1
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
2
|
Shi J, Wen A, Zhao M, You L, Zhang Y, Feng Y. Structural basis of σ appropriation. Nucleic Acids Res 2019; 47:9423-9432. [PMID: 31392983 PMCID: PMC6755090 DOI: 10.1093/nar/gkz682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteriophage T4 middle promoters are activated through a process called σ appropriation, which requires the concerted effort of two T4-encoded transcription factors: AsiA and MotA. Despite extensive biochemical and genetic analyses, puzzle remains, in part, because of a lack of precise structural information for σ appropriation complex. Here, we report a single-particle cryo-electron microscopy (cryo-EM) structure of an intact σ appropriation complex, comprising AsiA, MotA, Escherichia coli RNA polymerase (RNAP), σ70 and a T4 middle promoter. As expected, AsiA binds to and remodels σ region 4 to prevent its contact with host promoters. Unexpectedly, AsiA undergoes a large conformational change, takes over the job of σ region 4 and provides an anchor point for the upstream double-stranded DNA. Because σ region 4 is conserved among bacteria, other transcription factors may use the same strategy to alter the landscape of transcription immediately. Together, the structure provides a foundation for understanding σ appropriation and transcription activation.
Collapse
Affiliation(s)
- Jing Shi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aijia Wen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Linlin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Feng
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
3
|
Yin Y, Withers TR, Wang X, Yu HD. Evidence for sigma factor competition in the regulation of alginate production by Pseudomonas aeruginosa. PLoS One 2013; 8:e72329. [PMID: 23991093 PMCID: PMC3750012 DOI: 10.1371/journal.pone.0072329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU (AlgUA61V). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgUA61V, 2) an overexpression of the stringent starvation protein A (SspA), and 3) a reduced expression of the major sigma factor RpoD (σ70). Induction of AlgUA61Vin trans caused conversion to mucoidy in CF149 and PAO1DalgU, suggesting that AlgUA61V is functional in activating alginate production. Furthermore, the level of AlgUA61V was increased in all three mutants relative to CF149. However, compared to the wild type AlgU, AlgUA61V had a reduced activity in promoting alginate production in PAO1ΔalgU. SspA and three other anti-σ70 orthologues, P. aeruginosa AlgQ, E. coli Rsd, and T4 phage AsiA, all induced mucoidy, suggesting that reducing activity of RpoD is linked to mucoid conversion in CF149. Conversely, RpoD overexpression resulted in suppression of mucoidy in all mucoid strains tested, indicating that sigma factor competition can regulate mucoidy. Additionally, an RpoD-dependent promoter (PssrA) was more active in non-mucoid strains than in isogenic mucoid variants. Altogether, our results indicate that the anti-σ70 factors can induce conversion to mucoidy in P. aeruginosa CF149 with algU-suppressor mutation via modulation of RpoD.
Collapse
Affiliation(s)
- Yeshi Yin
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, United States of America
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - T. Ryan Withers
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, United States of America
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongwei D. Yu
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, United States of America
- Department of Pediatrics, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, United States of America
- Progenesis Technologies, LLC, Huntington, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
5
|
Gilmore JM, Bieber Urbauer RJ, Minakhin L, Akoyev V, Zolkiewski M, Severinov K, Urbauer JL. Determinants of affinity and activity of the anti-sigma factor AsiA. Biochemistry 2010; 49:6143-54. [PMID: 20545305 DOI: 10.1021/bi1002635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The AsiA protein is a T4 bacteriophage early gene product that regulates transcription of host and viral genes. Monomeric AsiA binds tightly to the sigma(70) subunit of Escherichia coli RNA polymerase, thereby inhibiting transcription from bacterial promoters and phage early promoters and coactivating transcription from phage middle promoters. Results of structural studies have identified amino acids at the protomer-protomer interface in dimeric AsiA and at the monomeric AsiA-sigma(70) interface and demonstrated substantial overlap in the sets of residues that comprise each. Here we evaluate the contributions of individual interfacial amino acid side chains to protomer-protomer affinity in AsiA homodimers, to monomeric AsiA affinity for sigma(70), and to AsiA function in transcription. Sedimentation equilibrium, dynamic light scattering, electrophoretic mobility shift, and transcription activity measurements were used to assess affinity and function of site-specific AsiA mutants. Alanine substitutions for solvent-inaccessible residues positioned centrally in the protomer-protomer interface of the AsiA homodimer, V14, I17, and I40, resulted in the largest changes in free energy of dimer association, whereas alanine substitutions at other interfacial positions had little effect. These residues also contribute significantly to AsiA-dependent regulation of RNA polymerase activity, as do additional residues positioned at the periphery of the interface (K20 and F21). Notably, the relative contributions of a given amino acid side chain to RNA polymerase inhibition and activation (MotA-independent) by AsiA are very similar in most cases. The mainstay for intermolecular affinity and AsiA function appears to be I17. Our results define the core interfacial residues of AsiA, establish roles for many of the interfacial amino acids, are in agreement with the tenets underlying protein-protein interactions and interfaces, and will be beneficial for a general, comprehensive understanding of the mechanistic underpinnings of bacterial RNA polymerase regulation.
Collapse
Affiliation(s)
- Joshua M Gilmore
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Nolan JM, Petrov V, Bertrand C, Krisch HM, Karam JD. Genetic diversity among five T4-like bacteriophages. Virol J 2006; 3:30. [PMID: 16716236 PMCID: PMC1524935 DOI: 10.1186/1743-422x-3-30] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 05/23/2006] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. RESULTS Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR) and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs) that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. CONCLUSION Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4-like phages harbour a wealth of genetic material that has not been identified previously. The mechanisms by which these genes may have arisen may differ from those previously proposed for the evolution of other bacteriophage genomes.
Collapse
Affiliation(s)
- James M Nolan
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Vasiliy Petrov
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Claire Bertrand
- LMGM-CNRS UMR 5100,118, route de Narbonne, 31062 Toulouse cedex 09, France
| | - Henry M Krisch
- LMGM-CNRS UMR 5100,118, route de Narbonne, 31062 Toulouse cedex 09, France
| | - Jim D Karam
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Minakhin L, Severinov K. Transcription regulation by bacteriophage T4 AsiA. Protein Expr Purif 2005; 41:1-8. [PMID: 15802215 DOI: 10.1016/j.pep.2004.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 09/29/2004] [Indexed: 10/25/2022]
Abstract
Bacteriophage T4 AsiA, a strong inhibitor of bacterial RNA polymerase, was the first antisigma protein to be discovered. Recent advances that made it possible to purify large amounts of this highly toxic protein led to an increased understanding of AsiA function and structure. In this review, we discuss how the small 10-KDa AsiA protein plays a key role in T4 development through its ability to both inhibit and activate bacterial RNA polymerase transcription.
Collapse
Affiliation(s)
- Leonid Minakhin
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | | |
Collapse
|
8
|
Orsini G, Igonet S, Pène C, Sclavi B, Buckle M, Uzan M, Kolb A. Phage T4 early promoters are resistant to inhibition by the anti-sigma factor AsiA. Mol Microbiol 2004; 52:1013-28. [PMID: 15130121 DOI: 10.1111/j.1365-2958.2004.04038.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phage T4 early promoters are transcribed in vivo and in vitro by the Escherichia coli RNA polymerase holoenzyme Esigma(70). We studied in vitro the effects of the T4 anti-sigma(70) factor AsiA on the activity of several T4 early promoters. In single-round transcription, promoters motB, denV, mrh.2, motA wild type and UP element-deleted motA are strongly resistant to inhibition by AsiA. The alpha-C-terminal domain of Esigma(70) is crucial to this resistance. DNase I footprinting of Esigma(70) and Esigma(70)AsiA on motA and mrh.2 shows extended contacts between the holoenzyme with or without AsiA and upstream regions of these promoters. A TG --> TC mutation of the extended -10 motif in the motA UP element-deleted promoter strongly increases susceptibility to inhibition by AsiA, but has no effect on the motA wild-type promoter: either the UP element or the extended -10 site confers resistance to AsiA. Potassium permanganate reactivity shows that the two structure elements are not equivalent: with AsiA, the motA UP element-deleted promoter opens more slowly whereas the motA TC promoter opens like the wild type. Changes in UV laser photoreactivity at position +4 on variants of motA reveal an analogous distinction in the roles of the extended -10 and UP promoter elements.
Collapse
Affiliation(s)
- Gilbert Orsini
- Unité des Régulations Transcriptionnelles, Département de Microbiologie Fondamentale et Médicale, URA 2185 du CNRS, Institut Pasteur, F-75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Lambert LJ, Wei Y, Schirf V, Demeler B, Werner MH. T4 AsiA blocks DNA recognition by remodeling sigma70 region 4. EMBO J 2004; 23:2952-62. [PMID: 15257291 PMCID: PMC514929 DOI: 10.1038/sj.emboj.7600312] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 06/16/2004] [Indexed: 11/09/2022] Open
Abstract
Bacteriophage T4 AsiA is a versatile transcription factor capable of inhibiting host gene expression as an 'anti-sigma' factor while simultaneously promoting gene-specific expression of T4 middle genes in conjunction with T4 MotA. To accomplish this task, AsiA engages conserved region 4 of Eschericia coli sigma70, blocking recognition of most host promoters by sequestering the DNA-binding surface at the AsiA/sigma70 interface. The three-dimensional structure of an AsiA/region 4 complex reveals that the C-terminal alpha helix of region 4 is unstructured, while four other helices adopt a completely different conformation relative to the canonical structure of unbound region 4. That AsiA induces, rather than merely stabilizes, this rearrangement can be realized by comparison to the homologous structures of region 4 solved in a variety of contexts, including the structure of Thermotoga maritima sigmaA region 4 described herein. AsiA simultaneously occupies the surface of region 4 that ordinarily contacts core RNA polymerase (RNAP), suggesting that an AsiA-bound sigma70 may also undergo conformational changes in the context of the RNAP holoenzyme.
Collapse
Affiliation(s)
- Lester J Lambert
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
| | - Yufeng Wei
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
| | - Virgil Schirf
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Borries Demeler
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Milton H Werner
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, Box 42, New York, NY 10021, USA. Tel.: +1 212 327 7221; Fax: +1 212 327 7222; E-mail:
| |
Collapse
|
10
|
Abstract
Bacteriophages have developed an impressive array of ingenious mechanisms to modify bacterial host RNA polymerase to make it serve viral needs. In this review we summarize the current knowledge about two types of host RNA polymerase modifications induced by double-stranded DNA phages: covalent modifications and modifications through RNA polymerase-binding proteins. We interpret the biochemical and genetic data within the framework of a structure-function model of bacterial RNA polymerase and viral biology.
Collapse
Affiliation(s)
- Sergei Nechaev
- Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0634, USA.
| | | |
Collapse
|
11
|
Hansen AM, Lehnherr H, Wang X, Mobley V, Jin DJ. Escherichia coli SspA is a transcription activator for bacteriophage P1 late genes. Mol Microbiol 2003; 48:1621-31. [PMID: 12791143 DOI: 10.1046/j.1365-2958.2003.03533.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stringent starvation protein A (SspA), an Escherichia coli RNA polymerase (RNAP)-associated protein, has been reported to be essential for lytic growth of bacteriophage P1. Unlike P1 early promoters, P1 late promoters are not recognized by RNAP alone. A phage-encoded early protein, Lpa (late promoter activator protein, formerly called gp10), has been shown to be required for P1 late transcription in vivo. Here, we demonstrate that SspA is a transcription activator for P1 late genes. Our results indicated that Lpa is not limiting in an sspA mutant. However, the transcription of P1 late genes was deficient in an sspA mutant in vivo. We demonstrated that SspA/Lpa are required for transcription activation of the P1 late promoter Ps in vitro. In addition, SspA and Lpa were shown to facilitate the binding of RNAP to Ps late promoter DNA. Activation of late transcription by SspA/Lpa was dependent on holoenzyme containing sigma70 but not sigmaS, indicating that the two activators discriminate between the two forms of the holoenzyme. Furthermore, P1 early gene expression was downregulated in the wild-type background, whereas it persisted in the sspA mutant background, indicating that SspA/Lpa mediate the transcriptional switch from the early to the late genes during P1 lytic growth. Thus, this work provides the first evidence for a function of the E. coli RNAP-associated protein SspA.
Collapse
Affiliation(s)
- Anne-Marie Hansen
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, 9000 Rockville Pike, Bethesda, MD 20892-4264, USA
| | | | | | | | | |
Collapse
|
12
|
Truncaite L, Piesiniene L, Kolesinskiene G, Zajanckauskaite A, Driukas A, Klausa V, Nivinskas R. Twelve new MotA-dependent middle promoters of bacteriophage T4: consensus sequence revised. J Mol Biol 2003; 327:335-46. [PMID: 12628241 DOI: 10.1016/s0022-2836(03)00125-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacteriophage T4 middle-mode transcription requires Escherichia coli RNA polymerase, phage-encoded transcriptional activator MotA and co-activator AsiA that form a complex at a middle promoter DNA. T4 middle promoters have been defined by a consensus sequence deduced from the list of 14 middle promoters identified in earlier studies. To date, 33 middle promoters have been mapped on the T4 genome. Of these, 12 contain differences even at the highly conserved positions of the consensus sequence. In the T4 prereplicative gene cluster between genes e and rpbA, we have identified 12 new middle promoters, most of which contain differences from the consensus sequence deduced previously. Analysis of base conservation in the different sequence positions of new middle promoters, as well as those identified previously, revealed some new features of middle T4 promoters. We propose to define these promoters by a MotA box (a/t)(a/t)(a/t)TGCTTtA centred at the position -30, the sequence TAtaAT centred at -10 relative to the transcriptional start site, and the spacer region of 12(+/-1) base-pairs between them.
Collapse
Affiliation(s)
- Lidija Truncaite
- Department of Gene Engineering, Institute of Biochemistry, Mokslininku 12, 2600 Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
13
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Minakhin L, Niedziela-Majka A, Kuznedelov K, Adelman K, Urbauer JL, Heyduk T, Severinov K. Interaction of T4 AsiA with its target sites in the RNA polymerase sigma70 subunit leads to distinct and opposite effects on transcription. J Mol Biol 2003; 326:679-90. [PMID: 12581632 DOI: 10.1016/s0022-2836(02)01442-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacteriophage T4 AsiA is a homodimeric protein that orchestrates a switch from the host and early viral transcription to middle viral transcription by binding to the sigma(70) subunit of Escherichia coli RNA polymerase holoenzyme (Esigma(70)) and preventing promoter complex formation on most E.coli and early T4 promoters. In addition, Esigma(70)AsiA, but not Esigma(70), is a substrate of transcription activation by T4-encoded DNA-binding protein MotA, a co-activator of transcription from middle viral promoters. The molecular determinants of sigma(70)-AsiA interaction necessary for transcription inhibition reside in the sigma(70) conserved region 4.2, which recognizes the -35 promoter consensus element. The molecular determinants of sigma(70)-AsiA interaction necessary for MotA-dependent transcription activation have not been identified. Here, we show that in the absence of sigma(70) region 4.2, AsiA interacts with sigma(70) conserved region 4.1 and activates transcription in a MotA-independent manner. Further, we show that the AsiA dimer must dissociate to interact with either region 4.2 or region 4.1 of sigma(70). We propose that MotA may co-activate transcription by restricting AsiA binding to sigma(70) region 4.1.
Collapse
Affiliation(s)
- Leonid Minakhin
- Department of Genetics, Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kolesky SE, Ouhammouch M, Geiduschek EP. The mechanism of transcriptional activation by the topologically DNA-linked sliding clamp of bacteriophage T4. J Mol Biol 2002; 321:767-84. [PMID: 12206760 DOI: 10.1016/s0022-2836(02)00732-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three viral proteins participate directly in transcription of bacteriophage T4 late genes: the sigma-family protein gp55 provides promoter recognition, gp33 is the co-activator, and gp45 is the activator of transcription; gp33 also represses transcription in the absence of gp45. Transcriptional activation by gp45, the toroidal sliding clamp of the T4 DNA polymerase holoenzyme, requires assembly at primer-template junctions by its clamp loader. The mechanism of transcriptional activation has been analyzed by examining rates of formation of open promoter complexes. The basal gp55-RNA polymerase holoenzyme is only weakly held in its initially formed closed promoter complex, which subsequently opens very slowly. Activation ( approximately 320-fold in this work) increases affinity in the closed complex and accelerates promoter opening. Promoter opening by gp55 is also thermo-irreversible: the T4 late promoter does not open at 0 degrees C, but once opened at 30 degrees C remains open upon shift to the lower temperature. At a hybrid promoter for sigma(70) and gp55-holoenzymes, only gp55 confers thermo-irreversibility of promoter opening. Interaction of gp45 with a C-terminal epitope of gp33 is essential for the co-activator function of gp33.
Collapse
Affiliation(s)
- Scott E Kolesky
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla 92093-0634, USA.
| | | | | |
Collapse
|
16
|
Luke K, Radek A, Liu X, Campbell J, Uzan M, Haselkorn R, Kogan Y. Microarray analysis of gene expression during bacteriophage T4 infection. Virology 2002; 299:182-91. [PMID: 12202221 DOI: 10.1006/viro.2002.1409] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic microarrays were used to examine the complex temporal program of gene expression exhibited by bacteriophage T4 during the course of development. The microarray data confirm the existence of distinct early, middle, and late transcriptional classes during the bacteriophage replicative cycle. This approach allows assignment of previously uncharacterized genes to specific temporal classes. The genomic expression data verify many promoter assignments and predict the existence of previously unidentified promoters.
Collapse
Affiliation(s)
- Kimberly Luke
- Integrated Genomics Inc., 2201 W. Campbell Park Drive, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Pande S, Makela A, Dove SL, Nickels BE, Hochschild A, Hinton DM. The bacteriophage T4 transcription activator MotA interacts with the far-C-terminal region of the sigma70 subunit of Escherichia coli RNA polymerase. J Bacteriol 2002; 184:3957-64. [PMID: 12081968 PMCID: PMC135182 DOI: 10.1128/jb.184.14.3957-3964.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 04/24/2002] [Indexed: 11/20/2022] Open
Abstract
Transcription from bacteriophage T4 middle promoters uses Escherichia coli RNA polymerase together with the T4 transcriptional activator MotA and the T4 coactivator AsiA. AsiA binds tightly within the C-terminal portion of the sigma70 subunit of RNA polymerase, while MotA binds to the 9-bp MotA box motif, which is centered at -30, and also interacts with sigma70. We show here that the N-terminal half of MotA (MotA(NTD)), which is thought to include the activation domain, interacts with the C-terminal region of sigma70 in an E. coli two-hybrid assay. Replacement of the C-terminal 17 residues of sigma70 with comparable sigma38 residues abolishes the interaction with MotA(NTD) in this assay, as does the introduction of the amino acid substitution R608C. Furthermore, in vitro transcription experiments indicate that a polymerase reconstituted with a sigma70 that lacks C-terminal amino acids 604 to 613 or 608 to 613 is defective for MotA-dependent activation. We also show that a proteolyzed fragment of MotA that contains the C-terminal half (MotA(CTD)) binds DNA with a K(D(app)) that is similar to that of full-length MotA. Our results support a model for MotA-dependent activation in which protein-protein contact between DNA-bound MotA and the far-C-terminal region of sigma70 helps to substitute functionally for an interaction between sigma70 and a promoter -35 element.
Collapse
Affiliation(s)
- Suchira Pande
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | | | |
Collapse
|
18
|
Pemberton IK, Muskhelishvili G, Travers AA, Buckle M. FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the tyrT promoter. J Mol Biol 2002; 318:651-63. [PMID: 12054813 DOI: 10.1016/s0022-2836(02)00142-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have applied laser UV photo-footprinting to characterise kinetically complexes involving the activator protein FIS, RNA polymerase and the tyrT promoter of Escherichia coli. FIS photo-footprints strongly to three binding sites upstream of the core promoter. The polymerase photo-footprints in the near-consensus -35 hexamer on the non-template strand of DNA in a fashion similar to that of stable complexes involving the lacUV5 promoter. The kinetics of the interactions of polymerase alone with the tyrT promoter differ from those observed previously at the lacUV5 promoter. In the absence of FIS, we observe an upstream polymerase-induced signal at -122 within FIS site III that occurs subsequent to changes in the core promoter region and is strongly dependent on negative supercoiling. These observations support the proposal that the upstream region of the promoter is wrapped around the polymerase. We propose that the wrapped DNA allows the polymerase to overcome, at least in part, the barrier to DNA untwisting imparted by the G+C-rich discriminator. We further suggest that FIS plays a similar role and may facilitate polymerase escape.
Collapse
Affiliation(s)
- Iain K Pemberton
- Enzymologie et Cinétique Structurale, UMR 8532 du CNRS, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan, France
| | | | | | | |
Collapse
|
19
|
Truncaite L, Zajanckauskaite A, Nivinskas R. Identification of two middle promoters upstream DNA ligase gene 30 of bacteriophage T4. J Mol Biol 2002; 317:179-90. [PMID: 11902835 DOI: 10.1006/jmbi.2002.5407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage T4 DNA ligase gene 30 lies in the cluster of prereplicative genes located counterclockwise from map units 149 to 121. Based on the early transcription studies this gene has been considered as a typical early gene of bacteriophage T4. In agreement with this assignment, two strong T4 early promoters, P(E )30.8 (128.6) and P(E )30.7 (128.2), located about 3.1 and 2.7 kb upstream from gene 30 have been revealed by promoter mapping and sequence analysis. In addition, the existence of a putative early promoter just upstream of gene 30 was proposed from the sequence data. However, here we show that the putative early promoter just upstream of gene 30 is, in fact, a T4 middle promoter. Furthermore, we detected one more middle promoter located in the genomic region between early promoter P(E )30.7 (128.2) and DNA ligase gene 30 in the coding region of gene 30.3. Both new middle promoters have differences from the consensus MotA box, while their -10 regions match the sigma(70) consensus sequence very well. The 5' ends of MotA-dependent transcripts directed from these promoters, as well as the kinetics of 5' end accumulation in the cells, have been determined by primer extension analysis. The results of these analyses indicate that both MotA-dependent and MotA-independent promoters control the transcription of T4 DNA ligase gene 30 in vivo. Moreover, we show that the first transcripts for gene 30 are directed from its own middle promoter, P(M)30.
Collapse
Affiliation(s)
- Lidija Truncaite
- Laboratory of Gene Engineering, Institute of Biochemistry, Vilnius, Lithuania
| | | | | |
Collapse
|
20
|
Urbauer JL, Simeonov MF, Urbauer RJB, Adelman K, Gilmore JM, Brody EN. Solution structure and stability of the anti-sigma factor AsiA: implications for novel functions. Proc Natl Acad Sci U S A 2002; 99:1831-5. [PMID: 11830637 PMCID: PMC122279 DOI: 10.1073/pnas.032464699] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2001] [Indexed: 11/18/2022] Open
Abstract
Anti-sigma factors regulate prokaryotic gene expression through interactions with specific sigma factors. The bacteriophage T4 anti-sigma factor AsiA is a molecular switch that both inhibits transcription from bacterial promoters and phage early promoters and promotes transcription at phage middle promoters through its interaction with the primary sigma factor of Escherichia coli, sigma(70). AsiA is an all-helical, symmetric dimer in solution. The solution structure of the AsiA dimer reveals a novel helical fold for the protomer. Furthermore, the AsiA protomer, surprisingly, contains a helix-turn-helix DNA binding motif, predicting a potential new role for AsiA. The AsiA dimer interface includes a substantial hydrophobic component, and results of hydrogen/deuterium exchange studies suggest that the dimer interface is the most stable region of the AsiA dimer. In addition, the residues that form the dimer interface are those that are involved in binding to sigma(70). The results promote a model whereby the AsiA dimer maintains the active hydrophobic surfaces and delivers them to sigma(70), where an AsiA protomer is displaced from the dimer via the interaction of sigma(70) with the same residues in AsiA that constitute the dimer interface.
Collapse
Affiliation(s)
- Jeffrey L Urbauer
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Urbauer JL, Adelman K, Urbauer RJ, Simeonov MF, Gilmore JM, Zolkiewski M, Brody EN. Conserved regions 4.1 and 4.2 of sigma(70) constitute the recognition sites for the anti-sigma factor AsiA, and AsiA is a dimer free in solution. J Biol Chem 2001; 276:41128-32. [PMID: 11518715 DOI: 10.1074/jbc.m106400200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The association of the bacteriophage T4-encoded AsiA protein with the final sigma(70) subunit of the Escherichia coli RNA polymerase is one of the principal events governing transcription of the T4 genome. Analytical ultracentrifugation and NMR studies indicate that free AsiA is a symmetric dimer and the dimers can exchange subunits. Using NMR, the mutual recognition sites on AsiA and final sigma(70) have been elucidated. Residues throughout the N-terminal half of AsiA are involved either directly or indirectly in binding to final sigma(70) whereas the two highly conserved C-terminal regions of final sigma(70), denoted 4.1 and 4.2, constitute the entire AsiA binding domain. Peptides corresponding to these regions bind tightly to AsiA individually and simultaneously. Simultaneous binding promotes structural changes in AsiA that mimic interaction with the complete AsiA binding determinant of final sigma(70). Moreover, the results suggest that a significant rearrangement of the dimer accompanies peptide binding. Thus, both conserved regions 4.1 and 4.2 are intimately involved in recognition of AsiA by final sigma(70). The interaction of AsiA with 4.1 provides a potential explanation of the differential abilities of DNA and AsiA to bind to free final sigma(70) and a mechanistic alternative to models of AsiA function that rely on binding to a single site on final sigma(70).
Collapse
Affiliation(s)
- J L Urbauer
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Gene 61.5 of bacteriophage T4 has a unique role in gene expression. When this gene is mutated, mRNAs of many late genes are rapidly degraded, resulting in late-gene silencing. Here, we characterize an extragenic suppressor, ssf5, of a gene 61.5 mutation. ssf5 was found to be an amber mutation in motA, which encodes a transcription activator for T4 middle genes. When this gene is mutated, both degradation and specific cleavage of late-gene mRNA is induced after a delay, as exemplified by soc mRNA. Consequently, partial late-gene expression occurs. In an ssf5 genetic background, a gene 61.5 mutation exhibits a novel phenotype: in contrast to late-gene mRNA, middle-gene mRNA is stabilized and the expression of middle genes is prolonged. This is attributable to an activity of gene 61.5 specific for degradation of middle-gene mRNA. The degradation of middle-gene mRNA in the presence of a normal gene 61.5 appears in parallel with the degradation of late-gene mRNA in its absence. This observation suggests that the mRNA-degrading activity that silences late genes in cells infected with a gene 61.5 mutant is targeted to middle-gene mRNA when gene 61.5 is wild type. These results and the results obtained in the presence of a normal motA gene suggest that gene 61.5 protein functions to discriminate mRNAs for degradation in a stage-dependent manner.
Collapse
Affiliation(s)
- H Ueno
- Department of Biology, Graduate School of Science, Osaka University, 1-16 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | | |
Collapse
|
23
|
Pène C, Uzan M. The bacteriophage T4 anti-sigma factor AsiA is not necessary for the inhibition of early promoters in vivo. Mol Microbiol 2000; 35:1180-91. [PMID: 10712698 DOI: 10.1046/j.1365-2958.2000.01787.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteriophage T4 early promoters are utilized immediately after infection and are abruptly turned off 2-3 min later (at 30 degrees C) when the middle promoters are activated. The viral early protein AsiA has been suspected to bring about this transcriptional switch: not only does it activate transcription at middle promoters in vivo and in vitro but it also shows potent anti-sigma70 activity in vitro, suggesting that it is responsible for the shut-off of early transcription. We show here that after infection with a phage deleted for the asiA gene the inhibition of early transcription occurs to the same extent and with the same kinetics as in a wild-type infection. Thus, another AsiA-independent circuit efficiently turns off early transcription. The association of a mutation in asiA with a mutation in mod, rpbA, motA or motB has no effect on the inhibition of early promoters, showing that none of these phage-encoded transcriptional regulators is necessary for AsiA-independent shut-off. It is not known whether AsiA is able to inhibit early promoters in vivo, but host transcription is strongly inhibited in vivo upon induction of AsiA from a multicopy plasmid.
Collapse
Affiliation(s)
- C Pène
- Institut Jacques Monod, UMR7592 of CNRS-Universités Paris 6 and Paris 7, 2 Place Jussieu, 75251 Paris cedex 05, France
| | | |
Collapse
|
24
|
Vaiskunaite R, Miller A, Davenport L, Mosig G. Two new early bacteriophage T4 genes, repEA and repEB, that are important for DNA replication initiated from origin E. J Bacteriol 1999; 181:7115-25. [PMID: 10559179 PMCID: PMC94188 DOI: 10.1128/jb.181.22.7115-7125.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1999] [Accepted: 09/13/1999] [Indexed: 11/20/2022] Open
Abstract
Two new, small, early bacteriophage T4 genes, repEA and repEB, located within the origin E (oriE) region of T4 DNA replication, affect functioning of this origin. An important and unusual property of the oriE region is that it is transcribed at early and late periods after infection, but in opposite directions (from complementary DNA strands). The early transcripts are mRNAs for RepEA and RepEB proteins, and they can serve as primers for leading-strand DNA synthesis. The late transcripts, which are genuine antisense RNAs for the early transcripts, direct synthesis of virion components. Because the T4 genome contains several origins, and because recombination can bypass a primase requirement for retrograde synthesis, neither defects in a single origin nor primase deficiencies are lethal in T4 (Mosig et al., FEMS Microbiol. Rev. 17:83-98, 1995). Therefore, repEA and repEB were expected and found to be important for T4 DNA replication only when activities of other origins were reduced. To investigate the in vivo roles of the two repE genes, we constructed nonsense mutations in each of them and combined them with the motA mutation sip1 that greatly reduces initiation from other origins. As expected, T4 DNA synthesis and progeny production were severely reduced in the double mutants as compared with the single motA mutant, but early transcription of oriE was reduced neither in the motA nor in the repE mutants. Moreover, residual DNA replication and growth of the double mutants were different at different temperatures, suggesting different functions for repEA and repEB. We surmise that the different structures and protein requirements for functioning of the different origins enhance the flexibility of T4 to adapt to varied growth conditions, and we expect that different origins in other organisms with multiorigin chromosomes might differ in structure and function for similar reasons.
Collapse
Affiliation(s)
- R Vaiskunaite
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
25
|
Abstract
We have used surface plasmon resonance (SPR) to follow variations in the concentrations of binary complexes as RNA polymerase moves into a transcriptionally competent initiation complex with immobilized DNA fibres containing promoter sequences. The use of SPR to follow complex binding phenomena is described. We have also followed the changes in the mass of initiation complexes following addition of the nucleotide triphosphates prerequisite for transcription on the immobilized template. These signals are interpreted in terms of the escape of RNA polymerase into elongation mode and the subsequent synthesis of nascent RNA molecules.
Collapse
Affiliation(s)
- I K Pemberton
- Unité de Physicochimie des Macromolécules Biologiques (URA 1149 du CNRS), Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris cédex 15, France
| | | |
Collapse
|
26
|
Kolesky S, Ouhammouch M, Brody EN, Geiduschek EP. Sigma competition: the contest between bacteriophage T4 middle and late transcription. J Mol Biol 1999; 291:267-81. [PMID: 10438620 DOI: 10.1006/jmbi.1999.2953] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In bacterial transcription, diverse sigma-family promoter recognition proteins compete for a common RNA polymerase core. Bacteriophage T4 infection ultimately reduces this competition to a duel between activated viral middle and enhanced late transcription, involving two sigma proteins, two phage-encoded activator proteins and two phage-specific co-activators. This competition has been analyzed in vitro, and the relative abundances in T4-infected Escherichia coli of the participating proteins have been measured. Activated late transcription holds an advantage over activated middle transcription, especially at higher ionic strength. This advantage is further compounded by ADP-ribosylation of the RNA polymerase alpha subunits, and by the phage-specific, RNA polymerase core-bound RpbA subunit. The largest contribution to the middle-late competition is made by gp55, the late sigma factor, but not enough of gp55 is produced during T4 infection to shut off middle transcription by direct competition with sigma(70). AsiA, the originally identified anti-sigma protein is not a major determinant of middle-late competition.
Collapse
Affiliation(s)
- S Kolesky
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0634, USA.
| | | | | | | |
Collapse
|
27
|
Sharma M, Marshall P, Hinton DM. Binding of the bacteriophage T4 transcriptional activator, MotA, to T4 middle promoter DNA: evidence for both major and minor groove contacts. J Mol Biol 1999; 290:905-15. [PMID: 10438591 DOI: 10.1006/jmbi.1999.2928] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During infection, the bacteriophage T4 transcriptional activator MotA, the co-activator AsiA, and host RNA polymerase are needed to transcribe from T4 middle promoters. Middle promoters contain a -10 region recognized by the sigma(70)subunit of RNA polymerase and a MotA box centered at -30 that is bound by MotA. We have investigated how the loss or modification of base determinants within the MotA box sequence 5'TTTGCTTTA3' (positions -34 to -26 of a middle promoter) affects MotA function. Gel retardation assays with mutant MotA boxes are consistent with the idea that MotA uses minor groove contacts upstream and major groove contacts downstream of the center GC, and does not require any specific base feature at the C.G base-pair at position -30. In particular, the 5-methyl residue on the thymine residue at position -29, a major groove contact, contributes to MotA binding, while converting the T.A at -32 to a C. I base-pair, a change that affects the major but nor the minor groove, yields a MotA box that is similar to wild-type. However, methylation interference analyses indicate that neither the binding of MotA nor the binding of polymerase/MotA/AsiA to the middle promoter PuvsXis inhibited by premethylation of guanine and adenine residues, suggesting that binding does not require minor groove contact with any specific T.A base-pair. Using gel retardation analyses, we calculate an apparent dissociation constant of 130 nM for MotA binding to the wild-type MotA box. Previous work has shown that the N-terminal region of MotA is needed for an interaction between MotA and sigma(70). We suggest that this MotA-sigma(70)interaction helps to stabilize the relatively weak interaction of MotA with the -30 region of middle promoter DNA.
Collapse
Affiliation(s)
- M Sharma
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|