1
|
Kazapoe RW, Yahans Amuah EE, Dankwa P, Fynn OF, Addai MO, Berdie BS, Douti NB. Fluoride in groundwater sources in Ghana: A multifaceted and country-wide review. Heliyon 2024; 10:e33744. [PMID: 39044966 PMCID: PMC11263653 DOI: 10.1016/j.heliyon.2024.e33744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
A large portion of Ghana's population, particularly in rural areas, lack reliable access to safely managed water. Many of these communities rely on groundwater as their primary drinking water source. Distinguished by its thorough examination of F- occurrences in Ghana, this study complements previous studies by meticulously analyzing groundwater-soil and -plant dynamics, global implications, and region-specific insights, notably in the high-risk Bongo area. The study showed that Fluoride contamination in Ghana is evident in various regions, with primary data showcasing concentrations ranging from 0.05 mg/L-1 to 13.29 mg/L-1. The Bongo District in the north exhibits elevated fluoride levels, surpassing WHO safety limits of 1.5 mg/L-1 [62]. Additional studies in Sekyere South and Nalerigu disclose concentrations from 0.3 mg/L-1 to 4.0 mg/L-1 and 0.35 mg/L-1 to 3.95 mg/L-1, respectively. Contamination probabilities range from 50 % to 90 % in the north and northeast. While southern areas lack extensive data, the identified hotspots necessitate further investigation. Geological factors significantly influence fluoride levels, emphasizing the urgent need for comprehensive monitoring, mitigation, and public awareness. The identified contamination poses risks to public health, urging immediate action for sustainable solutions and ensuring safe drinking water in affected regions. The health implications of fluoride toxicity on the residents of regions prone to fluoride exposure are noteworthy. As a result, an inevitable surge in instances of dental and skeletal fluorosis can be anticipated. Notwithstanding the challenges, research indicates optimistic prospects for mitigating fluoride pollution in drinking water. Techniques like the utilization of "Bone Charcoal" and the "Contact Precipitation" approach offer promise for remediation. These methods can be implemented at a household level and some are economically viable, making them advisable for adoption in fluoride-prone areas of Ghana.
Collapse
Affiliation(s)
| | - Ebenezer Ebo Yahans Amuah
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Paul Dankwa
- Research Department, Green Africa Youth Organization, Accra, Ghana
| | - Obed Fiifi Fynn
- Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | | | - Belinda Seyram Berdie
- Department of Earth Science, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Nang Biyogue Douti
- Department of Environmental Science, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| |
Collapse
|
2
|
Ichikawa T, Stuckenholz C, Davidson LA. Non-junctional role of Cadherin3 in cell migration and contact inhibition of locomotion via domain-dependent, opposing regulation of Rac1. Sci Rep 2020; 10:17326. [PMID: 33060598 PMCID: PMC7567069 DOI: 10.1038/s41598-020-73862-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/07/2020] [Indexed: 11/08/2022] Open
Abstract
Classical cadherins are well-known adhesion molecules responsible for physically connecting neighboring cells and signaling this cell-cell contact. Recent studies have suggested novel signaling roles for "non-junctional" cadherins (NJCads); however, the function of cadherin signaling independent of cell-cell contacts remains unknown. In this study, mesendodermal cells and tissues from gastrula stage Xenopus laevis embryos demonstrate that deletion of extracellular domains of Cadherin3 (Cdh3; formerly C-cadherin in Xenopus) disrupts contact inhibition of locomotion. In both bulk Rac1 activity assays and spatio-temporal FRET image analysis, the extracellular and cytoplasmic Cdh3 domains disrupt NJCad signaling and regulate Rac1 activity in opposing directions. Stabilization of the cytoskeleton counteracted this regulation in single cell migration assays. Our study provides novel insights into adhesion-independent signaling by Cadherin3 and its role in regulating single and collective cell migration.
Collapse
Affiliation(s)
- Takehiko Ichikawa
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, 15260, USA
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Carsten Stuckenholz
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, 15260, USA
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, 15260, USA.
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
3
|
Johnston NR, Strobel SA. Principles of fluoride toxicity and the cellular response: a review. Arch Toxicol 2020; 94:1051-1069. [PMID: 32152649 PMCID: PMC7230026 DOI: 10.1007/s00204-020-02687-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/21/2020] [Indexed: 02/04/2023]
Abstract
Fluoride is ubiquitously present throughout the world. It is released from minerals, magmatic gas, and industrial processing, and travels in the atmosphere and water. Exposure to low concentrations of fluoride increases overall oral health. Consequently, many countries add fluoride to their public water supply at 0.7-1.5 ppm. Exposure to high concentrations of fluoride, such as in a laboratory setting often exceeding 100 ppm, results in a wide array of toxicity phenotypes. This includes oxidative stress, organelle damage, and apoptosis in single cells, and skeletal and soft tissue damage in multicellular organisms. The mechanism of fluoride toxicity can be broadly attributed to four mechanisms: inhibition of proteins, organelle disruption, altered pH, and electrolyte imbalance. Recently, there has been renewed concern in the public sector as to whether fluoride is safe at the current exposure levels. In this review, we will focus on the impact of fluoride at the chemical, cellular, and multisystem level, as well as how organisms defend against fluoride. We also address public concerns about fluoride toxicity, including whether fluoride has a significant effect on neurodegeneration, diabetes, and the endocrine system.
Collapse
Affiliation(s)
- Nichole R Johnston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Luessen DJ, Hinshaw TP, Sun H, Howlett AC, Marrs G, McCool BA, Chen R. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells. Neuropharmacology 2016; 110:297-307. [PMID: 27528587 DOI: 10.1016/j.neuropharm.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/20/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Dysregulated expression and function of dopamine D2 receptors (D2Rs) are implicated in drug addiction, Parkinson's disease and schizophrenia. In the current study, we examined whether D2Rs are modulated by regulator of G protein signaling 2 (RGS2), a member of the RGS family that regulates G protein signaling via acceleration of GTPase activity. Using neuroblastoma 2a (N2A) cells, we found that RGS2 was immunoprecipitated by aluminum fluoride-activated Gαi2 proteins. RGS2 siRNA knockdown enhanced membrane [(35)S] GTPγS binding to activated Gαi/o proteins, augmented inhibition of cAMP accumulation and increased ERK phosphorylation in the presence of a D2/D3R agonist quinpirole when compared to scrambled siRNA treatment. These data suggest that RGS2 is a negative modulator of D2R-mediated Gαi/o signaling. Moreover, RGS2 knockdown slightly increased constitutive D2R internalization and markedly abolished quinpirole-induced D2R internalization assessed by immunocytochemistry. RGS2 knockdown did not compromise agonist-induced β-arrestin membrane recruitment; however, it prevents β-arrestin dissociation from the membrane after prolonged quinpirole treatment during which time β-arrestin moved away from the membrane in control cells. Additionally, confocal microscopy analysis of β-arrestin post-endocytic fate revealed that quinpirole treatment caused β-arrestin to translocate to the early and the recycling endosome in a time-dependent manner in control cells whereas translocation of β-arrestin to these endosomes did not occur in RGS2 knockdown cells. The impaired β-arrestin translocation likely contributed to the abolishment of quinpirole-stimulated D2R internalization in RGS2 knockdown cells. Thus, RGS2 is integral for β-arrestin-mediated D2R internalization. The current study revealed a novel regulation of D2R signaling and internalization by RGS2 proteins.
Collapse
Affiliation(s)
- Deborah J Luessen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Tyler P Hinshaw
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Haiguo Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Glen Marrs
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
5
|
Hou Y, Chen X, Tolmachova T, Ernst SA, Williams JA. EPI64B acts as a GTPase-activating protein for Rab27B in pancreatic acinar cells. J Biol Chem 2013; 288:19548-57. [PMID: 23671284 DOI: 10.1074/jbc.m113.472134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The small GTPase Rab27B localizes to the zymogen granule membranes and plays an important role in regulating protein secretion by pancreatic acinar cells, as does Rab3D. A common guanine nucleotide exchange factor (GEF) for Rab3 and Rab27 has been reported; however, the GTPase-activating protein (GAP) specific for Rab27B has not been identified. In this study, the expression in mouse pancreatic acini of two candidate Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins, EPI64 (TBC1D10A) and EPI64B (TBC1D10B), was first demonstrated. Their GAP activity on digestive enzyme secretion was examined by adenovirus-mediated overexpression of EPI64 and EPI64B in isolated pancreatic acini. EPI64B almost completely abolished the GTP-bound form of Rab27B, without affecting GTP-Rab3D. Overexpression of EPI64B also enhanced amylase release. This enhanced release was independent of Rab27A, but dependent on Rab27B, as shown using acini from genetically modified mice. EPI64 had a mild effect on both GTP-Rab27B and amylase release. Co-overexpression of EPI64B with Rab27B can reverse the inhibitory effect of Rab27B on amylase release. Mutations that block the GAP activity decreased the inhibitory effect of EPI64B on the GTP-bound state of Rab27B and abolished the enhancing effect of EPI64B on the amylase release. These data suggest that EPI64B can serve as a potential physiological GAP for Rab27B and thereby participate in the regulation of exocytosis in pancreatic acinar cells.
Collapse
Affiliation(s)
- Yanan Hou
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
6
|
Neisch AL, Formstecher E, Fehon RG. Conundrum, an ARHGAP18 orthologue, regulates RhoA and proliferation through interactions with Moesin. Mol Biol Cell 2013; 24:1420-33. [PMID: 23468526 PMCID: PMC3639053 DOI: 10.1091/mbc.e12-11-0800] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RhoA, a small GTPase, regulates epithelial integrity and morphogenesis by controlling filamentous actin assembly and actomyosin contractility. Another important cytoskeletal regulator, Moesin (Moe), an ezrin, radixin, and moesin (ERM) protein, has the ability to bind to and organize cortical F-actin, as well as the ability to regulate RhoA activity. ERM proteins have previously been shown to interact with both RhoGEF (guanine nucleotide exchange factors) and RhoGAP (GTPase activating proteins), proteins that control the activation state of RhoA, but the functions of these interactions remain unclear. We demonstrate that Moe interacts with an unusual RhoGAP, Conundrum (Conu), and recruits it to the cell cortex to negatively regulate RhoA activity. In addition, we show that cortically localized Conu can promote cell proliferation and that this function requires RhoGAP activity. Surprisingly, Conu's ability to promote growth also appears dependent on increased Rac activity. Our results reveal a molecular mechanism by which ERM proteins control RhoA activity and suggest a novel linkage between the small GTPases RhoA and Rac in growth control.
Collapse
Affiliation(s)
- Amanda L Neisch
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
7
|
Zhang N, Buck M. Formation of MgF3 (-)-dependent complexes between an AAA(+) ATPase and σ(54.). FEBS Open Bio 2012; 2:89-92. [PMID: 23650585 PMCID: PMC3642117 DOI: 10.1016/j.fob.2012.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022] Open
Abstract
The widely distributed bacterial σ(54)-dependent transcription regulates pathogenicity and numerous adaptive responses in diverse bacteria. Formation of the σ(54)-dependent open promoter complex is a multi-step process driven by AAA(+) ATPases. Non-hydrolysable nucleotide analogues are particularly suitable for studying such complexity by capturing various intermediate states along the energy coupling pathway. Here we report a novel ATP analogue, ADP-MgF3 (-), which traps an AAA(+) ATPase with its target σ(54). The MgF3 (-)-dependent complex is highly homogeneous and functional assays suggest it may represent an early transcription intermediate state valuable for structural studies.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | |
Collapse
|
8
|
Abstract
BACKGROUND INFORMATION Fluoride is a well-known G-protein activator. Exposure of cultured cells to its derivatives results in actin cytoskeleton remodelling. Podosomes are actin-based structures endowed with adhesion and matrix-degradation functions. This study investigates actin cytoskeleton reorganization induced by fluoride in endothelial cells. RESULTS Treatment of cultured endothelial cells with sodium fluoride (NaF) results in a rapid and potent stimulation of podosome formation. Furthermore, we show that Cdc42 (cell-division cycle 42), Rac1 and RhoA activities are stimulated in NaF-treated cells. However, podosome assembly is dependent on Cdc42 and Rac1, but not RhoA. Although the sole activation of Cdc42 is sufficient to induce individual podosomes, a balance between RhoGTPase activities regulates podosome formation in response to NaF, which in this case are often found in groups or rosettes. As in other models, podosome formation in endothelial cells exposed to NaF also involves Src. Finally, we demonstrate that NaF-induced podosomes are fully competent for matrix protein degradation. CONCLUSIONS Taken together, our findings establish NaF as a novel inducer of podosomes in endothelial cells in vitro.
Collapse
|
9
|
Modiano N, Lu YE, Cresswell P. Golgi targeting of human guanylate-binding protein-1 requires nucleotide binding, isoprenylation, and an IFN-gamma-inducible cofactor. Proc Natl Acad Sci U S A 2005; 102:8680-5. [PMID: 15937107 PMCID: PMC1150846 DOI: 10.1073/pnas.0503227102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Human guanylate-binding protein-1 (hGBP-1) is a large GTPase, similar in structure to the dynamins. Like many smaller GTPases of the Ras/Rab family, it is farnesylated, suggesting it may dock into membranes and perhaps play a role in intracellular trafficking. To date, however, hGBP-1 has never been associated with a specific intracellular compartment. Here we present evidence that hGBP-1 can associate with the Golgi apparatus. Redistribution from the cytosol to the Golgi was observed by immunofluorescence and subcellular fractionation after aluminum fluoride treatment, suggesting that it occurs when hGBP-1 is in its GTP-bound state. Relocalization was blocked by a farnesyl transferase inhibitor. The C589S mutant of hGBP-1, which cannot be farnesylated, and the previously uncharacterized R48P mutant, which cannot bind GTP, both failed to localize to the Golgi. These two mutants had a dominant-negative effect, preventing endogenous wild-type hGBP-1 from efficiently redistributing after aluminum fluoride treatment. Furthermore, hGBP-1 requires another IFN-gamma-induced factor to be targeted to the Golgi, because constitutively expressed hGBP-1 remained cytosolic in cells treated with aluminum fluoride unless the cells were preincubated with IFN-gamma. Finally, two nonhydrolyzing mutants of hGBP-1, corresponding to active mutants of Ras family proteins, failed to constitutively associate with the Golgi; we propose three possible explanations for this surprising result.
Collapse
Affiliation(s)
- Nir Modiano
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011, USA
| | | | | |
Collapse
|
10
|
Campanoni P, Nick P. Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. PLANT PHYSIOLOGY 2005; 137:939-48. [PMID: 15734918 PMCID: PMC1065395 DOI: 10.1104/pp.104.053843] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 12/24/2004] [Accepted: 01/05/2005] [Indexed: 05/18/2023]
Abstract
During exponential phase, the tobacco (Nicotiana tabacum) cell line cv Virginia Bright Italia-0 divides axially to produce linear cell files of distinct polarity. This axial division is controlled by exogenous auxin. We used exponential tobacco cv Virginia Bright Italia-0 cells to dissect early auxin signaling, with cell division and cell elongation as physiological markers. Experiments with 1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated that these 2 auxin species affect cell division and cell elongation differentially; NAA stimulates cell elongation at concentrations that are much lower than those required to stimulate cell division. In contrast, 2,4-D promotes cell division but not cell elongation. Pertussis toxin, a blocker of heterotrimeric G-proteins, inhibits the stimulation of cell division by 2,4-D but does not affect cell elongation. Aluminum tetrafluoride, an activator of the G-proteins, can induce cell division at NAA concentrations that are not permissive for division and even in the absence of any exogenous auxin. The data are discussed in a model where the two different auxins activate two different pathways for the control of cell division and cell elongation.
Collapse
Affiliation(s)
- Prisca Campanoni
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | | |
Collapse
|
11
|
Li Y, Decker S, Yuan ZA, Denbesten PK, Aragon MA, Jordan-Sciutto K, Abrams WR, Huh J, McDonald C, Chen E, MacDougall M, Gibson CW. Effects of sodium fluoride on the actin cytoskeleton of murine ameloblasts. Arch Oral Biol 2005; 50:681-8. [PMID: 15958199 DOI: 10.1016/j.archoralbio.2004.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 11/22/2004] [Indexed: 12/24/2022]
Abstract
Fluoride is associated with a decrease in the incidence of dental caries, but excess fluoride can lead to enamel fluorosis, a defect that occurs during tooth enamel formation. In fibroblasts, the Arhgap gene encodes a RhoGAP, which regulates the small G protein designated RhoA. Fluoride treatment of fibroblasts inactivates RhoGAP, thereby activating RhoA, which leads to elevation of filamentous actin (F-actin). Since RhoA is a molecular switch, our hypothesis is that in ameloblasts, fluoride may alter the cytoskeleton through interference with the Rho signaling pathway. Our objective was to measure the effects of sodium fluoride on F-actin using tooth organ culture and confocal microscopy. The results indicated that cellular responses to fluoride include elevation of F-actin in ameloblasts. It was concluded from immunohistochemistry, RT-PCR and confocal approaches that the components of the Rho pathway are present in ameloblasts, and that the response to fluoride involves the Rho/ROCK pathway.
Collapse
Affiliation(s)
- Yong Li
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, 19104-6030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bäck N, Litonius E, Mains RE, Eipper BA. Fluoride causes reversible dispersal of Golgi cisternae and matrix in neuroendocrine cells. Eur J Cell Biol 2004; 83:389-402. [PMID: 15506563 DOI: 10.1078/0171-9335-00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A role for heterotrimeric G proteins in the regulation of Golgi function and formation of secretory granules is generally accepted. We set out to study the effect of activation of heterotrimeric G proteins by aluminum fluoride on secretory granule formation in AtT-20 corticotropic tumor cells and in melanotrophs from the rat pituitary. In AtT-20 cells, treatment with aluminum fluoride or fluoride alone for 60 min induced complete dispersal of Golgi, ER-Golgi intermediate compartment and Golgi matrix markers, while betaCOP immunoreactiviy retained a juxtanuclear position and TGN38 was unaffected. Electron microscopy showed compression of Golgi cisternae followed by conversion of the Golgi stacks into clusters of tubular and vesicular elements. In the melanotroph of the rat pituitary a similar compression of Golgi cisternae was observed, followed by a progressive loss of cisternae from the stacks. As shown in other cells, brefeldin A induced redistribution of the Golgi matrix protein GM130 to punctate structures in the cytoplasm in AtT-20 cells, while mannosidase II immunoreactivity was completely dispersed. Fluoride induced a complete dispersal of mannosidase II and GM130 immunoreactivity. The effect of fluoride was fully reversible with reestablishment of normal mannosidase II and GM130 immunoreactivity within 2 h. After 1 h of recovery, showing varying stages of reassembly, the patterns of mannosidase II and GM130 immunoreactivity were identical in individual cells, indicating that Golgi matrix and cisternae reassemble with similar kinetics during recovery from fluoride treatment. Instead of a specific aluminum fluoride effect on secretory granule formation in the trans-Golgi network, we thus observe a unique form of Golgi dispersal induced by fluoride alone, possibly via its action as a phosphatase inhibitor.
Collapse
Affiliation(s)
- Nils Bäck
- Department of Anatomy, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
13
|
Ro HS, Song S, Lee KS. Bfa1 can regulate Tem1 function independently of Bub2 in the mitotic exit network of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2002; 99:5436-41. [PMID: 11959999 PMCID: PMC122787 DOI: 10.1073/pnas.062059999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In budding yeast, exit from mitosis is achieved by inactivation of Cdc28/Clb2 activity. Although it is not clear at present how mitotic exit is triggered, a growing body of evidence suggests that the Tem1 GTPase plays a critical role in mediating this pathway and that Bfa1 and Bub2 constitute a two-component GTPase-activating protein to negatively regulate Tem1. Here, we have demonstrated that introduction of bfa1 Delta suppresses the growth defects associated with the cdc5-1 mutation significantly better than that of bub2 Delta, suggesting that Bfa1 may have a previously uncharacterized role in this pathway. Overexpression of BFA1 efficiently arrested the cell cycle at postanaphase even in the absence of BUB2, whereas overexpression of BUB2 weakly induced mitotic arrest only in the presence of BFA1. Coimmunoprecipitation and in vitro binding studies indicate that Bfa1 binds strongly to Tem1 independently of Bub2. Provision of GDP+AlF(4)(-), which mimics the GTPase transition state, enhanced the Bub2-Tem1 interaction both in vitro and in vivo. Interestingly, introduction of bfa1 Delta, but not bub2 Delta, greatly increased the interaction between Tem1 and Cdc15, a step that is thought to be critical for activating the mitotic exit network. Our data suggest that, in addition to its role as a putative, two-component GTPase-activating protein with Bub2, Bfa1 also can play a role in the regulation of mitotic exit by directly inhibiting the interaction between Tem1 and Cdc15 even in the absence of Bub2.
Collapse
Affiliation(s)
- Hyeon-Su Ro
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3D25, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
Graham DL, Lowe PN, Grime GW, Marsh M, Rittinger K, Smerdon SJ, Gamblin SJ, Eccleston JF. MgF(3)(-) as a transition state analog of phosphoryl transfer. CHEMISTRY & BIOLOGY 2002; 9:375-81. [PMID: 11927263 DOI: 10.1016/s1074-5521(02)00112-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The formation of complexes between small G proteins and certain of their effectors can be facilitated by aluminum fluorides. Solution studies suggest that magnesium may be able to replace aluminum in such complexes. We have determined the crystal structure of RhoA.GDP bound to RhoGAP in the presence of Mg(2+) and F(-) but without Al(3+). The metallofluoride adopts a trigonal planar arrangement instead of the square planar structure of AlF(4)(-). We have confirmed that these crystals contain magnesium and not aluminum by proton-induced X-ray emission spectroscopy. The structure adopted by GDP.MgF(-) possesses the stereochemistry and approximate charge expected for the transition state. We suggest that MgF3(-) may be the reagent of choice for studying phosphoryl transfer reactions.
Collapse
Affiliation(s)
- Debbie L Graham
- Computational & Structural Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu G, Li H, Yang Z. Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for rop-specific GTPase stimulation. PLANT PHYSIOLOGY 2000; 124:1625-36. [PMID: 11115880 PMCID: PMC59861 DOI: 10.1104/pp.124.4.1625] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2000] [Revised: 06/21/2000] [Accepted: 07/19/2000] [Indexed: 05/19/2023]
Abstract
The plant-specific Rop subfamily of Rho GTPases, most closely related to the mammalian Cdc42 and Rac GTPases, plays an important role in the regulation of calcium-dependent pollen tube growth, H(2)O(2)-mediated cell death, and many other processes in plants. In a search for Rop interactors using the two-hybrid method, we identified a family of Rho GTPase-activating proteins (GAP) from Arabidopsis, termed RopGAPs. In addition to a GAP catalytic domain, RopGAPs contain a Cdc42/Rac-interactive binding (CRIB) motif known to allow Cdc42/Rac effector proteins to bind activated Cdc42/Rac. This novel combination of a GAP domain with a CRIB motif is widespread in higher plants and is unique to the regulation of the Rop GTPase. A critical role for CRIB in the regulation of in vitro RopGAP activity was demonstrated using point and deletion mutations. Both types of mutants have drastically reduced capacities to stimulate the intrinsic Rop GTPase activity and to bind Rop. Furthermore, RopGAPs preferentially stimulate the GTPase activity of Rop, but not Cdc42 in a CRIB-dependent manner. In vitro binding assays show that the RopGAP CRIB domain interacts with GTP- and GDP-bound forms of Rop, as well as the transitional state of Rop mimicked by aluminum fluoride. The CRIB domain also promotes the association of the GAP domain with the GDP-bound Rop, as does aluminum fluoride. These results reveal a novel CRIB-dependent mechanism for the regulation of the plant-specific family of Rho GAPs. We propose that the CRIB domain facilitates the formation of or enhanced GAP-mediated stabilization of the transitional state of the Rop GTPase.
Collapse
Affiliation(s)
- G Wu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
16
|
|
17
|
Chen Y, Penington NJ. Competition between internal AlF(4)(-) and receptor-mediated stimulation of dorsal raphe neuron G-proteins coupled to calcium current inhibition. J Neurophysiol 2000; 83:1273-82. [PMID: 10712455 DOI: 10.1152/jn.2000.83.3.1273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular aluminum fluoride (AlF(4)(-)), placed in a patch pipette, activated a G-protein, resulting in a "tonic" inhibition of the Ca(2+) current of isolated serotonergic neurons of the rat dorsal raphe nucleus. Serotonin (5-HT) also inhibits the Ca(2+) current of these cells. After external bath application and quick removal of 5-HT to an AlF(4)(-) containing cell, there was a reversal or transient disinhibition (TD) of the inhibitory effect of AlF(4)(-) on Ca(2+) current. A short predepolarization of the membrane potential to +70 mV, a condition that is known to reverse G-protein-mediated inhibition, reversed the inhibitory effect of AlF(4)(-) on Ca(2+) current and brought the Ca(2+) current to the same level as that seen at the peak of the TD current. With AlF(4)(-) in the pipette, the TD phenomenon could be eliminated by lowering pipette MgATP, or by totally chelating pipette Al(3+). In the presence of AlF(4)(-), but with either lowered MgATP or extreme efforts to eliminate pipette Al(3+), the rate of recovery from 5-HT on wash was slowed, a condition opposite to that where a TD occurred. The putative complex of AlF(4)(-)-bound G-protein (Galpha.GDP. AlF(4)(-)) appeared to free G-betagamma-subunits, mimicking the effect on Ca(2+) channels of the G.GTP complex. The ON-rate of the inhibition of Ca(2+) current, after a depolarizing pulse, by betagamma-subunits released by AlF(4)(-) in the pipette was significantly slower than that of the agonist-activated G-protein. The OFF-rate of the AlF(4)(-)-mediated inhibition in response to a depolarizing pulse, a measure of the affinity of the free G-betagamma-subunit for the Ca(2+) channel, was slightly slower than that of the agonist stimulated G-protein. In summary, AlF(4)(-) modified the OFF-rate kinetics of G-protein activation by agonists, but had little effect on the kinetics of the interaction of the betagamma-subunit with Ca(2+) channels. Agonist application temporarily reversed the effects of AlF(4)(-), making it a complementary tool to GTP-gamma-S for the study of G-protein interactions.
Collapse
Affiliation(s)
- Y Chen
- Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York 11203-2098, USA
| | | |
Collapse
|
18
|
Duménil G, Sansonetti P, Tran Van Nhieu G. Src tyrosine kinase activity down-regulates Rho-dependent responses during Shigella entry into epithelial cells and stress fibre formation. J Cell Sci 2000; 113 ( Pt 1):71-80. [PMID: 10591626 DOI: 10.1242/jcs.113.1.71] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasion of epithelial cells by Shigella, the causative agent of bacillary dysentery, is dependent upon the formation of characteristic membrane ruffles that engulf the bacteria in a macropinocytic-like process. We show here that Cdc42 and Rac GTPases, but not Rho;, are critical for actin polymerisation, whereas Rho; is necessary for the recruitment of ezrin and Src at the site of entry. Remarkably, cells expressing constitutively active Src did not show ezrin recruitment at Shigella entry foci. In these cells, formation of stress fibres induced by LPA stimulation, or microinjection of activated Rho; (V14Rho), was inhibited. Src-mediated tyrosyl-phosphorylation of p190RhoGAP correlated with changes in the ability of p190RhoGAP to interact with Rho;, suggesting that Src regulates Rho; function via p190RhoGAP. We propose that Rho; activation is required for proper organisation of Shigella entry foci and for Src recruitment, and that Src tyrosine kinase activity, in turn, down-regulates the function of Rho; at the site of Shigella entry. The significance of this negative regulatory loop on Rho;-dependent responses is discussed.
Collapse
Affiliation(s)
- G Duménil
- Laboratory of cytokine signalling, Dept of Immunology and Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
19
|
Vincent S, Settleman J. Inhibition of RhoGAP activity is sufficient for the induction of Rho-mediated actin reorganization. Eur J Cell Biol 1999; 78:539-48. [PMID: 10494860 DOI: 10.1016/s0171-9335(99)80019-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is generally believed that the induction of actin cytoskeleton rearrangements by extracellular stimuli results from the activation of guanine nucleotide exchange factors for the Rho GTPases. Here, we present evidence that the inactivation of RhoGAP (GTPase activating protein) activity is an equally effective means of promoting Rho-mediated cellular processes. We observed that exposure of cultured fibroblasts to sodium fluoride (NaF) results in a rapid and potent stimulation of actin stress fiber formation. This effect is mediated by the Rho GTPase and is associated with the inactivation of cellular RhoGAP activity. Specifically, NaF promotes formation of a high-affinity complex between Rho and the two cellular p190 RhoGAPs in vivo, apparently sequestering limiting amounts of RhoGAP activity, thereby resulting in Rho activation. p190 RhoGAP activity was found to account for approximately 60% of the total RhoGAP activity detected in whole cell extracts, indicating that relatively small changes in cellular RhoGAP activity can have potent effects on Rho activation. We also found that sub-effective concentrations of NaF combined with sub-effective concentrations of the Rho pathway activator, lysophosphatidic acid, which stimulates guanine nucleotide exchange activity on the Rho GTPase, results in the rapid induction of actin stress fibers. Together, these results suggest that the Rho GTPase is regulated by a fine balance of nucleotide exchange and RhoGAP activities, and that inactivation of RhoGAP activity may be a physiologically important regulatory mechanism for activating the Rho GTPase.
Collapse
Affiliation(s)
- S Vincent
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown 02129, USA
| | | |
Collapse
|