1
|
Franco D, Chang Y. Accessibility of chromosomal recombination breaks in nuclei of wild-type and DNA-PKcs-deficient cells. DNA Repair (Amst) 2009; 8:813-21. [PMID: 19395319 DOI: 10.1016/j.dnarep.2009.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 02/24/2009] [Accepted: 03/23/2009] [Indexed: 01/17/2023]
Abstract
V(D)J recombination is a highly regulated process, proceeding from a site-specific cleavage to an imprecise end joining. After the DNA excision catalyzed by the recombinase encoded by recombination activating genes 1 and 2 (RAG1/2), newly generated recombination ends are believed held by a post-cleavage complex (PC) consisting of RAG1/2 proteins, and are subsequently resolved by non-homologous end joining (NHEJ) machinery. The relay of these ends from PC to NHEJ remains elusive. It has been speculated that NHEJ factors modify the RAG1/2-PC to gain access to the ends or act on free ends after the disassembly of the PC. Thus, recombination ends may either be retained in a complex throughout the recombination process or left as unprotected free ends after cleavage, a condition that may permit an alternative, non-classical NHEJ end joining pathway. To directly test these scenarios on recombination induced chromosomal breaks, we have developed a recombination end protection assay to monitor the accessibility of recombination ends to exonuclease-V in intact nuclei. We demonstrate that these ends are well protected in the nuclei of wild-type cells, suggesting a seamless cleavage-joining reaction. However, divergent end protection of coding versus signal ends was found in cells derived from severe combined immunodeficient (scid) mice that are defective in the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). While signal ends are resistant, opened coding ends are susceptible to enzymatic modification. Our data suggests a role of DNA-PKcs in protecting chromosomal coding ends. Furthermore, using recombination inducible scid cell lines, we demonstrate that conditional protection of coding ends is inversely correlated with the level of their resolution, i.e., the greater the accessibility of the coding ends, the higher level of coding joints formed. Taken together, our findings provide important insights into the resolution of recombination ends by error-prone alternative NHEJ pathways.
Collapse
Affiliation(s)
- Daniel Franco
- Molecular and Cellular Biology Program, School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, BDA220, 1001 S. McAllister Avenue, Tempe, AZ 85287-5501, United States
| | | |
Collapse
|
2
|
Ke Y, Lindsay S, Chang Y, Liu Y, Yan H. Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays. Science 2008; 319:180-3. [DOI: 10.1126/science.1150082] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Li Z, Chang Y. V(D)J recombination in zebrafish: Normal joining products with accumulation of unresolved coding ends and deleted signal ends. Mol Immunol 2006; 44:1793-802. [PMID: 17005252 PMCID: PMC1785108 DOI: 10.1016/j.molimm.2006.07.295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/29/2006] [Accepted: 07/31/2006] [Indexed: 12/22/2022]
Abstract
V(D)J recombination proceeds from a site-specific cleavage to an imprecise end joining, via generation and resolution of recombination ends. Although rearranged antigen receptor genes isolated from zebrafish (Danio rerio) resemble those made in mammals, differences may arise during evolution from lower to higher vertebrates, in regard to efficiency, fidelity and regulation of this recombination. To elucidate the V(D)J recombination reaction in zebrafish, we characterized recombination ends transiently produced by zebrafish lymphocytes, as well as joining products. Similar to their mammalian counterpart, zebrafish lymphocytes make perfect signal joints and normal coding joints, indicating their competent end resolution machinery. However, recombination ends recovered from the same zebrafish lymphoid tissues exhibit some features that are not readily seen in normal mammalian counterpart: deleted signal ends and accumulation of opened coding ends. These results indicate that the recombination reaction in zebrafish lymphocytes is inefficient and less stringently regulated, which may result from unstable post-cleavage complexes, and/or slow transition from cleavage to resolution. Our data suggests that the V(D)J recombination machinery may have undergone evolution selection to become more efficient in higher jawed vertebrates.
Collapse
Affiliation(s)
- Zhi Li
- Genomics, Evolution and Bioinformatics, School of Life Sciences, The Biodesign Institute at Arizona State University, PO Box 876001, Tempe, AZ 85287-6001, USA
| | | |
Collapse
|
4
|
Zhong H, Li Z, Lin S, Chang Y. Initiation of V(D)J recombination in zebrafish (Danio rerio) ovaries. Mol Immunol 2006; 44:1784-92. [PMID: 16996591 PMCID: PMC1785110 DOI: 10.1016/j.molimm.2006.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/02/2006] [Indexed: 11/23/2022]
Abstract
The assembly of mammalian antigen receptor genes is a lymphoid-specific process. However, rearranged immunoglobulin genes can also be recovered from non-lymphoid tissues of cartilaginous fish. This event, known as germline rearrangement, has been speculated to arise from recombination-activating gene (RAG)-mediated recombination in germ cells. In this report, we demonstrate that zebrafish (Danio rerio) oocytes expressing high levels of RAG-RNA can readily initiate recombination cleavage at immunoglobulin gene loci, providing direct evidence for an ongoing process of attempted germline rearrangement in zebrafish ovaries. This attempted rearrangement is largely unproductive, yielding no accumulation of germline-joined immunoglobulin genes in zebrafish, which is consistent with their general absence in this species. Our data, therefore, substantiate the speculation that RAG might have been derived from a transposase, invading germ cells of ancient species, and later become a dedicated recombinase only expressed in developing lymphocytes.
Collapse
Affiliation(s)
- Hanbing Zhong
- Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | |
Collapse
|
5
|
Reddy YVR, Perkins EJ, Ramsden DA. Genomic instability due to V(D)J recombination-associated transposition. Genes Dev 2006; 20:1575-82. [PMID: 16778076 PMCID: PMC1482478 DOI: 10.1101/gad.1432706] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first step in assembling immunoglobulin and T-cell receptors by V(D)J recombination has similarities to transposon excision. The excised transposon-like element then integrates into DNA targets at random in vitro, but whether this activity significantly threatens the genomic integrity of its host has been unclear. Here, we recover examples where the putative transposon associated with V(D)J recombination integrated into the genome of a pre-B-cell line. Transposition accounted for a surprisingly high proportion (one-third) of integrations, while most of the remaining events had parallels to other aberrant V(D)J recombination pathways linked to oncogenic translocation. In total, transposition occurred approximately once every 50,000 V(D)J recombinations. Transposition may thus contribute significantly to genomic instability.
Collapse
Affiliation(s)
- Yeturu V R Reddy
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
6
|
Jacobsen EA, Ananieva O, Brown ML, Chang Y. Growth, differentiation, and malignant transformation of pre-B cells mediated by inducible activation of v-Abl oncogene. THE JOURNAL OF IMMUNOLOGY 2006; 176:6831-8. [PMID: 16709843 DOI: 10.4049/jimmunol.176.11.6831] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nonreceptor tyrosine kinase, encoded by the v-Abl oncogene of Abelson murine leukemia virus induces transformation of progenitor B cells. The v-Abl oncogene promotes cell cycle progression and inhibits pre-B cell differentiation. The temperature-sensitive form of Abelson murine leukemia virus offers a reversible model to study the role of v-Abl in regulating growth and differentiation. Inactivation of v-Abl elevates p27 and Foxo3a levels and activates NF-kappaB/Rel, which leads to G1 arrest and induction of Ig L chain gene rearrangement, respectively. In turn, v-Abl reactivation reduces p27 and Foxo3a levels, thus permitting G1-arrested cells to reenter the cell cycle. However, the cell lines derived from SCID mice that are defective in the catalytic subunit of DNA-dependent protein kinase retain elevated levels of p27 and Foxo3a proteins despite reactivation of v-Abl. Consequently, these cells are locked in the G1 phase for an extended period of time. The few cells that manage to bypass the G1 arrest become tumorigenic and fail to undergo pre-B cell differentiation induced by v-Abl inactivation. Deregulation of p27, Foxo3a, c-myc, and NF-kappaB/Rel was found to be associated with the malignant transformation of SCID temperature-sensitive form of Abelson murine leukemia virus pre-B cells.
Collapse
Affiliation(s)
- Elizabeth A Jacobsen
- Molecular and Cellular Biology Program, School of Life Sciences, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
7
|
Nick McElhinny SA, Havener JM, Garcia-Diaz M, Juárez R, Bebenek K, Kee BL, Blanco L, Kunkel TA, Ramsden DA. A Gradient of Template Dependence Defines Distinct Biological Roles for Family X Polymerases in Nonhomologous End Joining. Mol Cell 2005; 19:357-66. [PMID: 16061182 DOI: 10.1016/j.molcel.2005.06.012] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/22/2005] [Accepted: 06/10/2005] [Indexed: 01/13/2023]
Abstract
Three Pol X family members have been linked to nonhomologous end joining (NHEJ) in mammals. Template-independent TdT promotes diversity during NHEJ-dependent repair of V(D)J recombination intermediates, but the roles of the template-dependent polymerases mu and lambda in NHEJ remain unclear. We show here that pol mu and pol lambda are similarly recruited by NHEJ factors to fill gaps when ends have partially complementary overhangs, suggesting equivalent roles promoting accuracy in NHEJ. However, only pol mu promotes accuracy during immunoglobulin kappa recombination. This distinctive in vivo role correlates with the TdT-like ability of pol mu, but not pol lambda, to act when primer termini lack complementary bases in the template strand. However, unlike TdT, synthesis by pol mu in this context is primarily instructed by a template from another DNA molecule. This apparent gradient of template dependence is largely attributable to a small structural element that is present but different in all three polymerases.
Collapse
Affiliation(s)
- Stephanie A Nick McElhinny
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tsuji H, Ishii-Ohba H, Katsube T, Ukai H, Aizawa S, Doi M, Hioki K, Ogiu T. Involvement of illegitimate V(D)J recombination or microhomology-mediated nonhomologous end-joining in the formation of intragenic deletions of the Notch1 gene in mouse thymic lymphomas. Cancer Res 2005; 64:8882-90. [PMID: 15604248 DOI: 10.1158/0008-5472.can-03-1163] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deregulated V(D)J recombination-mediated chromosomal rearrangements are implicated in the etiology of B- and T-cell lymphomagenesis. We describe three pathways for the formation of 5'-deletions of the Notch1 gene in thymic lymphomas of wild-type or V(D)J recombination-defective severe combined immune deficiency (scid) mice. A pair of recombination signal sequence-like sequences composed of heptamer- and nonamer-like motifs separated by 12- or 23-bp spacers (12- and 23-recombination signal sequence) were present in the vicinity of the deletion breakpoints in wild-type thymic lymphomas, accompanied by palindromic or nontemplated nucleotides at the junctions. In scid thymic lymphomas, the deletions at the recombination signal sequence-like sequences occurred at a significantly lower frequency than in wild-type mice, whereas the deletions did not occur in Rag2(-/-) thymocytes. These results show that the 5'-deletions are formed by Rag-mediated V(D)J recombination machinery at cryptic recombination signal sequences in the Notch1 locus. In contrast, one third of the deletions in radiation-induced scid thymic lymphomas had microhomology at both ends, indicating that in the absence of DNA-dependent protein kinase-dependent nonhomologous end-joining, the microhomology-mediated nonhomologous end-joining pathway functions as the main mechanism to produce deletions. Furthermore, the deletions were induced via a coupled pathway between Rag-mediated cleavage at a cryptic recombination signal sequence and microhomology-mediated end-joining in radiation-induced scid thymic lymphomas. As the deletions at cryptic recombination signal sequences occur spontaneously, microhomology-mediated pathways might participate mainly in radiation-induced lymphomagenesis. Recombination signal sequence-mediated deletions were present clonally in the thymocyte population, suggesting that thymocytes with a 5'-deletion of the Notch1 gene have a growth advantage and are involved in lymphomagenesis.
Collapse
Affiliation(s)
- Hideo Tsuji
- Low Dose Radiation Effects Research Project Group, Radiation Hazards Research Group, and Environmental and Toxicological Science Research Group, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Perkins EJ, Kee BL, Ramsden DA. Histone 3 lysine 4 methylation during the pre-B to immature B-cell transition. Nucleic Acids Res 2004; 32:1942-7. [PMID: 15051812 PMCID: PMC390374 DOI: 10.1093/nar/gkh523] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The relationship between chromatin modification and lymphocyte development is still poorly understood. Here we show a correlation between methylation of lysine 4 on histone 3 (H3-K4) and activation of several loci required for the pre-B cell to immature B-cell developmental transition. A critical step in this transition is the induction of V(D)J recombination at the Igkappa locus. Upon activation of Igkappa recombination, a >10-fold enrichment of both di- and trimethylated H3-K4 is observed at Jkappa targeting signals, but not at an analogous targeting signal in the T-cell receptor alpha locus or, surprisingly, at several Vkappa signals. However, H3-K4 methylation is restricted to the actively recombining fraction of Jkappa recombination targeting signals, consistent with a direct relationship between H3-K4 methylation and signal activity. Correlations between increased H3-K4 methylation and induction of transcription are also observed at some, but not all, loci where transcription is induced. H3-K4 methylation may therefore be a widely used but not universal means for controlling chromatin activity in this developmental transition.
Collapse
Affiliation(s)
- Eric J Perkins
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
10
|
Martina C, Wayne J, Bell A, Chang Y. In vivo ligation of CD3 on neonatal scid thymocytes blocks gamma-irradiation-induced TCRbeta rearrangements and thymic lymphomagenesis. Immunol Lett 2003; 85:279-86. [PMID: 12663144 DOI: 10.1016/s0165-2478(02)00256-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several studies have shown that the developmental arrest of severe combined immune deficiency (scid) thymocytes during the CD4(-)CD8(-) double negative (DN) to CD4(+)CD8(+) double positive (DP) transition can be overcome by a sub-lethal dose of ionizing radiation (IR). Concurrent with this developmental progression, IR also induces variable (diversity) joining (V(D)J) recombination at T cell receptor (TCR), delta, beta, and gamma, but not alpha loci. In addition, all irradiated scid mice succumb to thymic lymphoma. In this study, we demonstrate that scid neonates treated with anti-CD3 epsilon antibody become more resistant to the development of thymoma upon exposure to IR. It is known that the anti-CD3 epsilon antibody treatment induces T cell progression to the DP stage bypassing TCRbeta rearrangement. We show here that the resistance to tumor development is correlated with a reduction of TCRbeta rearrangements that are induced by IR. However, TCRgamma rearrangements were not altered by the antibody treatment. The particular effect of anti-CD3 epsilon antibody on TCRbeta rearrangements is likely attributed to a decline of the double negative thymocyte subset (DN3), in which TCRbeta rearrangements predominantly occur. These results suggest that the developmental stage of scid thymocytes can influence the effect of IR on TCR rearrangements as well as lymphomagenesis.
Collapse
Affiliation(s)
- Cherie Martina
- Department of Microbiology, Molecular and Cellular Biology Program, Arizona State University, Tempe, AZ, 85287-2701, USA
| | | | | | | |
Collapse
|
11
|
Brown ML, Franco D, Burkle A, Chang Y. Role of poly(ADP-ribosyl)ation in DNA-PKcs- independent V(D)J recombination. Proc Natl Acad Sci U S A 2002; 99:4532-7. [PMID: 11930007 PMCID: PMC123682 DOI: 10.1073/pnas.072495299] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Indexed: 11/18/2022] Open
Abstract
V(D)J recombination is critical to the generation of a functional immune system. Intrinsic to the assembly of antigen receptor genes is the formation of endogenous DNA double-strand breaks, which normally are excluded from the cellular surveillance machinery because of their sequestration in a synaptic complex and/or rapid resolution. In cells deficient in double-strand break repair, such recombination-induced breaks fail to be joined promptly and therefore are at risk of being recognized as DNA damage. Poly(ADP-ribose) polymerase-1 is an important factor in the maintenance of genomic integrity and is believed to play a central role in DNA repair. Here we provide visual evidence that in a recombination inducible severe combined immunodeficient cell line poly(ADP-ribose) formation occurs during the resolution stage of V(D)J recombination where nascent opened coding ends are generated. Poly(ADP-ribose) formation appears to facilitate coding end resolution. Furthermore, formation of Mre11 foci coincide with these areas of poly(ADP-ribosyl)ation. In contrast, such a response is not observed in wild-type cells possessing a functional catalytic subunit of DNA-dependent protein kinase (DNA-PK(cs)). Thus, V(D)J recombination invokes a DNA damage response in cells lacking DNA-PK(cs) activity, which in turn promotes DNA-PK(cs)-independent resolution of recombination intermediates.
Collapse
Affiliation(s)
- Matthew L Brown
- Department of Microbiology, Molecular and Cellular Biology Program, Arizona State University, Tempe, AZ 85287-2701, USA
| | | | | | | |
Collapse
|
12
|
Perkins EJ, Nair A, Cowley DO, Van Dyke T, Chang Y, Ramsden DA. Sensing of intermediates in V(D)J recombination by ATM. Genes Dev 2002; 16:159-64. [PMID: 11799059 PMCID: PMC155324 DOI: 10.1101/gad.956902] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) is required for resistance to radiation-induced DNA breaks. Here we use chromatin immunoprecipitation to show that ATM also localizes to breaks associated with V(D)J recombination. ATM recruitment to the recombining locus correlates approximately with recruitment of the break-initiating factor RAG1 and precedes efficient break repair, consistent with localization of ATM to normal recombination intermediates. A product of ATM kinase activity, Ser 18-phosphorylated p53, was detected similarly at these breaks, arguing that ATM phosphorylates target proteins in situ. We suggest routine surveillance of intermediates in V(D)J recombination by ATM helps suppress potentially oncogenic translocations when repair fails.
Collapse
Affiliation(s)
- Eric J Perkins
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
13
|
Brown ML, Lew S, Chang Y. The scid recombination-inducible cell line: a model to study DNA-PK-independent V(D)J recombination. Immunol Lett 2000; 75:21-6. [PMID: 11163862 DOI: 10.1016/s0165-2478(00)00283-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To investigate the molecular mechanisms of the variable (diversity) joining (V(D)J) recombination process at an endogenous gene locus, recombination-inducible cell lines were made from both bcl-2-bearing severe combined immune deficiency (scid) homozygous and scid heterozyous (s/ + ) mice by transforming pre-B cells with the temperature-sensitive Abelson murine leukemia virus (ts-Ab-MLV). These transformants can be induced to undergo immunoglobulin light-chain gene rearrangements by incubating them at the non-permissive temperature. In the case of transformed scid cells, a significant amount of hairpin coding ends are accumulated during recombination induction, but few coding joints are generated. After being shifted to the permissive temperature. however, these cells are capable of opening hairpin ends and forming coding joints. Thus, ts-Ab-MLV transformed scid cells can be readily manipulated for both recombination cleavage and end resolution. However, unlike the rapid coding joint formation in s/ + cells that have the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), the process for resolving coding ends in scid cells is slow and error prone, and also appears to be correlated with a reduction in the RAG1/2 expression. Apparently, this process is mediated by a DNA-PK-independent pathway. The fact that the activity of this pathway can be manipulated in vitro makes it possible to delineate the mechanisms in end opening, processing and joining. Therefore, these ts-Ab-MLV transformed scid cell lines offer a model to study the molecular nature as well as the regulation of the DNA-PK-independent pathway in coding end resolution.
Collapse
Affiliation(s)
- M L Brown
- Department of Microbiology, Arizona State University, Tempe 85287-2701, USA
| | | | | |
Collapse
|
14
|
Lew S, Franco D, Chang Y. Activation of V(D)J recombination induces the formation of interlocus joints and hybrid joints in scid pre-B-cell lines. Mol Cell Biol 2000; 20:7170-7. [PMID: 10982833 PMCID: PMC86270 DOI: 10.1128/mcb.20.19.7170-7177.2000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
V(D)J recombination is the mechanism by which antigen receptor genes are assembled. The site-specific cleavage mediated by RAG1 and RAG2 proteins generates two types of double-strand DNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although these DNA breaks are mainly resolved into coding joints and signal joints, they can participate in a nonstandard joining process, forming hybrid and open/shut joints that link coding ends to signal ends. In addition, the broken DNA molecules excised from different receptor gene loci could potentially be joined to generate interlocus joints. The interlocus recombination process may contribute to the translocation between antigen receptor genes and oncogenes, leading to malignant transformation of lymphocytes. To investigate the underlying mechanisms of these nonstandard recombination events, we took advantage of recombination-inducible cell lines derived from scid homozygous (s/s) and scid heterozygous (s/+) mice by transforming B-cell precursors with a temperature-sensitive Abelson murine leukemia virus mutant (ts-Ab-MLV). We can manipulate the level of recombination cleavage and end resolution by altering the cell culture temperature. By analyzing various recombination products in scid and s/+ ts-Ab-MLV transformants, we report in this study that scid cells make higher levels of interlocus and hybrid joints than their normal counterparts. These joints arise concurrently with the formation of intralocus joints, as well as with the appearance of opened coding ends. The junctions of these joining products exhibit excessive nucleotide deletions, a characteristic of scid coding joints. These data suggest that an inability of scid cells to promptly resolve their recombination ends exposes the ends to a random joining process, which can conceivably lead to chromosomal translocations.
Collapse
MESH Headings
- Abelson murine leukemia virus/genetics
- Abelson murine leukemia virus/physiology
- Animals
- Apoptosis/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- DNA Nucleotidyltransferases/metabolism
- DNA, Neoplasm/genetics
- DNA-Activated Protein Kinase
- DNA-Binding Proteins
- Enzyme Activation
- Gene Expression Regulation, Leukemic
- Gene Rearrangement, B-Lymphocyte, Light Chain
- Genes, Immunoglobulin
- Genes, bcl-2
- Genotype
- Immunoglobulin J-Chains/genetics
- Immunoglobulin Variable Region/genetics
- Mice
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Polymerase Chain Reaction
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Severe Combined Immunodeficiency/complications
- Severe Combined Immunodeficiency/genetics
- Tumor Cells, Cultured
- VDJ Recombinases
Collapse
Affiliation(s)
- S Lew
- Department of Microbiology, Molecular and Cellular Biology Program, Arizona State University, Tempe, Arizona 85287-2701, USA
| | | | | |
Collapse
|
15
|
Brown ML, Chang Y. Metabolism of recombination coding ends in scid cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4135-42. [PMID: 10754308 DOI: 10.4049/jimmunol.164.8.4135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
V(D)J recombination cleavage generates two types of dsDNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although signal ends can be directly ligated to form signal joints, hairpin coding ends need to be opened and subsequently processed before being joined. However, the underlying mechanism of coding end resolution remains undefined. The current study attempts to delineate this process by analyzing various structures of coding ends made in situ from recombination-inducible pre-B cell lines of both normal and scid mice. These cell lines were derived by transformation of B cell precursors with the temperature-sensitive Abelson murine leukemia virus. Our kinetic analysis revealed that under conditions permissive to scid transformants, hairpin coding ends could be nicked to generate 3' overhangs and then processed into blunt ends. The final joining of these blunt ends followed the same kinetics as signal joint formation. The course of this process is in sharp contrast to coding end resolution in scid heterozygous transformants that express the catalytic subunit of DNA-dependent protein kinase, in which hairpin end opening, processing, and joining proceeded very rapidly and appeared to be closely linked. Furthermore, we demonstrated that the opening of hairpin ends in scid cells could be manipulated by different culture conditions, which ultimately influenced not only the level and integrity of the newly formed coding joints, but also the extent of microhomology at the coding junctions. These results are discussed in the context of scid leaky recombination.
Collapse
Affiliation(s)
- M L Brown
- Department of Microbiology, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|
16
|
Alrefai RH, Beecham EJ, Bohr VA, Gearhart PJ. Less repair of pyrimidine dimers and single-strand breaks in genes by scid cells. Biochem Biophys Res Commun 1999; 264:878-82. [PMID: 10544024 DOI: 10.1006/bbrc.1999.1608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Severe combined immunodeficient (Scid) mice have a mutation in the catalytic subunit of the DNA binding protein kinase that is involved in repair of double-strand breaks in DNA. To determine if the protein also influences repair of single-strand breaks, we examined the ability of Scid cells to repair lesions introduced by ultraviolet light and gamma-ray irradiation. DNA repair was measured both in total genomic DNA and in specific genes from murine Scid and wildtype fibroblast cell lines. The removal of pyrimidine dimers and repair of strand breaks in genes was measured using quantitative Southern blot analyses. After ultraviolet irradiation, there was no significant difference in the repair of photoproducts in bulk DNA between Scid and wildtype cells, as measured by cellular survival and unscheduled DNA synthesis. However, deficient repair was evident in genes, where Scid cells had 25-50% less repair in the c-myc and dihydrofolate reductase genes. After gamma-irradiation, Scid fibroblasts had 20-35% less repair of DNA breaks in immunoglobulin kappa and heavy constant genes than wildtype cells. The data suggest that intact DNA-PK enzyme is needed for the efficient operation of cellular repair of pyrimidine dimers and single-strand breaks in genes, as well as in its established role in rejoining double-strand breaks.
Collapse
Affiliation(s)
- R H Alrefai
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland, 21224, USA
| | | | | | | |
Collapse
|