1
|
Chen G, Shao T, Zhou Y, Chen F, Zhang D, Gu H, Yue Y, Wang L, Yang X. Analysis of the Aging-Related AP2/ERF Transcription Factor Gene Family in Osmanthus fragrans. Int J Mol Sci 2024; 25:8025. [PMID: 39125596 PMCID: PMC11312093 DOI: 10.3390/ijms25158025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
Ethylene-Responsive Factor (ERF) is a key element found in the middle and lower reaches of the ethylene signal transduction pathway. It is widely distributed in plants and plays important roles in plant growth and development, hormone signal transduction, and various stress processes. Although there is research on AP/ERF family members, research on AP2/ERF in Osmanthus fragrans is lacking. Thus, in this work, AP2/ERF in O. fragrans was extensively and comprehensively analyzed. A total of 298 genes encoding OfAP2/ERF proteins with complete AP2/ERF domains were identified. Based on the number of AP2/ERF domains and the similarity among amino acid sequences between AP2/ERF proteins from A. thaliana and O. fragrans, the 298 putative OfAP2/ERF proteins were divided into four different families, including AP2 (45), ERF (247), RAV (5), and SOLOIST (1). In addition, the exon-intron structure characteristics of these putative OfAP2/ERF genes and the conserved protein motifs of their encoded OfAP2/ERF proteins were analyzed, and the results were found to be consistent with those of the population classification. A tissue-specific analysis showed the spatiotemporal expression of OfAP2/ERF in the stems and leaves of O. fragrans at different developmental stages. Specifically, 21 genes were not expressed in any tissue, while high levels of expression were found for 25 OfAP2/ERF genes in several tissues, 60 genes in the roots, 34 genes in the stems, 37 genes in young leaves, 34 genes in old leaves, 32 genes in the early flowering stage, 18 genes in the full flowering stage, and 37 genes in the late flowering stage. Quantitative RT-PCR experiments showed that OfERF110a and OfERF110b had the highest expression levels at the full-bloom stage (S4), and this gradually decreased with the senescence of petals. The expression of OfERF119c decreased first and then increased, while the expression levels of OfERF4c and OfERF5a increased constantly. This indicated that these genes may play roles in flower senescence and the ethylene response. In the subsequent subcellular localization experiments, we found that ERF1-4 was localized in the nucleus, indicating that it was expressed in the nucleus. In yeast self-activation experiments, we found that OfERF112, OfERF228, and OfERF23 had self-activation activity. Overall, these results suggest that OfERFs may have the function of regulating petal senescence in O. fragrans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiulian Yang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (G.C.); (T.S.); (Y.Z.); (F.C.); (D.Z.); (H.G.); (Y.Y.); (L.W.)
| |
Collapse
|
2
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Sanchez-Puerta MV, Ceriotti LF, Gatica-Soria LM, Roulet ME, Garcia LE, Sato HA. Invited Review Beyond parasitic convergence: unravelling the evolution of the organellar genomes in holoparasites. ANNALS OF BOTANY 2023; 132:909-928. [PMID: 37503831 PMCID: PMC10808021 DOI: 10.1093/aob/mcad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The molecular evolution of organellar genomes in angiosperms has been studied extensively, with some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times independently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the chloroplast or nuclear compartments. SCOPE This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolutionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraordinary traits in both their organelles. CONCLUSIONS Apart from morphological similarities, plastid genomes of holoparasitic plants also display other convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature also found in a few free-living angiosperms.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias, Cátedra de Botánica General–Herbario JUA, Alberdi 47, Universidad Nacional de Jujuy, 4600 Jujuy, Argentina
| |
Collapse
|
4
|
Edera AA, Howell KA, Nevill PG, Small I, Sanchez-Puerta MV. Evolution of cox2 introns in angiosperm mitochondria and efficient splicing of an elongated cox2i691 intron. Gene 2023; 869:147393. [PMID: 36966978 DOI: 10.1016/j.gene.2023.147393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
In angiosperms, the mitochondrial cox2 gene harbors up to two introns, commonly referred to as cox2i373 and cox2i691. We studied the cox2 from 222 fully-sequenced mitogenomes from 30 angiosperm orders and analyzed the evolution of their introns. Unlike cox2i373, cox2i691 shows a distribution among plants that is shaped by frequent intron loss events driven by localized retroprocessing. In addition, cox2i691 exhibits sporadic elongations, frequently in domain IV of introns. Such elongations are poorly related to repeat content and two of them showed the presence of LINE transposons, suggesting that increasing intron size is very likely due to nuclear intracelular DNA transfer followed by incorporation into the mitochondrial DNA. Surprisingly, we found that cox2i691 is erroneously annotated as absent in 30 mitogenomes deposited in public databases. Although each of the cox2 introns is ∼1.5 kb in length, a cox2i691 of 4.2 kb has been reported in Acacia ligulata (Fabaceae). It is still unclear whether its unusual length is due to a trans-splicing arrangement or the loss of functionality of the interrupted cox2. Through analyzing short-read RNA sequencing of Acacia with a multi-step computational strategy, we found that the Acacia cox2 is functional and its long intron is spliced in cis in a very efficient manner despite its length.
Collapse
Affiliation(s)
- Alejandro A Edera
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina.
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Paul G Nevill
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Avenue, Kings Park, Western Australia, Australia; School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia; Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
5
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Zumkeller S, Polsakiewicz M, Knoop V. Rickettsial DNA and a trans-splicing rRNA group I intron in the unorthodox mitogenome of the fern Haplopteris ensiformis. Commun Biol 2023; 6:296. [PMID: 36941328 PMCID: PMC10027690 DOI: 10.1038/s42003-023-04659-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Plant mitochondrial genomes can be complex owing to highly recombinant structures, lack of gene syntenies, heavy RNA editing and invasion of chloroplast, nuclear or even foreign DNA by horizontal gene transfer (HGT). Leptosporangiate ferns remained the last major plant clade without an assembled mitogenome, likely owing to a demanding combination of the above. We here present both organelle genomes now for Haplopteris ensiformis. More than 1,400 events of C-to-U RNA editing and over 500 events of reverse U-to-C edits affect its organelle transcriptomes. The Haplopteris mtDNA is gene-rich, lacking only the ccm gene suite present in ancestral land plant mitogenomes, but is highly unorthodox, indicating extraordinary recombinogenic activity. Although eleven group II introns known in disrupted trans-splicing states in seed plants exist in conventional cis-arrangements, a particularly complex structure is found for the mitochondrial rrnL gene, which is split into two parts needing reassembly on RNA level by a trans-splicing group I intron. Aside from ca. 80 chloroplast DNA inserts that complicated the mitogenome assembly, the Haplopteris mtDNA features as an idiosyncrasy 30 variably degenerated protein coding regions from Rickettiales bacteria indicative of heavy bacterial HGT on top of tRNA genes of chlamydial origin.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Monika Polsakiewicz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
7
|
Super-Mitobarcoding in Plant Species Identification? It Can Work! The Case of Leafy Liverworts Belonging to the Genus Calypogeia. Int J Mol Sci 2022; 23:ijms232415570. [PMID: 36555212 PMCID: PMC9779425 DOI: 10.3390/ijms232415570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Molecular identification of species is especially important where traditional taxonomic methods fail. The genus Calypogeia belongs to one of the tricky taxons. The simple morphology of these species and a tendency towards environmental plasticity make them complicated in identification. The finding of the universal single-locus DNA barcode in plants seems to be 'the Holy Grail'; therefore, researchers are increasingly looking for multiloci DNA barcodes or super-barcoding. Since the mitochondrial genome has low sequence variation in plants, species delimitation is usually based on the chloroplast genome. Unexpectedly, our research shows that super-mitobarcoding can also work! However, our outcomes showed that a single method of molecular species delimitation should be avoided. Moreover, it is recommended to interpret the results of molecular species delimitation alongside other types of evidence, such as ecology, population genetics or comparative morphology. Here, we also presented genetic data supporting the view that C. suecica is not a homogeneous species.
Collapse
|
8
|
Freitas AV, Herb JT, Pan M, Chen Y, Gucek M, Jin T, Xu H. Generation of a mitochondrial protein compendium in Dictyostelium discoideum. iScience 2022; 25:104332. [PMID: 35602934 PMCID: PMC9118663 DOI: 10.1016/j.isci.2022.104332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
The social ameba Dictyostelium discoideum has emerged as a powerful model to study mitochondrial genetics and bioenergetics. However, a comprehensive inventory of mitochondrial proteins that is critical to understanding mitochondrial processes has yet to be curated. Here, we utilized high-throughput multiplexed protein quantitation and homology analyses to generate a high-confidence mitochondrial protein compendium consisting of 936 proteins. Our proteomic approach, which utilizes mass spectrometry in combination with mathematical modeling, was validated through mitochondrial targeting sequence prediction and live-cell imaging. Our final compendium consists of 936 proteins. Nearly, a third of D. discoideum mitochondrial proteins do not have homologs in humans, budding yeasts, or an ancestral alphaproteobacteria. Additionally, we leverage our compendium to highlight the complexity of metabolic reprogramming during starvation-induced development. Our compendium lays a foundation to investigate mitochondrial processes that are unique in ameba and to understand the functions of conserved mitochondrial proteins in D. discoideum.
Collapse
Affiliation(s)
- Anna V. Freitas
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Jake T. Herb
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Miao Pan
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Yong Chen
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Marjan Gucek
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Tian Jin
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Hong Xu
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Yu R, Sun C, Liu Y, Zhou R. Shifts from cis-to trans-splicing of five mitochondrial introns in Tolypanthus maclurei. PeerJ 2021; 9:e12260. [PMID: 34703675 PMCID: PMC8489412 DOI: 10.7717/peerj.12260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/15/2021] [Indexed: 01/20/2023] Open
Abstract
Shifts from cis-to trans-splicing of mitochondrial introns tend to correlate with relative genome rearrangement rates during vascular plant evolution, as is particularly apparent in some lineages of gymnosperms. However, although many angiosperms have also relatively high mitogenomic rearrangement rates, very few cis-to trans-splicing shifts except for five trans-spliced introns shared in seed plants have been reported. In this study, we sequenced and characterized the mitogenome of Tolypanthus maclurei, a hemiparasitic plant from the family Loranthaceae (Santalales). The mitogenome was assembled into a circular chromosome of 256,961 bp long, relatively small compared with its relatives from Santalales. It possessed a gene content of typical angiosperm mitogenomes, including 33 protein-coding genes, three rRNA genes and ten tRNA genes. Plastid-derived DNA fragments took up 9.1% of the mitogenome. The mitogenome contained one group I intron (cox1i729) and 23 group II introns. We found shifts from cis-to trans-splicing of five additional introns in its mitogenome, of which two are specific in T. maclurei. Moreover, atp1 is a chimeric gene and phylogenetic analysis indicated that a 356 bp region near the 3′ end of atp1 of T. maclurei was acquired from Lamiales via horizontal gene transfer. Our results suggest that shifts to trans-splicing of mitochondrial introns may not be uncommon among angiosperms.
Collapse
Affiliation(s)
- Runxian Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chenyu Sun
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Complete plastome phylogeny and an update on cox1 intron evolution of Hyoscyameae (Solanaceae). ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Silvério R. Mauad AV, Vieira LDN, Antônio de Baura V, Balsanelli E, Maltempi de Souza E, Chase MW, de Camargo Smidt E. Plastid phylogenomics of Pleurothallidinae (Orchidaceae): Conservative plastomes, new variable markers, and comparative analyses of plastid, nuclear, and mitochondrial data. PLoS One 2021; 16:e0256126. [PMID: 34449781 PMCID: PMC8396723 DOI: 10.1371/journal.pone.0256126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
We present the first comparative plastome study of Pleurothallidinae with analyses of structural and molecular characteristics and identification of the ten most-variable regions to be incorporated in future phylogenetic studies. We sequenced complete plastomes of eight species in the subtribe and compared phylogenetic results of these to parallel analyses of their nuclear ribosomal DNA operon (26S, 18S, and 5.8S plus associated spacers) and partial mitochondrial genome sequences (29–38 genes and partial introns). These plastomes have the typical quadripartite structure for which gene content is similar to those of other orchids, with variation only in the composition of the ndh genes. The independent loss of ndh genes had an impact on which genes border the inverted repeats and thus the size of the small single-copy region, leading to variation in overall plastome length. Analyses of 68 coding sequences indicated the same pattern of codon usage as in other orchids, and 13 protein-coding genes under positive selection were detected. Also, we identified 62 polymorphic microsatellite loci and ten highly variable regions, for which we designed primers. Phylogenomic analyses showed that the top ten mutational hotspots represent well the phylogenetic relationships found with whole plastome sequences. However, strongly supported incongruence was observed among plastid, nuclear ribosomal DNA operon, and mitochondrial DNA trees, indicating possible occurrence of incomplete lineage sorting and/or introgressive hybridization. Despite the incongruence, the mtDNA tree retrieved some clades found in other analyses. These results, together with performance in recent studies, support a future role for mitochondrial markers in Pleurothallidinae phylogenetics.
Collapse
Affiliation(s)
| | | | - Valter Antônio de Baura
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Eric de Camargo Smidt
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- * E-mail: (AVSRM); (ECS)
| |
Collapse
|
12
|
Aubin E, El Baidouri M, Panaud O. Horizontal Gene Transfers in Plants. Life (Basel) 2021; 11:life11080857. [PMID: 34440601 PMCID: PMC8401529 DOI: 10.3390/life11080857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
In plants, as in all eukaryotes, the vertical transmission of genetic information through reproduction ensures the maintenance of the integrity of species. However, many reports over the past few years have clearly shown that horizontal gene transfers, referred to as HGTs (the interspecific transmission of genetic information across reproductive barriers) are very common in nature and concern all living organisms including plants. The advent of next-generation sequencing technologies (NGS) has opened new perspectives for the study of HGTs through comparative genomic approaches. In this review, we provide an up-to-date view of our current knowledge of HGTs in plants.
Collapse
|
13
|
Garcia LE, Edera AA, Palmer JD, Sato H, Sanchez-Puerta MV. Horizontal gene transfers dominate the functional mitochondrial gene space of a holoparasitic plant. THE NEW PHYTOLOGIST 2021; 229:1701-1714. [PMID: 32929737 DOI: 10.1111/nph.16926] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Although horizontal gene transfer (HGT) is common in angiosperm mitochondrial DNAs (mtDNAs), few cases of functional foreign genes have been identified. The one outstanding candidate for large-scale functional HGT is the holoparasite Lophophytum mirabile, whose mtDNA has lost most native genes but contains intact foreign homologs acquired from legume host plants. To investigate the extent to which this situation results from functional replacement of native by foreign genes, functional mitochondrial gene transfer to the nucleus, and/or loss of mitochondrial biochemical function in the context of extreme parasitism, we examined the Lophophytum mitochondrial and nuclear transcriptomes by deep paired-end RNA sequencing. Most foreign mitochondrial genes in Lophophytum are highly transcribed, accurately spliced, and efficiently RNA edited. By contrast, we found no evidence for functional gene transfer to the nucleus or loss of mitochondrial functions in Lophophytum. Many functional replacements occurred via the physical replacement of native genes by foreign genes. Some of these events probably occurred as the final act of HGT itself. Lophophytum mtDNA has experienced an unprecedented level of functional replacement of native genes by foreign copies. This raises important questions concerning population-genetic and molecular regimes that underlie such a high level of foreign gene takeover.
Collapse
Affiliation(s)
- Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza, M5502JMA, Argentina
| | - Alejandro A Edera
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Argentina
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Hector Sato
- Facultad de Ciencias Agrarias (UNJu), Cátedra de Botánica General-Herbario JUA, Alberdi 47, Jujuy, CP 4600, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza, M5502JMA, Argentina
| |
Collapse
|
14
|
Skuza L, Filip E, Szućko I, Bocianowski J. SPInDel Analysis of the Non-Coding Regions of cpDNA as a More Useful Tool for the Identification of Rye (Poaceae: Secale) Species. Int J Mol Sci 2020; 21:ijms21249421. [PMID: 33321948 PMCID: PMC7762986 DOI: 10.3390/ijms21249421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023] Open
Abstract
Secale is a small but very diverse genus from the tribe Triticeae (family Poaceae), which includes annual, perennial, self-pollinating and open-pollinating, cultivated, weedy and wild species of various phenotypes. Despite its high economic importance, classification of this genus, comprising 3–8 species, is inconsistent. This has resulted in significantly reduced progress in the breeding of rye which could be enriched with functional traits derived from wild rye species. Our previous research has suggested the utility of non-coding sequences of chloroplast and mitochondrial DNA in studies on closely related species of the genus Secale. Here we applied the SPInDel (Species Identification by Insertions/Deletions) approach, which targets hypervariable genomic regions containing multiple insertions/deletions (indels) and exhibiting extensive length variability. We analysed a total of 140 and 210 non-coding sequences from cpDNA and mtDNA, respectively. The resulting data highlight regions which may represent useful molecular markers with respect to closely related species of the genus Secale, however, we found the chloroplast genome to be more informative. These molecular markers include non-coding regions of chloroplast DNA: atpB-rbcL and trnT-trnL and non-coding regions of mitochondrial DNA: nad1B-nad1C and rrn5/rrn18. Our results demonstrate the utility of the SPInDel concept for the characterisation of Secale species.
Collapse
Affiliation(s)
- Lidia Skuza
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland; (E.F.); (I.S.)
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
- Correspondence:
| | - Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland; (E.F.); (I.S.)
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Izabela Szućko
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland; (E.F.); (I.S.)
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, 28 Wojska Polskiego, 60-637 Poznań, Poland;
| |
Collapse
|
15
|
Mubarik MS, Khan SH, Ahmad A, Raza A, Khan Z, Sajjad M, Sammour RHA, Mustafa AEZM, Al-Ghamdi AA, Alajmi AH, Alshamasi FKI, Elshikh MS. Controlling Geminiviruses before Transmission: Prospects. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1556. [PMID: 33198339 PMCID: PMC7697176 DOI: 10.3390/plants9111556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/04/2022]
Abstract
Whitefly (Bemisia tabaci)-transmitted Geminiviruses cause serious diseases of crop plants in tropical and sub-tropical regions. Plants, animals, and their microbial symbionts have evolved complex ways to interact with each other that impact their life cycles. Blocking virus transmission by altering the biology of vector species, such as the whitefly, can be a potential approach to manage these devastating diseases. Virus transmission by insect vectors to plant hosts often involves bacterial endosymbionts. Molecular chaperonins of bacterial endosymbionts bind with virus particles and have a key role in the transmission of Geminiviruses. Hence, devising new approaches to obstruct virus transmission by manipulating bacterial endosymbionts before infection opens new avenues for viral disease control. The exploitation of bacterial endosymbiont within the insect vector would disrupt interactions among viruses, insects, and their bacterial endosymbionts. The study of this cooperating web could potentially decrease virus transmission and possibly represent an effective solution to control viral diseases in crop plants.
Collapse
Affiliation(s)
- Muhammad Salman Mubarik
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan;
| | - Sultan Habibullah Khan
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan;
- Center of Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan;
| | - Aftab Ahmad
- Center of Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology (IPBB), MNS University of Agriculture, Multan 66000, Pakistan;
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad 45550, Pakistan;
| | - Reda Helmy Ahmed Sammour
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
| | - Abd El-Zaher M.A. Mustafa
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
- Botany Department, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
| | - Amal H. Alajmi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
| | - Fatin K. I. Alshamasi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
| |
Collapse
|
16
|
Dutheil JY, Münch K, Schotanus K, Stukenbrock EH, Kahmann R. The insertion of a mitochondrial selfish element into the nuclear genome and its consequences. Ecol Evol 2020; 10:11117-11132. [PMID: 33144953 PMCID: PMC7593156 DOI: 10.1002/ece3.6749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Homing endonucleases (HE) are enzymes capable of cutting DNA at highly specific target sequences, the repair of the generated double-strand break resulting in the insertion of the HE-encoding gene ("homing" mechanism). HEs are present in all three domains of life and viruses; in eukaryotes, they are mostly found in the genomes of mitochondria and chloroplasts, as well as nuclear ribosomal RNAs. We here report the case of a HE that accidentally integrated into a telomeric region of the nuclear genome of the fungal maize pathogen Ustilago maydis. We show that the gene has a mitochondrial origin, but its original copy is absent from the U. maydis mitochondrial genome, suggesting a subsequent loss or a horizontal transfer from a different species. The telomeric HE underwent mutations in its active site and lost its original start codon. A potential other start codon was retained downstream, but we did not detect any significant transcription of the newly created open reading frame, suggesting that the inserted gene is not functional. Besides, the insertion site is located in a putative RecQ helicase gene, truncating the C-terminal domain of the protein. The truncated helicase is expressed during infection of the host, together with other homologous telomeric helicases. This unusual mutational event altered two genes: The integrated HE gene subsequently lost its homing activity, while its insertion created a truncated version of an existing gene, possibly altering its function. As the insertion is absent in other field isolates, suggesting that it is recent, the U. maydis 521 reference strain offers a snapshot of this singular mutational event.
Collapse
Affiliation(s)
- Julien Y. Dutheil
- Max Planck Institute for Evolutionary BiologyPlönGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Institute of Evolutionary SciencesCNRS – University of Montpellier – IRD – EPHEMontpellierFrance
| | - Karin Münch
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Klaas Schotanus
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Christian Albrechts University of KielKielGermany
- Present address:
Department of Molecular Genetics and Microbiology (MGM)Duke University Medical CenterDurhamNCUSA
| | - Eva H. Stukenbrock
- Max Planck Institute for Evolutionary BiologyPlönGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Christian Albrechts University of KielKielGermany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| |
Collapse
|
17
|
Courtier‐Orgogozo V, Danchin A, Gouyon P, Boëte C. Evaluating the probability of CRISPR-based gene drive contaminating another species. Evol Appl 2020; 13:1888-1905. [PMID: 32908593 PMCID: PMC7463340 DOI: 10.1111/eva.12939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
The probability D that a given clustered regularly interspaced short palindromic repeats (CRISPR)-based gene drive element contaminates another, nontarget species can be estimated by the following Drive Risk Assessment Quantitative Estimate (DRAQUE) Equation: D = h y b + t r a n s f × e x p r e s s × c u t × f l a n k × i m m u n e × n o n e x t i n c t with hyb = probability of hybridization between the target species and a nontarget species; transf = probability of horizontal transfer of a piece of DNA containing the gene drive cassette from the target species to a nontarget species (with no hybridization); express = probability that the Cas9 and guide RNA genes are expressed; cut = probability that the CRISPR-guide RNA recognizes and cuts at a DNA site in the new host; flank = probability that the gene drive cassette inserts at the cut site; immune = probability that the immune system does not reject Cas9-expressing cells; nonextinct = probability of invasion of the drive within the population. We discuss and estimate each of the seven parameters of the equation, with particular emphasis on possible transfers within insects, and between rodents and humans. We conclude from current data that the probability of a gene drive cassette to contaminate another species is not insignificant. We propose strategies to reduce this risk and call for more work on estimating all the parameters of the formula.
Collapse
Affiliation(s)
| | - Antoine Danchin
- Institut Cochin INSERM U1016 – CNRS UMR8104 – Université Paris DescartesParisFrance
| | - Pierre‐Henri Gouyon
- Institut de Systématique, Évolution, BiodiversitéMuséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUAParisFrance
| | | |
Collapse
|
18
|
Shtratnikova VY, Schelkunov MI, Penin AA, Logacheva MD. Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa, its structure, gene expression and RNA editing. PeerJ 2020; 8:e9309. [PMID: 32601550 PMCID: PMC7307570 DOI: 10.7717/peerj.9309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 05/17/2020] [Indexed: 01/05/2023] Open
Abstract
Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.
Collapse
Affiliation(s)
- Viktoria Yu Shtratnikova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Aleksey A Penin
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
19
|
Mower JP. Variation in protein gene and intron content among land plant mitogenomes. Mitochondrion 2020; 53:203-213. [PMID: 32535166 DOI: 10.1016/j.mito.2020.06.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/24/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
The functional content of the mitochondrial genome (mitogenome) is highly diverse across eukaryotes. Among land plants, our understanding of the variation in mitochondrial gene and intron content is improving from concerted efforts to densely sample mitogenomes from diverse land plants. Here I review the current state of knowledge regarding the diversity in content of protein genes and introns in the mitogenomes of all major land plant lineages. Mitochondrial protein gene content is largely conserved among mosses and liverworts, but it varies substantially among and within other land plant lineages due to convergent losses of genes encoding ribosomal proteins and, to a lesser extent, genes for proteins involved in cytochrome c maturation and oxidative phosphorylation. Mitochondrial intron content is fairly stable within each major land plant lineage, but highly variable among lineages, resulting from occasional gains and many convergent losses over time. Trans-splicing has evolved dozens of times in various vascular plant lineages, particularly those with relatively higher rates of mitogenomic rearrangement. Across eukaryotes, mitochondrial protein gene and intron content has been shaped massive convergent evolution.
Collapse
Affiliation(s)
- Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE.
| |
Collapse
|
20
|
Zumkeller S, Gerke P, Knoop V. A functional twintron, 'zombie' twintrons and a hypermobile group II intron invading itself in plant mitochondria. Nucleic Acids Res 2020; 48:2661-2675. [PMID: 31915815 PMCID: PMC7049729 DOI: 10.1093/nar/gkz1194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
The occurrence of group II introns in plant mitochondrial genomes is strikingly different between the six major land plant clades, contrasting their highly conserved counterparts in chloroplast DNA. Their present distribution likely reflects numerous ancient intron gains and losses during early plant evolution before the emergence of seed plants. As a novelty for plant organelles, we here report on five cases of twintrons, introns-within-introns, in the mitogenomes of lycophytes and hornworts. An internal group II intron interrupts an intron-borne maturase of an atp9 intron in Lycopodiaceae, whose splicing precedes splicing of the external intron. An invasive, hypermobile group II intron in cox1, has conquered nine further locations including a previously overlooked sdh3 intron and, most surprisingly, also itself. In those cases, splicing of the external introns does not depend on splicing of the internal introns. Similar cases are identified in the mtDNAs of hornworts. Although disrupting a group I intron-encoded protein in one case, we could not detect splicing of the internal group II intron in this ‘mixed’ group I/II twintron. We suggest the name ‘zombie’ twintrons (half-dead, half-alive) for such cases where splicing of external introns does not depend any more on prior splicing of fossilized internal introns.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Philipp Gerke
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
21
|
Logacheva MD, Schelkunov MI, Fesenko AN, Kasianov AS, Penin AA. Mitochondrial Genome of Fagopyrum esculentum and the Genetic Diversity of Extranuclear Genomes in Buckwheat. PLANTS (BASEL, SWITZERLAND) 2020; 9:E618. [PMID: 32408719 PMCID: PMC7285332 DOI: 10.3390/plants9050618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/27/2022]
Abstract
Fagopyrum esculentum (common buckwheat) is an important agricultural non-cereal grain plant. Despite extensive genetic studies, the information on its mitochondrial genome is still lacking. Using long reads generated by single-molecule real-time technology coupled with circular consensus sequencing (CCS) protocol, we assembled the buckwheat mitochondrial genome and detected that its prevalent form consists of 10 circular chromosomes with a total length of 404 Kb. In order to confirm the presence of a multipartite structure, we developed a new targeted assembly tool capable of processing long reads. The mitogenome contains all genes typical for plant mitochondrial genomes and long inserts of plastid origin (~6.4% of the total mitogenome length). Using this new information, we characterized the genetic diversity of mitochondrial and plastid genomes in 11 buckwheat cultivars compared with the ancestral subspecies, F. esculentum ssp. ancestrale. We found it to be surprisingly low within cultivars: Only three to six variations in the mitogenome and one to two in the plastid genome. In contrast, the divergence with F. esculentum ssp. ancestrale is much higher: 220 positions differ in the mitochondrial genome and 159 in the plastid genome. The SNPs in the plastid genome are enriched in non-synonymous substitutions, in particular in the genes involved in photosynthesis: psbA, psbC, and psbH. This presumably reflects the selection for the increased photosynthesis efficiency as a part of the buckwheat breeding program.
Collapse
Affiliation(s)
- Maria D. Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Mikhail I. Schelkunov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Aleksey N. Fesenko
- Federal Scientific Center of Legumes and Groat Crops, 302502 Orel, Russia;
| | - Artem S. Kasianov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
| | - Aleksey A. Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
| |
Collapse
|
22
|
Petersen G, Anderson B, Braun HP, Meyer EH, Møller IM. Mitochondria in parasitic plants. Mitochondrion 2020; 52:173-182. [DOI: 10.1016/j.mito.2020.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
23
|
Zhang C, Ma H, Sanchez-Puerta MV, Li L, Xiao J, Liu Z, Ci X, Li J. Horizontal Gene Transfer has Impacted cox1 Gene Evolution in Cassytha filiformis. J Mol Evol 2020; 88:361-371. [DOI: 10.1007/s00239-020-09937-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/06/2020] [Indexed: 11/30/2022]
|
24
|
Yang Z, Wafula EK, Kim G, Shahid S, McNeal JR, Ralph PE, Timilsena PR, Yu WB, Kelly EA, Zhang H, Person TN, Altman NS, Axtell MJ, Westwood JH, dePamphilis CW. Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. NATURE PLANTS 2019; 5:991-1001. [PMID: 31332314 DOI: 10.1038/s41477-019-0458-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/23/2019] [Indexed: 05/20/2023]
Abstract
Horizontal gene transfer (HGT), the movement and genomic integration of DNA across species boundaries, is commonly associated with bacteria and other microorganisms, but functional HGT (fHGT) is increasingly being recognized in heterotrophic parasitic plants that obtain their nutrients and water from their host plants through direct haustorial feeding. Here, in the holoparasitic stem parasite Cuscuta, we identify 108 transcribed and probably functional HGT events in Cuscuta campestris and related species, plus 42 additional regions with host-derived transposon, pseudogene and non-coding sequences. Surprisingly, 18 Cuscuta fHGTs were acquired from the same gene families by independent HGT events in Orobanchaceae parasites, and the majority are highly expressed in the haustorial feeding structures in both lineages. Convergent retention and expression of HGT sequences suggests an adaptive role for specific additional genes in parasite biology. Between 16 and 20 of the transcribed HGT events are inferred as ancestral in Cuscuta based on transcriptome sequences from species across the phylogenetic range of the genus, implicating fHGT in the successful radiation of Cuscuta parasites. Genome sequencing of C. campestris supports transfer of genomic DNA-rather than retroprocessed RNA-as the mechanism of fHGT. Many of the C. campestris genes horizontally acquired are also frequent sources of 24-nucleotide small RNAs that are typically associated with RNA-directed DNA methylation. One HGT encoding a leucine-rich repeat protein kinase overlaps with a microRNA that has been shown to regulate host gene expression, suggesting that HGT-derived parasite small RNAs may function in the parasite-host interaction. This study enriches our understanding of HGT by describing a parasite-host system with unprecedented gene exchange that points to convergent evolution of HGT events and the functional importance of horizontally transferred coding and non-coding sequences.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Gunjune Kim
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Future Technology Corporate R&D, Seoul, Republic of Korea
| | - Saima Shahid
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Joel R McNeal
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Prakash R Timilsena
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Wen-Bin Yu
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Elizabeth A Kelly
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Thomas Nate Person
- Intercollege Graduate Program in Bioinformatics and Genomics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Naomi S Altman
- Department of Statistics and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michael J Axtell
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Intercollege Graduate Program in Bioinformatics and Genomics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
25
|
Rode NO, Estoup A, Bourguet D, Courtier-Orgogozo V, Débarre F. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01165-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Pogoda CS, Keepers KG, Nadiadi AY, Bailey DW, Lendemer JC, Tripp EA, Kane NC. Genome streamlining via complete loss of introns has occurred multiple times in lichenized fungal mitochondria. Ecol Evol 2019; 9:4245-4263. [PMID: 31016002 PMCID: PMC6467859 DOI: 10.1002/ece3.5056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
Reductions in genome size and complexity are a hallmark of obligate symbioses. The mitochondrial genome displays clear examples of these reductions, with the ancestral alpha-proteobacterial genome size and gene number having been reduced by orders of magnitude in most descendent modern mitochondrial genomes. Here, we examine patterns of mitochondrial evolution specifically looking at intron size, number, and position across 58 species from 21 genera of lichenized Ascomycete fungi, representing a broad range of fungal diversity and niches. Our results show that the cox1gene always contained the highest number of introns out of all the mitochondrial protein-coding genes, that high intron sequence similarity (>90%) can be maintained between different genera, and that lichens have undergone at least two instances of complete, genome-wide intron loss consistent with evidence for genome streamlining via loss of parasitic, noncoding DNA, in Phlyctis boliviensisand Graphis lineola. Notably, however, lichenized fungi have not only undergone intron loss but in some instances have expanded considerably in size due to intron proliferation (e.g., Alectoria fallacina and Parmotrema neotropicum), even between closely related sister species (e.g., Cladonia). These results shed light on the highly dynamic mitochondrial evolution that is occurring in lichens and suggest that these obligate symbiotic organisms are in some cases undergoing recent, broad-scale genome streamlining via loss of protein-coding genes as well as noncoding, parasitic DNA elements.
Collapse
Affiliation(s)
- Cloe S. Pogoda
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - Kyle G. Keepers
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - Arif Y. Nadiadi
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - Dustin W. Bailey
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - James C. Lendemer
- Institute of Systematic BotanyThe New York Botanical GardenBronxNew York
| | - Erin A. Tripp
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
- Museum of Natural HistoryUniversity of ColoradoBoulderColorado
| | - Nolan C. Kane
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| |
Collapse
|
27
|
Biswas R, Panja AS, Bandopadhyay R. In Silico Analyses of Burial Codon Bias Among the Species of Dipterocarpaceae Through Molecular and Phylogenetic Data. Evol Bioinform Online 2019; 15:1176934319834888. [PMID: 31223230 PMCID: PMC6563522 DOI: 10.1177/1176934319834888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 11/15/2022] Open
Abstract
Introduction: DNA barcode, a molecular marker, is used to distinguish among the closely
related species, and it can be applied across a broad range of taxa to
understand ecology and evolution. MaturaseK gene (matK) and
rubisco bisphosphate carboxylase/oxygenase form I gene
(rbcL) of the chloroplast are highly conserved in a
plant system, which are used as core barcode. This present endeavor entails
the comprehensive examination of the under threat plant species based on
success of discrimination on DNA barcode under selection pressure. Result: The family Dipterocarpaceae comprising of 15 genera is under threat due to
some factors, namely, deforestation, habitat alteration, poor seed, pollen
dispersal, etc. Species of this family was grouped into 6 clusters for
matK and 5 clusters and 2 sub-clusters for
rbcL in the phylogenetic tree by using neighbor-joining
method. Cluster I to cluster VI of matK and cluster I to
cluster V of rbcL genes were analyzed by various codon and
substitution bias tools. Mutational pressure guided the codon bias which was
favored by the avoidance of higher GC content and significant negative
correlation between GC12 and GC3 (in sub-cluster I of cluster I
[0.03 < P], cluster I
[0.00001 < P], and cluster II
[0.01 < P] of rbcL, and cluster IV
[0.013 < P] of matK). After
refining the results, it could be speculated that the lower null expectation
values (R = 0.5 or <0.5) were less divergent from the
evolutionary perspective. Apart from that, the higher null expectation
values (R = >0.85) also showed the same result, which
possibly could be due to the negative impact of very high and low transition
rate than transversion. Conclusion: Through the analysis of inter-generic, inter/intra-specific variation and
phylogenetic data, it was found that both selection and mutation played an
important role in synonymous codon choice in these genes, but they acted
inconsistently on the genes, both matK and
rbcL. In vitro stable proteins of both
matK and rbcL were selected through
natural selection rather than mutational selection. matK
gene had higher individual discrimination and barcode success compared with
rbcL. These discriminatory approaches may describe the
problem related to the extinction of plant species. Hence, it becomes very
imperative to identify and detect the under threat plant species in
advance.
Collapse
Affiliation(s)
- Raju Biswas
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Bardhaman, India
| | - Anindya Sundar Panja
- Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, India
| | - Rajib Bandopadhyay
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Bardhaman, India
| |
Collapse
|
28
|
Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127. Sci Rep 2019; 9:4850. [PMID: 30890720 PMCID: PMC6425028 DOI: 10.1038/s41598-019-41238-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/04/2019] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial genomes exhibit diverse features among eukaryotes in the aspect of gene content, genome structure, and the mobile genetic elements such as introns and plasmids. Although the number of published mitochondrial genomes is increasing at tremendous speed, those of several lineages remain unexplored. Here, we sequenced the complete mitochondrial genome of a unicellular heterotrophic eukaryote, Marophrys sp. SRT127 belonging to the Centroheliozoa, as the first report on this lineage. The circular-mapped mitochondrial genome, which is 113,062 bp in length, encodes 69 genes typically found in mitochondrial genomes. In addition, the Marophrys mitochondrial genome contains 19 group I introns. Of these, 11 introns have genes for homing endonuclease (HE) and phylogenetic analyses of HEs have shown that at least five Marophrys HEs are related to those in green algal plastid genomes, suggesting intron transfer between the Marophrys mitochondrion and green algal plastids. We also discovered a putative mitochondrial plasmid in linear form. Two genes encoded in the circular-mapped mitochondrial genome were found to share significant similarities to those in the linear plasmid, suggesting that the plasmid was integrated into the mitochondrial genome. These findings expand our knowledge on the diversity and evolution of the mobile genetic elements in mitochondrial genomes.
Collapse
|
29
|
Skuza L, Szućko I, Filip E, Strzała T. Genetic diversity and relationship between cultivated, weedy and wild rye species as revealed by chloroplast and mitochondrial DNA non-coding regions analysis. PLoS One 2019; 14:e0213023. [PMID: 30811487 PMCID: PMC6392296 DOI: 10.1371/journal.pone.0213023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
The genus Secale is small but very diverse. Despite the high economic importance, phylogenetic relationships of rye species have not been fully determined, and they are extremely important for the process of breeding of new cultivars that can be enriched with functional traits derived from wild rye species. The study analyzed the degree of relationship of 35 accessions of the genus Secale, representing 13 most often distinguished species and subspecies, originating from various seed collections in the world, based on the analysis of non-coding regions of the chloroplast (cpDNA) and mitochondrial genome (mtDNA), widely used in phylogenetic and population plant studies, because of a higher rate of evolution than the coding regions. There was no clear genetic structure between different species and subspecies, which may indicated the introgression between these taxa. The obtained data confirmed that S. vavilovii was very similar to S. cereale, which confirmed the assumption that they might share a common ancestor. The results also confirmed the divergence of S. sylvestre from other species and subspecies of rye. Areas that may be useful molecular markers in studies on closely related species of the genus Secale were also indicated.
Collapse
Affiliation(s)
- Lidia Skuza
- Department of Molecular Biology and Cytology, The Institute for Research on Biodiversity, Faculty of Biology, University of Szczecin, Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, Faculty of Biology, University of Szczecin, Szczecin, Poland
- * E-mail:
| | - Izabela Szućko
- Department of Molecular Biology and Cytology, The Institute for Research on Biodiversity, Faculty of Biology, University of Szczecin, Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Ewa Filip
- Department of Molecular Biology and Cytology, The Institute for Research on Biodiversity, Faculty of Biology, University of Szczecin, Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Tomasz Strzała
- Department of Genetics, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
30
|
Li QJ, Wang X, Wang JR, Su N, Zhang L, Ma YP, Chang ZY, Zhao L, Potter D. Efficient Identification of Pulsatilla (Ranunculaceae) Using DNA Barcodes and Micro-Morphological Characters. FRONTIERS IN PLANT SCIENCE 2019; 10:1196. [PMID: 31649688 PMCID: PMC6794950 DOI: 10.3389/fpls.2019.01196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/30/2019] [Indexed: 05/04/2023]
Abstract
Pulsatilla (Ranunculaceae) comprises about 40 species, many of which have horticultural and/or medicinal importance. However, the recognition and identification of wild Pulsatilla species is difficult due to the presence of complex morphological characters. DNA barcoding is a powerful molecular tool capable of rapidly and accurately distinguishing between species. Here, we assessed the effectiveness of four commonly used DNA barcoding loci-rbcL (R), trnH-psbA ( T ), matK (M), and ITS (I)-to identify species of Pulsatilla from a comprehensive sampling group. Among the four barcoding single loci, the nuclear ITS marker showed the highest interspecific distances and the highest rate of correct identification. Among the eleven combinations, the chloroplast multi-locus R+T and R+M+T combinations were found to have the best species discrimination rate, followed by R+M. Overall, we propose that the R+M+T combination and the ITS marker on its own are, respectively, the best multi- and single-locus barcodes for discriminating among species of Pulsatilla. The phylogenetic analysis was able to distinguish species of Pulsatilla to the subgenus level, but the analysis also showed relatively low species resolution. This may be caused by incomplete lineage sorting and/or hybridization events in the evolutionary history of the genus, or by the resolution limit of the candidate barcodes. We also investigated the leaf epidermis of eight representative species using scanning electronic microscopy. The resulting micro-morphological characters were valuable for identification of related species. Using additional genome fragments, or even whole chloroplast genomes combined with micro-morphological data may permit even higher resolution of species in Pulsatilla.
Collapse
Affiliation(s)
- Qiu-jie Li
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Xi Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Jun-ru Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Na Su
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Ling Zhang
- College of Life Sciences, Tarim University, Alaer, China
| | - Yue-ping Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhao-yang Chang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Liang Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
- *Correspondence: Liang Zhao,
| | - Daniel Potter
- Department of Plant Sciences, MS2, University of California, Davis, Davis, CA, United States
| |
Collapse
|
31
|
Guillory WX, Onyshchenko A, Ruck EC, Parks M, Nakov T, Wickett NJ, Alverson AJ. Recurrent Loss, Horizontal Transfer, and the Obscure Origins of Mitochondrial Introns in Diatoms (Bacillariophyta). Genome Biol Evol 2018; 10:1504-1515. [PMID: 29850800 PMCID: PMC6007386 DOI: 10.1093/gbe/evy103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 01/23/2023] Open
Abstract
We sequenced mitochondrial genomes from five diverse diatoms (Toxarium undulatum, Psammoneis japonica, Eunotia naegelii, Cylindrotheca closterium, and Nitzschia sp.), chosen to fill important phylogenetic gaps and help us characterize broadscale patterns of mitochondrial genome evolution in diatoms. Although gene content was strongly conserved, intron content varied widely across species. The vast majority of introns were of group II type and were located in the cox1 or rnl genes. Although recurrent intron loss appears to be the principal underlying cause of the sporadic distributions of mitochondrial introns across diatoms, phylogenetic analyses showed that intron distributions superficially consistent with a recurrent-loss model were sometimes more complicated, implicating horizontal transfer as a likely mechanism of intron acquisition as well. It was not clear, however, whether diatoms were the donors or recipients of horizontally transferred introns, highlighting a general challenge in resolving the evolutionary histories of many diatom mitochondrial introns. Although some of these histories may become clearer as more genomes are sampled, high rates of intron loss suggest that the origins of many diatom mitochondrial introns are likely to remain unclear.
Collapse
Affiliation(s)
- Wilson X Guillory
- Department of Biological Sciences, University of Arkansas
- Department of Zoology, Southern Illinois University, Carbondale, IL
| | | | | | - Matthew Parks
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, Illinois
| | - Teofil Nakov
- Department of Biological Sciences, University of Arkansas
| | - Norman J Wickett
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, Illinois
| | | |
Collapse
|
32
|
Del Hoyo A, Álvarez R, Gasulla F, Casano LM, Del Campo EM. Origin and evolution of chloroplast group I introns in lichen algae. JOURNAL OF PHYCOLOGY 2018; 54:66-78. [PMID: 29057470 DOI: 10.1111/jpy.12600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
The history of group I introns is characterized by repeated horizontal transfers, even among phylogenetically distant species. The symbiogenetic thalli of lichens are good candidates for the horizontal transfer of genetic material among distantly related organisms, such as fungi and green algae. The main goal of this study was to determine whether there were different trends in intron distribution and properties among Chlorophyte algae based on their phylogenetic relationships and living conditions. Therefore, we investigated the occurrence, distribution and properties of group I introns within the chloroplast LSU rDNA in 87 Chlorophyte algae including lichen and free-living Trebouxiophyceae compared to free-living non-Trebouxiophyceae species. Overall, our findings showed that there was high diversity of group I introns and homing endonucleases (HEs) between Trebouxiophyceae and non-Trebouxiophyceae Chlorophyte algae, with divergence in their distribution patterns, frequencies and properties. However, the differences between lichen Trebouxiophyceae and free-living Trebouxiophyceae were smaller. An exception was the cL2449 intron, which was closely related to ω elements in yeasts. Such introns seem to occur more frequently in lichen Trebouxiophyceae compared to free-living Trebouxiophyceae. Our data suggest that lichenization and maintenance of lichen symbiosis for millions of years of evolution may have facilitated horizontal transfers of specific introns/HEs between symbionts. The data also suggest that sequencing of more chloroplast genes harboring group I introns in diverse algal groups may help us to understand the group I intron/HE transmission process within these organisms.
Collapse
Affiliation(s)
- Alicia Del Hoyo
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Raquel Álvarez
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Francisco Gasulla
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Leonardo Mario Casano
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Eva María Del Campo
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| |
Collapse
|
33
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
34
|
Sanchez-Puerta MV, García LE, Wohlfeiler J, Ceriotti LF. Unparalleled replacement of native mitochondrial genes by foreign homologs in a holoparasitic plant. THE NEW PHYTOLOGIST 2017; 214:376-387. [PMID: 27905116 DOI: 10.1111/nph.14361] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/27/2016] [Indexed: 05/26/2023]
Abstract
Horizontal gene transfer (HGT) among flowering plant mitochondria occurs frequently and, in most cases, leads to nonfunctional transgenes in the recipient genome. Parasitic plants are particularly prone to this phenomenon, but their mitochondrial genomes (mtDNA) have been largely unexplored. We undertook a large-scale mitochondrial genomic study of the holoparasitic plant Lophophytum mirabile (Balanophoraceae). Comprehensive phylogenetic analyses were performed to address the frequency, origin, and impact of HGT. The sequencing of the complete mtDNA of L. mirabile revealed the unprecedented acquisition of host-derived mitochondrial genes, representing 80% of the protein-coding gene content. All but two of these foreign genes replaced the native homologs and are probably functional in energy metabolism. The genome consists of 54 circular-mapping chromosomes, 25 of which carry no intact genes. The likely functional replacement of up to 26 genes in L. mirabile represents a stunning example of the potential effect of rampant HGT on plant mitochondria. The use of host-derived genes may have a positive effect on the host-parasite relationship, but could also be the result of nonadaptive forces.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Laura E García
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Josefina Wohlfeiler
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Luis F Ceriotti
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| |
Collapse
|
35
|
Schuster A, Lopez JV, Becking LE, Kelly M, Pomponi SA, Wörheide G, Erpenbeck D, Cárdenas P. Evolution of group I introns in Porifera: new evidence for intron mobility and implications for DNA barcoding. BMC Evol Biol 2017; 17:82. [PMID: 28320321 PMCID: PMC5360047 DOI: 10.1186/s12862-017-0928-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mitochondrial introns intermit coding regions of genes and feature characteristic secondary structures and splicing mechanisms. In metazoans, mitochondrial introns have only been detected in sponges, cnidarians, placozoans and one annelid species. Within demosponges, group I and group II introns are present in six families. Based on different insertion sites within the cox1 gene and secondary structures, four types of group I and two types of group II introns are known, which can harbor up to three encoding homing endonuclease genes (HEG) of the LAGLIDADG family (group I) and/or reverse transcriptase (group II). However, only little is known about sponge intron mobility, transmission, and origin due to the lack of a comprehensive dataset. We analyzed the largest dataset on sponge mitochondrial group I introns to date: 95 specimens, from 11 different sponge genera which provided novel insights into the evolution of group I introns. RESULTS For the first time group I introns were detected in four genera of the sponge family Scleritodermidae (Scleritoderma, Microscleroderma, Aciculites, Setidium). We demonstrated that group I introns in sponges aggregate in the most conserved regions of cox1. We showed that co-occurrence of two introns in cox1 is unique among metazoans, but not uncommon in sponges. However, this combination always associates an active intron with a degenerating one. Earlier hypotheses of HGT were confirmed and for the first time VGT and secondary losses of introns conclusively demonstrated. CONCLUSION This study validates the subclass Spirophorina (Tetractinellida) as an intron hotspot in sponges. Our analyses confirm that most sponge group I introns probably originated from fungi. DNA barcoding is discussed and the application of alternative primers suggested.
Collapse
Affiliation(s)
- Astrid Schuster
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
| | - Jose V. Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL 33004 USA
| | - Leontine E. Becking
- Marine Animal Ecology, Wageningen University & Research Centre, P.O. Box 3700, AH, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Marine Zoology Department, PO Box 9517, 2300 RA, Leiden, The Netherlands
| | - Michelle Kelly
- National Centre for Aquatic Biodiversity and Biosecurity, National Institute of Water and Atmospheric Research, P.O. Box 109–695, Newmarket, Auckland, New Zealand
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute-Florida Atlantic University, 5600 U.S. 1 North, Ft Pierce, FL 34946 USA
| | - Gert Wörheide
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
- SNSB - Bavarian State Collections of Palaeontology and Geology, Richard-Wagner Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Paco Cárdenas
- Department of Medicinal Chemistry, Division of Pharmacognosy, BioMedical Center, Uppsala University, Husargatan 3, 75123 Uppsala, Sweden
| |
Collapse
|
36
|
Mobile Introns Shape the Genetic Diversity of Their Host Genes. Genetics 2017; 205:1641-1648. [PMID: 28193728 PMCID: PMC5378118 DOI: 10.1534/genetics.116.199059] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/07/2017] [Indexed: 12/23/2022] Open
Abstract
Self-splicing introns populate several highly conserved protein-coding genes in fungal and plant mitochondria. In fungi, many of these introns have retained their ability to spread to intron-free target sites, often assisted by intron-encoded endonucleases that initiate the homing process. Here, leveraging population genomic data from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Lachancea kluyveri, we expose nonrandom patterns of genetic diversity in exons that border self-splicing introns. In particular, we show that, in all three species, the density of single nucleotide polymorphisms increases as one approaches a mobile intron. Through multiple lines of evidence, we rule out relaxed purifying selection as the cause of uneven nucleotide diversity. Instead, our findings implicate intron mobility as a direct driver of host gene diversity. We discuss two mechanistic scenarios that are consistent with the data: either endonuclease activity and subsequent error-prone repair have left a mutational footprint on the insertion environment of mobile introns or nonrandom patterns of genetic diversity are caused by exonic coconversion, which occurs when introns spread to empty target sites via homologous recombination. Importantly, however, we show that exonic coconversion can only explain diversity gradients near intron-exon boundaries if the conversion template comes from outside the population. In other words, there must be pervasive and ongoing horizontal gene transfer of self-splicing introns into extant fungal populations.
Collapse
|
37
|
Guo W, Zhu A, Fan W, Mower JP. Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns. THE NEW PHYTOLOGIST 2017; 213:391-403. [PMID: 27539928 DOI: 10.1111/nph.14135] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/06/2016] [Indexed: 05/07/2023]
Abstract
Currently, complete mitochondrial genomes (mitogenomes) are available from all major land plant lineages except ferns. Sequencing of fern mitogenomes could shed light on the major evolutionary transitions that established mitogenomic diversity among extant lineages. In this study, we generated complete mitogenomes from the adder's tongue fern (Ophioglossum californicum) and the whisk fern (Psilotum nudum). The Psilotum mitogenome (628 kb) contains a rich complement of genes and introns, some of which are the largest of any green plant organellar genome. In the Ophioglossum mitogenome (372 kb), gene and intron content is slightly reduced, including the loss of all four mitochondrial ccm genes. Transcripts of nuclear Ccm genes also were not detected, suggesting loss of the entire mitochondrial cytochrome c maturation pathway from Ophioglossum. Both fern mitogenomes are highly repetitive, yet they show extremely low levels of active recombination. Transcriptomic sequencing uncovered ˜1000 sites of C-to-U RNA editing in both species, plus a small number (< 60) of U-to-C edit sites. Overall, the first mitochondrial genomes of ferns show a mix of features shared with lycophytes and/or seed plants and several novel genomic features, enabling a robust reconstruction of the mitogenome in the common ancestor of vascular plants.
Collapse
Affiliation(s)
- Wenhu Guo
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
- ACGT Inc., Wheeling, IL, 60090, USA
| | - Andan Zhu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Weishu Fan
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| |
Collapse
|
38
|
Yang Z, Zhang Y, Wafula EK, Honaas LA, Ralph PE, Jones S, Clarke CR, Liu S, Su C, Zhang H, Altman NS, Schuster SC, Timko MP, Yoder JI, Westwood JH, dePamphilis CW. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proc Natl Acad Sci U S A 2016; 113:E7010-E7019. [PMID: 27791104 PMCID: PMC5111717 DOI: 10.1073/pnas.1608765113] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium-the organ of parasitic plants-and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Yeting Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Loren A Honaas
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Sam Jones
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Christopher R Clarke
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Siming Liu
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Chun Su
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Stephan C Schuster
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802;
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
39
|
Fan W, Zhu A, Kozaczek M, Shah N, Pabón-Mora N, González F, Mower JP. Limited mitogenomic degradation in response to a parasitic lifestyle in Orobanchaceae. Sci Rep 2016; 6:36285. [PMID: 27808159 PMCID: PMC5093741 DOI: 10.1038/srep36285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/13/2016] [Indexed: 01/25/2023] Open
Abstract
In parasitic plants, the reduction in plastid genome (plastome) size and content is driven predominantly by the loss of photosynthetic genes. The first completed mitochondrial genomes (mitogenomes) from parasitic mistletoes also exhibit significant degradation, but the generality of this observation for other parasitic plants is unclear. We sequenced the complete mitogenome and plastome of the hemiparasite Castilleja paramensis (Orobanchaceae) and compared them with additional holoparasitic, hemiparasitic and nonparasitic species from Orobanchaceae. Comparative mitogenomic analysis revealed minimal gene loss among the seven Orobanchaceae species, indicating the retention of typical mitochondrial function among Orobanchaceae species. Phylogenetic analysis demonstrated that the mobile cox1 intron was acquired vertically from a nonparasitic ancestor, arguing against a role for Orobanchaceae parasites in the horizontal acquisition or distribution of this intron. The C. paramensis plastome has retained nearly all genes except for the recent pseudogenization of four subunits of the NAD(P)H dehydrogenase complex, indicating a very early stage of plastome degradation. These results lend support to the notion that loss of ndh gene function is the first step of plastome degradation in the transition to a parasitic lifestyle.
Collapse
Affiliation(s)
- Weishu Fan
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Andan Zhu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Melisa Kozaczek
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Neethu Shah
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA.,Department of Computer Sciences and Engineering, University of Nebraska, Lincoln, NE 68588, USA
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Apartado 1226, Medellín, Colombia
| | - Favio González
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Apartado 7495, Sede Bogotá, Colombia
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
40
|
Konstantinov YM, Dietrich A, Weber-Lotfi F, Ibrahim N, Klimenko ES, Tarasenko VI, Bolotova TA, Koulintchenko MV. DNA import into mitochondria. BIOCHEMISTRY (MOSCOW) 2016; 81:1044-1056. [DOI: 10.1134/s0006297916100035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Knie N, Grewe F, Knoop V. Monilophyte mitochondrial rps1 genes carry a unique group II intron that likely originated from an ancient paralog in rpl2. RNA (NEW YORK, N.Y.) 2016; 22:1338-48. [PMID: 27354706 PMCID: PMC4986890 DOI: 10.1261/rna.056572.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/19/2016] [Indexed: 05/10/2023]
Abstract
Intron patterns in plant mitochondrial genomes differ significantly between the major land plant clades. We here report on a new, clade-specific group II intron in the rps1 gene of monilophytes (ferns). This intron, rps1i25g2, is strikingly similar to rpl2i846g2 previously identified in the mitochondrial rpl2 gene of seed plants, ferns, and the lycophyte Phlegmariurus squarrosus Although mitochondrial ribosomal protein genes are frequently subject to endosymbiotic gene transfer among plants, we could retrieve the mitochondrial rps1 gene in a taxonomically wide sampling of 44 monilophyte taxa including basal lineages such as the Ophioglossales, Psilotales, and Marattiales with the only exception being the Equisetales (horsetails). Introns rps1i25g2 and rpl2i846g2 were likewise consistently present with only two exceptions: Intron rps1i25g2 is lost in the genus Ophioglossum and intron rpl2i846g2 is lost in Equisetum bogotense Both intron sequences are moderately affected by RNA editing. The unprecedented primary and secondary structure similarity of rps1i25g2 and rpl2i846g2 suggests an ancient retrotransposition event copying rpl2i846g2 into rps1, for which we suggest a model. Our phylogenetic analysis adding the new rps1 locus to a previous data set is fully congruent with recent insights on monilophyte phylogeny and further supports a sister relationship of Gleicheniales and Hymenophyllales.
Collapse
Affiliation(s)
- Nils Knie
- Abteilung Molekulare Evolution, IZMB-Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Felix Grewe
- Abteilung Molekulare Evolution, IZMB-Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Volker Knoop
- Abteilung Molekulare Evolution, IZMB-Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| |
Collapse
|
42
|
Guo W, Grewe F, Fan W, Young GJ, Knoop V, Palmer JD, Mower JP. GinkgoandWelwitschiaMitogenomes Reveal Extreme Contrasts in Gymnosperm Mitochondrial Evolution. Mol Biol Evol 2016; 33:1448-60. [DOI: 10.1093/molbev/msw024] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
43
|
Han YW, Duan D, Ma XF, Jia Y, Liu ZL, Zhao GF, Li ZH. Efficient Identification of the Forest Tree Species in Aceraceae Using DNA Barcodes. FRONTIERS IN PLANT SCIENCE 2016; 7:1707. [PMID: 27899929 PMCID: PMC5110567 DOI: 10.3389/fpls.2016.01707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/31/2016] [Indexed: 05/20/2023]
Abstract
Aceraceae is a large forest tree family that comprises many economically and ecologically important species. However, because interspecific and/or intraspecific morphological variations result from frequent interspecific hybridization and introgression, it is challenging for non-taxonomists to accurately recognize and identify the tree species in Aceraceae based on a traditional approach. DNA barcoding is a powerful tool that has been proposed to accurately distinguish between species. In this study, we assessed the effectiveness of three core standard markers (matK, rbcL and ITS) plus the chloroplast locus trnS-trnG as Aceraceae barcodes. A total of 231 sequences representing 85 species in this forest family were collected. Of these four barcode markers, the discrimination power was highest for the ITS (I) region (50%) and was progressively reduced in the other three chloroplast barcodes matK (M), trnS-trnG (T) and rbcL (R); the discrimination efficiency of the ITS marker was also greater than any two-locus combination of chloroplast barcodes. However, the combinations of ITS plus single or combined chloroplast barcodes could improve species resolution significantly; T+I (90.5% resolution) and R+M+T+I (90.5% resolution) differentiated the highest portion of species in Aceraceae. Our current results show that the nuclear ITS fragment represents a more promising DNA barcode marker than the maternally inherited chloroplast barcodes. The most efficient and economical method to identify tree species in Aceraceae among single or combined DNA barcodes is the combination of T+I (90.5% resolution).
Collapse
Affiliation(s)
- Yu-Wei Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest UniversityXi'an, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest UniversityXi'an, China
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Yun Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest UniversityXi'an, China
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest UniversityXi'an, China
| | - Gui-Fang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest UniversityXi'an, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest UniversityXi'an, China
- *Correspondence: Zhong-Hu Li
| |
Collapse
|
44
|
Park S, Grewe F, Zhu A, Ruhlman TA, Sabir J, Mower JP, Jansen RK. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers. THE NEW PHYTOLOGIST 2015; 208:570-83. [PMID: 25989702 DOI: 10.1111/nph.13467] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/15/2015] [Indexed: 05/20/2023]
Abstract
The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
| | - Felix Grewe
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68588, USA
| | - Andan Zhu
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68588, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
| | - Jamal Sabir
- Department of Biological Science, Biotechnology Research Group, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jeffrey P Mower
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68588, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
- Department of Biological Science, Biotechnology Research Group, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
45
|
Skippington E, Barkman TJ, Rice DW, Palmer JD. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci U S A 2015; 112:E3515-24. [PMID: 26100885 PMCID: PMC4500244 DOI: 10.1073/pnas.1504491112] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the enormous diversity among parasitic angiosperms in form and structure, life-history strategies, and plastid genomes, little is known about the diversity of their mitogenomes. We report the sequence of the wonderfully bizarre mitogenome of the hemiparasitic aerial mistletoe Viscum scurruloideum. This genome is only 66 kb in size, making it the smallest known angiosperm mitogenome by a factor of more than three and the smallest land plant mitogenome. Accompanying this size reduction is exceptional reduction of gene content. Much of this reduction arises from the unexpected loss of respiratory complex I (NADH dehydrogenase), universally present in all 300+ other angiosperms examined, where it is encoded by nine mitochondrial and many nuclear nad genes. Loss of complex I in a multicellular organism is unprecedented. We explore the potential relationship between this loss in Viscum and its parasitic lifestyle. Despite its small size, the Viscum mitogenome is unusually rich in recombinationally active repeats, possessing unparalleled levels of predicted sublimons resulting from recombination across short repeats. Many mitochondrial gene products exhibit extraordinary levels of divergence in Viscum, indicative of highly relaxed if not positive selection. In addition, all Viscum mitochondrial protein genes have experienced a dramatic acceleration in synonymous substitution rates, consistent with the hypothesis of genomic streamlining in response to a high mutation rate but completely opposite to the pattern seen for the high-rate but enormous mitogenomes of Silene. In sum, the Viscum mitogenome possesses a unique constellation of extremely unusual features, a subset of which may be related to its parasitic lifestyle.
Collapse
Affiliation(s)
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Danny W Rice
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405;
| |
Collapse
|
46
|
Hsieh WY, Liao JC, Chang CY, Harrison T, Boucher C, Hsieh MH. The SLOW GROWTH3 Pentatricopeptide Repeat Protein Is Required for the Splicing of Mitochondrial NADH Dehydrogenase Subunit7 Intron 2 in Arabidopsis. PLANT PHYSIOLOGY 2015; 168:490-501. [PMID: 25888618 PMCID: PMC4453791 DOI: 10.1104/pp.15.00354] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/15/2015] [Indexed: 05/03/2023]
Abstract
Mitochondria play an important role in maintaining metabolic and energy homeostasis in the cell. In plants, impairment in mitochondrial functions usually has detrimental effects on growth and development. To study genes that are important for plant growth, we have isolated a collection of slow growth (slo) mutants in Arabidopsis (Arabidopsis thaliana). One of the slo mutants, slo3, has a significant reduction in mitochondrial complex I activity. The slo3 mutant has a four-nucleotide deletion in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. The SLO3 protein contains nine classic PPR domains belonging to the P subfamily. The small deletion in the slo3 mutant changes the reading frame and creates a premature stop codon in the first PPR domain. We demonstrated that the SLO3-GFP is localized to the mitochondrion. Further analysis of mitochondrial RNA metabolism revealed that the slo3 mutant was defective in splicing of NADH dehydrogenase subunit7 (nad7) intron 2. This specific splicing defect led to a dramatic reduction in complex I activity in the mutant as revealed by blue native gel analysis. Complementation of slo3 by 35S:SLO3 or 35S:SLO3-GFP restored the splicing of nad7 intron 2, the complex I activity, and the growth defects of the mutant. Together, these results indicate that the SLO3 PPR protein is a splicing factor of nad7 intron 2 in Arabidopsis mitochondria.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| | - Jo-Chien Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| | - Chiung-Yun Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| | - Thomas Harrison
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| | - Christina Boucher
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| |
Collapse
|
47
|
Sanchez-Puerta MV, Zubko MK, Palmer JD. Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. THE NEW PHYTOLOGIST 2015; 206:381-396. [PMID: 25441621 PMCID: PMC4342287 DOI: 10.1111/nph.13188] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/14/2014] [Indexed: 05/10/2023]
Abstract
The structure and evolution of angiosperm mitochondrial genomes are driven by extremely high rates of recombination and rearrangement. An excellent experimental system for studying these events is offered by cybrid plants, in which parental mitochondria usually fuse and their genomes recombine. Little is known about the extent, nature and consequences of mitochondrial recombination in these plants. We conducted the first study in which the organellar genomes of a cybrid - between Nicotiana tabacum and Hyoscyamus niger - were sequenced and compared to those of its parents. This cybrid mitochondrial genome is highly recombinant, reflecting at least 30 crossovers and five gene conversions between its parental genomes. It is also surprisingly large (41% and 64% larger than the parental genomes), yet contains single alleles for 90% of mitochondrial genes. Recombination produced a remarkably chimeric cybrid mitochondrial genome and occurred entirely via homologous mechanisms involving the double-strand break repair and/or break-induced replication pathways. Retention of a single form of most genes could be advantageous to minimize intracellular incompatibilities and/or reflect neutral forces that preferentially eliminate duplicated regions. We discuss the relevance of these findings to the surprisingly frequent occurrence of horizontal gene - and genome - transfer in angiosperm mitochondrial DNAs.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- Facultad de Ciencias Exactas y Naturales and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo & IBAM-CONICET, Chacras de Coria, 5500, Mendoza, Argentina
| | - Mikhajlo K Zubko
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
48
|
Yang Z, Wafula EK, Honaas LA, Zhang H, Das M, Fernandez-Aparicio M, Huang K, Bandaranayake PCG, Wu B, Der JP, Clarke CR, Ralph PE, Landherr L, Altman NS, Timko MP, Yoder JI, Westwood JH, dePamphilis CW. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Mol Biol Evol 2014; 32:767-90. [PMID: 25534030 PMCID: PMC4327159 DOI: 10.1093/molbev/msu343] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative “parasitism genes.” Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Loren A Honaas
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University
| | - Malay Das
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University
| | - Monica Fernandez-Aparicio
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University Department of Biology, University of Virginia
| | - Kan Huang
- Department of Biology, University of Virginia
| | | | - Biao Wu
- Department of Plant Sciences, University of California, Davis
| | - Joshua P Der
- Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Christopher R Clarke
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University
| | - Lena Landherr
- Department of Biology, The Pennsylvania State University
| | - Naomi S Altman
- Department of Statistics and Huck Institutes of the Life Sciences, The Pennsylvania State University
| | | | - John I Yoder
- Department of Plant Sciences, University of California, Davis
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| |
Collapse
|
49
|
Thyme SB, Song Y, Brunette TJ, Szeto MD, Kusak L, Bradley P, Baker D. Massively parallel determination and modeling of endonuclease substrate specificity. Nucleic Acids Res 2014; 42:13839-52. [PMID: 25389263 PMCID: PMC4267613 DOI: 10.1093/nar/gku1096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe the identification and characterization of novel homing endonucleases using genome database mining to identify putative target sites, followed by high throughput activity screening in a bacterial selection system. We characterized the substrate specificity and kinetics of these endonucleases by monitoring DNA cleavage events with deep sequencing. The endonuclease specificities revealed by these experiments can be partially recapitulated using 3D structure-based computational models. Analysis of these models together with genome sequence data provide insights into how alternative endonuclease specificities were generated during natural evolution.
Collapse
Affiliation(s)
- Summer B Thyme
- Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Yifan Song
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - T J Brunette
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Mindy D Szeto
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lara Kusak
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Philip Bradley
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA
| |
Collapse
|
50
|
Sanchez-Puerta MV, Abbona CC. The chloroplast genome of Hyoscyamus niger and a phylogenetic study of the tribe Hyoscyameae (Solanaceae). PLoS One 2014; 9:e98353. [PMID: 24851862 PMCID: PMC4031233 DOI: 10.1371/journal.pone.0098353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/01/2014] [Indexed: 12/04/2022] Open
Abstract
The tribe Hyoscyameae (Solanaceae) is restricted to Eurasia and includes the genera Archihyoscyamus, Anisodus, Atropa, Atropanthe, Hyoscyamus, Physochlaina, Przewalskia and Scopolia. Even though the monophyly of Hyoscyameae is strongly supported, the relationships of the taxa within the tribe remain unclear. Chloroplast markers have been widely used to elucidate plant relationships at low taxonomic levels. Identification of variable chloroplast intergenic regions has been developed based on comparative genomics of chloroplast genomes, but these regions have a narrow phylogenetic utility. In this study, we present the chloroplast genome sequence of Hyoscyamus niger and make comparisons to other solanaceous plastid genomes in terms of gene order, gene and intron content, editing sites, origins of replication, repeats, and hypothetical open reading frames. We developed and sequenced three variable plastid markers from eight species to elucidate relationships within the tribe Hyoscyameae. The presence of a horizontally transferred intron in the mitochondrial cox1 gene of some species of the tribe is considered here a likely synapomorphy uniting five genera of the Hyoscyameae. Alternatively, the cox1 intron could be a homoplasious character acquired twice within the tribe. A homoplasious inversion in the intergenic plastid spacer trnC-psbM was recognized as a source of bias and removed from the data set used in the phylogenetic analyses. Almost 12 kb of plastid sequence data were not sufficient to completely resolve relationships among genera of Hyoscyameae but some clades were identified. Two alternative hypotheses of the evolution of the genera within the tribe are proposed.
Collapse
Affiliation(s)
- M. Virginia Sanchez-Puerta
- Facultad de Ciencias Exactas y Naturales, IBAM-CONICET and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
- * E-mail:
| | - Cinthia Carolina Abbona
- IBAM-CONICET and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
| |
Collapse
|