantuluri S, Abdullahu L, Munir A, Katolik A, Damha MJ, Shuman S. Substrate analogs that trap the 2'-phospho-ADP-ribosylated RNA intermediate of the Tpt1 (tRNA 2'-phosphotransferase) reaction pathway. RNA (NEW YORK, N.Y.) 2020; 26:373-381. [PMID: 31932322 PMCID: PMC7075268 DOI: 10.1261/rna.074377.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 05/06/2023]
Abstract
The enzyme Tpt1 removes an internal RNA 2'-PO4 via a two-step reaction in which: (i) the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate and nicotinamide; and (ii) transesterification of the ADP-ribose O2″ to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Because step 2 is much faster than step 1, the ADP-ribosylated RNA intermediate is virtually undetectable under normal circumstances. Here, by testing chemically modified nucleic acid substrates for activity with bacterial Tpt1 enzymes, we find that replacement of the ribose-2'-PO4 nucleotide with arabinose-2'-PO4 selectively slows step 2 of the reaction pathway and results in the transient accumulation of high levels of the reaction intermediate. We report that replacing the NMN ribose of NAD+ with 2'-fluoroarabinose (thereby eliminating the ribose O2″ nucleophile) results in durable trapping of RNA-2'-phospho-(ADP-fluoroarabinose) as a "dead-end" product of step 1. Tpt1 enzymes from diverse taxa differ in their capacity to use ara-2″F-NAD+ as a substrate.
Collapse
Affiliation(s)
- Swathi Dantuluri
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Leonora Abdullahu
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Annum Munir
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
17
|
Abstract
ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, 80145 Naples, Italy
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
18
|
Schmidt CA, Giusto JD, Bao A, Hopper AK, Matera AG. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res 2020; 47:6452-6465. [PMID: 31032518 PMCID: PMC6614914 DOI: 10.1093/nar/gkz311] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Mature tRNAs are generated by multiple post-transcriptional processing steps, which can include intron removal. Recently, we discovered a new class of circular non-coding RNAs in metazoans, called tRNA intronic circular (tric)RNAs. To investigate the mechanism of tricRNA biogenesis, we generated constructs that replace native introns of human and fruit fly tRNA genes with the Broccoli fluorescent RNA aptamer. Using these reporters, we identified cis-acting elements required for tricRNA formation in vivo. Disrupting a conserved base pair in the anticodon-intron helix dramatically reduces tricRNA levels. Although the integrity of this base pair is necessary for proper splicing, it is not sufficient. In contrast, strengthening weak bases in the helix also interferes with splicing and tricRNA production. Furthermore, we identified trans-acting factors important for tricRNA biogenesis, including several known tRNA processing enzymes such as the RtcB ligase and components of the TSEN endonuclease complex. Depletion of these factors inhibits Drosophila tRNA intron circularization. Notably, RtcB is missing from fungal genomes and these organisms normally produce linear tRNA introns. Here, we show that in the presence of ectopic RtcB, yeast lacking the tRNA ligase Rlg1/Trl1 are converted into producing tricRNAs. In summary, our work characterizes the major players in eukaryotic tricRNA biogenesis.
Collapse
Affiliation(s)
- Casey A Schmidt
- Curriculum in Genetics & Molecular Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph D Giusto
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alicia Bao
- Center for RNA Biology and Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Anita K Hopper
- Center for RNA Biology and Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - A Gregory Matera
- Curriculum in Genetics & Molecular Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Munir A, Banerjee A, Shuman S. NAD+-dependent synthesis of a 5'-phospho-ADP-ribosylated RNA/DNA cap by RNA 2'-phosphotransferase Tpt1. Nucleic Acids Res 2019; 46:9617-9624. [PMID: 30202863 PMCID: PMC6182162 DOI: 10.1093/nar/gky792] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
RNA 2′-phosphotransferase Tpt1 converts an internal RNA 2′-monophosphate to a 2′-OH via a two-step NAD+-dependent mechanism in which: (i) the 2′-phosphate attacks the C1″ of NAD+ to expel nicotinamide and form a 2′-phospho-ADP-ribosylated RNA intermediate; and (ii) the ADP-ribose O2″ attacks the phosphate of the RNA 2′-phospho-ADPR intermediate to expel the RNA 2′-OH and generate ADP-ribose 1″–2″ cyclic phosphate. Tpt1 is an essential component of the fungal tRNA splicing pathway that generates a unique 2′-PO4, 3′-5′ phosphodiester splice junction during tRNA ligation. The wide distribution of Tpt1 enzymes in taxa that have no fungal-type RNA ligase raises the prospect that Tpt1 might catalyze reactions other than RNA 2′-phosphate removal. A survey of Tpt1 enzymes from diverse sources reveals that whereas all of the Tpt1 enzymes are capable of NAD+-dependent conversion of an internal RNA 2′-PO4 to a 2′-OH (the canonical Tpt1 reaction), a subset of Tpt1 enzymes also catalyzed NAD+-dependent ADP-ribosylation of an RNA or DNA 5′-monophosphate terminus. Aeropyrum pernix Tpt1 (ApeTpt1) is particularly adept in this respect. One-step synthesis of a 5′-phospho-ADP-ribosylated cap structure by ApeTpt1 (with no subsequent 5′-phosphotransferase step) extends the repertoire of the Tpt1 enzyme family and the catalogue of ADP-ribosylation reactions involving nucleic acid acceptors.
Collapse
Affiliation(s)
- Annum Munir
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
20
|
Munir A, Abdullahu L, Banerjee A, Damha MJ, Shuman S. NAD +-dependent RNA terminal 2' and 3' phosphomonoesterase activity of a subset of Tpt1 enzymes. RNA (NEW YORK, N.Y.) 2019; 25:783-792. [PMID: 31019096 PMCID: PMC6573784 DOI: 10.1261/rna.071142.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/04/2019] [Indexed: 05/06/2023]
Abstract
The enzyme Tpt1 removes the 2'-PO4 at the splice junction generated by fungal tRNA ligase; it does so via a two-step reaction in which (i) the internal RNA 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-ADP-ribosyl intermediate; and (ii) transesterification of the ribose O2″ to the 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate products. The role that Tpt1 enzymes play in taxa that have no fungal-type RNA ligase remains obscure. An attractive prospect is that Tpt1 enzymes might catalyze reactions other than internal RNA 2'-PO4 removal, via their unique NAD+-dependent transferase mechanism. This study extends the repertoire of the Tpt1 enzyme family to include the NAD+-dependent conversion of RNA terminal 2' and 3' monophosphate ends to 2'-OH and 3'-OH ends, respectively. The salient finding is that different Tpt1 enzymes vary in their capacity and positional specificity for terminal phosphate removal. Clostridium thermocellum and Aeropyrum pernix Tpt1 proteins are active on 2'-PO4 and 3'-PO4 ends, with a 2.4- to 2.6-fold kinetic preference for the 2'-PO4 The accumulation of a terminal 3'-phospho-ADP-ribosylated RNA intermediate during the 3'-phosphotransferase reaction suggests that the geometry of the 3'-p-ADPR adduct is not optimal for the ensuing transesterification step. Chaetomium thermophilum Tpt1 acts specifically on a terminal 2'-PO4 end and not with a 3'-PO4 In contrast, Runella slithyformis Tpt1 and human Tpt1 are ineffective in removing either a 2'-PO4 or 3'-PO4 end.
Collapse
Affiliation(s)
- Annum Munir
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Leonora Abdullahu
- Department of Chemistry, McGill University, Montreal, Quebec, Canada H3A0B8
| | - Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada H3A0B8
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
21
|
Banerjee A, Munir A, Abdullahu L, Damha MJ, Goldgur Y, Shuman S. Structure of tRNA splicing enzyme Tpt1 illuminates the mechanism of RNA 2'-PO 4 recognition and ADP-ribosylation. Nat Commun 2019; 10:218. [PMID: 30644400 PMCID: PMC6333775 DOI: 10.1038/s41467-018-08211-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 11/30/2022] Open
Abstract
Tpt1 is an essential agent of fungal tRNA splicing that removes the 2′-PO4 at the splice junction generated by fungal tRNA ligase. Tpt1 catalyzes a unique two-step reaction whereby the 2′-PO4 attacks NAD+ to form an RNA-2′-phospho-ADP-ribosyl intermediate that undergoes transesterification to yield 2′-OH RNA and ADP-ribose-1″,2″-cyclic phosphate products. Because Tpt1 is inessential in exemplary bacterial and mammalian taxa, Tpt1 is seen as an attractive antifungal target. Here we report a 1.4 Å crystal structure of Tpt1 in a product-mimetic complex with ADP-ribose-1″-phosphate in the NAD+ site and pAp in the RNA site. The structure reveals how Tpt1 recognizes a 2′-PO4 RNA splice junction and the mechanism of RNA phospho-ADP-ribosylation. This study also provides evidence that a bacterium has an endogenous phosphorylated substrate with which Tpt1 reacts. Tpt1 catalyzes the final essential step in yeast tRNA splicing and is a potential antifungal target. Here the authors provide structural insights into how Tpt1 recognizes a 2’-PO4 RNA splice junction and the mechanism of RNA phospho-ADP-ribosylation.
Collapse
Affiliation(s)
- Ankan Banerjee
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Annum Munir
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Leonora Abdullahu
- Chemistry Department, McGill University, Montreal, Quebec, H3A0B8, Canada
| | - Masad J Damha
- Chemistry Department, McGill University, Montreal, Quebec, H3A0B8, Canada
| | - Yehuda Goldgur
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Stewart Shuman
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Munir A, Abdullahu L, Damha MJ, Shuman S. Two-step mechanism and step-arrest mutants of Runella slithyformis NAD +-dependent tRNA 2'-phosphotransferase Tpt1. RNA (NEW YORK, N.Y.) 2018; 24:1144-1157. [PMID: 29884622 PMCID: PMC6097658 DOI: 10.1261/rna.067165.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 05/06/2023]
Abstract
Tpt1 catalyzes the transfer of an internal 2'-monophosphate moiety (2'-PO4) from a "branched" 2'-PO4 RNA splice junction to NAD+ to form a "clean" 2'-OH, 3'-5' phosphodiester junction, ADP-ribose 1″-2″ cyclic phosphate, and nicotinamide. First discovered as an essential component of the Saccharomyces cerevisiae tRNA splicing machinery, Tpt1 is widely distributed in nature, including in taxa that have no yeast-like RNA splicing system. Here we characterize the RslTpt1 protein from the bacterium Runella slithyformis, in which Tpt1 is encoded within a putative RNA repair gene cluster. We find that (i) expression of RslTpt1 in yeast complements a lethal tpt1Δ knockout, and (ii) purified recombinant RslTpt1 is a bona fide NAD+-dependent 2'-phosphotransferase capable of completely removing an internal 2'-phosphate from synthetic RNAs. The in vivo activity of RslTpt1 is abolished by alanine substitutions for conserved amino acids Arg16, His17, Arg64, and Arg119. The R64A, R119A, and H17A mutants accumulate high levels of a 2'-phospho-ADP-ribosylated RNA reaction intermediate (2'-P-ADPR, evanescent in the wild-type RslTpt1 reaction), which is converted slowly to a 2'-OH RNA product. The R16A mutant is 300-fold slower than wild-type RslTpt1 in forming the 2'-P-ADPR intermediate. Whereas wild-type RsTpt1 rapidly converts the isolated 2'-P-ADPR intermediate to 2'-OH product in the absence of NAD+, the H17A, R119A, R64A, and R16A mutant are slower by factors of 3, 33, 210, and 710, respectively. Our results identify active site constituents involved in the catalysis of step 1 and step 2 of the Tpt1 reaction pathway.
Collapse
Affiliation(s)
- Annum Munir
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Leonora Abdullahu
- Chemistry Department, McGill University, Montreal, Quebec H3A2A7, Canada
| | - Masad J Damha
- Chemistry Department, McGill University, Montreal, Quebec H3A2A7, Canada
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
23
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
24
|
Sorci L, Ruggieri S, Raffaelli N. NAD homeostasis in the bacterial response to DNA/RNA damage. DNA Repair (Amst) 2014; 23:17-26. [PMID: 25127744 DOI: 10.1016/j.dnarep.2014.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 12/12/2022]
Abstract
In mammals, NAD represents a nodal point for metabolic regulation, and its availability is critical to genome stability. Several NAD-consuming enzymes are induced in various stress conditions and the consequent NAD decline is generally accompanied by the activation of NAD biosynthetic pathways to guarantee NAD homeostasis. In the bacterial world a similar scenario has only recently begun to surface. Here we review the current knowledge on the involvement of NAD homeostasis in bacterial stress response mechanisms. In particular, we focus on the participation of both NAD-consuming enzymes (DNA ligase, mono(ADP-ribosyl) transferase, sirtuins, and RNA 2'-phosphotransferase) and NAD biosynthetic enzymes (both de novo, and recycling enzymes) in the response to DNA/RNA damage. As further supporting evidence for such a link, a genomic context analysis is presented showing several conserved associations between NAD homeostasis and stress responsive genes.
Collapse
Affiliation(s)
- Leonardo Sorci
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silverio Ruggieri
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
25
|
Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 2013; 194:43-67. [PMID: 23633143 DOI: 10.1534/genetics.112.147470] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3' mature sequence and, for tRNA(His), addition of a 5' G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.
Collapse
|
26
|
Wichtowska D, Turowski TW, Boguta M. An interplay between transcription, processing, and degradation determines tRNA levels in yeast. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:709-22. [PMID: 24039171 DOI: 10.1002/wrna.1190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/06/2022]
Abstract
tRNA biogenesis in yeast involves the synthesis of the initial transcript by RNA polymerase III followed by processing and controlled degradation in both the nucleus and the cytoplasm. A vast landscape of regulatory elements controlling tRNA stability in yeast has emerged from recent studies. Diverse pathways of tRNA maturation generate multiple stable and unstable intermediates. A significant impact on tRNA stability is exerted by a variety of nucleotide modifications. Pre-tRNAs are targets of exosome-dependent surveillance in the nucleus. Some tRNAs that are hypomodified or bear specific destabilizing mutations are directed to the rapid tRNA decay pathway leading to 5'→3' exonucleolytic degradation by Rat1 and Xrn1. tRNA molecules are selectively marked for degradation by a double CCA at their 3' ends. In addition, under different stress conditions, tRNA half-molecules can be generated by independent endonucleolytic cleavage events. Recent studies reveal unexpected relationships between the subsequent steps of tRNA biosynthesis and the mechanisms controlling its quality and turnover.
Collapse
Affiliation(s)
- Dominika Wichtowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
27
|
Dhungel N, Hopper AK. Beyond tRNA cleavage: novel essential function for yeast tRNA splicing endonuclease unrelated to tRNA processing. Genes Dev 2012; 26:503-14. [PMID: 22391451 DOI: 10.1101/gad.183004.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pre-tRNA splicing is an essential process in all eukaryotes. In yeast and vertebrates, the enzyme catalyzing intron removal from pre-tRNA is a heterotetrameric complex (splicing endonuclease [SEN] complex). Although the SEN complex is conserved, the subcellular location where pre-tRNA splicing occurs is not. In yeast, the SEN complex is located at the cytoplasmic surface of mitochondria, whereas in vertebrates, pre-tRNA splicing is nuclear. We engineered yeast to mimic the vertebrate cell biology and demonstrate that all three steps of pre-tRNA splicing, as well as tRNA nuclear export and aminoacylation, occur efficiently when the SEN complex is nuclear. However, nuclear pre-tRNA splicing fails to complement growth defects of cells with defective mitochondrial-located splicing, suggesting that the yeast SEN complex surprisingly serves a novel and essential function in the cytoplasm that is unrelated to tRNA splicing. The novel function requires all four SEN complex subunits and the catalytic core. A subset of pre-rRNAs accumulates when the SEN complex is restricted to the nucleus, indicating that the SEN complex moonlights in rRNA processing. Thus, findings suggest that selection for the subcellular distribution of the SEN complex may reside not in its canonical, but rather in a novel, activity.
Collapse
Affiliation(s)
- Nripesh Dhungel
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
28
|
Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 2012; 69:2657-70. [PMID: 22426497 PMCID: PMC3400036 DOI: 10.1007/s00018-012-0944-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/01/2012] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.
Collapse
Affiliation(s)
- Johannes Popow
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
29
|
de Souza RF, Aravind L. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. MOLECULAR BIOSYSTEMS 2012; 8:1661-77. [PMID: 22399070 DOI: 10.1039/c2mb05487f] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a ubiquitous cofactor participating in numerous redox reactions. It is also a substrate for regulatory modifications of proteins and nucleic acids via the addition of ADP-ribose moieties or removal of acyl groups by transfer to ADP-ribose. In this study, we use in-depth sequence, structure and genomic context analysis to uncover new enzymes and substrate-binding proteins in NAD-utilizing metabolic and macromolecular modification systems. We predict that Escherichia coli YbiA and related families of domains from diverse bacteria, eukaryotes, large DNA viruses and single strand RNA viruses are previously unrecognized components of NAD-utilizing pathways that probably operate on ADP-ribose derivatives. Using contextual analysis we show that some of these proteins potentially act in RNA repair, where NAD is used to remove 2'-3' cyclic phosphodiester linkages. Likewise, we predict that another family of YbiA-related enzymes is likely to comprise a novel NAD-dependent ADP-ribosylation system for proteins, in conjunction with a previously unrecognized ADP-ribosyltransferase. A similar ADP-ribosyltransferase is also coupled with MACRO or ADP-ribosylglycohydrolase domain proteins in other related systems, suggesting that all these novel systems are likely to comprise pairs of ADP-ribosylation and ribosylglycohydrolase enzymes analogous to the DraG-DraT system, and a novel group of bacterial polymorphic toxins. We present evidence that some of these coupled ADP-ribosyltransferases/ribosylglycohydrolases are likely to regulate certain restriction modification enzymes in bacteria. The ADP-ribosyltransferases found in these, the bacterial polymorphic toxin and host-directed toxin systems of bacteria such as Waddlia also throw light on the evolution of this fold and the origin of eukaryotic polyADP-ribosyltransferases and NEURL4-like ARTs, which might be involved in centrosomal assembly. We also infer a novel biosynthetic pathway that might be involved in the synthesis of a nicotinate-derived compound in conjunction with an asparagine synthetase and AMPylating peptide ligase. We use the data derived from this analysis to understand the origin and early evolutionary trajectories of key NAD-utilizing enzymes and present targets for future biochemical investigations.
Collapse
Affiliation(s)
- Robson Francisco de Souza
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
30
|
Tanaka N, Meineke B, Shuman S. RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 2011; 286:30253-30257. [PMID: 21757685 DOI: 10.1074/jbc.c111.274597] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RtcB enzymes are novel RNA ligases that join 2',3'-cyclic phosphate and 5'-OH ends. The phylogenetic distribution of RtcB points to its candidacy as a tRNA splicing/repair enzyme. Here we show that Escherichia coli RtcB is competent and sufficient for tRNA splicing in vivo by virtue of its ability to complement growth of yeast cells that lack the endogenous "healing/sealing-type" tRNA ligase Trl1. RtcB also protects yeast trl1Δ cells against a fungal ribotoxin that incises the anticodon loop of cellular tRNAs. Moreover, RtcB can replace Trl1 as the catalyst of HAC1 mRNA splicing during the unfolded protein response. Thus, RtcB is a bona fide RNA repair enzyme with broad physiological actions. Biochemical analysis of RtcB highlights the uniqueness of its active site and catalytic mechanism. Our findings draw attention to tRNA ligase as a promising drug target.
Collapse
Affiliation(s)
- Naoko Tanaka
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065
| | - Birthe Meineke
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065.
| |
Collapse
|
31
|
Koch-Nolte F, Fischer S, Haag F, Ziegler M. Compartmentation of NAD+-dependent signalling. FEBS Lett 2011; 585:1651-6. [PMID: 21443875 DOI: 10.1016/j.febslet.2011.03.045] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 01/24/2023]
Abstract
NAD(+) plays central roles in energy metabolism as redox carrier. Recent research has identified important signalling functions of NAD(+) that involve its consumption. Although NAD(+) is synthesized mainly in the cytosol, nucleus and mitochondria, it has been detected also in vesicular and extracellular compartments. Three protein families that consume NAD(+) in signalling reactions have been characterized on a molecular level: ADP-ribosyltransferases (ARTs), Sirtuins (SIRTs), and NAD(+) glycohydrolases (NADases). Members of these families serve important regulatory functions in various cellular compartments, e.g., by linking the cellular energy state to gene expression in the nucleus, by regulating nitrogen metabolism in mitochondria, and by sensing tissue damage in the extracellular compartment. Distinct NAD(+) pools may be crucial for these processes. Here, we review the current knowledge about the compartmentation and biochemistry of NAD(+)-converting enzymes that control NAD(+) signalling.
Collapse
|
32
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
33
|
Branchiostoma floridae has separate healing and sealing enzymes for 5'-phosphate RNA ligation. Proc Natl Acad Sci U S A 2010; 107:16834-9. [PMID: 20837552 DOI: 10.1073/pnas.1011703107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Animal cells have two tRNA splicing pathways: (i) a 5'-P ligation mechanism, where the 5'-phosphate of the 3' tRNA half becomes the junction phosphate of the new phosphodiester linkage, and (ii) a 3'-P ligation process, in which the 3'-phosphate of the 5' tRNA half turns into the junction phosphate. Although both activities are known to exist in animals, in almost three decades of investigation, neither of the two RNA ligases has been identified. Here we describe a gene from the chordate Branchiostoma floridae that encodes an RNA ligase (Bf RNL) with a strict requirement for RNA substrates with a 2'-phosphate terminus for the ligation of RNAs with 5'-phosphate and 3'-hydroxyl ends. Unlike the yeast and plant tRNA ligases involved in tRNA splicing, Bf RNL lacks healing activities and requires the action of a polynucleotide kinase (PNK) and a cyclic phosphodiesterase (CDPase) in trans. The activities of these two enzymes were identified in a single B. floridae protein (Bf PNK/CPDase). The combined activities of Bf RNL and Bf PNK/CPDase are sufficient for the joining of tRNA splicing intermediates in vitro, and for the functional complementation of a tRNA ligase-deficient Saccharomyces cerevisiae strain in vivo. Hence, these two proteins constitute the 5'-P RNA ligation pathway in an animal organism.
Collapse
|
34
|
Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 2010; 35:208-19. [PMID: 20106667 DOI: 10.1016/j.tibs.2009.12.003] [Citation(s) in RCA: 667] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 10/19/2022]
Abstract
ADP-ribosylation is a post-translational modification of proteins catalyzed by ADP-ribosyltransferases. It comprises the transfer of the ADP-ribose moiety from NAD+ to specific amino acid residues on substrate proteins or to ADP-ribose itself. Currently, 22 human genes encoding proteins that possess an ADP-ribosyltransferase catalytic domain are known. Recent structural and enzymological evidence of poly(ADP-ribose)polymerase (PARP) family members demonstrate that earlier proposed names and classifications of these proteins are no longer accurate. Here we summarize these new findings and propose a new consensus nomenclature for all ADP-ribosyltransferases (ARTs) based on the catalyzed reaction and on structural features. A unified nomenclature would facilitate communication between researchers both inside and outside the ADP-ribosylation field.
Collapse
Affiliation(s)
- Michael O Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Ramirez A, Shuman S, Schwer B. Human RNA 5'-kinase (hClp1) can function as a tRNA splicing enzyme in vivo. RNA (NEW YORK, N.Y.) 2008; 14:1737-45. [PMID: 18648070 PMCID: PMC2525948 DOI: 10.1261/rna.1142908] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/16/2008] [Indexed: 05/22/2023]
Abstract
Yeast and human Clp1 proteins are homologous components of the mRNA 3'-cleavage-polyadenylation machinery. Recent studies highlighting an association of human Clp1 (hClp1) with tRNA splicing endonuclease and an intrinsic RNA-specific 5'-OH polynucleotide kinase activity of hClp1 have prompted speculation that Clp1 might play a catalytic role in tRNA splicing in animal cells. Here, we show that expression of hClp1 in budding yeast can complement conditional and lethal mutations in the essential 5'-OH RNA kinase module of yeast or plant tRNA ligases. The tRNA splicing activity of hClp1 in yeast is abolished by mutations in the kinase active site. In contrast, overexpression of yeast Clp1 (yClp1) cannot rescue kinase-defective tRNA ligase mutants, and, unlike hClp1, the purified recombinant yClp1 protein has no detectable RNA kinase activity in vitro. Mutations of the yClp1 ATP-binding site do not affect yeast viability. These findings, and the fact that hClp1 cannot complement growth of a yeast clp1Delta strain, indicate that yeast and human Clp1 proteins are not functional orthologs, despite their structural similarity. Although hClp1 can perform the 5'-end-healing step of a yeast-type tRNA splicing pathway in vivo, it is uncertain whether its kinase activity is necessary for tRNA splicing in human cells, given that other mammalian counterparts of yeast-type tRNA repair enzymes are nonessential in vivo.
Collapse
Affiliation(s)
- Alejandro Ramirez
- Graduate Program in Molecular Biology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | |
Collapse
|
37
|
Schwer B, Aronova A, Ramirez A, Braun P, Shuman S. Mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme in vivo. RNA (NEW YORK, N.Y.) 2008; 14:204-10. [PMID: 18094118 PMCID: PMC2212240 DOI: 10.1261/rna.858108] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/06/2007] [Indexed: 05/24/2023]
Abstract
Yeast and plant tRNA splicing entails discrete healing and sealing steps catalyzed by a tRNA ligase that converts the 2',3' cyclic phosphate and 5'-OH termini of the broken tRNA exons to 3'-OH/2'-PO4 and 5'-PO4 ends, respectively, then joins the ends to yield a 2'-PO4, 3'-5' phosphodiester splice junction. The junction 2'-PO4 is removed by a tRNA phosphotransferase, Tpt1. Animal cells have two potential tRNA repair pathways: a yeast-like system plus a distinctive mechanism, also present in archaea, in which the 2',3' cyclic phosphate and 5'-OH termini are ligated directly. Here we report that a mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can perform the essential 3' end-healing steps of tRNA splicing in yeast and thereby complement growth of strains bearing lethal or temperature-sensitive mutations in the tRNA ligase 3' end-healing domain. Although this is the first evidence of an RNA processing function in vivo for the mammalian CNP protein, it seems unlikely that the yeast-like pathway is responsible for animal tRNA splicing, insofar as neither CNP nor Tpt1 is essential in mice.
Collapse
|
38
|
Harding HP, Lackey JG, Hsu HC, Zhang Y, Deng J, Xu RM, Damha MJ, Ron D. An intact unfolded protein response in Trpt1 knockout mice reveals phylogenic divergence in pathways for RNA ligation. RNA (NEW YORK, N.Y.) 2008; 14:225-32. [PMID: 18094117 PMCID: PMC2212252 DOI: 10.1261/rna.859908] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/08/2007] [Indexed: 05/23/2023]
Abstract
Unconventional mRNA splicing by an endoplasmic reticulum stress-inducible endoribonuclease, IRE1, is conserved in all known eukaryotes. It controls the expression of a transcription factor, Hac1p/XBP-1, that regulates gene expression in the unfolded protein response. In yeast, the RNA fragments generated by Ire1p are ligated by tRNA ligase (Trl1p) in a process that leaves a 2'-PO4(2-) at the splice junction, which is subsequently removed by an essential 2'-phosphotransferase, Tpt1p. However, animals, unlike yeast, have two RNA ligation/repair pathways that could potentially rejoin the cleaved Xbp-1 mRNA fragments. We report that inactivation of the Trpt1 gene, encoding the only known mammalian homolog of Tpt1p, eliminates all detectable 2'-phosphotransferase activity from cultured mouse cells but has no measurable effect on spliced Xbp-1 translation. Furthermore, the relative translation rates of tyrosine-rich proteins is unaffected by the Trpt1 genotype, suggesting that the pool of (normally spliced) tRNA(Tyr) is fully functional in the Trpt1-/- mouse cells. These observations argue against the presence of a 2'-PO4(2-) at the splice junction of ligated RNA molecules in Trpt1-/- cells, and suggest that Xbp-1 and tRNA ligation proceed by distinct pathways in yeast and mammals.
Collapse
Affiliation(s)
- Heather P Harding
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
ADP-ribosylation using nicotinamide adenine dinucleotide (NAD+) is an important type of enzymatic reaction that affects many biological processes. A brief introductory review is given here to various ADP-ribosyltransferases, including poly(ADP-ribose) polymerase (PARPs), mono(ADP-ribosyl)-transferases (ARTs), NAD(+)-dependent deacetylases (sirtuins), tRNA 2'-phosphotransferases, and ADP-ribosyl cyclases (CD38 and CD157). Focus is given to the enzymatic reactions, mechanisms, structures, and biological functions.
Collapse
Affiliation(s)
- Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
40
|
Englert M, Latz A, Becker D, Gimple O, Beier H, Akama K. Plant pre-tRNA splicing enzymes are targeted to multiple cellular compartments. Biochimie 2007; 89:1351-65. [PMID: 17698277 DOI: 10.1016/j.biochi.2007.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 06/18/2007] [Indexed: 11/19/2022]
Abstract
Splicing of precursor tRNAs in plants requires the concerted action of three enzymes: an endonuclease to cleave the intron at the two splice sites, an RNA ligase for joining the resulting tRNA halves and a 2'-phosphotransferase to remove the 2'-phosphate from the splice junction. Pre-tRNA splicing has been demonstrated to occur exclusively in the nucleus of vertebrates and in the cytoplasm of budding yeast cells, respectively. We have investigated the subcellular localization of plant splicing enzymes fused to GFP by their transient expression in Allium epidermal and Vicia guard cells. Our results show that all three classes of splicing enzymes derived from Arabidopsis and Oryza are localized in the nucleus, suggesting that plant pre-tRNA splicing takes place preferentially in the nucleus. Moreover, two of the splicing enzymes, i.e., tRNA ligase and 2'-phosphotransferase, contain chloroplast transit signals at their N-termini and are predominantly targeted to chloroplasts and proplastids, respectively. The putative transit sequences are effective also in the heterologous context fused directly to GFP. Chloroplast genomes do not encode intron-containing tRNA genes of the nuclear type and consequently tRNA ligase and 2'-phosphotransferase are not required for classical pre-tRNA splicing in these organelles but they may play a role in tRNA repair and/or splicing of atypical group II introns. Additionally, 2'-phosphotransferase-GFP fusion protein has been found to be associated with mitochondria, as confirmed by colocalization studies with MitoTracker Red. In vivo analyses with mutated constructs suggest that alternative initiation of translation is one way utilized by tRNA splicing enzymes for differential targeting.
Collapse
Affiliation(s)
- Markus Englert
- Institute of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The splicing of nuclear encoded RNAs, including tRNAs, has been widely believed to occur in the nucleus. However, we recently found that one of the tRNA splicing enzymes, splicing endonuclease, is localized to the outer surface of mitochondria in Saccharomyces cerevisiae. These results suggested the unexpected possibility of tRNA splicing in the cytoplasm. To investigate this possibility, we examined whether cytoplasmic pre-tRNAs are bona fide intermediates for tRNA maturation in vivo. We isolated a new reversible allele of temperature-sensitive (ts) sen2 (HA-sen2-42), which encodes a mutant form of one of the catalytic subunits of yeast splicing endonuclease. The HA-sen2-42 cells accumulated large amounts of pre-tRNAs in the cytoplasm at a restrictive temperature, but the pre-tRNAs were diminished when the cells were transferred to a permissive temperature. Using pulse-chase/hybrid-precipitation techniques, we showed that the pre-tRNAs were not degraded but rather converted into mature tRNAs during incubation at the permissive temperature. These and other results indicate that, in S. cerevisiae, pre-tRNAs in the cytoplasm are genuine substrates for splicing, and that the splicing is indeed carried out in the cytoplasm.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Research Center for Materials Science, Nagoya University, Japan.
| | | | | | | |
Collapse
|
42
|
Nseir S, Jozefowicz E, Cavestri B, Sendid B, Di Pompeo C, Dewavrin F, Favory R, Roussel-Delvallez M, Durocher A. Impact of antifungal treatment on Candida-Pseudomonas interaction: a preliminary retrospective case-control study. Intensive Care Med 2006; 33:137-42. [PMID: 17115135 PMCID: PMC7095372 DOI: 10.1007/s00134-006-0422-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 09/20/2006] [Indexed: 12/01/2022]
Abstract
Objective A pathogenic interaction between Candida albicans and Pseudomonas aeruginosa has recently been demonstrated. In addition, experimental and clinical studies identified Candida spp. tracheobronchial colonization as a risk factor for P. aeruginosa pneumonia. The aim of this study was to determine the impact of antifungal treatment on ventilator-associated pneumonia (VAP) or tracheobronchial colonization due to P. aeruginosa. Design and setting Retrospective observational case–control study conducted in a 30-bed ICU during a 1-year period. Patients and methods One hundred and two patients intubated and ventilated for longer than 48 h with tracheobronchial colonization by Candida spp. Routine screening for Candida spp. and P. aeruginosa was performed at ICU admission and weekly. Antifungal treatment was based on medical staff decisions. Patients with P. aeruginosa VAP or tracheobronchial colonization were matched (1:2) with patients without P. aeruginosa VAP or tracheobronchial colonization. In case and control patients, risk factors for P. aeruginosa VAP or tracheobronchial colonization were determined using univariate and multivariate analyses. Results Thirty-six patients (35%) received antifungal treatment. Nineteen patients (18%) developed a P. aeruginosa VAP or tracheobronchial colonization, and all were successfully matched. Antifungal treatment [31% vs 60%; p = 0.037, OR (95% CI) = 0.67 (0.45–0.90)], and duration of antifungal treatment (7 ± 11 vs 14 ± 14 days; p = 0.045, in case and control patients respectively) were significantly associated with reduced risk for P. aeruginosa VAP or tracheobronchial colonization. Antifungal treatment was the only variable independently associated with P. aeruginosa VAP or tracheobronchial colonization (OR = 0.68, 95% CI = 0.49–0.90, p = 0.046). Conclusion In patients with Candida spp. tracheobronchial colonization, antifungal treatment may be associated with reduced risk for P. aeruginosa VAP or tracheobronchial colonization. Electronic supplementary material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00134-006-0422-0 and is accessible for authorized users.
Collapse
Affiliation(s)
- Saad Nseir
- Intensive Care Unit, Calmette Hospital, University Hospital of Lille, boulevard du Pr Leclercq, 59037, Lille cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Back SH, Lee K, Vink E, Kaufman RJ. Cytoplasmic IRE1alpha-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J Biol Chem 2006; 281:18691-706. [PMID: 16644724 DOI: 10.1074/jbc.m602030200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates an intracellular signal transduction program termed the unfolded protein response (UPR). In mammalian cells, the UPR is signaled in part through dimerization of ER membrane-localized IRE1alpha to activate its protein kinase and endoribonuclease activities. Activated IRE1alpha cleaves XBP1 mRNA at two sites to initiate an unconventional splicing reaction. The 5' and 3' fragments are subsequently joined by an RNA ligase activity, thereby removing a 26-base intron. This splicing reaction creates a translational frameshift to produce a functional XBP1 transcription factor. However, the cellular location and physiological processes required for splicing of XBP1 mRNA are not well characterized. To study these processes, XBP1 mRNAs were engineered in which translation of enhanced green fluorescence protein or luciferase required splicing of the XBP1 intron. Using cell lines that continuously or transiently express these reporter constructs, we show that cytoplasmic unspliced XBP1 mRNA is efficiently spliced by activated IRE1alpha and requires ongoing cellular transcription but not active translation. The XBP1 intron was effectively removed from RNA substrates transcribed from T7 RNA polymerase or delivered directly to the cytoplasm by RNA transfection, thus indicating that the splicing reaction does not require nuclear processing of the RNA substrate. Analysis of nuclear and cytoplasmic RNA fractions demonstrated that XBP1 mRNA splicing occurs in the cytoplasm. Moreover, an artificial F(v)-IRE1alphaDeltaN was engineered that was able to splice XBP1 mRNA upon chemical-induced dimerization. These findings demonstrate that IRE1alpha dimerization is sufficient to activate XBP1 mRNA splicing in the absence of the UPR. We propose that XBP1 mRNA cytoplasmic splicing provides a novel mechanism to rapidly induce translation of a transcription factor in response to a specific stimulus.
Collapse
Affiliation(s)
- Sung Hoon Back
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0650, USA
| | | | | | | |
Collapse
|
44
|
Azoulay E, Timsit JF, Tafflet M, de Lassence A, Darmon M, Zahar JR, Adrie C, Garrouste-Orgeas M, Cohen Y, Mourvillier B, Schlemmer B. Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest 2006; 129:110-7. [PMID: 16424420 DOI: 10.1378/chest.129.1.110] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Recovery of Candida from the respiratory tract of a critically ill patient receiving mechanical ventilation (MV) usually indicates colonization rather than infection of the respiratory tract. However, interactions between Candida and bacteria, particularly Pseudomonas, have been reported. Thus, Candida colonization of the respiratory tract may predispose to bacterial ventilator-associated pneumonia (VAP). METHODS In a multicenter study of immunocompetent critically ill patients receiving MV for > 2 days, we compared the incidence of pneumonia in patients with and without (exposed/unexposed) respiratory-tract Candida colonization, matched on study center, admission year, and MV duration. RESULTS Over the 4-year study period, of the 803 patients meeting study inclusion criteria in the six study centers, 214 patients (26.6%) had respiratory tract Candida colonization. Candida albicans was the most common species (68.7%), followed by Candida glabrata (20.1%) and Candida tropicalis (13.1%). Extrapulmonary Candida colonization was more common in exposed patients (39.7% vs 8.3%, p = 0.01). Exposed patients had longer ICU and hospital stays but similar mortality to unexposed patients. The matched exposed/unexposed nested cohort study identified bronchial Candida colonization as an independent risk factor for pneumonia (24.1% vs 17.6%; adjusted odds ratio [OR], 1.58; 95% confidence interval [CI], 0.94 to 2.68; p = 0.0860); the risk increase was greatest for Pseudomonas pneumonia (9% vs 4.8%; adjusted OR, 2.22; 95% CI, 1.00 to 4.92; p = 0.049). CONCLUSIONS Candida colonization of the respiratory tract is common in patients receiving MV for > 2 days and is associated with prolonged ICU and hospital stays, and with an increased risk of Pseudomonas VAP.
Collapse
Affiliation(s)
- Elie Azoulay
- Medical ICU, Saint Louis Teaching Hospital, 1 Ave Claude Vellefaux, 75010 Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
In the endoplasmic reticulum (ER), secretory and transmembrane proteins fold into their native conformation and undergo posttranslational modifications important for their activity and structure. When protein folding in the ER is inhibited, signal transduction pathways, which increase the biosynthetic capacity and decrease the biosynthetic burden of the ER to maintain the homeostasis of this organelle, are activated. These pathways are called the unfolded protein response (UPR). In this review, we briefly summarize principles of protein folding and molecular chaperone function important for a mechanistic understanding of UPR-signaling events. We then discuss mechanisms of signal transduction employed by the UPR in mammals and our current understanding of the remodeling of cellular processes by the UPR. Finally, we summarize data that demonstrate that UPR signaling feeds into decision making in other processes previously thought to be unrelated to ER function, e.g., eukaryotic starvation responses and differentiation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.
| | | |
Collapse
|
46
|
Kato-Murayama M, Bessho Y, Shirouzu M, Yokoyama S. Crystal structure of the RNA 2'-phosphotransferase from Aeropyrum pernix K1. J Mol Biol 2005; 348:295-305. [PMID: 15811369 DOI: 10.1016/j.jmb.2005.02.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 02/21/2005] [Indexed: 11/17/2022]
Abstract
In the final step of tRNA splicing, the 2'-phosphotransferase catalyzes the transfer of the extra 2'-phosphate from the precursor-ligated tRNA to NAD. We have determined the crystal structure of the 2'-phosphotransferase protein from Aeropyrum pernix K1 at 2.8 Angstroms resolution. The structure of the 2'-phosphotransferase contains two globular domains (N and C-domains), which form a cleft in the center. The N-domain has the winged helix motif, a subfamily of the helix-turn-helix family, which is shared by many DNA-binding proteins. The C-domain of the 2'-phosphotransferase superimposes well on the NAD-binding fold of bacterial (diphtheria) toxins, which catalyze the transfer of ADP ribose from NAD to target proteins, indicating that the mode of NAD binding by the 2'-phosphotransferase could be similar to that of the bacterial toxins. The conserved basic residues are assembled at the periphery of the cleft and could participate in the enzyme contact with the sugar-phosphate backbones of tRNA. The modes by which the two functional domains recognize the two different substrates are clarified by the present crystal structure of the 2'-phosphotransferase.
Collapse
Affiliation(s)
- Miyuki Kato-Murayama
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
47
|
Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29-63. [PMID: 15603751 DOI: 10.1016/j.mrfmmm.2004.06.056] [Citation(s) in RCA: 1337] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/10/2004] [Indexed: 02/08/2023]
Abstract
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
48
|
Steiger MA, Jackman JE, Phizicky EM. Analysis of 2'-phosphotransferase (Tpt1p) from Saccharomyces cerevisiae: evidence for a conserved two-step reaction mechanism. RNA (NEW YORK, N.Y.) 2005; 11:99-106. [PMID: 15611300 PMCID: PMC1370695 DOI: 10.1261/rna.7194605] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tpt1p is an essential protein responsible for the 2'-phosphotransferase step of tRNA splicing in Saccharomyces cerevisiae, in which the splice junction 2'-phosphate of ligated tRNA is transferred to NAD to form mature tRNA and ADP-ribose 1''-2'' cyclic phosphate. We showed previously that Tpt1p is a member of a family of functional 2'-phosphotransferases found in eukaryotes, eubacteria, and archaea, that the Escherichia coli protein (KptA) is highly specific for 2'-phosphorylated RNAs despite the lack of obvious natural substrates, and that KptA acts on a trinucleotide substrate through an intermediate in which RNA is ADP-ribosylated at the 2'-phosphate. This mechanism is similar to a proposed mechanism of NAD-dependent histone deacetylases. We present evidence here that this mechanism is conserved in S. cerevisiae, and we identify residues important for the second step of the reaction, during which the intermediate is resolved into products. We examined 21 Tpt1 protein variants mutated in conserved residues or blocks of residues and show that one of them, Tpt1 K69A/R71S protein, accumulates large amounts of intermediate with trinucleotide substrate due to a very slow second step. This intermediate can be trapped on beads when formed with biotin-NAD. We also show that Tpt1 K69A/R71S protein forms an intermediate with the natural ligated tRNA substrate and demonstrate that, as expected, this mutation is lethal in yeast. The high degree of conservation of these residues suggests that the entire Tpt1p family is involved in a similar two-step chemical reaction.
Collapse
Affiliation(s)
- Michelle A Steiger
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
| | | | | |
Collapse
|
49
|
Sawaya R, Schwer B, Shuman S. Structure-function analysis of the yeast NAD+-dependent tRNA 2'-phosphotransferase Tpt1. RNA (NEW YORK, N.Y.) 2005; 11:107-13. [PMID: 15611301 PMCID: PMC1370696 DOI: 10.1261/rna.7193705] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tpt1 is an essential 230-amino-acid enzyme that catalyzes the final step in yeast tRNA splicing: the transfer of the 2'-PO4 from the splice junction to NAD+ to form ADP-ribose 1''-2''cyclic phosphate and nicotinamide. To understand the structural requirements for Saccharomyces cerevisiae Tpt1 activity, we performed an alanine-scanning mutational analysis of 14 amino acids that are conserved in homologous proteins from fungi, metazoa, protozoa, bacteria, and archaea. We thereby identified four residues-Arg23, His24, Arg71, and Arg138-as essential for Tpt1 function in vivo. Structure-activity relationships at these positions were clarified by introducing conservative substitutions. The activity of the Escherichia coli ortholog KptA in complementing tpt1Delta was abolished by alanine substitutions at the equivalent side chains, Arg21, His22, Arg69, and Arg125. Deletion analysis of Tpt1 shows that the C-terminal 20 amino acids, which are not conserved, are not essential for activity in vivo at 30 degrees C. These findings attest to the structural and functional conservation of Tpt1-like 2'-phosphotransferases and identify likely constituents of the active site.
Collapse
Affiliation(s)
- Rana Sawaya
- Molecular Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
50
|
Schwer B, Sawaya R, Ho CK, Shuman S. Portability and fidelity of RNA-repair systems. Proc Natl Acad Sci U S A 2004; 101:2788-93. [PMID: 14973195 PMCID: PMC365698 DOI: 10.1073/pnas.0305859101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Yeast tRNA ligase (Trl1) is an essential enzyme that converts cleaved tRNA half-molecules into spliced tRNAs containing a 2'-PO(4), 3'-5' phosphodiester at the splice junction. Trl1 also catalyzes splicing of HAC1 mRNA during the unfolded protein response. Trl1 performs three reactions: the 2',3'-cyclic phosphate of the proximal RNA fragment is hydrolyzed to a 3'-OH, 2'-PO(4) by a cyclic phosphodiesterase; the 5'-OH of the distal RNA fragment is phosphorylated by a GTP-dependent polynucleotide kinase; and the 3'-OH, 2'-PO(4), and 5'-PO(4) ends are then sealed by an ATP-dependent RNA ligase. The removal of the 2'-PO(4) at the splice junction is catalyzed by the essential enzyme Tpt1, which transfers the RNA 2'-PO(4) to NAD(+) to form ADP-ribose 1"-2"-cyclic phosphate. Here, we show that the bacteriophage T4 enzymes RNA ligase 1 and polynucleotide kinase/phosphatase can fulfill the tRNA and HAC1 mRNA splicing functions of yeast Trl1 in vivo and bypass the requirement for Tpt1. These results attest to the portability of RNA-repair systems, notwithstanding the significant differences in the specificities, mechanisms, and reaction intermediates of the individual yeast and T4 enzymes responsible for the RNA healing and sealing steps. We surmise that Tpt1 and its unique metabolite ADP-ribose 1"-2"-cyclic phosphate do not play essential roles in yeast independent of the tRNA-splicing reaction. Our finding that one-sixth of spliced HAC1 mRNAs in yeast cells containing the T4 RNA-repair system suffered deletion of a single nucleotide at the 3' end of the splice-donor site suggests a model whereby the yeast RNA-repair system evolved a requirement for the 2'-PO(4) for RNA ligation to suppress inappropriate RNA recombination.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|