1
|
Isokpehi RD, Simmons SS, Makolo AU, Hollman AL, Adesida SA, Ojo OO, Abioye AO. Insights into Functions of Universal Stress Proteins Encoded by Genomes of Gastric Cancer Pathogen Helicobacter pylori and Related Bacteria. Pathogens 2025; 14:275. [PMID: 40137760 PMCID: PMC11944479 DOI: 10.3390/pathogens14030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
The genes that encode the universal stress protein (USP) family domain (pfam00582) aid the survival of bacteria in specific host or habitat-induced stress conditions. Genome sequencing revealed that the genome of Helicobacter pylori, a gastric cancer pathogen, typically contains one USP gene, while related helicobacters have one or two distinct USP genes. However, insights into the functions of Helicobacteraceae (Helicobacter and Wolinella) USP genes are still limited to inferences from large-scale genome sequencing. Thus, we have combined bioinformatics and visual analytics approaches to conduct a more comprehensive data investigation of a set of 1045 universal stress protein sequences encoded in 1014 genomes including 785 Helicobacter pylori genomes. The study generated a representative set of 183 USP sequences consisting of 180 Helicobacter sequences, two Wolinella succinogenes sequences, and a sequence from a related campylobacteria. We used the amino acid residues and positions of the 12 possible functional sites in 1030 sequences to identify 25 functional sites patterns for guiding studies on functional interactions of Helicobacteraceae USPs with ATP and other molecules. Genomic context searches and analysis identified USP genes of gastric and enterohepatic helicobacters that are adjacent or in operons with genes for proteins responsive to DNA-damaging oxidative stress (ATP-dependent proteases: ClpS and ClpA); and DNA uptake proteins (natural competence for transformation proteins: ComB6, ComB7, ComB8, ComB9, ComB10, ComBE, and conjugative transfer signal peptidase TraF). Since transcriptomic evidence indicates that oxidative stress and the presence of virulence-associated genes regulate the transcription of H. pylori USP gene, we recommend further research on Helicobacter USP genes and their neighboring genes in oxidative stress response and virulence of helicobacters. To facilitate the reuse of data and research, we produced interactive analytics resources of a dataset composed of values for variables including phylogeography of H. pylori strains, protein sequence features, and gene neighborhood.
Collapse
Affiliation(s)
- Raphael D. Isokpehi
- Transdisciplinary Data Scholars Development Program, Bethune-Cookman University, Daytona Beach, FL 32114, USA
| | - Shaneka S. Simmons
- Division of Arts and Sciences, Jarvis Christian University, Hawkins, TX 75765, USA
| | - Angela U. Makolo
- University of Ibadan Bioinformatics Group, Department of Computer Science, University of Ibadan, Ibadan 200005, Oyo State, Nigeria
| | | | - Solayide A. Adesida
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka 101017, Lagos State, Nigeria
| | - Olabisi O. Ojo
- Department of Natural Sciences, Albany State University, Albany, GA 31721, USA
| | - Amos O. Abioye
- College of Pharmacy & Health Sciences, Belmont University, Nashville, TN 37212, USA;
| |
Collapse
|
2
|
McAllister CT, Ronk AM, Stenzel MJ, Kirby JR, Bretl DJ. The NmpRSTU multi-component signaling system of Myxococcus xanthus regulates expression of an oxygen utilization regulon. J Bacteriol 2025; 207:e0028024. [PMID: 39868781 PMCID: PMC11841059 DOI: 10.1128/jb.00280-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 01/28/2025] Open
Abstract
Myxococcus xanthus has numerous two-component signaling systems (TCSs), many of which regulate the complex social behaviors of this soil bacterium. A subset of TCSs consists of NtrC-like response regulators (RRs) and their cognate histidine sensor kinases (SKs). We have previously demonstrated that a multi-component, phosphorelay TCS named NmpRSTU plays a role in M. xanthus social motility. NmpRSTU was discovered through a screen that identified mutations in nmp genes that restored Type-IV pili-dependent motility to a nonmotile strain. The Nmp pathway begins with the SK NmpU, which is predicted to be active in the presence of oxygen. NmpU phosphorylates another SK, NmpS, a hybrid kinase containing an RR domain and a HisKA-CA domain. These two kinases work in a reciprocal fashion: when NmpU is active, NmpS is inactive, and vice versa. Finally, the phosphorelay culminates in NmpS phosphorylating the NtrC-like RR NmpR. To better understand the role of NmpRSTU in M. xanthus physiology, we determined the NmpR regulon by combining in silico predictions of the NmpR consensus binding sequence with in vitro electromobility shift assays (EMSAs) and in vivo transcriptional reporters. We identified several NmpR-dependent, upregulated genes likely to be important in oxygen utilization. Additionally, we demonstrate NmpRSTU plays a role in fruiting body development, suggesting a role for oxygen sensing in this behavior. We propose that NmpRSTU senses oxygen-limiting conditions, and NmpR upregulates genes associated with optimal utilization of that oxygen. This may be necessary for M. xanthus physiology and behaviors in the highly dynamic soil where oxygen concentrations vary dramatically. IMPORTANCE Bacteria use two-component signaling systems (TCSs) to respond to a multitude of environmental signals and subsequently regulate complex cellular physiology and behaviors. Myxococcus xanthus is a ubiquitous soil bacterium that encodes numerous two-component systems to respond to the conditions of its soil environment and coordinate multicellular behaviors such as coordinated motility, microbial predation, fruiting body development, and sporulation. To better understand how this bacterium uses a two-component system that has been linked to the sensing of oxygen concentrations, NmpRSTU, we determined the gene regulatory network of this system. We identified several genes regulated by NmpR that are likely important in oxygen utilization and for the M. xanthus response to varied oxygen concentrations in the dynamic soil environment.
Collapse
Affiliation(s)
- Colin T. McAllister
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison M. Ronk
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Mason J. Stenzel
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel J. Bretl
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| |
Collapse
|
3
|
Matarredona L, Zafrilla B, Rubio-Portillo E, Bonete MJ, Esclapez J. Deepening the knowledge of universal stress proteins in Haloferax mediterranei. Appl Microbiol Biotechnol 2024; 108:124. [PMID: 38229402 DOI: 10.1007/s00253-023-12899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/18/2024]
Abstract
Haloarchaea, like many other microorganisms, have developed defense mechanisms such as universal stress proteins (USPs) to cope with environmental stresses affecting microbial growth. Despite the wide distribution of these proteins in Archaea, their biochemical characteristics still need to be discovered, and there needs to be more knowledge about them focusing on halophilic Archaea. Therefore, elucidating the role of USPs would provide valuable information to improve future biotechnological applications. Accordingly, transcriptional expression of the 37 annotated USPs in the Haloferax mediterranei genome has been examined under different stress conditions. From a global perspective, finding a clear tendency between particular USPs and specific stress conditions was not possible. Contrary, data analysis indicates that there is a recruitment mechanism of proteins with a similar sequence able to modulate the H. mediterranei growth, accelerating or slowing it, depending on their number. In fact, only three of these USPs were expressed in all the tested conditions, pointing to the cell needing a set of USPs to cope with stress conditions. After analysis of the RNA-Seq data, three differentially expressed USPs were selected and homologously overexpressed. According to the growth data, the overexpression of USPs induces a gain of tolerance in response to stress, as a rule. Therefore, this is the only work that studies all the USPs in an archaeon. It represents a significant first base to continue advancing, not only in this important family of stress proteins but also in the field of biotechnology and, at an industrial level, to improve applications such as designing microorganisms resistant to stress situations. KEY POINTS: • Expression of Haloferax mediterranei USPs has been analyzed in stress conditions. • RNA-seq analysis reveals that most of the USPs in H. mediterranei are downregulated. • Homologous overexpression of USPs results in more stress-tolerant strains.
Collapse
Affiliation(s)
- Laura Matarredona
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Basilio Zafrilla
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Esther Rubio-Portillo
- Department of Physiology, Genetics and Microbiology, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| |
Collapse
|
4
|
Yan T, Li M, Wang Q, Wang M, Liu L, Ma C, Xiang X, Zhou Q, Liu Z, Gong Z. Structures, functions, and regulatory networks of universal stress proteins in clinically relevant pathogenic Bacteria. Cell Signal 2024; 116:111032. [PMID: 38185228 DOI: 10.1016/j.cellsig.2023.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Universal stress proteins are a class of proteins widely present in bacteria, archaea, plants, and invertebrates, playing essential roles in bacterial adaptation to various environmental stresses. The functions of bacterial universal stress proteins are versatile, including resistance to oxidative stress, maintenance of cell wall integrity, DNA damage repair, regulation of cell division and growth, among others. When facing stresses such as temperature changes, pH shifts, fluctuations in oxygen concentration, and exposure to toxins, these proteins can bind to specific DNA sequences and rapidly adjust bacterial metabolic pathways and gene expression patterns to adapt to the new environment. In summary, bacterial universal stress proteins play a crucial role in bacterial adaptability and survival. A comprehensive understanding of bacterial stress response mechanisms and the development of new antibacterial strategies are of great significance. This review summarizes the research progress on the structure, function, and regulatory factors of universal stress proteins in clinically relevant bacteria, aiming to facilitate deeper investigations by clinicians and researchers into universal stress proteins.
Collapse
Affiliation(s)
- Tao Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiuyan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengcheng Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Zhen Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Borujeni PM, Salavati R. Functional domain annotation by structural similarity. NAR Genom Bioinform 2024; 6:lqae005. [PMID: 38298181 PMCID: PMC10830352 DOI: 10.1093/nargab/lqae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Traditional automated in silico functional annotation uses tools like Pfam that rely on sequence similarities for domain annotation. However, structural conservation often exceeds sequence conservation, suggesting an untapped potential for improved annotation through structural similarity. This approach was previously overlooked before the AlphaFold2 introduction due to the need for more high-quality protein structures. Leveraging structural information especially holds significant promise to enhance accurate annotation in diverse proteins across phylogenetic distances. In our study, we evaluated the feasibility of annotating Pfam domains based on structural similarity. To this end, we created a database from segmented full-length protein structures at their domain boundaries, representing the structure of Pfam seeds. We used Trypanosoma brucei, a phylogenetically distant protozoan parasite as our model organism. Its structome was aligned with our database using Foldseek, the ultra-fast structural alignment tool, and the top non-overlapping hits were annotated as domains. Our method identified over 400 new domains in the T. brucei proteome, surpassing the benchmark set by sequence-based tools, Pfam and Pfam-N, with some predictions validated manually. We have also addressed limitations and suggested avenues for further enhancing structure-based domain annotation.
Collapse
Affiliation(s)
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
6
|
Song Y, Ma B, Feng X, Guo Q, Zhou L, Zhang X, Zhang C. Genome-Wide Analysis of the Universal Stress Protein Gene Family in Blueberry and Their Transcriptional Responses to UV-B Irradiation and Abscisic Acid. Int J Mol Sci 2023; 24:16819. [PMID: 38069138 PMCID: PMC10706445 DOI: 10.3390/ijms242316819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Universal stress proteins (USPs) play essential roles in plant development, hormonal regulation, and abiotic stress responses. However, the characteristics and functional divergence of USP family members have not been studied in blueberry (Vaccinium corymbosum). In this study, we identified 72 VcUSP genes from the Genome Database for Vaccinium. These VcUSPs could be divided into five groups based on their phylogenetic relationships. VcUSPs from groups Ⅰ, Ⅳ, and Ⅴ each possess one UspA domain; group Ⅰ proteins also contain an ATP-binding site that is not present in group Ⅳ and Ⅴ proteins. Groups Ⅱ and Ⅲ include more complex proteins possessing one to three UspA domains and UspE or UspF domains. Prediction of cis-regulatory elements in the upstream sequences of VcUSP genes indicated that their protein products are likely involved in phytohormone signaling pathways and abiotic stress responses. Analysis of RNA deep sequencing data showed that 21 and 7 VcUSP genes were differentially expressed in response to UV-B radiation and exogenous abscisic acid (ABA) treatments, respectively. VcUSP41 and VcUSP68 expressions responded to both treatments, and their encoded proteins may integrate the UV-B and ABA signaling pathways. Weighted gene co-expression network analysis revealed that VcUSP22, VcUSP26, VcUSP67, VcUSP68, and VcUSP41 were co-expressed with many transcription factor genes, most of which encode members of the MYB, WRKY, zinc finger, bHLH, and AP2 families, and may be involved in plant hormone signal transduction, circadian rhythms, the MAPK signaling pathway, and UV-B-induced flavonoid biosynthesis under UV-B and exogenous ABA treatments. Our study provides a useful reference for the further functional analysis of VcUSP genes and blueberry molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Ebihara A, Sugihara D, Matsuyama M, Suzuki-Nakagawa C, Nabi AHMN, Nakagawa T, Nishiyama A, Suzuki F. Mapping the protein binding site of the (pro)renin receptor using in silico 3D structural analysis. Hypertens Res 2023; 46:959-971. [PMID: 36481966 PMCID: PMC10073018 DOI: 10.1038/s41440-022-01094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
We have previously reported that monoclonal antibodies against the (pro)renin receptor [(P)RR] can reduce the Wnt/β-catenin-dependent development of pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic cancer. Antibodies against two (P)RR regions (residues 47-60 and 200-213) located in the extracellular domain (ECD) reduced the proliferation of human PDAC cells in vitro. Although these regions probably participate in the activation of Wnt/β-catenin signaling, their functional significance remains unclear. Moreover, the (P)RR ECD is predicted to possess an intrinsically disordered region (IDR), which allows multiple protein interactions because of its conformational flexibility. In this study, we investigated the significance of the two regions and the IDR by in silico 3D structural analysis using the AlphaFold2 program and evolutionary sequence conservation profile. The model showed that ECD adopted a folded domain (residues 17-269) and had an IDR (residues 270-296). The two regions mapped onto the structural model formed a continuous surface patch comprising evolutionarily conserved hydrophobic residues. The homodimeric structure predicted by AlphaFold2 showed that full-length (P)RR comprising the ECD, single-span transmembrane, and cytoplasmic domains formed a twofold symmetric dimer via the ECD, which explains the experimentally proven homodimerization. The dimer model possessed two hand-shaped grooves with residues 47-60 and 200-213 in their palms and the IDR as their fingers. Based on these findings, we propose that the IDR-containing hydrophobic grooves act as a binding site for (P)RR and perform multiple functions, including Wnt signaling activation. Antibodies against the (pro)renin receptor residues 47-60 and 200-213 can inhibit pancreatic ductal adenocarcinoma (PDAC) cell proliferation by suppressing Wnt signaling. This study provides 3D structural insights into receptor binding and one-to-many interactions, which underpin the functional versatility of this receptor.
Collapse
Affiliation(s)
- Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Tokai National Higher Education and Research System, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Daiki Sugihara
- Graduate School of Natural Science and Technology, Gifu University, Tokai National Higher Education and Research System, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Minami, 701-0202, Japan
| | - Chiharu Suzuki-Nakagawa
- Faculty of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - A H M Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tsutomu Nakagawa
- Faculty of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki, Kagawa, 761-0793, Japan
| | - Fumiaki Suzuki
- Faculty of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
8
|
Luo D, Wu Z, Bai Q, Zhang Y, Huang M, Huang Y, Li X. Universal Stress Proteins: From Gene to Function. Int J Mol Sci 2023; 24:ijms24054725. [PMID: 36902153 PMCID: PMC10003552 DOI: 10.3390/ijms24054725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Universal stress proteins (USPs) exist across a wide range of species and are vital for survival under stressful conditions. Due to the increasingly harsh global environmental conditions, it is increasingly important to study the role of USPs in achieving stress tolerance. This review discusses the role of USPs in organisms from three aspects: (1) organisms generally have multiple USP genes that play specific roles at different developmental periods of the organism, and, due to their ubiquity, USPs can be used as an important indicator to study species evolution; (2) a comparison of the structures of USPs reveals that they generally bind ATP or its analogs at similar sequence positions, which may underlie the regulatory role of USPs; and (3) the functions of USPs in species are diverse, and are generally directly related to the stress tolerance. In microorganisms, USPs are associated with cell membrane formation, whereas in plants they may act as protein chaperones or RNA chaperones to help plants withstand stress at the molecular level and may also interact with other proteins to regulate normal plant activities. This review will provide directions for future research, focusing on USPs to provide clues for the development of stress-tolerant crop varieties and for the generation of novel green pesticide formulations in agriculture, and to better understand the evolution of drug resistance in pathogenic microorganisms in medicine.
Collapse
|
9
|
Smoniewski CM, Borujeni PM, Petersen A, Hampton M, Salavati R, Zimmer SL. Circular mitochondrial-encoded mRNAs are a distinct subpopulation of mitochondrial mRNA in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528059. [PMID: 36798374 DOI: 10.1101/2023.01.18.524644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since the first identification of circular RNA (circRNA) in viral-like systems, reports of circRNAs and their functions in various organisms, cell types, and organelles have greatly expanded. Here, we report the first evidence of circular mRNA in the mitochondrion of the eukaryotic parasite, Trypanosoma brucei . While using a circular RT-PCR technique developed to sequence mRNA tails of mitochondrial transcripts, we found that some mRNAs are circularized without an in vitro circularization step normally required to produce PCR products. Starting from total in vitro circularized RNA and in vivo circRNA, we high-throughput sequenced three transcripts from the 3' end of the coding region, through the 3' tail, to the 5' start of the coding region. We found that fewer reads in the circRNA libraries contained tails than in the total RNA libraries. When tails were present on circRNAs, they were shorter and less adenine-rich than the total population of RNA tails of the same transcript. Additionally, using hidden Markov modelling we determined that enzymatic activity during tail addition is different for circRNAs than for total RNA. Lastly, circRNA UTRs tended to be shorter and more variable than those of the same transcript sequenced from total RNA. We propose a revised model of Trypanosome mitochondrial tail addition, in which a fraction of mRNAs is circularized prior to the addition of adenine-rich tails and may act as a new regulatory molecule or in a degradation pathway.
Collapse
Affiliation(s)
- Clara M Smoniewski
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth Campus, Duluth, MN, USA
| | | | - Austin Petersen
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Quebec, Canada
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth Campus, Duluth, MN, USA
| |
Collapse
|
10
|
Mechanistic Insight into the Enzymatic Inhibition of β-Amyrin against Mycobacterial Rv1636: In Silico and In Vitro Approaches. BIOLOGY 2022; 11:biology11081214. [PMID: 36009841 PMCID: PMC9405466 DOI: 10.3390/biology11081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Rv1636 is a mycobacterial universal stress protein whose expression level increases in different type of stress conditions. This protein promotes the growth of Mycobacterium tuberculosis in the host derived stress conditions generated during infection. Therefore in this manuscipt, we are trying to target Rv1636 using natural inhibitor. Targeting essential Mycobacterial protein using natural prodect was hypothesized to generate a molecule with low toxic effects and high inhibitory activity. It was found that Rv1636 contains ATPase activity and its ATPase activity gets disturbed by addition of β-Amyrin in the reaction. β-Amyrin was forund to interfere with the ATP binding site of Rv1636 which was confirmed by molecular docking anad dynamic studies. In addition to the ATPase activity, Rv1636 was also contain the cAMP binding capacity and also involved in balancing the cAMP levels inside cells. So, targeting Rv1636 using β-Amyrin disrupts its ATPase activity and cAMP regulatory activity and these conditions might make Mycobacterium tuberculosis more susceptible to the host derived stress conditions. Abstract Mycobacterium tuberculosis has seen tremendous success as it has developed defenses to reside in host alveoli despite various host-related stress circumstances. Rv1636 is a universal stress protein contributing to mycobacterial survival in different host-derived stress conditions. Both ATP and cAMP can be bound with the Rv1636, and their binding actions are independent of one another. β-Amyrin, a triterpenoid compound, is abundant in medicinal plants and has many pharmacological properties and broad therapeutic potential. The current study uses biochemical, biophysical, and computational methods to define the binding of Rv1636 with β-Amyrin. A substantial interaction between β-Amyrin and Rv1636 was discovered by molecular docking studies, which helped decipher the critical residues involved in the binding process. VAL60 is a crucial residue found in the complexes of both Rv1636_β-Amyrin and Rv1636-ATP. Additionally, the Rv1636_β-Amyrin complex was shown to be stable by molecular dynamics simulation studies (MD), with minimal changes observed during the simulation. In silico observations were further complemented by in vitro assays. Successful cloning, expression, and purification of Rv1636 were accomplished using Ni-NTA affinity chromatography. The results of the ATPase activity assay indicated that Rv1636’s ATPase activity was inhibited in the presence of various β-Amyrin concentrations. Additionally, circular dichroism spectroscopy (CD) was used to examine modifications to Rv1636 secondary structure upon binding of β-Amyrin. Finally, isothermal titration calorimetry (ITC) advocated spontaneous binding of β-Amyrin with Rv1636 elucidating the thermodynamics of the Rv1636_β-Amyrin complex. Thus, the study establishes that β-Amyrin binds to Rv1636 with a significant affinity forming a stable complex and inhibiting its ATPase activity. The present study suggests that β-Amyrin might affect the functioning of Rv1636, which makes the bacterium vulnerable to different stress conditions.
Collapse
|
11
|
Bandyopadhyay D, Mukherjee M. Systematic comparison of the protein-protein interaction network of bacterial Universal stress protein A (UspA): an insight into its discrete functions. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Sharifi Alishah M, Darvishzadeh R, Ahmadabadi M, Piri Kashtiban Y, Hasanpur K. Identification of differentially expressed genes in salt-tolerant oilseed sunflower (Helianthus annuus L.) genotype by RNA sequencing. Mol Biol Rep 2022; 49:3583-3596. [PMID: 35119610 DOI: 10.1007/s11033-022-07198-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sunflower (Helianthus annuus L.) is widely planted as an oilseed crop worldwide. Salt stress is one of the major abiotic stresses that negatively affect crop growth and productivity. To counter the negative impact of salt stress, plants have developed avoidance and tolerance mechanisms. Developing salt-tolerant genotypes requires understanding the molecular basis of adaptive mechanisms in depth. Although using model plants i.e., Arabidopsis has improved our understanding of salt tolerant mechanisms, the relative impotence and regulation mechanisms vary among plant species due to differences in genetic and metabolic backgrounds. On the other hand, sunflower is a highly polymorphic plant due to its cross-pollinated behavior which provides different salt-tolerant genotypes available for comparative analyses. METHODS AND RESULTS In order to gain a better view of molecular mechanisms involved in salt tolerance in sunflower, RNA sequencing analysis was realized by evaluating a tolerant genotype (AS5305) with two biological replicates under control and salt stress conditions in a controlled environment. Salinity stress was applied from NaCl resource at the 8-leaf stage and samplings were done at 24 h post salt stress application. Sequencing data were analyzed using tuxedo software suite. Blast2GO software and the KEGG database were used to identify the functional tasks of each of the assembled transcripts. Analysis of genes with robust expression (i.e., with FPKM > 1 in at least one sample) revealed a total of 121 significantly expressed genes between the saline-stressed and control samples. The differential expression of 11 genes was confirmed by real-time PCR. In the following, the cDNA of MYB44 as one of the selected candidate genes involved in salt tolerance was isolated, cloned, and sequenced for comparison. CONCLUSIONS Overall, the results of the current study may pave the way for the accurate selection of genes involved in salinity to be used in molecular-genetics-assisted breeding programs. In addition, making use of the identified genes may help relieve the damages arising from the salt stress in sunflowers.
Collapse
Affiliation(s)
- Masoumeh Sharifi Alishah
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Reza Darvishzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran. .,Department of Agricultural Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran.
| | - Mohammad Ahmadabadi
- Department Agricultural Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Yaser Piri Kashtiban
- Department of Agricultural Biotechnology, National Center of Genetic Engineering, Tehran, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Barba-Aliaga M, Alepuz P. Role of eIF5A in Mitochondrial Function. Int J Mol Sci 2022; 23:1284. [PMID: 35163207 PMCID: PMC8835957 DOI: 10.3390/ijms23031284] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is an evolutionarily conserved protein that binds ribosomes to facilitate the translation of peptide motifs with consecutive prolines or combinations of prolines with glycine and charged amino acids. It has also been linked to other molecular functions and cellular processes, such as nuclear mRNA export and mRNA decay, proliferation, differentiation, autophagy, and apoptosis. The growing interest in eIF5A relates to its association with the pathogenesis of several diseases, including cancer, viral infection, and diabetes. It has also been proposed as an anti-aging factor: its levels decay in aged cells, whereas increasing levels of active eIF5A result in the rejuvenation of the immune and vascular systems and improved brain cognition. Recent data have linked the role of eIF5A in some pathologies with its function in maintaining healthy mitochondria. The eukaryotic translation initiation factor 5A is upregulated under respiratory metabolism and its deficiency reduces oxygen consumption, ATP production, and the levels of several mitochondrial metabolic enzymes, as well as altering mitochondria dynamics. However, although all the accumulated data strongly link eIF5A to mitochondrial function, the precise molecular role and mechanisms involved are still unknown. In this review, we discuss the findings linking eIF5A and mitochondria, speculate about its role in regulating mitochondrial homeostasis, and highlight its potential as a target in diseases related to energy metabolism.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| |
Collapse
|
14
|
Ganguly B. Computational Mining and Characterization of Hypothetical Proteins of Mycobacterium bovis Toward the Identification of Probable Vaccine Candidates. Methods Mol Biol 2022; 2412:449-455. [PMID: 34918261 DOI: 10.1007/978-1-0716-1892-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A hypothetical protein (HP) is one that is known to exist only on the basis of a corresponding gene but without any function assigned to it. Many HPs have emerged as attractive vaccine candidates against prokaryotic and eukaryotic pathogens as well as against cancers. Mycobacterium bovis is a serious veterinary pathogen of tremendous zoonotic importance. This protocol describes a computational workflow for the identification of the HPs of M. bovis with vaccine potential and their subsequent structural and functional characterization.
Collapse
Affiliation(s)
- Bhaskar Ganguly
- Department of Clinical Research, Research and Development Division, Ayurvet Limited, Baddi, Himachal Pradesh, India.
- D-04, Alliance Kingston Estate, Rudrapur, Uttarakhand, India.
| |
Collapse
|
15
|
Masamba P, Kappo AP. Parasite Survival and Disease Persistence in Cystic Fibrosis, Schistosomiasis and Pathogenic Bacterial Diseases: A Role for Universal Stress Proteins? Int J Mol Sci 2021; 22:10878. [PMID: 34639223 PMCID: PMC8509486 DOI: 10.3390/ijms221910878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.
Collapse
Affiliation(s)
- Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa;
| | | |
Collapse
|
16
|
Isokpehi RD, McInnis DS, Destefano AM, Johnson GS, Walker AD, Hall YA, Mapp BW, Johnson MO, Simmons SS. Bioinformatics Investigations of Universal Stress Proteins from Mercury-Methylating Desulfovibrionaceae. Microorganisms 2021; 9:microorganisms9081780. [PMID: 34442859 PMCID: PMC8401546 DOI: 10.3390/microorganisms9081780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
The presence of methylmercury in aquatic environments and marine food sources is of global concern. The chemical reaction for the addition of a methyl group to inorganic mercury occurs in diverse bacterial taxonomic groups including the Gram-negative, sulfate-reducing Desulfovibrionaceae family that inhabit extreme aquatic environments. The availability of whole-genome sequence datasets for members of the Desulfovibrionaceae presents opportunities to understand the microbial mechanisms that contribute to methylmercury production in extreme aquatic environments. We have applied bioinformatics resources and developed visual analytics resources to categorize a collection of 719 putative universal stress protein (USP) sequences predicted from 93 genomes of Desulfovibrionaceae. We have focused our bioinformatics investigations on protein sequence analytics by developing interactive visualizations to categorize Desulfovibrionaceae universal stress proteins by protein domain composition and functionally important amino acids. We identified 651 Desulfovibrionaceae universal stress protein sequences, of which 488 sequences had only one USP domain and 163 had two USP domains. The 488 single USP domain sequences were further categorized into 340 sequences with ATP-binding motif and 148 sequences without ATP-binding motif. The 163 double USP domain sequences were categorized into (1) both USP domains with ATP-binding motif (3 sequences); (2) both USP domains without ATP-binding motif (138 sequences); and (3) one USP domain with ATP-binding motif (21 sequences). We developed visual analytics resources to facilitate the investigation of these categories of datasets in the presence or absence of the mercury-methylating gene pair (hgcAB). Future research could utilize these functional categories to investigate the participation of universal stress proteins in the bacterial cellular uptake of inorganic mercury and methylmercury production, especially in anaerobic aquatic environments.
Collapse
Affiliation(s)
- Raphael D. Isokpehi
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
- Correspondence:
| | - Dominique S. McInnis
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Antoinette M. Destefano
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Gabrielle S. Johnson
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Akimio D. Walker
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Yessenia A. Hall
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Baraka W. Mapp
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Matilda O. Johnson
- College of Nursing and Health Sciences, Bethune-Cookman University, Daytona Beach, FL 32114, USA;
| | - Shaneka S. Simmons
- Department of Science and Mathematics, Jarvis Christian College, Hawkins, TX 75765, USA;
| |
Collapse
|
17
|
Wilson DM, Deacon AM, Duncton MAJ, Pellicena P, Georgiadis MM, Yeh AP, Arvai AS, Moiani D, Tainer JA, Das D. Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:130-142. [PMID: 33115610 PMCID: PMC8666131 DOI: 10.1016/j.pbiomolbio.2020.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven "undruggable", Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with ∼50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or "undruggable" targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of ∼2-8% and crystal structures from ∼1.8 to 3.2 Å. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1).
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium; Boost Scientific, Heusden-Zolder, Belgium; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Ashley M Deacon
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | | | | | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Andrew P Yeh
- Accelero Biostructures Inc., San Francisco, CA, USA
| | - Andrew S Arvai
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Davide Moiani
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Debanu Das
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA.
| |
Collapse
|
18
|
Cui X, Zhang P, Hu Y, Chen C, Liu Q, Guan P, Zhang J. Genome-wide analysis of the Universal stress protein A gene family in Vitis and expression in response to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:57-70. [PMID: 34034161 DOI: 10.1016/j.plaphy.2021.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Universal Stress Protein A (USPA) plays critical roles in the regulation of growth, development and response to abiotic stress in plants. To date, most research related to the role of USPA in plants has been carried out in herbaceous models such as Arabidopsis, rice and soybean. Here, we used bioinformatics approaches to identify 21 USPA genes in the genome of Vitis vinifera L. Phylogenetic analysis revealed that VvUSPAs could be divided into eight clades. Based on predicted chromosomal locations, we identified 16 pairs of syntenic, orthologous genes between A. thaliana and V. vinifera. Further promoter cis-elements analysis, together with identification of potential microRNA (miRNA) binding sites, suggested that at least some of the VvUSPAs participate in response to phytohormones and abiotic stress. To add support for this, we analyzed the developmental and stress-responsive expression patterns of the homologous USPA genes in the drought-resistant wild Vitis yeshanensis accession 'Yanshan-1' and the drought-sensitive Vitis riparia accession 'He'an'. Most of the USPA genes were upregulated in different degrees in the two genotypes after drought stress and exposure to ethephon (ETH), abscisic acid (ABA) and methyl jasmonate (MeJA). Individual USPA genes showed various tissue-specific expression patterns. Heterologous expression of five selected genes (VvUSPA2, VvUSPA3, VvUSPA11, VvUSPA13 and VvUSPA16) in Escherichia coli (E. coli) enhanced resistance to drought stress. Our study provides a model for mapping gene function in response to abiotic stress and identified three candidate genes, VvUSPA3, VvUSPA11 and VvUSPA16, as regulators of drought response in V. vinifera.
Collapse
Affiliation(s)
- Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pingying Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chengcheng Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Qiying Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, 476131, Karlsruhe, Germany.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
Arabia S, Sami AA, Akhter S, Sarker RH, Islam T. Comprehensive in silico Characterization of Universal Stress Proteins in Rice ( Oryza sativa L.) With Insight Into Their Stress-Specific Transcriptional Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:712607. [PMID: 34394169 PMCID: PMC8355530 DOI: 10.3389/fpls.2021.712607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 06/10/2023]
Abstract
In a world where climate change is real and its consequences are unprecedented, understanding of the plant adaptive capacity and native stress-responsive machinery is crucial. In recent years, universal stress proteins (USPs) have received much attention in the field of plant science due to their stress-specific transcriptional regulation. This study focuses on the extensive characterization of the USP gene family members in the monocot crop rice (Oryza sativa L. var. japonica). Here, we report a total of 44 USP genes in the rice genome. In silico characterization of these genes showed that domain architecture played a major role in the functional diversification of the USP gene family which holds for all plant USPs. On top of that, a higher conservation of OsUSP members has been exhibited with a monocot genome (Zea mays L.) as compared to a dicot genome (Arabidopsis thaliana L.). Expression profiling of the identified genes led to the discovery of multiple OsUSP genes that showed pronounced transcript alteration under various abiotic stress conditions, indicating their potential role as multi-functional stress-specific modules. Furthermore, expression validation of OsUSP genes using qRT-PCR provided a strong evidence for the utility OsUSP genes in building multi-stress tolerant plants. Altogether, this study provides leads to suitable USP candidates that could be targeted for plant breeding and genetic engineering experiments to develop stress resilient crop species.
Collapse
|
20
|
Dutta A, Batish M, Parashar V. Structural basis of KdpD histidine kinase binding to the second messenger c-di-AMP. J Biol Chem 2021; 296:100771. [PMID: 33989637 PMCID: PMC8214093 DOI: 10.1016/j.jbc.2021.100771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
The KdpDE two-component system regulates potassium homeostasis and virulence in various bacterial species. The KdpD histidine kinases (HK) of this system contain a universal stress protein (USP) domain which binds to the second messenger cyclic-di-adenosine monophosphate (c-di-AMP) for regulating transcriptional output from this two-component system in Firmicutes such as Staphylococcus aureus. However, the structural basis of c-di-AMP specificity within the KdpD-USP domain is not well understood. Here, we resolved a 2.3 Å crystal structure of the S. aureus KdpD-USP domain (USPSa) complexed with c-di-AMP. Binding affinity analyses of USPSa mutants targeting the observed USPSa:c-di-AMP structural interface enabled the identification of the sequence residues that are required for c-di-AMP specificity. Based on the conservation of these residues in other Firmicutes, we identified the binding motif, (A/G/C)XSXSX2N(Y/F), which allowed us to predict c-di-AMP binding in other KdpD HKs. Furthermore, we found that the USPSa domain contains structural features distinct from the canonical standalone USPs that bind ATP as a preferred ligand. These features include inward-facing conformations of its β1-α1 and β4-α4 loops, a short α2 helix, the absence of a triphosphate-binding Walker A motif, and a unique dual phospho-ligand binding mode. It is therefore likely that USPSa-like domains in KdpD HKs represent a novel subfamily of the USPs.
Collapse
Affiliation(s)
- Anirudha Dutta
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
21
|
Bharathi M, Senthil Kumar N, Chellapandi P. Functional Prediction and Assignment of Methanobrevibacter ruminantium M1 Operome Using a Combined Bioinformatics Approach. Front Genet 2020; 11:593990. [PMID: 33391347 PMCID: PMC7772410 DOI: 10.3389/fgene.2020.593990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Methanobrevibacter ruminantium M1 (MRU) is a rod-shaped rumen methanogen with the ability to use H2 and CO2, and formate as substrates for methane formation in the ruminants. Enteric methane emitted from this organism can also be influential to the loss of dietary energy in ruminants and humans. To date, there is no successful technology to reduce methane due to a lack of knowledge on its molecular machinery and 73% conserved hypothetical proteins (HPs; operome) whose functions are still not ascertained perceptively. To address this issue, we have predicted and assigned a precise function to HPs and categorize them as metabolic enzymes, binding proteins, and transport proteins using a combined bioinformatics approach. The results of our study show that 257 (34%) HPs have well-defined functions and contributed essential roles in its growth physiology and host adaptation. The genome-neighborhood analysis identified 6 operon-like clusters such as hsp, TRAM, dsr, cbs and cas, which are responsible for protein folding, sudden heat-shock, host defense, and protection against the toxicities in the rumen. The functions predicted from MRU operome comprised of 96 metabolic enzymes with 17 metabolic subsystems, 31 transcriptional regulators, 23 transport, and 11 binding proteins. Functional annotation of its operome is thus more imperative to unravel the molecular and cellular machinery at the systems-level. The functional assignment of its operome would advance strategies to develop new anti-methanogenic targets to mitigate methane production. Hence, our approach provides new insight into the understanding of its growth physiology and lifestyle in the ruminants and also to reduce anthropogenic greenhouse gas emissions worldwide.
Collapse
Affiliation(s)
- M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - N Senthil Kumar
- Human Genetics Lab, Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
22
|
Ye X, van der Does C, Albers SV. SaUspA, the Universal Stress Protein of Sulfolobus acidocaldarius Stimulates the Activity of the PP2A Phosphatase and Is Involved in Growth at High Salinity. Front Microbiol 2020; 11:598821. [PMID: 33304342 PMCID: PMC7693658 DOI: 10.3389/fmicb.2020.598821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
In Sulfolobus acidocaldarius, the protein phosphatase PP2A plays important regulatory roles in many cellular processes, including cell growth, cell shape and synthesis of the archaellum. A conserved prokaryotic protein, designated as SaUspA, was identified as an interaction partner of the phosphatase PP2A. SaUspA belongs to the universal stress protein (USP) superfamily, members of which are found in bacteria, archaea, plants and invertebrates. Biochemical analysis showed that SaUspA is a homodimeric ATP-binding protein, which also in vitro binds to PP2A. SaUspA did not hydrolyze ATP, but stimulated the phosphatase activity of PP2A and might in this manner affect many other processes. Interestingly, binding of ATP further enhanced SaUspA's interaction with PP2A. In contrast to bacterial usp genes, environmental stress conditions including stationary phase, starvation stress, high salinity stress and UV stress did not stimulate expression of saUspA. Deletion of saUspA led to premature production of the archaellin FlaB in S. acidocaldarius although motility was not affected. The ΔsaUspA mutant showed a significant growth defect under high salinity stress and complementation of ATP-binding deficient mutant SaUspAG97A failed to restore this growth defect. Compared with the wild type strain, its growth or survival was not affected under heavy metal stress and UV stress. To date, this is the first study in which the physiological role of USP homologs in archaea have been reported.
Collapse
Affiliation(s)
- Xing Ye
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Spindlin docking protein (SPIN.DOC) interaction with SPIN1 (a histone code reader) regulates Wnt signaling. Biochem Biophys Res Commun 2019; 511:498-503. [PMID: 30803761 DOI: 10.1016/j.bbrc.2019.02.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Indepth studies of protein-protein interactions are essential for discovering the molecular mechanisms and the biological context of protein functions. Even though previous study on the purification of SPIN1 interacting protein complex has shown Spindlin docking protein (SPIN.DOC) as the most abundant interacting protein partner; the study on the molecular function of SPIN.DOC is limited. Since the role of SPIN1 has been previously documented as a histone code reader and transcriptional coactivator of Wnt signaling, SPIN.DOC may probably involve in epigenetic regulation and Wnt signaling. This study aims to purify SPIN.DOC interacting protein complex and characterize the molecular function of SPIN.DOC. The finding of this study revealed that the suppression of SPIN.DOC expression in HEK293 cells by shRNA, slightly destabilized SPIN1 without any change in its chromatin localization. However, knockdown of SPIN1 decreased the expression and chromatin localization of SPIN.DOC. Nevertheless, overexpression of SPIN.DOC increased the expression and chromatin localization of SPIN1 but no change in the SPIN.DOC protein expression and chromatin localization when SPIN1 is overexpressed. TOPflash reporter assays revealed that SPIN.DOC regulates gene expression in Wnt signaling pathway and act as transcriptional repressor. Further, we show that C-terminal deleted mutant of SPIN.DOC is unable to interact with SPIN1. Unlike the wild type SPIN.DOC which acts as transcriptional repressor, overexpression of C-terminal deletion mutant activates Wnt signaling suggesting that SPIN.DOC-SPIN1 complex may act as transcriptional repressor. Overall, our data revealed new molecular functions of SPIN.DOC.
Collapse
|
24
|
Chi YH, Koo SS, Oh HT, Lee ES, Park JH, Phan KAT, Wi SD, Bae SB, Paeng SK, Chae HB, Kang CH, Kim MG, Kim WY, Yun DJ, Lee SY. The Physiological Functions of Universal Stress Proteins and Their Molecular Mechanism to Protect Plants From Environmental Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:750. [PMID: 31231414 PMCID: PMC6560075 DOI: 10.3389/fpls.2019.00750] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/22/2019] [Indexed: 05/13/2023]
Abstract
Since the original discovery of a Universal Stress Protein (USP) in Escherichia coli, a number of USPs have been identified from diverse sources including archaea, bacteria, plants, and metazoans. As their name implies, these proteins participate in a broad range of cellular responses to biotic and abiotic stresses. Their physiological functions are associated with ion scavenging, hypoxia responses, cellular mobility, and regulation of cell growth and development. Consistent with their roles in resistance to multiple stresses, USPs show a wide range of structural diversity that results from the diverse range of other functional motifs fused with the USP domain. As well as providing structural diversity, these catalytic motifs are responsible for the diverse biochemical properties of USPs and enable them to act in a number of cellular signaling transducers and metabolic regulators. Despite the importance of USP function in many organisms, the molecular mechanisms by which USPs protect cells and provide stress resistance remain largely unknown. This review addresses the diverse roles of USPs in plants and how the proteins enable plants to resist against multiple stresses in ever-changing environment. Bioinformatic tools used for the collection of a set of USPs from various plant species provide more than 2,100 USPs and their functional diversity in plant physiology. Data from previous studies are used to understand how the biochemical activity of plant USPs modulates biotic and abiotic stress signaling. As USPs interact with the redox protein, thioredoxin, in Arabidopsis and reactive oxygen species (ROS) regulates the activity of USPs, the involvement of USPs in redox-mediated defense signaling is also considered. Finally, this review discusses the biotechnological application of USPs in an agricultural context by considering the development of novel stress-resistant crops through manipulating the expression of USP genes.
Collapse
Affiliation(s)
- Yong Hun Chi
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sung Sun Koo
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Hun Taek Oh
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Eun Seon Lee
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Kieu Anh Thi Phan
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Seong Dong Wi
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Su Bin Bae
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Seol Ki Paeng
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Ho Byoung Chae
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Sang Yeol Lee,
| |
Collapse
|
25
|
Zhang X, He D, Zhao Y, Cheng X, Zhao W, Taylor IA, Yang J, Liu J, Peng YL. A positive-charged patch and stabilized hydrophobic core are essential for avirulence function of AvrPib in the rice blast fungus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:133-146. [PMID: 29989241 DOI: 10.1111/tpj.14023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/20/2018] [Indexed: 05/09/2023]
Abstract
Fungal avirulence effectors, a key weapon utilized by pathogens to promote their infection, are recognized by immune receptors to boost host R gene-mediated resistance. Many avirulence effectors share sparse sequence homology to proteins with known functions, and their molecular and biochemical functions together with the evolutionary relationship among different members remain largely unknown. Here, the crystal structure of AvrPib, an avirulence effector from Magnaporthe oryzae, was determined and showed a high degree of similarity to the M. oryzae Avrs and ToxB (MAX) effectors. Compared with other MAX effectors, AvrPib has a distinct positive-charge patch formed by five positive-charged residues (K29, K30, R50, K52 and K70) on the surface. These five key residues were essential to avirulence function of AvrPib and affected its nuclear localization into host cells. Moreover, residues V39 and V58, which locate in the hydrophobic core of the structure, cause loss of function of AvrPib by single-point mutation in natural isolates. In comparison with the wild-type AvrPib, the V39A or V58A mutations resulted in a partial or entire loss of secondary structure elements. Taken together, our results suggest that differences in the surface charge distribution of avirulence proteins could be one of the major bases for the variation in effector-receptor specificity, and that destabilization of the hydrophobic core is one of the major mechanisms employed by AvrPib for the fungus to evade recognition by resistance factors in the host cell.
Collapse
Affiliation(s)
- Xin Zhang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan He
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yanxiang Zhao
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xilan Cheng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jun Yang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Junfeng Liu
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - You-Liang Peng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Gorshkova DS, Getman IA, Voronkov AS, Chizhova SI, Kuznetsov VV, Pojidaeva ES. The Gene Encoding the Universal Stress Protein AtUSP is Regulated by Phytohormones and Involved in Seed Germination of Arabidopsis thaliana. DOKL BIOCHEM BIOPHYS 2018; 479:105-107. [DOI: 10.1134/s1607672918020151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 11/22/2022]
|
27
|
Li G, Huang J, Yang J, He D, Wang C, Qi X, Taylor IA, Liu J, Peng YL. Structure based function-annotation of hypothetical protein MGG_01005 from Magnaporthe oryzae reveals it is the dynein light chain orthologue of dynlt1/3. Sci Rep 2018; 8:3952. [PMID: 29500373 PMCID: PMC5834530 DOI: 10.1038/s41598-018-21667-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/07/2018] [Indexed: 11/09/2022] Open
Abstract
Magnaporthe oryzae is a model fungal plant pathogen employed for studying plant-fungi interactions. Whole genome sequencing and bioinformatics analyses revealed that this fungal pathogen has more than 12,000 protein-coding genes with 65% of the genes remaining functionally un-annotated. Here, we determine the structure of the hypothetical protein, MGG_01005 and show that it is the Magnaporthe oryzae Dynein light chain Tctex-type 1 (dynlt1/3), demonstrated by its structural similarity to other orthologous dynlt1 proteins and its conserved interaction with the N-terminus of the Magnaporthe oryzae dynein intermediate chain, MoDyn1I2. In addition, we present the structure of the MGG_01005-MoDyn1I2 complex together with mutagenesis studies that reveals a di-histidine motif interaction with a glutamate residue in the dynein intermediate chain within a conserved molecular interface. These results demonstrate the utility of structure-based annotation and validate it as a viable approach for the molecular assignment of hypothetic proteins from phyto-pathogenic fungi.
Collapse
Affiliation(s)
- Guorui Li
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China.,College of life science, Inner Mongolia University for Nationalities, No. 996 Xilamulun Street, Tongliao, 028043, China
| | - Jinguang Huang
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China.,State key Laboratory of Agrobiotechnology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China.,College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Jun Yang
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China.,State key Laboratory of Agrobiotechnology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China
| | - Dan He
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China.,State key Laboratory of Agrobiotechnology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China
| | - Chao Wang
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China
| | - Xiaoxuan Qi
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Junfeng Liu
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China.
| | - You-Liang Peng
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China. .,State key Laboratory of Agrobiotechnology, China Agricultural University, No2 Yunamingyuanxilu, Beijing, 100193, China.
| |
Collapse
|
28
|
An in silico argument for mitochondrial microRNA as a determinant of primary non function in liver transplantation. Sci Rep 2018; 8:3105. [PMID: 29449571 PMCID: PMC5814406 DOI: 10.1038/s41598-018-21091-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondria have their own genomic, transcriptomic and proteomic machinery but are unable to be autonomous, needing both nuclear and mitochondrial genomes. The aim of this work was to use computational biology to explore the involvement of Mitochondrial microRNAs (MitomiRs) and their interactions with the mitochondrial proteome in a clinical model of primary non function (PNF) of the donor after cardiac death (DCD) liver. Archival array data on the differential expression of miRNA in DCD PNF was re-analyzed using a number of publically available computational algorithms. 10 MitomiRs were identified of importance in DCD PNF, 7 with predicted interaction of their seed sequence with the mitochondrial transcriptome that included both coding, and non coding areas of the hypervariability region 1 (HVR1) and control region. Considering miRNA regulation of the nuclear encoded mitochondrial proteome, 7 hypothetical small proteins were identified with homolog function that ranged from co-factor for formation of ATP Synthase, REDOX balance and an importin/exportin protein. In silico, unconventional seed interactions, both non canonical and alternative seed sites, appear to be of greater importance in MitomiR regulation of the mitochondrial genome. Additionally, a number of novel small proteins of relevance in transplantation have been identified which need further characterization.
Collapse
|
29
|
Espinola SM, Cancela MP, Brisolara Corrêa L, Zaha A. Evolutionary fates of universal stress protein paralogs in Platyhelminthes. BMC Evol Biol 2018; 18:10. [PMID: 29390964 PMCID: PMC5793430 DOI: 10.1186/s12862-018-1129-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/23/2018] [Indexed: 11/16/2022] Open
Abstract
Background Universal stress proteins (USPs) are present in all domains of life. Their expression is upregulated in response to a large variety of stress conditions. The functional diversity found in this protein family, paired with the sequence degeneration of the characteristic ATP-binding motif, suggests a complex evolutionary pattern for the paralogous USP-encoding genes. In this work, we investigated the origin, genomic organization, expression patterns and evolutionary history of the USP gene family in species of the phylum Platyhelminthes. Results Our data showed a cluster organization, a lineage-specific distribution, and the presence of several pseudogenes among the USP gene copies identified. The absence of a well conserved -CCAATCA- motif in the promoter region was positively correlated with low or null levels of gene expression, and with amino acid changes within the ligand binding motifs. Despite evidence of the pseudogenization of various USP genes, we detected an important functional divergence at several residues, mostly located near sites that are critical for ligand interaction. Conclusions Our results provide a broad framework for the evolution of the USP gene family, based on the emergence of new paralogs that face very contrasting fates, including pseudogenization, subfunctionalization or neofunctionalization. This framework aims to explain the sequence and functional diversity of this gene family, providing a foundation for future studies in other taxa in which USPs occur. Electronic supplementary material The online version of this article (10.1186/s12862-018-1129-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergio Martin Espinola
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Martin Pablo Cancela
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lauís Brisolara Corrêa
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Melencion SMB, Chi YH, Pham TT, Paeng SK, Wi SD, Lee C, Ryu SW, Koo SS, Lee SY. RNA Chaperone Function of a Universal Stress Protein in Arabidopsis Confers Enhanced Cold Stress Tolerance in Plants. Int J Mol Sci 2017; 18:ijms18122546. [PMID: 29186920 PMCID: PMC5751149 DOI: 10.3390/ijms18122546] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023] Open
Abstract
The physiological function of Arabidopsis thaliana universal stress protein (AtUSP) in plant has remained unclear. Thus, we report here the functional role of the Arabidopsis universal stress protein, AtUSP (At3g53990). To determine how AtUSP affects physiological responses towards cold stress, AtUSP overexpression (AtUSP OE) and T-DNA insertion knock-out (atusp, SALK_146059) mutant lines were used. The results indicated that AtUSP OE enhanced plant tolerance to cold stress, whereas atusp did not. AtUSP is localized in the nucleus and cytoplasm, and cold stress significantly affects RNA metabolism such as by misfolding and secondary structure changes of RNA. Therefore, we investigated the relationship of AtUSP with RNA metabolism. We found that AtUSP can bind nucleic acids, including single- and double-stranded DNA and luciferase mRNA. AtUSP also displayed strong nucleic acid-melting activity. We expressed AtUSP in RL211 Escherichia coli, which contains a hairpin-loop RNA structure upstream of chloramphenicol acetyltransferase (CAT), and observed that AtUSP exhibited anti-termination activity that enabled CAT gene expression. AtUSP expression in the cold-sensitive Escherichia coli (E. coli) mutant BX04 complemented the cold sensitivity of the mutant cells. As these properties are typical characteristics of RNA chaperones, we conclude that AtUSP functions as a RNA chaperone under cold-shock conditions. Thus, the enhanced tolerance of AtUSP OE lines to cold stress is mediated by the RNA chaperone function of AtUSP.
Collapse
Affiliation(s)
- Sarah Mae Boyles Melencion
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Yong Hun Chi
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Thuy Thi Pham
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Seol Ki Paeng
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Seong Dong Wi
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Changyu Lee
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Seoung Woo Ryu
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Sung Sun Koo
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
31
|
Vollmer AC, Bark SJ. Twenty-Five Years of Investigating the Universal Stress Protein: Function, Structure, and Applications. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:1-36. [PMID: 29680123 DOI: 10.1016/bs.aambs.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the initial discovery of universal stress protein A (UspA) 25 years ago, remarkable advances in molecular and biochemical technologies have revolutionized our understanding of biology. Many studies using these technologies have focused on characterization of the uspA gene and Usp-type proteins. These studies have identified the conservation of Usp-like proteins across bacteria, archaea, plants, and even some invertebrate animals. Regulation of these proteins under diverse stresses has been associated with different stress-response genes including spoT and relA in the stringent response and the dosR two-component signaling pathways. These and other foundational studies suggest Usps serve regulatory and protective roles to enable adaptation and survival under external stresses. Despite these foundational studies, many bacterial species have multiple paralogs of genes encoding these proteins and ablation of the genes does not provide a distinct phenotype. This outcome has limited our understanding of the biochemical functions of these proteins. Here, we summarize the current knowledge of Usps in general and UspA in particular across different genera as well as conclusions about their functions from seminal studies in diverse organisms. Our objective has been to organize the foundational studies in this field to identify the significant impediments to further understanding of Usp functions at the molecular level. We propose ideas and experimental approaches that may overcome these impediments and drive future development of molecular approaches to understand and target Usps as central regulators of stress adaptation and survival. Despite the fact that the full functions of Usps are still not known, creative many applications have already been proposed, tested, and used. The complementary approaches of basic research and applications, along with new technology and analytic tools, may yield the elusive yet critical functions of universal stress proteins in diverse systems.
Collapse
|
32
|
Gutiérrez-Beltrán E, Personat JM, de la Torre F, Del Pozo O. A Universal Stress Protein Involved in Oxidative Stress Is a Phosphorylation Target for Protein Kinase CIPK6. PLANT PHYSIOLOGY 2017; 173:836-852. [PMID: 27899535 PMCID: PMC5210712 DOI: 10.1104/pp.16.00949] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/26/2016] [Indexed: 05/27/2023]
Abstract
Calcineurin B-like interacting protein kinases (CIPKs) decode calcium signals upon interaction with the calcium sensors calcineurin B like proteins into phosphorylation events that result into adaptation to environmental stresses. Few phosphorylation targets of CIPKs are known and therefore the molecular mechanisms underlying their downstream output responses are not fully understood. Tomato (Solanum lycopersicum) Cipk6 regulates immune and susceptible Programmed cell death in immunity transforming Ca2+ signals into reactive oxygen species (ROS) signaling. To investigate SlCipk6-induced molecular mechanisms and identify putative substrates, a yeast two-hybrid approach was carried on and a protein was identified that contained a Universal stress protein (Usp) domain present in bacteria, protozoa and plants, which we named "SlRd2". SlRd2 was an ATP-binding protein that formed homodimers in planta. SlCipk6 and SlRd2 interacted using coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) assays in Nicotiana benthamiana leaves and the complex localized in the cytosol. SlCipk6 phosphorylated SlRd2 in vitro, thus defining, to our knowledge, a novel target for CIPKs. Heterologous SlRd2 overexpression in yeast conferred resistance to highly toxic LiCl, whereas SlRd2 expression in Escherichia coli UspA mutant restored bacterial viability in response to H2O2 treatment. Finally, transient expression of SlCipk6 in transgenic N benthamiana SlRd2 overexpressors resulted in reduced ROS accumulation as compared to wild-type plants. Taken together, our results establish that SlRd2, a tomato UspA, is, to our knowledge, a novel interactor and phosphorylation target of a member of the CIPK family, SlCipk6, and functionally regulates SlCipk6-mediated ROS generation.
Collapse
Affiliation(s)
- Emilio Gutiérrez-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - José María Personat
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Fernando de la Torre
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Olga Del Pozo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| |
Collapse
|
33
|
Tremonte P, Succi M, Coppola R, Sorrentino E, Tipaldi L, Picariello G, Pannella G, Fraternali F. Homology-Based Modeling of Universal Stress Protein from Listeria innocua Up-Regulated under Acid Stress Conditions. Front Microbiol 2016; 7:1998. [PMID: 28066336 PMCID: PMC5168468 DOI: 10.3389/fmicb.2016.01998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/29/2016] [Indexed: 01/31/2023] Open
Abstract
An Universal Stress Protein (USP) expressed under acid stress condition by Listeria innocua ATCC 33090 was investigated. The USP was up-regulated not only in the stationary phase but also during the exponential growth phase. The three dimensional (3D) structure of USP was predicted using a combined proteomic and bioinformatics approach. Phylogenetic analysis showed that the USP from Listeria detected in our study was distant from the USPs of other bacteria (such as Pseudomonas spp., Escherichia coli, Salmonella spp.) and clustered in a separate and heterogeneous class including several USPs from Listeria spp. and Lactobacillus spp. An important information on the studied USP was obtained from the 3D-structure established through the homology modeling procedure. In detail, the Model_USP-691 suggested that the investigated USP had a homo-tetrameric quaternary structure. Each monomer presented an architecture analogous to the Rossmann-like α/β-fold with five parallel β-strands, and four α-helices. The analysis of monomer-monomer interfaces and quality of the structure alignments confirmed the model reliability. In fact, the structurally and sequentially conserved hydrophobic residues of the β-strand 5 (in particular the residues V146 and V148) were involved in the inter-chains contact. Moreover, the highly conserved residues I139 and H141 in the region α4 were involved in the dimer association and functioned as hot spots into monomer–monomer interface assembly. The hypothetical assembly of dimers was also supported by the large interface area and by the negative value of solvation free energy gain upon interface interaction. Finally, the structurally conserved ATP-binding motif G-2X-G-9X-G(S/T-N) suggested for a putative role of ATP in stabilizing the tetrameric assembly of the USP. Therefore, the results obtained from a multiple approach, consisting in the application of kinetic, proteomic, phylogenetic and modeling analyses, suggest that Listeria USP could be considered a new type of ATP-binding USP involved in the response to acid stress condition during the exponential growth phase.
Collapse
Affiliation(s)
- Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Luca Tipaldi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Gianluca Picariello
- Institute of Food Science, National Research Council (ISA-CNR) Avellino, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Franca Fraternali
- Randall Division of Cellular and Molecular Biophysics, New Hunt's House King's College London, UK
| |
Collapse
|
34
|
Masamba P, Adenowo AF, Oyinloye BE, Kappo AP. Universal Stress Proteins as New Targets for Environmental and Therapeutic Interventions of Schistosomiasis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E972. [PMID: 27706050 PMCID: PMC5086711 DOI: 10.3390/ijerph13100972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
In spite of various control measures and eradication methods that have been in progress, schistosomiasis still prevails as one of the most prevalent debilitating parasitic diseases, typically affecting the poor and the underprivileged that are predominantly concentrated in sub-Saharan Africa. The parasitic schistosome blood fluke responsible for causing the disease completes its complex developmental cycle in two hosts: humans and freshwater snails, where they physically undergo gross modifications to endure the different conditions associated with each host. Just like any other organism, the worm possesses mechanisms that help them respond to environmental insults. It has been hypothesized that a special class of proteins known as Universal Stress Proteins (USPs) are up-regulated during sudden environmental changes, thus assisting the worm to tolerate the unfavourable conditions associated with its developmental cycle. The position of praziquantel as the drug of choice against all schistosome infections has been deemed vulnerable due to mounting concerns over drug pressure and so the need for alternative treatment is now a matter of urgency. Therefore, this review seeks to explore the associations and possible roles of USPs in schistosomiasis as well as the functioning of these proteins in the schistosomulae stage in order to develop new therapeutic interventions against this disease.
Collapse
Affiliation(s)
- Priscilla Masamba
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Abiola Fatimah Adenowo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
35
|
Identification of Novel Abiotic Stress Proteins in Triticum aestivum Through Functional Annotation of Hypothetical Proteins. Interdiscip Sci 2016; 10:205-220. [PMID: 27421996 DOI: 10.1007/s12539-016-0178-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/15/2016] [Accepted: 07/07/2016] [Indexed: 01/14/2023]
Abstract
Cereal grain bread wheat (T. aestivum) is an important source of food and belongs to Poaceae family. Hypothetical proteins (HPs), i.e., proteins with unknown functions, share a substantial portion of wheat proteomes and play important roles in growth and physiology of plant system. Several functional annotations studies utilizing the protein sequences for characterization of role of individual protein in physiology of plant systems were being reported in recent past. In this study, an integrated pipeline of software/servers has been used for the identification and functional annotation of 124 unique HPs of T. aestivum considering available data in NCBI till date. All HPs were broadly annotated, out of which functions of 77 HPs were successfully assigned with high confidence level. Precisely functional annotation of remaining 47 HPs is also characterized with low confidence. Several latest versions of protein family databases, pathways information, genomics context methods and in silico tools were utilized to identify and assign function for individual HPs. Annotation result of several HPs mainly belongs to cellular protein, metabolic enzymes, binding proteins, transmembrane proteins, transcription factors and photosystem regulator proteins. Subsequently, functional analysis has revealed the role of few HPs in abiotic stress, which were further verified by phylogenetic analysis. The functionally associated proteins with each of above-mentioned abiotic stress-related proteins were identified through protein-protein interaction network analysis. The outcome of this study may be helpful for formulating general set pipeline/protocols for a better understanding of the role of HPs in physiological development of various plant systems.
Collapse
|
36
|
Xu Y, Guo J, Jin X, Kim JS, Ji Y, Fan S, Ha NC, Quan CS. Crystal structure and functional implications of the tandem-type universal stress protein UspE from Escherichia coli. BMC STRUCTURAL BIOLOGY 2016; 16:3. [PMID: 26865045 PMCID: PMC4750201 DOI: 10.1186/s12900-016-0053-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/01/2016] [Indexed: 11/10/2022]
Abstract
Background The universal stress proteins (USP) family member UspE is a tandem-type USP that consists of two Usp domains. The UspE expression levels of the Escherichia coli (E. coli) become elevated in response to oxidative stress and DNA damaging agents, including exposure to mitomycin C, cadmium, and hydrogen peroxide. It has been shown that UspA family members are survival factors during cellular growth arrest. The structures and functions of the UspA family members control the growth of E. coli in animal hosts. While several UspA family members have known structures, the structure of E. coli UspE remains to be elucidated. Results To understand the biochemical function of UspE, we have determined the crystal structure of E. coli UspE at 3.2 Å resolution. The asymmetric unit contains two protomers related by a non-crystallographic symmetry, and each protomer contains two tandem Usp domains. The crystal structure shows that UspE is folded into a fan-shaped structure similar to that of the tandem-type Usp protein PMI1202 from Proteus mirabilis, and it has a hydrophobic cavity that binds its ligand. Structural analysis revealed that E. coli UspE has two metal ion binding sites, and isothermal titration calorimetry suggested the presence of two Cd2+ binding sites with a Kd value of 38.3–242.7 μM. Structural analysis suggested that E. coli UspE has two Cd2+ binding sites (Site I: His117, His 119; Site II: His193, His244). Conclusion The results show that the UspE structure has a hydrophobic pocket. This pocket is strongly bound to an unidentified ligand. Combined with a previous study, the ligand is probably related to an intermediate in lipid A biosynthesis. Subsequently, sequence analysis found that UspE has an ATP binding motif (Gly269- X2-Gly272-X9-Gly282-Asn) in its C-terminal domain, which was confirmed by in vitro ATPase activity monitored using Kinase-Glo® Luminescent Kinase Assay. However, the residues constituting this motif were disordered in the crystal structure, reflecting their intrinsic flexibility. ITC experiments revealed that the UspE probably has two Cd2+ binding sites. The His117, His 119, His193, and His244 residues within the β-barrel domain are necessary for Cd2+ binding to UspE protein. As mentioned above, USPs are associated with several functions, such as cadmium binding, ATPase function, and involvement in lipid A biosynthesis by some unknown way.
Collapse
Affiliation(s)
- Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China. .,Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
| | - Jianyun Guo
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Xiaoling Jin
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Jin-Sik Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 151-742, Republic of Korea.
| | - Ying Ji
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Shengdi Fan
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 151-742, Republic of Korea.
| | - Chun-Shan Quan
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| |
Collapse
|
37
|
Su T, Wang Q, Yu L, Yu CA. Universal Stress Protein Regulates Electron Transfer and Superoxide Generation Activities of the Cytochrome bc1 Complex from Rhodobacter sphaeroides. Biochemistry 2015; 54:7313-9. [PMID: 26580083 DOI: 10.1021/acs.biochem.5b00658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interactions between Rhodobacter sphaeroides cytochrome bc1 complex (Rsbc1) and soluble cytosolic proteins were studied by a precipitation pull-down technique. After being purified, detergent-dispersed Rsbc1 complex was incubated with soluble cytosolic fraction and then dialyzed in the absence of detergent; the interacting proteins were coprecipitated with Rsbc1 complex upon centrifugation. One of the cytosolic proteins pulled down by Rsbc1 complex was identified by liquid chromatography-coupled tandem mass spectrometry (LC/MS/MS) to be the reported R. sphaeroides universal stress protein (UspA). Incubating purified UspA with the detergent dispersed bc1 complex resulted in an increase in the Rsbc1 complex activity by 60% and a decrease in superoxide generation activity by the complex by more than 70%. These UspA effects were only observed with Rsbc1 complexes containing subunit IV and assayed under aerobic conditions. These results suggest that the interaction between UspA and Rsbc1 complex may play an important role in R. sphaeroides cells during oxidative stress. Using a biotin label transfer technique, cytochrome c1 of the Rsbc1 complex was identified as the interacting site for UspA.
Collapse
Affiliation(s)
- Ting Su
- Department of Biochemistry and Molecular Biology, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Qiyu Wang
- Department of Biochemistry and Molecular Biology, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Linda Yu
- Department of Biochemistry and Molecular Biology, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Chang-An Yu
- Department of Biochemistry and Molecular Biology, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| |
Collapse
|
38
|
Bahieldin A, Atef A, Shokry AM, Al-Karim S, Al Attas SG, Gadallah NO, Edris S, Al-Kordy MA, Omer AMS, Sabir JSM, Ramadan AM, Al-Hajar ASM, Makki RM, Hassan SM, El-Domyati FM. Structural identification of putative USPs in Catharanthus roseus. C R Biol 2015; 338:643-9. [PMID: 26318047 DOI: 10.1016/j.crvi.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
Nucleotide sequences of the C. roseus SRA database were assembled and translated in order to detect putative universal stress proteins (USPs). Based on the known conserved USPA domain, 24 Pfam putative USPA proteins in C. roseus were detected and arranged in six architectures. The USPA-like domain was detected in all architectures, while the protein kinase-like (or PK-like), (tyr)PK-like and/or U-box domains are shown downstream it. Three other domains were also shown to coexist with the USPA domain in C. roseus putative USPA sequences. These domains are tetratricopeptide repeat (or TPR), apolipophorin III (or apoLp-III) and Hsp90 co-chaperone Cdc37. Subsequent analysis divided USPA-like domains based on the ability to bind ATP. The multiple sequence alignment indicated the occurrence of eight C. roseus residues of known features of the bacterial 1MJH secondary structure. The data of the phylogenetic tree indicated several distinct groups of USPA-like domains confirming the presence of high level of sequence conservation between the plant and bacterial USPA-like sequences.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Ahmed M Shokry
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.
| | - Saleh Al-Karim
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Sanaa G Al Attas
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Nour O Gadallah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt.
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.
| | - Magdy A Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt.
| | - Abdulkader M Shaikh Omer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.
| | - Abdulrahman S M Al-Hajar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Rania M Makki
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Fotouh M El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
39
|
Kim DJ, Bitto E, Bingman CA, Kim HJ, Han BW, Phillips GN. Crystal structure of the protein At3g01520, a eukaryotic universal stress protein-like protein from Arabidopsis thaliana in complex with AMP. Proteins 2015; 83:1368-73. [PMID: 25921306 PMCID: PMC4624624 DOI: 10.1002/prot.24821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/11/2022]
Abstract
Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains 44 USP domain‐containing proteins, and USP domain is found either in a small protein with unknown physiological function or in an N‐terminal portion of a multi‐domain protein, usually a protein kinase. Here, we report the first crystal structure of a eukaryotic USP‐like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was determined by the single‐wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree = 26.1%) at 2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each protomer, comprising a Rossmann‐like α/β overall fold. The bound AMP and conservation of residues in the ATP‐binding loop suggest that the protein At3g01520 also belongs to the ATP‐binding USP subfamily members. Proteins 2015; 83:1368–1373. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Do Jin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - Eduard Bitto
- Department of Chemistry and Biochemistry, Georgian Court University, Lakewood, New Jersey, 08701
| | - Craig A Bingman
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Hyun-Jung Kim
- Laboratory of Stem Cell and Molecular Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - George N Phillips
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,BioSciences at Rice and Department of Chemistry, Rice University, Houston, Texas, 77251
| |
Collapse
|
40
|
Ngo TD, Van Le B, Subramani VK, Thi Nguyen CM, Lee HS, Cho Y, Kim KK, Hwang HY. Structural basis for the substrate selectivity of a HAD phosphatase from Thermococcus onnurineus NA1. Biochem Biophys Res Commun 2015; 461:122-7. [DOI: 10.1016/j.bbrc.2015.03.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/31/2015] [Indexed: 11/30/2022]
|
41
|
Banerjee A, Adolph RS, Gopalakrishnapai J, Kleinboelting S, Emmerich C, Steegborn C, Visweswariah SS. A universal stress protein (USP) in mycobacteria binds cAMP. J Biol Chem 2015; 290:12731-43. [PMID: 25802331 DOI: 10.1074/jbc.m115.644856] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria are endowed with rich and diverse machinery for the synthesis, utilization, and degradation of cAMP. The actions of cyclic nucleotides are generally mediated by binding of cAMP to conserved and well characterized cyclic nucleotide binding domains or structurally distinct cGMP-specific and -regulated cyclic nucleotide phosphodiesterase, adenylyl cyclase, and E. coli transcription factor FhlA (GAF) domain-containing proteins. Proteins with cyclic nucleotide binding and GAF domains can be identified in the genome of mycobacterial species, and some of them have been characterized. Here, we show that a significant fraction of intracellular cAMP is bound to protein in mycobacterial species, and by using affinity chromatography techniques, we identify specific universal stress proteins (USP) as abundantly expressed cAMP-binding proteins in slow growing as well as fast growing mycobacteria. We have characterized the biochemical and thermodynamic parameters for binding of cAMP, and we show that these USPs bind cAMP with a higher affinity than ATP, an established ligand for other USPs. We determined the structure of the USP MSMEG_3811 bound to cAMP, and we confirmed through structure-guided mutagenesis, the residues important for cAMP binding. This family of USPs is conserved in all mycobacteria, and we suggest that they serve as "sinks" for cAMP, making this second messenger available for downstream effectors as and when ATP levels are altered in the cell.
Collapse
Affiliation(s)
- Arka Banerjee
- From the Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India and
| | - Ramona S Adolph
- the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jayashree Gopalakrishnapai
- From the Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India and
| | - Silke Kleinboelting
- the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Christiane Emmerich
- the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Clemens Steegborn
- the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sandhya S Visweswariah
- From the Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India and
| |
Collapse
|
42
|
Bangera M, Panigrahi R, Sagurthi SR, Savithri HS, Murthy MRN. Structural and functional analysis of two universal stress proteins YdaA and YnaF from Salmonella typhimurium: possible roles in microbial stress tolerance. J Struct Biol 2015; 189:238-50. [PMID: 25600413 DOI: 10.1016/j.jsb.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
In many organisms "Universal Stress Proteins" (USPs) are induced in response to a variety of environmental stresses. Here we report the structures of two USPs, YnaF and YdaA from Salmonella typhimurium determined at 1.8Å and 2.4Å resolutions, respectively. YnaF consists of a single USP domain and forms a tetrameric organization stabilized by interactions mediated through chloride ions. YdaA is a larger protein consisting of two tandem USP domains. Two protomers of YdaA associate to form a structure similar to the YnaF tetramer. YdaA showed ATPase activity and an ATP binding motif G-2X-G-9X-G(S/T/N) was found in its C-terminal domain. The residues corresponding to this motif were not conserved in YnaF although YnaF could bind ATP. However, unlike YdaA, YnaF did not hydrolyse ATP in vitro. Disruption of interactions mediated through chloride ions by selected mutations converted YnaF into an ATPase. Residues that might be important for ATP hydrolysis could be identified by comparing the active sites of native and mutant structures. Only the C-terminal domain of YdaA appears to be involved in ATP hydrolysis. The structurally similar N-terminal domain was found to bind a zinc ion near the segment equivalent to the phosphate binding loop of the C-terminal domain. Mass spectrometric analysis showed that YdaA might bind a ligand of approximate molecular weight 800daltons. Structural comparisons suggest that the ligand, probably related to an intermediate in lipid A biosynthesis, might bind at a site close to the zinc ion. Therefore, the N-terminal domain of YdaA binds zinc and might play a role in lipid metabolism. Thus, USPs appear to perform several distinct functions such as ATP hydrolysis, altering membrane properties and chloride sensing.
Collapse
Affiliation(s)
- M Bangera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - R Panigrahi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - S R Sagurthi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - H S Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - M R N Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
43
|
Jung YJ, Melencion SMB, Lee ES, Park JH, Alinapon CV, Oh HT, Yun DJ, Chi YH, Lee SY. Universal Stress Protein Exhibits a Redox-Dependent Chaperone Function in Arabidopsis and Enhances Plant Tolerance to Heat Shock and Oxidative Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1141. [PMID: 26734042 PMCID: PMC4685093 DOI: 10.3389/fpls.2015.01141] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/01/2015] [Indexed: 05/20/2023]
Abstract
Although a wide range of physiological information on Universal Stress Proteins (USPs) is available from many organisms, their biochemical, and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990) from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW) species to high molecular weight (HMW) complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function.
Collapse
|
44
|
Xu Y, Quan CS, Jin X, Jin X, Zhao J, Li X, Zheng W, Jin L, Liu D, Fan S, Ha NC. Crystallization and preliminary X-ray diffraction analysis of UspE from Escherichia coli. Acta Crystallogr F Struct Biol Commun 2014; 70:1640-2. [PMID: 25484216 PMCID: PMC4259230 DOI: 10.1107/s2053230x14023437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
Universal stress proteins (Usps) are among the most highly induced genes when bacteria are subjected to several stress conditions such as heat shock, nutrient starvation or the presence of oxidants or other stress agents. Escherichia coli has five small Usps and one tandem-type Usp. UspE (or YdaA) is the tandem-type Usp and consists of two Usp domains arranged in tandem. To date, the structure of UspE remains to be elucidated. To contribute to the molecular understanding of the function of the tandem-type UspE, UspE from E. coli was overexpressed and the recombinant protein was purified using Ni-NTA affinity, Q anion-exchange and gel-filtration chromatography. Crystals of UspE were obtained by sitting-drop vapour diffusion. A diffraction data set was collected to a resolution of 3.2 Å from flash-cooled crystals. The crystals belonged to the tetragonal space group I4122 or I4322, with unit-cell parameters a = b = 121.1, c = 241.7 Å.
Collapse
Affiliation(s)
- Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Chun-Shan Quan
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Xuanzhen Jin
- College of Engineering, Yanbian University, Jilin Yanji 133002, People’s Republic of China
| | - Xiaoling Jin
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Jing Zhao
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Xihui Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, People’s Republic of China
| | - Wei Zheng
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Liming Jin
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Dedi Liu
- School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Shengdi Fan
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
45
|
|
46
|
Combinatory use of cell-free protein expression, limited proteolysis and mass spectrometry for the high-throughput protein domain identification. Biochem Biophys Res Commun 2014; 444:480-4. [DOI: 10.1016/j.bbrc.2014.01.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/17/2014] [Indexed: 11/24/2022]
|
47
|
Abstract
The ATP binding proteins exist as a hybrid of proteins with Walker A motif and universal stress proteins (USPs) having an alternative motif for binding ATP. There is an urgent need to find a reliable and comprehensive hybrid predictor for ATP binding proteins using whole sequence information. In this paper the open source LIBSVM toolbox was used to build a classifier at 10-fold cross-validation. The best hybrid model was the combination of amino acid and dipeptide composition with an accuracy of 84.57% and Mathews correlation coefficient (MCC) value of 0.693. This classifier proves to be better than many classical ATP binding protein predictors. The general trend observed is that combinations of descriptors performed better and improved the overall performances of individual descriptors, particularly when combined with amino acid composition. The work developed a comprehensive model for predicting ATP binding proteins irrespective of their functional motifs. This model provides a high probability of success for molecular biologists in predicting and selecting diverse groups of ATP binding proteins irrespective of their functional motifs.
Collapse
|
48
|
Wang Z, Li L, Su XD. Structural and functional characterization of a novel α/β hydrolase from cariogenic pathogen Streptococcus mutans. Proteins 2013; 82:695-700. [PMID: 24115105 DOI: 10.1002/prot.24418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022]
Abstract
The protein Smu.1393c from Streptococcus mutans is annotated as a putative α/β hydrolase, but it has low sequence identity to the structure-known α/β hydrolases. Here we present the crystal structure of Smu.1393c at 2.0 Å resolution. Smu.1393c has a fully open alkaline substrate pocket, whose conformation is unique among other similar hydrolase structures. Three residues, Ser101, His251, and Glu125, were identified as the active center of Smu.1393c. By screening a series of artificial hydrolase substrates, we demonstrated Smu.1393c had low carboxylesterase activity towards short-chain carboxyl esters, which provided a clue for exploring the in vivo function of Smu.1393c.
Collapse
Affiliation(s)
- Zixi Wang
- State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | | | | |
Collapse
|
49
|
Holler TP, Evdokimov AG, Narasimhan L. Structural biology approaches to antibacterial drug discovery. Expert Opin Drug Discov 2013; 2:1085-101. [PMID: 23484874 DOI: 10.1517/17460441.2.8.1085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibacterial drug discovery has undertaken a major experiment in the 12 years since the first bacterial genomes were sequenced. Genome mining has identified hundreds of potential targets that have been distilled to a relatively small number of broad-spectrum targets ('low-hanging fruit') using the genetics tools of modern microbiology. Prosecuting these targets with high-throughput screens has led to a disappointingly small number of lead series that have mostly evaporated under closer scrutiny. In the meantime, multi-drug resistant pathogens are becoming a serious challenge in the clinic and the community and the number of pharmaceutical firms pursuing antibacterial discovery has declined. Filling the antibacterial development pipeline with novel chemical series is a significant challenge that will require the collaboration of scientists from many disciplines. Fortunately, advancements in the tools of structural biology and of in silico modeling are opening up new avenues of research that may help deal with the problems associated with discovering novel antibiotics.
Collapse
Affiliation(s)
- Tod P Holler
- Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105, USA +1 734 622 5954 ; +1 734 622 2963 ; Tod.Holler@pfizer. com
| | | | | |
Collapse
|
50
|
Mbah AN, Mahmud O, Awofolu OR, Isokpehi RD. Inferences on the biochemical and environmental regulation of universal stress proteins from Schistosomiasis parasites. Adv Appl Bioinform Chem 2013; 6:15-27. [PMID: 23696708 PMCID: PMC3656623 DOI: 10.2147/aabc.s37191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human schistosomiasis is a freshwater snail-transmitted disease caused by parasitic flatworms of the Schistosoma genus. Schistosoma haematobium, Schistosoma mansoni, and Schistosoma japonicum are the three major species infecting humans. These parasites undergo a complex developmental life cycle, in which they encounter a plethora of environmental signals. The presence of genes encoding the universal stress protein (USP) domain in the genomes of Schistosoma spp. suggests these flatworms are equipped to respond to unfavorable conditions. Though data on gene expression is available for USP genes, their biochemical and environmental regulation are incompletely understood. The identification of additional regulatory molecules for Schistosoma. USPs, which may be present in the human, snail, or water environments, could also be useful for schistosomiasis interventions. METHODS We developed a protocol that includes a visual analytics stage to facilitate integration, visualization, and decision making, from the results of sequence analyses and data collection on a set of 13 USPs from S. mansoni and S. japonicum. RESULTS Multiple sequence alignment identified conserved sites that could be key residues regulating the function of USPs of the Schistosoma spp. Based on the consistency and completeness of sequence annotation, we prioritized for further research the gene for a 184-amino-acid-long USP that is present in the genomes of the three human-infecting Schistosoma spp. Calcium, zinc, and magnesium ions were predicted to interact with the protein product of the gene. CONCLUSION Given that the initial effects of praziquantel on schistosomes include the influx of calcium ions, additional investigations are required to (1) functionally characterize the interactions of calcium ions with the amino acid residues of Schistosoma USPs; and (2) determine the transcriptional response of Schistosoma. USP genes to praziquantel. The data sets produced, and the visual analytics views that were developed, can be easily reused to develop new hypotheses.
Collapse
Affiliation(s)
- Andreas N Mbah
- Center for Bioinformatics and Computational Biology, Department of Biology, Jackson State University, Jackson, MS, USA ; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | | | | | | |
Collapse
|