1
|
Gonzalez-Martinez D, Roth L, Mumford TR, Guan J, Le A, Doebele RC, Huang B, Tulpule A, Niewiadomska-Bugaj M, Bivona TG, Bugaj LJ. Oncogenic EML4-ALK assemblies suppress growth factor perception and modulate drug tolerance. Nat Commun 2024; 15:9473. [PMID: 39488530 PMCID: PMC11531495 DOI: 10.1038/s41467-024-53451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024] Open
Abstract
Drug resistance remains a challenge for targeted therapy of cancers driven by EML4-ALK and related fusion oncogenes. EML4-ALK forms cytoplasmic protein condensates, which result from networks of interactions between oncogene and adapter protein multimers. While these assemblies are associated with oncogenic signaling, their role in drug response is unclear. Here, we use optogenetics and live-cell imaging to find that EML4-ALK assemblies suppress transmembrane receptor tyrosine kinase (RTK) signaling by sequestering RTK adapter proteins including GRB2 and SOS1. Furthermore, ALK inhibition, while suppressing oncogenic signaling, simultaneously releases the sequestered adapters and thereby resensitizes RTK signaling. Resensitized RTKs promote rapid and pulsatile ERK reactivation that originates from paracrine ligands shed by dying cells. Reactivated ERK signaling promotes cell survival, which can be counteracted by combination therapies that block paracrine signaling. Our results identify a regulatory role for RTK fusion assemblies and uncover a mechanism of tolerance to targeted therapies.
Collapse
Affiliation(s)
| | - Lee Roth
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juan Guan
- Department of Physics, Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32611, USA
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Anh Le
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Robert C Doebele
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94143, USA
- Department of Biochemistry and Biophysics, UCSF, San Francisco, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, 94158, USA
| | - Asmin Tulpule
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA, 94143, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Simbulan-Rosenthal CM, Islam N, Haribabu Y, Alobaidi R, Shalamzari A, Graham G, Kuo LW, Sykora P, Rosenthal DS. CD133 Stimulates Cell Proliferation via the Upregulation of Amphiregulin in Melanoma. Cells 2024; 13:777. [PMID: 38727313 PMCID: PMC11083289 DOI: 10.3390/cells13090777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
CD133, a cancer stem cell (CSC) marker in tumors, including melanoma, is associated with tumor recurrence, chemoresistance, and metastasis. Patient-derived melanoma cell lines were transduced with a Tet-on vector expressing CD133, generating doxycycline (Dox)-inducible cell lines. Cells were exposed to Dox for 24 h to induce CD133 expression, followed by RNA-seq and bioinformatic analyses, revealing genes and pathways that are significantly up- or downregulated by CD133. The most significantly upregulated gene after CD133 was amphiregulin (AREG), validated by qRT-PCR and immunoblot analyses. Induced CD133 expression significantly increased cell growth, percentage of cells in S-phase, BrdU incorporation into nascent DNA, and PCNA levels, indicating that CD133 stimulates cell proliferation. CD133 induction also activated EGFR and the MAPK pathway. Potential mechanisms highlighting the role(s) of CD133 and AREG in melanoma CSC were further delineated using AREG/EGFR inhibitors or siRNA knockdown of AREG mRNA. Treatment with the EGFR inhibitor gefitinib blocked CD133-induced cell growth increase and MAPK pathway activation. Importantly, siRNA knockdown of AREG reversed the stimulatory effects of CD133 on cell growth, indicating that AREG mediates the effects of CD133 on cell proliferation, thus serving as an attractive target for novel combinatorial therapeutics in melanoma and cancers with overexpression of both CD133 and AREG.
Collapse
Affiliation(s)
- Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (N.I.); (Y.H.); (R.A.); (A.S.); (G.G.); (L.-W.K.)
| | - Nusrat Islam
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (N.I.); (Y.H.); (R.A.); (A.S.); (G.G.); (L.-W.K.)
| | - Yogameenakshi Haribabu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (N.I.); (Y.H.); (R.A.); (A.S.); (G.G.); (L.-W.K.)
| | - Ryyan Alobaidi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (N.I.); (Y.H.); (R.A.); (A.S.); (G.G.); (L.-W.K.)
| | - Azadeh Shalamzari
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (N.I.); (Y.H.); (R.A.); (A.S.); (G.G.); (L.-W.K.)
| | - Garrett Graham
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (N.I.); (Y.H.); (R.A.); (A.S.); (G.G.); (L.-W.K.)
| | - Li-Wei Kuo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (N.I.); (Y.H.); (R.A.); (A.S.); (G.G.); (L.-W.K.)
| | - Peter Sykora
- Amelia Technologies, LLC., Washington, DC 20001, USA;
| | - Dean S Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (N.I.); (Y.H.); (R.A.); (A.S.); (G.G.); (L.-W.K.)
| |
Collapse
|
3
|
Bhuva DD, Tan CW, Liu N, Whitfield HJ, Papachristos N, Lee SC, Kharbanda M, Mohamed A, Davis MJ. vissE: a versatile tool to identify and visualise higher-order molecular phenotypes from functional enrichment analysis. BMC Bioinformatics 2024; 25:64. [PMID: 38331751 PMCID: PMC10854147 DOI: 10.1186/s12859-024-05676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Functional analysis of high throughput experiments using pathway analysis is now ubiquitous. Though powerful, these methods often produce thousands of redundant results owing to knowledgebase redundancies upstream. This scale of results hinders extensive exploration by biologists and can lead to investigator biases due to previous knowledge and expectations. To address this issue, we present vissE, a flexible network-based analysis and visualisation tool that organises information into semantic categories and provides various visualisation modules to characterise them with respect to the underlying data, thus providing a comprehensive view of the biological system. We demonstrate vissE's versatility by applying it to three different technologies: bulk, single-cell and spatial transcriptomics. Applying vissE to a factor analysis of a breast cancer spatial transcriptomic data, we identified stromal phenotypes that support tumour dissemination. Its adaptability allows vissE to enhance all existing gene-set enrichment and pathway analysis workflows, empowering biologists during molecular discovery.
Collapse
Affiliation(s)
- Dharmesh D Bhuva
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Chin Wee Tan
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Fraser Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Ning Liu
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Holly J Whitfield
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Wellcome Sanger Institute, Hinxton, UK
| | - Nicholas Papachristos
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Samuel C Lee
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Malvika Kharbanda
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ahmed Mohamed
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Colonial Foundation Healthy Ageing Centre, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Melissa J Davis
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- Fraser Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
4
|
Lu X, Li Y, Li Y, Zhang X, Shi J, Feng H, Yu Z, Gao Y. Prognostic and predictive biomarkers for anti-EGFR monoclonal antibody therapy in RAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2023; 23:1117. [PMID: 37974093 PMCID: PMC10655341 DOI: 10.1186/s12885-023-11600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND RAS mutations affect prognosis in patients with metastatic colorectal cancer (mCRC) and have been identified as strong negative predictive markers for anti-epidermal growth factor receptor monoclonal antibody (anti-EGFR mAb) therapy, but many tumors containing wild-type RAS genes still do not respond to these therapies. Some additional biomarkers may have prognostic or predictive roles, but conclusions remain controversial. METHODS We performed a meta-analysis and systematic review of randomized controlled trials comparing anti-EGFR mAb therapy with alternative therapy that investigated the prognostic and predictive impact of additional biomarkers in RAS wild-type (wt) mCRC patients. Hazard ratios (HRs) and 95% confidence intervals (CIs) for progression-free survival (PFS) and overall survival (OS) and odds ratios (ORs) for objective response rate (ORR) were calculated. The prognostic value of biomarkers was investigated by separately pooling HR and OR for different treatment groups in an individual study. The predictive value was assessed by pooling study interactions between treatment effects and biomarker subgroups. RESULTS Thirty publications reporting on eighteen trials were selected, including a total of 13,507 patients. In prognostic analysis, BRAF mutations were associated with poorer PFS [HRs = 3.76 (2.47-5.73) and 2.69 (1.82-3.98)] and OS [HRs = 2.66 (1.95-3.65) and 2.45 (1.55-3.88)] in both the experimental and control arms; low miR-31-3p expression appeared to have longer PFS and OS. In terms of predictive effect, a lack of response to anti-EGFR therapy was observed in patients with BRAF mutant tumors (Pinteraction < 0.01 for PFS). Patients with tumors with any mutation in the KRAS/NRAS/BRAF/PIK3CA gene also showed similar results compared with all wild-type tumors (Pinteraction for PFS, OS, and ORR were < 0.01, < 0.01 and 0.01, respectively). While low miR-31-3p expression could predict PFS (Pinteraction = 0.01) and OS (Pinteraction = 0.04) benefit. The prognostic and predictive value regarding PIK3CA mutations, PTEN mutations or deletions, EGFR, EREG/AREG, HER2, HER3, and HER4 expression remains uncertain. CONCLUSIONS In RAS wt mCRC patients receiving EGFR-targeted therapy, BRAF mutation is a powerful prognostic and therapy-predictive biomarker, with no effect found for PIK3CA mutation, PTEN mutation or deletion, but the combined biomarker KRAS/NRAS/BRAF/PIK3CA mutations predict resistance to anti-EGFR therapy. Low miR-31-3p expression may have positive prognostic and therapy predictive effects. Evidence on the prognostic and predictive roles of EGFR and its ligands, and HER2/3/4 is insufficient.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuyao Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Feng S, Sanford JA, Weber T, Hutchinson-Bunch CM, Dakup PP, Paurus VL, Attah K, Sauro HM, Qian WJ, Wiley HS. A Phosphoproteomics Data Resource for Systems-level Modeling of Kinase Signaling Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551714. [PMID: 37577496 PMCID: PMC10418157 DOI: 10.1101/2023.08.03.551714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Building mechanistic models of kinase-driven signaling pathways requires quantitative measurements of protein phosphorylation across physiologically relevant conditions, but this is rarely done because of the insensitivity of traditional technologies. By using a multiplexed deep phosphoproteome profiling workflow, we were able to generate a deep phosphoproteomics dataset of the EGFR-MAPK pathway in non-transformed MCF10A cells across physiological ligand concentrations with a time resolution of <12 min and in the presence and absence of multiple kinase inhibitors. An improved phosphosite mapping technique allowed us to reliably identify >46,000 phosphorylation sites on >6600 proteins, of which >4500 sites from 2110 proteins displayed a >2-fold increase in phosphorylation in response to EGF. This data was then placed into a cellular context by linking it to 15 previously published protein databases. We found that our results were consistent with much, but not all previously reported data regarding the activation and negative feedback phosphorylation of core EGFR-ERK pathway proteins. We also found that EGFR signaling is biphasic with substrates downstream of RAS/MAPK activation showing a maximum response at <3ng/ml EGF while direct substrates, such as HGS and STAT5B, showing no saturation. We found that RAS activation is mediated by at least 3 parallel pathways, two of which depend on PTPN11. There appears to be an approximately 4-minute delay in pathway activation at the step between RAS and RAF, but subsequent pathway phosphorylation was extremely rapid. Approximately 80 proteins showed a >2-fold increase in phosphorylation across all experiments and these proteins had a significantly higher median number of phosphorylation sites (~18) relative to total cellular phosphoproteins (~4). Over 60% of EGF-stimulated phosphoproteins were downstream of MAPK and included mediators of cellular processes such as gene transcription, transport, signal transduction and cytoskeletal arrangement. Their phosphorylation was either linear with respect to MAPK activation or biphasic, corresponding to the biphasic signaling seen at the level of the EGFR. This deep, integrated phosphoproteomics data resource should be useful in building mechanistic models of EGFR and MAPK signaling and for understanding how downstream responses are regulated.
Collapse
Affiliation(s)
- Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - James A. Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Thomas Weber
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | | | - Panshak P. Dakup
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Vanessa L. Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| |
Collapse
|
6
|
Badenes M, Burbridge E, Oikonomidi I, Amin A, de Carvalho É, Kosack L, Mariano C, Domingos P, Faísca P, Adrain C. The ADAM17 sheddase complex regulator iTAP/Frmd8 modulates inflammation and tumor growth. Life Sci Alliance 2023; 6:e202201644. [PMID: 36720499 PMCID: PMC9889915 DOI: 10.26508/lsa.202201644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
The metalloprotease ADAM17 is a sheddase of key molecules, including TNF and epidermal growth factor receptor ligands. ADAM17 exists within an assemblage, the "sheddase complex," containing a rhomboid pseudoprotease (iRhom1 or iRhom2). iRhoms control multiple aspects of ADAM17 biology. The FERM domain-containing protein iTAP/Frmd8 is an iRhom-binding protein that prevents the precocious shunting of ADAM17 and iRhom2 to lysosomes and their consequent degradation. As pathophysiological role(s) of iTAP/Frmd8 have not been addressed, we characterized the impact of iTAP/Frmd8 loss on ADAM17-associated phenotypes in mice. We show that iTAP/Frmd8 KO mice exhibit defects in inflammatory and intestinal epithelial barrier repair functions, but not the collateral defects associated with global ADAM17 loss. Furthermore, we show that iTAP/Frmd8 regulates cancer cell growth in a cell-autonomous manner and by modulating the tumor microenvironment. Our work suggests that pharmacological intervention at the level of iTAP/Frmd8 may be beneficial to target ADAM17 activity in specific compartments during chronic inflammatory diseases or cancer, while avoiding the collateral impact on the vital functions associated with the widespread inhibition of ADAM17.
Collapse
Affiliation(s)
- Marina Badenes
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University, Lisbon, Portugal
- Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Emma Burbridge
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | | | - Abdulbasit Amin
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Érika de Carvalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | | | | | - Pedro Domingos
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Colin Adrain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
7
|
Krause HB, Karls AL, McClean MN, Kreeger PK. Cellular context alters EGF-induced ERK dynamics and reveals potential crosstalk with GDF-15. BIOMICROFLUIDICS 2022; 16:054104. [PMID: 36217350 PMCID: PMC9547670 DOI: 10.1063/5.0114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Cellular signaling dynamics are sensitive to differences in ligand identity, levels, and temporal patterns. These signaling patterns are also impacted by the larger context that the cell experiences (i.e., stimuli such as media formulation or substrate stiffness that are constant in an experiment exploring a particular variable but may differ between independent experiments which explore that variable) although the reason for different dynamics is not always obvious. Here, we compared extracellular-regulated kinase (ERK) signaling in response to epidermal growth factor treatment of human mammary epithelial cells cultures in either well culture or a microfluidic device. Using a single-cell ERK kinase translocation reporter, we observed extended ERK activation in well culture and only transient activity in microfluidic culture. The activity in microfluidic culture resembled that of the control condition, suggesting that shear stress led to the early activity and a loss of autocrine factors dampened extended signaling. Through experimental analysis we identified growth differentiation factor-15 as a candidate factor that led to extended ERK activation through a protein kinase C-α/β dependent pathway. Our results demonstrate that context impacts ERK dynamics and that comparison of distinct contexts can be used to elucidate new aspects of the cell signaling network.
Collapse
Affiliation(s)
- Harris B. Krause
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Alexis L. Karls
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Pamela K. Kreeger
- Author to whom correspondence should be addressed:. Telephone: 608-890-2915
| |
Collapse
|
8
|
Bolitho C, Moscova M, Baxter RC, Marsh DJ. Amphiregulin increases migration and proliferation of epithelial ovarian cancer cells by inducing its own expression via PI3-kinase signaling. Mol Cell Endocrinol 2021; 533:111338. [PMID: 34062166 DOI: 10.1016/j.mce.2021.111338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/09/2022]
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed in many types of cancer, including epithelial ovarian cancer (EOC), and its expression has been found to correlate with advanced stage and poor prognosis. The EGFR ligand amphiregulin (AREG) has been investigated as a target for human cancer therapy and is known to have an autocrine role in many cancers. A cytokine array identified AREG as one of several cytokines upregulated by EGF in a phosphatidylinositol 3-kinase (PI3-K) dependent manner in EOC cells. To investigate the functional role of AREG in EOC, its effect on cellular migration and proliferation was assessed in two EOC cells lines, OV167 and SKOV3. AREG increased both migration and proliferation of EOC cell line models through activation of PI3-K signaling, but independent of mitogen activated protein kinase (MAPK) signaling. Through an AREG autocrine loop mediated via PI3-K, upregulation of AREG led to increased levels of both AREG transcript and secreted AREG, while downregulation of endogenous AREG decreased the ability of exogenous AREG to induce cell migration and proliferation. Further, inhibition of endogenous AREG activity or metalloproteinase activity decreased EGF-induced EOC migration and proliferation, indicating a role for soluble endogenous AREG in mediating the functional effects of EGFR in inducing migration and proliferation in EOC.
Collapse
Affiliation(s)
- Christine Bolitho
- University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Michelle Moscova
- University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia; School of Medical Sciences, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Robert C Baxter
- University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology, Sydney, Ultimo, NSW, 2007, Australia; Northern Clinical School, Kolling Institute, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|
9
|
Gagliardi PA, Dobrzyński M, Jacques MA, Dessauges C, Ender P, Blum Y, Hughes RM, Cohen AR, Pertz O. Collective ERK/Akt activity waves orchestrate epithelial homeostasis by driving apoptosis-induced survival. Dev Cell 2021; 56:1712-1726.e6. [PMID: 34081908 DOI: 10.1016/j.devcel.2021.05.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/16/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022]
Abstract
Cell death events continuously challenge epithelial barrier function yet are crucial to eliminate old or critically damaged cells. How such apoptotic events are spatio-temporally organized to maintain epithelial homeostasis remains unclear. We observe waves of extracellular-signal-regulated kinase (ERK) and AKT serine/threonine kinase (Akt) activity pulses that originate from apoptotic cells and propagate radially to healthy surrounding cells. This requires epidermal growth factor receptor (EGFR) and matrix metalloproteinase (MMP) signaling. At the single-cell level, ERK/Akt waves act as spatial survival signals that locally protect cells in the vicinity of the epithelial injury from apoptosis for a period of 3-4 h. At the cell population level, ERK/Akt waves maintain epithelial homeostasis (EH) in response to mild or intense environmental insults. Disruption of this spatial signaling system results in the inability of a model epithelial tissue to ensure barrier function in response to environmental insults.
Collapse
Affiliation(s)
| | - Maciej Dobrzyński
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Marc-Antoine Jacques
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Coralie Dessauges
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Pascal Ender
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Yannick Blum
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, 300 Science and Technology Building, Greenville, NC 27858-4353, USA
| | - Andrew R Cohen
- Department of Electrical and Computer Engineering, Drexel University, 3120-40 Market Street, Suite 313, Philadelphia, PA 19104, USA
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
10
|
Seligmann JF, Elliott F, Richman S, Hemmings G, Brown S, Jacobs B, Williams C, Tejpar S, Barrett JH, Quirke P, Seymour M. Clinical and molecular characteristics and treatment outcomes of advanced right-colon, left-colon and rectal cancers: data from 1180 patients in a phase III trial of panitumumab with an extended biomarker panel. Ann Oncol 2020; 31:1021-1029. [PMID: 32387453 DOI: 10.1016/j.annonc.2020.04.476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Primary tumour location (PTL) is being adopted by clinicians to guide treatment decisions in metastatic colorectal cancer (mCRC). Here we test PTL as a predictive marker for panitumumab efficacy, and examine its relationship with an extended biomarker profile. We also examine rectal tumours as a separate location. PATIENTS AND METHODS mCRC patients from the second-line PICCOLO trial of irinotecan versus irinotecan/panitumumab (IrPan). PTL was classified as right-PTL, left-PTL or rectal-PTL. PTL was assessed as a predictive biomarker for IrPan effect in RAS-wild-type (RAS-wt) patients (compared with irinotecan alone), then tested for independence alongside an extended biomarker profile (BRAF, epiregulin/amphiregulin (EREG/AREG) and HER3 mRNA expression). RESULTS PTL data were available for 1180 patients (98.5%), of whom 558 were RAS-wt. High HER3 expression was independently predictive of panitumumab overall survival improvement, but PTL and EREG/AREG were not. IrPan progression-free survival (PFS) improvement compared with irinotecan was seen in left-PTL [hazard ratio (HR) = 0.61, P = 0.002) but not right-PTL (HR = 0.98, P = 0.90) (interaction P = 0.05; RAS/BRAF-wt interaction P = 0.10), or in rectal-PTL (HR = 0.82, P = 0.20) (interaction P = 0.14 compared with left-PTL; RAS/BRAF-wt interaction P = 0.04). Patients with right-PTL and high EREG/AREG or HER3 expression, had IrPan PFS improvement (high EREG/AREG HR = 0.20, P = 0.04; high HER3 HR = 0.33, P = 0.10) compared with irinotecan. Similar effect was seen for rectal-PTL patients (high EREG/AREG HR = 0.44, P = 0.03; high HER3 HR = 0.34, P = 0.05). CONCLUSIONS RAS-wt patients with left-PTL are more likely to have panitumumab PFS advantage than those with right-PTL or rectal-PTL. However, an extended biomarker panel demonstrated significant heterogeneity in panitumumab PFS effect within a tumour location. AREG/EREG and HER3 mRNA expression identifies patients with right-PTL or rectal-PTL who achieve similar PFS effect with panitumumab as left-colon patients. Testing could provide a more reliable basis for clinical decision making. Further validation and development of these biomarkers is required to optimise routine patient care. CLINICAL TRIAL REGISTRATION ISRCTN identifier: ISRCTN93248876.
Collapse
Affiliation(s)
- J F Seligmann
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| | - F Elliott
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - S Richman
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - G Hemmings
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - S Brown
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - B Jacobs
- Molecular Digestive Oncology Unit, KU Leuven, Leuven, Belgium
| | - C Williams
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - S Tejpar
- Molecular Digestive Oncology Unit, KU Leuven, Leuven, Belgium
| | - J H Barrett
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - P Quirke
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - M Seymour
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Heib M, Rose-John S, Adam D. Necroptosis, ADAM proteases and intestinal (dys)function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:83-152. [PMID: 32381179 DOI: 10.1016/bs.ircmb.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
12
|
Matrix protease production, epithelial-to-mesenchymal transition marker expression and invasion of glioblastoma cells in response to osmotic or hydrostatic pressure. Sci Rep 2020; 10:2634. [PMID: 32060379 PMCID: PMC7021835 DOI: 10.1038/s41598-020-59462-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
Both hydrostatic and osmotic pressures are altered in the tumour microenvironment. Glioblastoma (GBM) is a brain tumour with high invasiveness and poor prognosis. We hypothesized that physical and osmotic forces regulate glioblastoma (GBM) invasiveness. The osmotic pressure of GBM cell culture medium was adjusted using sodium chloride or water. Alternatively, cells were subjected to increased hydrostatic force. The proteolytic profile and epithelial–mesenchymal transition (EMT) were investigated using zymography and real-time qPCR. The EMT markers assessed were Snail-1, Snail-2, N-cadherin, Twist and vimentin. Invasion was investigated in vitro using extracellular matrix-coated Transwell inserts. In response to osmotic and mechanical pressure, GBM cell lines U87 and U251 and patient-derived neural oncospheres upregulated the expression of urokinase-type plasminogen activator (uPA) and/or matrix metalloproteinases (MMPs) as well as some of the EMT markers tested. The adherent cell lines invaded more when placed in media of increased osmolality. Therefore, GBM respond to osmotic or mechanical pressure by increasing matrix degrading enzyme production, and adopting a phenotype reminiscent of EMT. Better understanding the molecular and cellular mechanisms by which increased pressure promotes GBM invasiveness may help to develop innovative therapeutic approaches.
Collapse
|
13
|
Foroughi S, Tie J, Gibbs P, Burgess AW. Epidermal growth factor receptor ligands: targets for optimizing treatment of metastatic colorectal cancer. Growth Factors 2019; 37:209-225. [PMID: 31878812 DOI: 10.1080/08977194.2019.1703702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The discovery of epidermal growth factor (EGF) and its receptor (EGFR) revealed the connection between EGF-like ligands, signaling from the EGFR family members and cancer. Over the next fifty years, analysis of EGFR expression and mutation led to the use of monoclonal antibodies to target EGFR in the treatment of metastatic colorectal cancer (mCRC) and this treatment has improved outcomes for patients. The use of the RAS oncogene mutational status has helped to refine patient selection for EGFR antibody therapy, but an effective molecular predictor of likely responders is lacking. This review analyzes the potential utility of measuring the expression, levels and activation of EGF-like ligands and associated processes as prognostic or predictive markers for the identification of patient risk and more effective mCRC therapies.
Collapse
Affiliation(s)
- Siavash Foroughi
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Jeanne Tie
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Western Health, St Albans, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Western Health, St Albans, Australia
| | - Antony Wilks Burgess
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Jiang J, Zhao W, Tang Q, Wang B, Li X, Feng Z. Over expression of amphiregulin promoted malignant progression in gastric cancer. Pathol Res Pract 2019; 215:152576. [DOI: 10.1016/j.prp.2019.152576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022]
|
15
|
Mohamed R, Janke R, Guo W, Cao Y, Zhou Y, Zheng W, Babaahmadi-Rezaei H, Xu S, Kamato D, Little PJ. GPCR transactivation signalling in vascular smooth muscle cells: role of NADPH oxidases and reactive oxygen species. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:R1-R11. [PMID: 32923966 PMCID: PMC7439842 DOI: 10.1530/vb-18-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 02/02/2023]
Abstract
The discovery and extension of G-protein-coupled receptor (GPCR) transactivation-dependent signalling has enormously broadened the GPCR signalling paradigm. GPCRs can transactivate protein tyrosine kinase receptors (PTKRs) and serine/threonine kinase receptors (S/TKRs), notably the epidermal growth factor receptor (EGFR) and transforming growth factor-β type 1 receptor (TGFBR1), respectively. Initial comprehensive mechanistic studies suggest that these two transactivation pathways are distinct. Currently, there is a focus on GPCR inhibitors as drug targets, and they have proven to be efficacious in vascular diseases. With the broadening of GPCR transactivation signalling, it is therefore important from a therapeutic perspective to find a common transactivation pathway of EGFR and TGFBR1 that can be targeted to inhibit complex pathologies activated by the combined action of these receptors. Reactive oxygen species (ROS) are highly reactive molecules and they act as second messengers, thus modulating cellular signal transduction pathways. ROS are involved in different mechanisms of GPCR transactivation of EGFR. However, the role of ROS in GPCR transactivation of TGFBR1 has not yet been studied. In this review, we will discuss the involvement of ROS in GPCR transactivation-dependent signalling.
Collapse
Affiliation(s)
- Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Reearna Janke
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Wanru Guo
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Yingnan Cao
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Atherosclerosis Research Center, Ahvaz, Iran
| | - Suowen Xu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Wells A, Wiley HS. A systems perspective of heterocellular signaling. Essays Biochem 2018; 62:607-617. [PMID: 30139877 PMCID: PMC6309864 DOI: 10.1042/ebc20180015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
Signal exchange between different cell types is essential for development and function of multicellular organisms, and its dysregulation is causal in many diseases. Unfortunately, most cell-signaling work has employed single cell types grown under conditions unrelated to their native context. Recent technical developments have started to provide the tools needed to follow signaling between multiple cell types, but gaps in the information they provide have limited their usefulness in building realistic models of heterocellular signaling. Currently, only targeted assays have the necessary sensitivity, selectivity, and spatial resolution to usefully probe heterocellular signaling processes, but these are best used to test specific, mechanistic models. Decades of systems biology research with monocultures has provided a solid foundation for building models of heterocellular signaling, but current models lack a realistic description of regulated proteolysis and the feedback processes triggered within and between cells. Identification and understanding of key regulatory processes in the extracellular environment and of recursive signaling patterns between cells will be essential to building predictive models of heterocellular systems.
Collapse
Affiliation(s)
- Alan Wells
- Departments of Pathology and Computational and Systems Biology, University of Pittsburgh, Pittsburg, PA 15261, U.S.A
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
| |
Collapse
|
17
|
Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update 2018; 24:1-14. [PMID: 29029246 DOI: 10.1093/humupd/dmx029] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The LH surge induces great physiological changes within the preovulatory follicle, which culminate in the ovulation of a mature oocyte that is capable of supporting embryo and foetal development. However, unlike mural granulosa cells, the oocyte and its surrounding cumulus cells are not directly responsive to LH, indicating that the LH signal is mediated by secondary factors produced by the granulosa cells. The mechanisms by which the oocyte senses the ovulatory LH signal and hence prepares for ovulation has been a subject of considerable controversy for the past four decades. Within the last 15 years several significant insights have been made into the molecular mechanisms orchestrating oocyte development, maturation and ovulation. These findings centre on the epidermal growth factor (EGF) pathway and the role it plays in the complex signalling network that finely regulates oocyte maturation and ovulation. OBJECTIVE AND RATIONALE This review outlines the role of the EGF network during oocyte development and regulation of the ovulatory cascade, and in particular focuses on the effect of the EGF network on oocyte developmental competence. Application of this new knowledge to advances in ART is examined. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles concerning the EGF network. Publications offering a comprehensive description of the role of the EGF network in follicle and oocyte development were used. OUTCOMES It is now clear that acute upregulation of the EGF network is an essential component of the ovulatory cascade as it transmits the LH signal from the periphery of the follicle to the cumulus-oocyte complex (COC). More recent findings have elucidated new roles for the EGF network in the regulation of oocyte development. EGF signalling downregulates the somatic signal 3'5'-cyclic guanine monophosphate that suppresses oocyte meiotic maturation and simultaneously provides meiotic inducing signals. The EGF network also controls translation of maternal transcripts in the quiescent oocyte, a process that is integral to oocyte competence. As a means of restricting the ovulatory signal to the Graffian follicle, most COCs in the ovary are unresponsive to EGF-ligands. Recent studies have revealed that development of a functional EGF signalling network in cumulus cells requires dual endocrine (FSH) and oocyte paracrine cues (growth differentiation factor 9 and bone morphogenetic protein 15), and this occurs progressively in COCs during the last stages of folliculogenesis. Hence, a new concept to emerge is that cumulus cell acquisition of EGF receptor responsiveness represents a developmental hallmark in folliculogenesis, analogous to FSH-induction of LH receptor signalling in mural granulosa cells. Likewise, this event represents a major milestone in the oocyte's developmental progression and acquisition of developmental competence. It is now clear that EGF signalling is perturbed in COCs matured in vitro. This has inspired novel concepts in IVM systems to ameliorate this perturbation, resulting in improved oocyte developmental competence. WIDER IMPLICATIONS An oocyte of high quality is imperative for fertility. Elucidating the fundamental molecular and cellular mechanims by which the EGF network regulates oocyte maturation and ovulation can be expected to open new opportunities in ART. This knowledge has already led to advances in oocyte IVM in animal models. Translation of such advances into a clinical setting should increase the efficacy of IVM, making it a viable treatment option for a wide range of patients, thereby simplifying fertility treatment and bringing substantial cost and health benefits.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Jing C, Jin YH, You Z, Qiong Q, Jun Z. Prognostic value of amphiregulin and epiregulin mRNA expression in metastatic colorectal cancer patients. Oncotarget 2018; 7:55890-55899. [PMID: 27344184 PMCID: PMC5342459 DOI: 10.18632/oncotarget.10151] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and its ligands amphiregulin (AREG) and epiregulin (EREG) play a central role in the development of colorectal cancer, but the prognostic values of AREG and EREG are controversial. We conducted a meta-analysis of studies that investigated AREG and/or EREG mRNA levels in primary tumors to determine their prognostic value in metastatic colorectal cancer (mCRC). In addition, RAS status was assessed. Relevant articles were identified by searching the EMBASE, PubMed, and Cochrane Library databases. Hazard ratios (HR) with 95% confidence intervals (CIs) were calculated using a random-effects model. Nine studies involving 2167 patients were included in this meta-analysis. High AREG expression was associated with longer overall survival (OS) and progression-free survival (PFS). High EREG expression was also associated with prolonged OS and PFS. In RAS wild-type (WT) patients who received anti-EGFR therapy, high AREG and EREG expression was associated with longer OS. Our results indicate that high AREG and EREG mRNA expression are independent favorable prognostic biomarkers in mCRC. The expression of these ligands should be considered when evaluating prognoses in RAS-WT patients receiving anti-EGFR therapy.
Collapse
Affiliation(s)
- Chen Jing
- Department of Medical Oncology, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yang Han Jin
- Department of Pathology, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhai You
- Department of Pharmacy, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Qian Qiong
- Department of Medical Oncology, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhou Jun
- Department of Pharmacy, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
19
|
Decoding Signal Processing at the Single-Cell Level. Cell Syst 2017; 5:542-543. [PMID: 29284127 DOI: 10.1016/j.cels.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The feedforward circuitry regulating ERK-dependent early response genes acts as a signal integrator rather than a signal persistence detector.
Collapse
|
20
|
Brain Tumor-Related Epilepsy: a Current Review of the Etiologic Basis and Diagnostic and Treatment Approaches. Curr Neurol Neurosci Rep 2017; 17:70. [DOI: 10.1007/s11910-017-0777-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Sisto M, Lorusso L, Ingravallo G, Lisi S. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:477-499. [DOI: 10.1007/s00005-017-0478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|
22
|
Abdel-Hamid NI, El-Azab MF, Moustafa YM. Macrolide antibiotics differentially influence human HepG2 cytotoxicity and modulate intrinsic/extrinsic apoptotic pathways in rat hepatocellular carcinoma model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:379-395. [DOI: 10.1007/s00210-016-1337-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/29/2016] [Indexed: 01/20/2023]
|
23
|
EGFR signaling pathways are wired differently in normal 184A1L5 human mammary epithelial and MDA-MB-231 breast cancer cells. J Cell Commun Signal 2017; 11:341-356. [PMID: 28357710 DOI: 10.1007/s12079-017-0389-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
Because of differences in the downstream signaling patterns of its pathways, the role of the human epidermal growth factor family of receptors (HER) in promoting cell growth and survival is cell line and context dependent. Using two model cell lines, we have studied how the regulatory interaction network among the key proteins of HER signaling pathways may be rewired upon normal to cancerous transformation. We in particular investigated how the transcription factor STAT3 and several key kinases' involvement in cancer-related signaling processes differ between normal 184A1L5 human mammary epithelial (HME) and MDA-MB-231 breast cancer epithelial cells. Comparison of the responses in these cells showed that normal-to-cancerous cellular transformation causes a major re-wiring of the growth factor initiated signaling. In particular, we found that: i) regulatory interactions between Erk, p38, JNK and STAT3 are triangulated and tightly coupled in 184A1L5 HME cells, and ii) STAT3 is only weakly associated with the Erk-p38-JNK pathway in MDA-MB-231 cells. Utilizing the concept of pathway substitution, we predicted how the observed differences in the regulatory interactions may affect the proliferation/survival and motility responses of the 184A1L5 and MDA-MB-231 cells when exposed to various inhibitors. We then validated our predictions experimentally to complete the experiment-computation-experiment iteration loop. Validated differences in the regulatory interactions of the 184A1L5 and MDA-MB-231 cells indicated that instead of inhibiting STAT3, which has severe toxic side effects, simultaneous inhibition of JNK together with Erk or p38 could be a more effective strategy to impose cell death selectively to MDA-MB-231 cancer cells while considerably lowering the side effects to normal epithelial cells. Presented analysis establishes a framework with examples that would enable cell signaling researchers to identify the signaling network structures which can be used to predict the phenotypic responses in particular cell lines of interest.
Collapse
|
24
|
Shi T, Niepel M, McDermott JE, Gao Y, Nicora CD, Chrisler WB, Markillie LM, Petyuk VA, Smith RD, Rodland KD, Sorger PK, Qian WJ, Wiley HS. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway. Sci Signal 2016; 9:rs6. [PMID: 27405981 DOI: 10.1126/scisignal.aaf0891] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components-16 core proteins and 10 feedback regulators-of the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Mario Niepel
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lye M Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Peter K Sorger
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA.
| |
Collapse
|
25
|
Carnet O, Lecomte J, Masset A, Primac I, Durré T, Maertens L, Detry B, Blacher S, Gilles C, Péqueux C, Paupert J, Foidart JM, Jerusalem G, Cataldo D, Noel A. Mesenchymal Stem Cells Shed Amphiregulin at the Surface of Lung Carcinoma Cells in a Juxtacrine Manner. Neoplasia 2016; 17:552-63. [PMID: 26297433 PMCID: PMC4547406 DOI: 10.1016/j.neo.2015.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/23/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022] Open
Abstract
Solid tumors comprise cancer cells and different supportive stromal cells, including mesenchymal stem cells (MSCs), which have recently been shown to enhance tumor growth and metastasis. We provide new mechanistic insights into how bone marrow (BM)–derived MSCs co-injected with Lewis lung carcinoma cells promote tumor growth and metastasis in mice. The proinvasive effect of BM-MSCs exerted on tumor cells relies on an unprecedented juxtacrine action of BM-MSC, leading to the trans-shedding of amphiregulin (AREG) from the tumor cell membrane by tumor necrosis factor-α–converting enzyme carried by the BM-MSC plasma membrane. The released soluble AREG activates cancer cells and promotes their invasiveness. This novel concept is supported by the exploitation of different 2D and 3D culture systems and by pharmacological approaches using a tumor necrosis factor-α–converting enzyme inhibitor and AREG-blocking antibodies. Altogether, we here assign a new function to BM-MSC in tumor progression and establish an uncovered link between AREG and BM-MSC.
Collapse
Affiliation(s)
- Oriane Carnet
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Julie Lecomte
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Anne Masset
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Irina Primac
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Tania Durré
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Ludovic Maertens
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Benoit Detry
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Christine Gilles
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Christel Péqueux
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Jenny Paupert
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Guy Jerusalem
- Department of Medical Oncology, Centre Hospitalier Universitaire (CHU), Sart Tilman, B-4000 Liège, Belgium
| | - Didier Cataldo
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, B-4000 Liège, Belgium.
| |
Collapse
|
26
|
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis.
Collapse
Affiliation(s)
- Jennifer C Jones
- Cell Biology, Stem Cells, and Development Program and.,Division of Gastroenterology, Hepatology, and Nutrition and Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado 80045; , ,
| | - Shelly Rustagi
- Division of Gastroenterology, Hepatology, and Nutrition and Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado 80045; , ,
| | - Peter J Dempsey
- Cell Biology, Stem Cells, and Development Program and.,Division of Gastroenterology, Hepatology, and Nutrition and Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado 80045; , ,
| |
Collapse
|
27
|
Activation of HER3 interferes with antitumor effects of Axl receptor tyrosine kinase inhibitors: suggestion of combination therapy. Neoplasia 2015; 16:301-18. [PMID: 24862757 DOI: 10.1016/j.neo.2014.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 12/14/2022] Open
Abstract
The Axl receptor tyrosine kinase (RTK) has been established as a strong candidate for targeted therapy of cancer. However, the benefits of targeted therapies are limited due to acquired resistance and activation of alternative RTKs. Therefore, we asked if cancer cells are able to overcome targeted Axl therapies. Here, we demonstrate that inhibition of Axl by short interfering RNA or the tyrosine kinase inhibitor (TKI) BMS777607 induces the expression of human epidermal growth factor receptor 3 (HER3) and the neuregulin 1(NRG1)-dependent phosphorylation of HER3 in MDA-MB231 and Ovcar8 cells. Moreover, analysis of 20 Axl-expressing cancer cell lines of different tissue origin indicates a low basal phosphorylation of RAC-α serine/threonine-protein kinase (AKT) as a general requirement for HER3 activation on Axl inhibition. Consequently, phosphorylation of AKT arises as an independent biomarker for Axl treatment. Additionally, we introduce phosphorylation of HER3 as an independent pharmacodynamic biomarker for monitoring of anti-Axl therapy response. Inhibition of cell viability by BMS777607 could be rescued by NRG1-dependent activation of HER3, suggesting an escape mechanism by tumor microenvironment. The Axl-TKI MPCD84111 simultaneously blocked Axl and HER2/3 signaling and thereby prohibited HER3 feedback activation. Furthermore, dual inhibition of Axl and HER2/3 using BMS777607 and lapatinib led to a significant inhibition of cell viability in Axl-expressing MDA-MB231 and Ovcar8 cells. Therefore, we conclude that, in patient cohorts with expression of Axl and low basal activity of AKT, a combined inhibition of Axl and HER2/3 kinase would be beneficial to overcome acquired resistance to Axl-targeted therapies.
Collapse
|
28
|
Gong C, Zhang Y, Shankaran H, Resat H. Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells. MOLECULAR BIOSYSTEMS 2015; 11:146-58. [PMID: 25315124 PMCID: PMC4540226 DOI: 10.1039/c4mb00471j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38 MAPK, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, the first three members of HER family (HER1-3) can form homo- and hetero-dimers, and there is considerable evidence suggesting that the receptor dimers differentially activate intracellular signaling pathways. To better understand the interactions in this system, we pursued multi-factorial experiments where HER dimerization patterns and signaling pathways were rationally perturbed. We measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38 MAPK, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. We hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated this hypothesis using a combination of model-based analysis to quantify the HER dimerization patterns, and by clustering the activation data in multiple ways to confirm that the HER receptor dimer is a better predictor of the signaling through p38 MAPK, ERK and AKT pathways than the total HER receptor expression and activation levels. We then pursued combinatorial inhibition studies to identify the causal regulatory interactions between sentinel signaling proteins. Quantitative analysis of the collected data using the modular response analysis (MRA) and its Bayesian Variable Selection Algorithm (BVSA) version allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways in HME cells. Results of the BVSA/MRA and cluster analysis were in agreement with each other.
Collapse
Affiliation(s)
- Chunhong Gong
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yi Zhang
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Harish Shankaran
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Haluk Resat
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
29
|
Borawska MH, Markiewicz-Żukowska R, Naliwajko SK, Moskwa J, Bartosiuk E, Socha K, Surażyński A, Kochanowicz J, Mariak Z. The interaction of bee products with temozolomide in human diffuse astrocytoma, glioblastoma multiforme and astroglia cell lines. Nutr Cancer 2014; 66:1247-56. [PMID: 25256634 DOI: 10.1080/01635581.2014.951735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present study, we investigated the influence of extracts from Salix spp. honey (ESH), beebread (EBB), and royal jelly (ERJ) with and without temozolomide (TMZ) on cell lines derived from a patient with diffuse astrocytoma (DASC), human glioblastoma multiforme (U87MG), and normal human astroglia (SVGp12). DASC was identified by immunocytochemistry. TMZ (20 μM) in combination with ESH (30 μg/mL), EBB (50 μg/mL), and ERJ (30 μg/mL) has stronger cytotoxic activity on U87MG cells after 72 h (20.0, 26.5, and 29.3% of control, respectively) than TMZ alone (about 6% of control). An increase of the cytotoxic effect and inhibition of DNA synthesis in SVGp12 were detected after administering TMZ with the studied extracts. NF-κB p50 subunit was reduced in U87MG cells after treatment with ESH (70.9%) and ESH + TMZ (74.7%). A significant decline of MMP-9 and MMP-2 secretion in cultured U87MG was detected after incubation with EBB (42.9% and 73.0%, respectively) and EBB + TMZ (38.4% and 68.5%, respectively). In conclusion, the use of bee products may increase the cytotoxic effect of TMZ in U87MG but also in SVGp12 cell line. It is important to note that the U87MG cells were sensitive to natural bee products, although there was no influence of natural bee products on the DASC cells.
Collapse
Affiliation(s)
- Maria H Borawska
- a Department of Bromatology , Medical University of Bialystok , Bialystok , Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lisi S, D'Amore M, Sisto M. ADAM17 at the interface between inflammation and autoimmunity. Immunol Lett 2014; 162:159-69. [PMID: 25171914 DOI: 10.1016/j.imlet.2014.08.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
The discovery of the disintegrin and metalloproteinase 17 (ADAM17), originally identified as tumor necrosis factor-a converting enzyme (TACE) for its ability as sheddase of TNF-α inspired scientists to attempt to elucidate the molecular mechanisms underlying ADAM17 implication in diseased conditions. In recent years, it has become evident that this protease can modify many non matrix substrates, such as cytokines (e.g. TNF-α), cytokine receptors (e.g. IL-6R and TNF-R), ligands of ErbB (e.g. TGF-α and amphiregulin) and adhesion proteins (e.g. Lselectin and ICAM-1). Several recent studies have described experimental model system to better understand the role of specific signaling molecules, the interplay of different signals and tissue interactions in regulating ADAM17-dependent cleavage of most relevant substrates in inflammatory diseases. The central question is whether ADAM17 can influence the outcome of inflammation and if so, how it performs this regulation in autoimmunity, since inflammatory autoimmune diseases are often characterized by deregulated metalloproteinase activities. This review will explore the latest research on the influence of ADAM17 on the progression of inflammatory processes linked to autoimmunity and its role as modulator of inflammation.
Collapse
Affiliation(s)
- Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy.
| | - Massimo D'Amore
- Department of Interdisciplinary Medicine, Section of Rheumatology, University of Bari Medical School, Bari, Italy
| | - Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
31
|
Ali A, Tirloni L, Isezaki M, Seixas A, Konnai S, Ohashi K, da Silva Vaz Junior I, Termignoni C. Reprolysin metalloproteases from Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus microplus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:559-578. [PMID: 24687173 DOI: 10.1007/s10493-014-9796-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Metalloproteases (MPs) have been considered essential for blood feeding and other physiological functions in several hematophagous animals, including ticks. We report the characterization of MP sequences of three important ticks from Asia, Africa and America: Ixodes persulcatus (Ip-MPs), Rhipicephalus sanguineus (Rs-MPs) and R. microplus (BrRm-MPs). Amino acid sequence identity between R. microplus and R. sanguineus MPs ranged from 76 to 100 %, and identities among I. persulcatus, I. ricinus and I. scapularis MP sequences ranged from 88 to 97 %. This high sequence identity and typical functional motifs show that all sequences are MPs. The presence of a zinc binding site, a Met-turn and cysteine rich domain at the C-terminal region indicates that these proteins belong to the reproplysin family of MPs. Differences in amino acid sequences of BrRm-MP1, BrRm-MP2, BrRm-MP4 and BrRm-MP5 (from Porto Alegre strain ticks) were 6, 2, 7 and 5 %, respectively, when compared with sequences deposited in GenBank for the same genes from other R. microplus isolates. Analyses of MPs predicted that they have various highly antigenic regions. Semi-quantitative RT-PCR analysis revealed the presence of transcripts in salivary glands of partially and fully fed female ticks. None of these transcripts were observed in males (except BrRm-MP4) and eggs. These enzymes may be functional components required during tick feeding to manipulate host defenses and support tick hematophagy.
Collapse
Affiliation(s)
- Abid Ali
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, C.P. 15005, Porto Alegre, RS, 91501-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Berasain C, Avila MA. Amphiregulin. Semin Cell Dev Biol 2014; 28:31-41. [PMID: 24463227 DOI: 10.1016/j.semcdb.2014.01.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor. AREG gene expression and release is induced by a plethora of stimuli including inflammatory lipids, cytokines, hormones, growth factors and xenobiotics. Through EGFR binding AREG activates major intracellular signaling cascades governing cell survival, proliferation and motility. Physiologically, AREG plays an important role in the development and maturation of mammary glands, bone tissue and oocytes. Chronic elevation of AREG expression is increasingly associated with different pathological conditions, mostly of inflammatory and/or neoplastic nature. Here we review the essential aspects of AREG structure, function and regulation, discuss the basis for its differential role within the EGFR family of ligands, and identify emerging aspects in AREG research with translational potential.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| |
Collapse
|
33
|
Adrain C, Freeman M. Regulation of receptor tyrosine kinase ligand processing. Cold Spring Harb Perspect Biol 2014; 6:6/1/a008995. [PMID: 24384567 DOI: 10.1101/cshperspect.a008995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary mode of regulating receptor tyrosine kinase (RTK) signaling is to control access of ligand to its receptor. Many RTK ligands are synthesized as transmembrane proteins. Frequently, the active ligand must be released from the membrane by proteolysis before signaling can occur. Here, we discuss RTK ligand shedding and describe the proteases that catalyze it in flies and mammals. We focus principally on the control of EGF receptor ligand shedding, but also refer to ligands of other RTKs. Two prominent themes emerge. First, control by regulated trafficking and cellular compartmentalization of the proteases and their ligand substrates plays a key role in shedding. Second, many external signals converge on the shedding proteases and their control machinery. Proteases therefore act as regulatory hubs that integrate information that the cell receives and translate it into precise outgoing signals. The activation of signaling by proteases is therefore an essential element of the cellular communication machinery.
Collapse
Affiliation(s)
- Colin Adrain
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
34
|
Ulu N, Henning RH, Guner S, Zoto T, Duman-Dalkilic B, Duin M, Gurdal H. Intracellular transactivation of epidermal growth factor receptor by α1A-adrenoceptor is mediated by phosphatidylinositol 3-kinase independently of activation of extracellular signal regulated kinases 1/2 and serine-threonine kinases in Chinese hamster ovary cells. J Pharmacol Exp Ther 2013; 347:47-56. [PMID: 23902938 DOI: 10.1124/jpet.113.206243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Transactivation of epidermal growth factor receptor (EGFR) by α1-adrenoceptor (α1-AR) is implicated in contraction and hypertrophy of vascular smooth muscle (VSM). We examine whether all α1-AR subtypes transactivate EGFR and explore the mechanism of transactivation. Chinese hamster ovary (CHO) cells stably expressing one subtype of α1-AR were transiently transfected with EGFR. The transactivation mechanism was examined both by coexpression of a chimeric erythropoietin (EPO)-EGFR with an extracellular EPO and intracellular EGFR domain, and by pharmacologic inhibition of external and internal signaling routes. All three α1-AR subtypes transactivated EGFR, which was dependent on the increase in intracellular calcium. The EGFR kinase inhibitor AG1478 [4-(3'-chloroanilino)-6,7-dimethoxyquinazoline] abrogated α1A-AR and α1D-AR induced phosphorylation of EGFR, but both the inhibition of matrix metalloproteinases by GM6001 [(R)-N4-hydroxy-N(1)-[(S)-2-(1H-indol-3-yl)-1-methylcarbamoyl-ethyl]-2-isobutyl-succinamide] or blockade of EGFR by cetuximab did not. Stimulation of α1A-AR and α1D-AR also induced phosphorylation of EPO-EGFR chimeric receptors. Moreover, α1A-AR stimulation enhanced phosphorylation of extracellular signal regulated kinase (ERK) 1/2 and serine-threonine kinases (Akt), which were both unaffected by AG1478, indicating that ERK1/2 and Akt phosphorylation is independent of EGFR transactivation. Accordingly, inhibitors of ERK1/2 or Akt did not influence the α1A-AR-mediated EGFR transactivation. Inhibition of calcium/calmodulin-dependent kinase II (CaMKII), phosphatidylinositol 3-kinase (PI3K), and Src, however, did block EGFR transactivation by α1A-AR and α1D-AR. These findings demonstrate that all α1-AR subtypes transactivate EGFR, which is dependent on an intracellular signaling route involving an increase in calcium and activation of CaMKII, PI3K, and Src, but not the of ERK1/2 and Akt pathways.
Collapse
Affiliation(s)
- Nadir Ulu
- Department of Clinical Pharmacology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands (N.U., R.H.H., M.D.); Department of Medical Pharmacology, Faculty of Medicine, University of Ufuk, Ankara, Turkey (S.G.); and Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, Ankara, Turkey (T.Z., B.D., H.G.)
| | | | | | | | | | | | | |
Collapse
|
35
|
Shankaran H, Zhang Y, Tan Y, Resat H. Model-based analysis of HER activation in cells co-expressing EGFR, HER2 and HER3. PLoS Comput Biol 2013; 9:e1003201. [PMID: 23990774 PMCID: PMC3749947 DOI: 10.1371/journal.pcbi.1003201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022] Open
Abstract
The HER/ErbB family of receptor tyrosine kinases drives critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation, and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR/HER1, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of human mammary epithelial cells lines with known HER expression levels in response to stimulations with ligands EGF and HRG. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1-HER1 and HER1-HER2 dimers, and not HER1-HER3 dimers, ii) HER1-HER2 and HER2-HER3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2-HER3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches. A family of cell surface molecules called the HER receptor family plays important roles in normal physiology and cancer. This family has four members, HER1-4. These receptors convert signals received from the extracellular environment into cell decisions such as growth and survival – a process termed signal transduction. In particular, HER2 and HER3 are over-expressed in a number of tumors, and their expression levels are associated with abnormal growth and poor clinical prognosis. A key step in HER-mediated signal transduction is the formation of dimer complexes between members of this family. Different dimer types have different potencies for activating normal and aberrant responses. Prediction of the dimerization pattern for a given HER expression level may pave the way for personalized therapeutic approaches targeting specific dimers. Towards this end, we constructed a mathematical model for HER dimerization and activation. We determined unknown model parameters by analyzing HER activation data collected in a panel of human mammary epithelial cells that express different levels of the HER molecules. The model enables us to quantitatively link HER expression levels to receptor dimerization and activation. Further, the model can be used to support additional quantitative investigations into the basic biology of HER-mediated signal transduction.
Collapse
Affiliation(s)
- Harish Shankaran
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Yi Zhang
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Yunbing Tan
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
| | - Haluk Resat
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
36
|
Steinhauer J, Liu HH, Miller E, Treisman JE. Trafficking of the EGFR ligand Spitz regulates its signaling activity in polarized tissues. J Cell Sci 2013; 126:4469-78. [PMID: 23902690 DOI: 10.1242/jcs.131169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) ligands undergo a complex series of processing events during their maturation to active signaling proteins. Like its mammalian homologs, the predominant Drosophila EGFR ligand Spitz is produced as a transmembrane pro-protein. In the secretory pathway, Spitz is cleaved within its transmembrane domain to release the extracellular signaling domain. This domain is modified with an N-terminal palmitate group that tethers it to the plasma membrane. We found that the pro-protein can reach the cell surface in the absence of proteolysis, but that it fails to activate the EGFR. To address why the transmembrane pro-protein is inactive, whereas membrane association through the palmitate group promotes activity, we generated a panel of chimeric constructs containing the Spitz extracellular region fused to exogenous transmembrane proteins. Although the orientation of the EGF domain and its distance from the plasma membrane varies in these chimeras, they are all active in vivo. Thus, tethering Spitz to the membrane via a transmembrane domain at either terminus does not prevent activity. Conversely, removing the N-terminal palmitate group from the C-terminally tethered pro-protein does not render it active. Furthermore, we show that the Spitz transmembrane pro-protein can activate the EGFR in a tissue culture assay, indicating that its failure to signal in vivo is not due to structural features. In polarized imaginal disc cells, unprocessed Spitz pro-protein localizes to apical puncta, whereas the active chimeric Spitz constructs are basolaterally localized. Taken together, our data support the model that localized trafficking of the pro-protein restricts its ability to activate the receptor in polarized tissues.
Collapse
|
37
|
Waitkus MS, Chandrasekharan UM, Willard B, Haque SJ, DiCorleto PE. STAT3-mediated coincidence detection regulates noncanonical immediate early gene induction. J Biol Chem 2013; 288:11988-2003. [PMID: 23504318 DOI: 10.1074/jbc.m112.428516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signaling pathways interact with one another to form dynamic networks in which the cellular response to one stimulus may depend on the presence, intensity, timing, or localization of other signals. In rare cases, two stimuli may be simultaneously required for cells to elicit a significant biological output. This phenomenon, generally termed "coincidence detection," requires a downstream signaling node that functions as a Boolean AND gate to restrict biological output from a network unless multiple stimuli are received within a specific window of time. Simultaneous activation of the EGF receptor (EGFR) and a thrombin receptor (protease-activated receptor-1, PAR-1) increases the expression of multiple immediate early genes (IEGs) associated with growth and angiogenesis. Using a bioinformatic comparison of IEG promoter regions, we identified STAT3 as a critical transcription factor for the detection of coincident EGFR/PAR-1 activation. EGFR activation induces classical STAT3 Tyr(705) phosphorylation but also initiates an inhibitory signal through the PI3K-AKT signaling axis that prevents STAT3 Ser(727) phosphorylation. Coincident PAR-1 signaling resolves these conflicting EGF-activated pathways by blocking AKT activation and permitting GSK-3α/β-dependent STAT3 Ser(727) phosphorylation and STAT3-dependent gene expression. Functionally, combinatorial EGFR/PAR-1 signaling suppresses EGF-induced proliferation and thrombin-induced leukocyte adhesion and triggers a STAT3-dependent increase in endothelial cell migration. This study reveals a novel signaling role for STAT3 in which the simultaneous presence of extracellular EGF and thrombin is detected at the level of STAT3 post-translational modifications. Collectively, our results describe a novel regulatory mechanism in which combinatorial EGFR/PAR-1 signaling regulates STAT3-dependent IEG induction and endothelial cell migration.
Collapse
Affiliation(s)
- Matthew S Waitkus
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
38
|
Cho-Clark M, Larco DO, Semsarzadeh NN, Vasta F, Mani SK, Wu TJ. GnRH-(1-5) transactivates EGFR in Ishikawa human endometrial cells via an orphan G protein-coupled receptor. Mol Endocrinol 2013; 28:80-98. [PMID: 24264576 DOI: 10.1210/me.2013-1203] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The decapeptide GnRH is known for its central role in the regulation of the hypothalamo-pituitary-gonadal axis. In addition, it is also known to have local effects within peripheral tissues. The zinc metalloendopeptidase, EC 3.4.24.15 (EP24.15), can cleave GnRH at the Tyr(5)-Gly(6) bond to form the pentapeptide, GnRH-(1-5). The central and peripheral effect of GnRH-(1-5) is different from its parent peptide, GnRH. In the current study, we examined the effect of GnRH-(1-5) on epidermal growth factor receptor (EGFR) phosphorylation and cellular migration. Using the Ishikawa cell line as a model of endometrial cancer, we demonstrate that GnRH-(1-5) stimulates epidermal growth factor release, increases the phosphorylation of EGFR (P < .05) at three tyrosine sites (992, 1045, 1068), and promotes cellular migration. In addition, we also demonstrate that these actions of GnRH-(1-5) are mediated by the orphan G protein-coupled receptor 101 (GPR101). Down-regulation of GPR101 expression blocked the GnRH-(1-5)-mediated release of epidermal growth factor and the subsequent phosphorylation of EGFR and cellular migration. These results suggest that GPR101 is a critical requirement for GnRH-(1-5) transactivation of EGFR in Ishikawa cells.
Collapse
Affiliation(s)
- Madelaine Cho-Clark
- Department of Obstetrics and Gynecology (T.J.W., M.C., F.V.) and the Program in Molecular and Cellular Biology (D.O.L., T.J.W.), Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814; and Departments of Molecular and Cellular Biology and Neuroscience (S.K.M.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
39
|
Sayasith K, Lussier J, Doré M, Sirois J. Human chorionic gonadotropin-dependent up-regulation of epiregulin and amphiregulin in equine and bovine follicles during the ovulatory process. Gen Comp Endocrinol 2013. [PMID: 23178756 DOI: 10.1016/j.ygcen.2012.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Little is known about the expression and regulation of epiregulin (EREG) and amphiregulin (AREG) in ovarian follicles of large monoovulatory animal species. To characterize the gonadotropin-dependent regulation of EREG and AREG mRNAs in equine follicles prior to ovulation, extracts were prepared from equine follicles collected during estrus between 0 and 39h post-hCG and corpora lutea obtained on day 8 of the estrous cycle (day 0=day of ovulation). Results from RT-PCR/Southern blot analyses showed that levels of EREG and AREG mRNAs were very low in follicles obtained at 0h but increased thereafter (P<0.05), with maximal levels observed 33-39h post-hCG. This significant increase was observed in both granulosa and theca cells. Immunohistochemistry and immunoblot analyses confirmed the hCG-dependent induction of EREG protein in both cell types. RT-PCR/Southern blot analyses of ADAM17, which encodes an enzyme that cleaves and releases soluble bioactive EREG and AREG, showed that levels of its transcript were high and remained constant throughout the period studied. Studies on the hCG-dependent regulation of EREG and AREG in bovine preovulatory follicles in vivo showed that the induction of both transcripts was transient, observed predominantly at 6h post-hCG and localized only in granulosa cells. To characterize the effect of epidermal growth factor receptor (EGFR) activation on the expression of ovulation-related genes in granulosa cells of a large monoovulatory animal species, primary cultures of bovine granulosa cells were established. Results from RT-PCR analyses revealed that EREG and AREG mRNAs were induced by forskolin treatment in vitro; but the EGFR inhibitor PD153035 suppressed the forskolin-dependent induction of several ovulation-related transcripts, including PTGS2, PTGER2, TNFAIP6, PGR, MMP1, VEGFA, and CTSL2 mRNAs. Moreover, these transcripts were induced in granulosa cell cultures by EGF, an analog of EREG and AREG. Collectively, this study identifies differences in the temporal and cellular localization of EREG and AREG expression in equine and bovine preovulatory follicles, and underscores the potential role of follicular EGFR activation in the regulation of ovulation-regulated genes in large monoovulatory species.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de recherche en reproduction animale and Département de biomédecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
| | | | | | | |
Collapse
|
40
|
Kao YC, Jiang SJ, Pan WA, Wang KC, Chen PK, Wei HJ, Chen WS, Chang BI, Shi GY, Wu HL. The epidermal growth factor-like domain of CD93 is a potent angiogenic factor. PLoS One 2012; 7:e51647. [PMID: 23272129 PMCID: PMC3525571 DOI: 10.1371/journal.pone.0051647] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 11/02/2012] [Indexed: 12/15/2022] Open
Abstract
Human CD93, an epidermal growth factor (EGF)-like domain containing transmembrane protein, is predominantly expressed in the vascular endothelium. Studies have shown that AA4, the homolog of CD93 in mice, may mediate cell migration and angiogenesis in endothelial cells. Soluble CD93 has been detected in the plasma of healthy individuals. However, the role of soluble CD93 in the endothelium remains unclear. Recombinant soluble CD93 proteins with EGF-like domains (rCD93D123, with domains 1, 2, and 3; and rCD93D23, with domains 2 and 3) were generated to determine their functions in angiogenesis. We found that rCD93D23 was more potent than rCD93D123 in stimulating the proliferation and migration of human umbilical vein endothelial cells (HUVECs). Production of matrix-metalloproteinase 2 increased after the HUVECs were treated with rCD93D23. Further, in a tube formation assay, rCD93D23 induced cell differentiation of HUVECs through phosphoinositide 3-kinase/Akt/endothelial nitric oxide synthase and extracellular signal-regulated kinases-1/2 signaling. Moreover, rCD93D23 promoted blood vessel formation in a Matrigel-plug assay and an oxygen-induced retinopathy model in vivo. Our findings suggest that the soluble EGF-like domain containing CD93 protein is a novel angiogenic factor acting on the endothelium.
Collapse
Affiliation(s)
- Yuan-Chung Kao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-An Pan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chieh Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ku Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Hsi-Ju Wei
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Sheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Bi-Ing Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Guey-Yueh Shi
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (GYS); (HLW)
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (GYS); (HLW)
| |
Collapse
|
41
|
Bezler M, Hengstler JG, Ullrich A. Inhibition of doxorubicin-induced HER3-PI3K-AKT signalling enhances apoptosis of ovarian cancer cells. Mol Oncol 2012; 6:516-29. [PMID: 22841590 DOI: 10.1016/j.molonc.2012.07.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/27/2022] Open
Abstract
Resistance to chemotherapy is a serious problem for the successful treatment of ovarian cancer patients but signalling pathways that contribute to this chemoinsensitivity are largely unknown. We demonstrate that the chemotherapeutic drug doxorubicin induces activation of the HER3-PI3K-AKT signalling cascade in ovarian cancer cells. We further show that the induction of this anti-apoptotic signalling pathway is based on upregulated expression of HER3 ligands, their shedding by the metalloprotease ADAM17, and is dependent on the HER2 receptor. The doxorubicin-mediated activation of this important survival cascade can be blocked by the kinase inhibitors lapatinib or erlotinib as well as by the therapeutic monoclonal antibody trastuzumab. Inhibition of the doxorubicin-induced activation of HER3-PI3K-AKT signalling significantly increased apoptosis of ovarian cancer cells. Besides doxorubicin, treatment of cells with cisplatin resulted in activation of the HER3 receptor whereas other chemotherapeutics did not show this effect. The increase in HER3 phosphorylation was detected in well-established ovarian cancer cell lines which originate from patients previously treated with these chemotherapeutic drugs. Based on these results, we postulate that activation of the HER3-PI3K-AKT cascade represents a major mechanism of chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Martin Bezler
- Max-Planck-Institute of Biochemistry, Department of Molecular Biology, Martinsried, Germany
| | | | | |
Collapse
|
42
|
Increase in claudin-2 expression by an EGFR/MEK/ERK/c-Fos pathway in lung adenocarcinoma A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1110-8. [PMID: 22546605 DOI: 10.1016/j.bbamcr.2012.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/23/2022]
Abstract
In human adenocarcinoma, claudin-2 expression is higher than that in normal lung tissue, but the regulatory mechanism of its expression has not been clarified. In human adenocarcinoma A549 cells, claudin-2 level time-dependently increased under the control conditions. In contrast, claudin-1 expression remained constant for 24h. The concentration of epidermal growth factor (EGF) in medium time-dependently increased, which was inhibited by matrix metalloproteinase (MMP) inhibitor II, an inhibitor of MMP-1, 3, 7, and 9. MMP inhibitor II decreased claudin-2 and phosphorylated ERK1/2 (p-ERK1/2) levels, which were recovered by EGF. Both claudin-2 and p-ERK1/2 levels were decreased by EGF neutralizing antibody, EGF receptor (EGFR) siRNA, AG1478, an inhibitor of EGFR, U0126, an inhibitor of MEK, and the exogenous expression of dominant negative-MEK. These results suggest that EGF is secreted from A549 cells by MMP and increases claudin-2 expression mediated via the activation of an EGFR/MEK/ERK pathway. The inhibition of the signaling pathway decreased phosphorylated c-Fos and nuclear c-Fos levels. The introduction of c-Fos siRNA decreased claudin-2 level without affecting claudin-1. The promoter activity of human claudin-2 was decreased by AG1478 and U0126. Furthermore, the activity was decreased by the deletion or mutation of the AP-1 binding site of claudin-2 promoter. Chromatin immunoprecipitation and avidin-biotin conjugated DNA assays showed that c-Fos binds to the AP-1 binding site. We suggest that a secreted EGF up-regulates the transcriptional activity of claudin-2 mediated by the activation of an EGFR/MEK/ERK/c-Fos pathway in A549 cells.
Collapse
|
43
|
Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A. The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:119-31. [PMID: 21658434 DOI: 10.1016/j.bbcan.2011.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 12/21/2022]
Abstract
Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor (EGFR). AREG plays a central role in mammary gland development and branching morphogenesis in organs and is expressed both in physiological and in cancerous tissues. Various studies have highlighted the functional role of AREG in several aspects of tumorigenesis, including self-sufficiency in generating growth signals, limitless replicative potential, tissue invasion and metastasis, angiogenesis, and resistance to apoptosis. The oncogenic activity of AREG has already been described in the most common human epithelial malignancies, such as lung, breast, colorectal, ovary and prostate carcinomas, as well as in some hematological and mesenchymal cancers. Furthermore, AREG is also involved in resistance to several cancer treatments. In this review, we describe the various roles of AREG in oncogenesis and discuss its translational potential, such as the development of anti-AREG treatments, based on AREG activity. In the last decade, independent groups have reported successful but sometimes contradictory results in relation to the potential of AREG to serve as a prognostic and/or predictive marker for oncology, especially with regard to anti-EGFR therapies. Thus, we also discuss the potential usefulness of using AREG as a therapeutic target and validated biomarker for predicting cancer outcomes or treatment efficacy.
Collapse
Affiliation(s)
- Benoit Busser
- INSERM, U823, Institut Albert Bonniot, Grenoble, France, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | |
Collapse
|
44
|
Reitmair A, Lambrecht NWG, Yakubov I, Nieves A, Old D, Donde Y, Dinh D, Burk R, Sachs G, Im WB, Wheeler L. Prostaglandin E2receptor subtype EP2- and EP4-regulated gene expression profiling in human ciliary smooth muscle cells. Physiol Genomics 2010; 42:348-60. [DOI: 10.1152/physiolgenomics.00012.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostanoids are an important class of intraocular pressure (IOP)-lowering antiglaucoma agents that act primarily via increased uveo-scleral aqueous humor outflow through the ciliary body. We have developed two novel PGE2analogs that are specific agonists for the PGE2receptor subtypes EP2 and EP4, respectively. To identify gene regulatory networks and key players that mediate the physiological effects observed in vivo, we performed genomewide expression studies using human ciliary smooth muscle cells. Quantitative real-time RT-PCR confirmed a largely overlapping gene expression profile subsequent to EP2 and EP4 agonist treatment, with 65 significantly regulated genes identified overall, 5 being specific for the EP2 agonist and 6 specific for the EP4 agonist. We found predicted functional cAMP-response elements in promoter regions of a large fraction of the predominantly upregulated genes, which suggests that the cAMP signaling pathway is the most important intracellular signaling pathway for these agonists in these cells. Several target genes were identified that, as part of complex regulatory networks, are implicated in tissue remodeling processes and osmoregulation (e.g., AREG, LOXL3, BMP2, AQP3) and thus may help elucidate the mechanism of action of these IOP-lowering drugs involving the uveo-scleral outflow path.
Collapse
Affiliation(s)
| | - Nils W. G. Lambrecht
- Department of Pathology and Laboratory Medicine,
- Membrane Biology Laboratory, West Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | - Iskandar Yakubov
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles and
- Membrane Biology Laboratory, West Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | | | - David Old
- Department of Medical Chemistry, Allergan Incorporated, Irvine; and
| | - Yariv Donde
- Department of Medical Chemistry, Allergan Incorporated, Irvine; and
| | - Danny Dinh
- Department of Medical Chemistry, Allergan Incorporated, Irvine; and
| | - Robert Burk
- Department of Medical Chemistry, Allergan Incorporated, Irvine; and
| | - George Sachs
- Department of Physiology, and
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles and
- Membrane Biology Laboratory, West Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | | | | |
Collapse
|
45
|
Stoeck A, Shang L, Dempsey PJ. Sequential and gamma-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth. J Cell Sci 2010; 123:2319-31. [PMID: 20530572 PMCID: PMC2886747 DOI: 10.1242/jcs.060830] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2010] [Indexed: 12/20/2022] Open
Abstract
Betacellulin (BTC) belongs to the family of epidermal growth factor (EGF)-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release soluble mature ligands. BTC is a dual-specificity ligand for ErbB1 and ErbB4 receptors, and can activate unique signal-transduction pathways that are beneficial for the function, survival and regeneration of pancreatic beta-cells. We have previously shown that BTC precursor (proBTC) is cleaved by ADAM10 to generate soluble ligand and a stable, transmembrane remnant (BTC-CTF). In this study, we analyzed the fate of the BTC-CTF in greater detail. We demonstrated that proBTC is cleaved by ADAM10 to produce BTC-CTF, which then undergoes intramembrane processing by presenilin-1- and/or presenilin-2-dependent gamma-secretase to generate an intracellular-domain fragment (BTC-ICD). We found that the proBTC cytoplasmic domain is palmitoylated and that palmitoylation is not required for ADAM10-dependent cleavage but is necessary for the stability and gamma-secretase-dependent processing of BTC-CTF to generate BTC-ICD. Additionally, palmitoylation is required for nuclear-membrane localization of BTC-ICD, as demonstrated by the redistribution of non-palmitoylated BTC-ICD mutant to the nucleoplasm. Importantly, a novel receptor-independent role for BTC-ICD signaling is suggested by the ability of BTC-ICD to inhibit cell growth in vitro.
Collapse
Affiliation(s)
- Alexander Stoeck
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Shang
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J. Dempsey
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Joslin EJ, Shankaran H, Opresko LK, Bollinger N, Lauffenburger DA, Wiley HS. Structure of the EGF receptor transactivation circuit integrates multiple signals with cell context. MOLECULAR BIOSYSTEMS 2010; 6:1293-306. [PMID: 20458382 PMCID: PMC3306786 DOI: 10.1039/c003921g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transactivation of the epidermal growth factor receptor (EGFR) is thought to be a process by which a variety of cellular inputs can be integrated into a single signaling pathway through either stimulated proteolysis (shedding) of membrane-anchored EGFR ligands or by modification of the activity of the EGFR. As a first step towards building a predictive model of the EGFR transactivation circuit, we quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR to regulate extracellular signal regulated kinase (ERK) activity in human mammary epithelial cells. By using a "non-binding" reporter of ligand shedding, we found that transactivation triggers a positive feedback loop from ERK back to the EGFR such that ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding. Importantly, activated Ras and ERK levels were nearly linear functions of ligand shedding and the effect of multiple, sub-saturating inputs was additive. Simulations showed that ERK-mediated feedback through ligand shedding resulted in a stable steady-state level of activated ERK, but also showed that the extracellular environment can modulate the level of feedback. Our results suggest that the transactivation circuit acts as a context-dependent integrator and amplifier of multiple extracellular signals and that signal integration can effectively occur at multiple points in the EGFR pathway.
Collapse
Affiliation(s)
- Elizabeth J. Joslin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Harish Shankaran
- Systems Biology Program, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Lee K. Opresko
- Systems Biology Program, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Nikki Bollinger
- Systems Biology Program, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - H. Steven Wiley
- Systems Biology Program, Pacific Northwest National Laboratory, Richland, WA 99354
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| |
Collapse
|
47
|
Myers TJ, Brennaman LH, Stevenson M, Higashiyama S, Russell WE, Lee DC, Sunnarborg SW. Mitochondrial reactive oxygen species mediate GPCR-induced TACE/ADAM17-dependent transforming growth factor-alpha shedding. Mol Biol Cell 2010; 20:5236-49. [PMID: 19846666 DOI: 10.1091/mbc.e08-12-1256] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation by GPCRs regulates many important biological processes. ADAM metalloprotease activity has been implicated as a key step in transactivation, yet the regulatory mechanisms are not fully understood. Here, we investigate the regulation of transforming growth factor-alpha (TGF-alpha) shedding by reactive oxygen species (ROS) through the ATP-dependent activation of the P2Y family of GPCRs. We report that ATP stimulates TGF-alpha proteolysis with concomitant EGFR activation and that this process requires TACE/ADAM17 activity in both murine fibroblasts and CHO cells. ATP-induced TGF-alpha shedding required calcium and was independent of Src family kinases and PKC and MAPK signaling. Moreover, ATP-induced TGF-alpha shedding was completely inhibited by scavengers of ROS, whereas calcium-stimulated shedding was partially inhibited by ROS scavenging. Hydrogen peroxide restored TGF-alpha shedding after calcium chelation. Importantly, we also found that ATP-induced shedding was independent of the cytoplasmic NADPH oxidase complex. Instead, mitochondrial ROS production increased in response to ATP and mitochondrial oxidative complex activity was required to activate TACE-dependent shedding. These results reveal an essential role for mitochondrial ROS in regulating GPCR-induced growth factor shedding.
Collapse
Affiliation(s)
- Timothy J Myers
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Nuti E, Casalini F, Avramova SI, Santamaria S, Fabbi M, Ferrini S, Marinelli L, La Pietra V, Limongelli V, Novellino E, Cercignani G, Orlandini E, Nencetti S, Rossello A. Potent Arylsulfonamide Inhibitors of Tumor Necrosis Factor-α Converting Enzyme Able to Reduce Activated Leukocyte Cell Adhesion Molecule Shedding in Cancer Cell Models. J Med Chem 2010; 53:2622-35. [DOI: 10.1021/jm901868z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elisa Nuti
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Francesca Casalini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Stanislava I. Avramova
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Salvatore Santamaria
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Marina Fabbi
- Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, 16132 Genova, Italy
| | - Silvano Ferrini
- Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, 16132 Genova, Italy
| | - Luciana Marinelli
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Valeria La Pietra
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Vittorio Limongelli
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Giovanni Cercignani
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno, 51, 56127 Pisa, Italy
| | - Elisabetta Orlandini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
49
|
Bateman E, Rennard S, Barnes P, Dicpinigaitis P, Gosens R, Gross N, Nadel J, Pfeifer M, Racké K, Rabe K, Rubin B, Welte T, Wessler I. Alternative mechanisms for tiotropium. Pulm Pharmacol Ther 2009; 22:533-42. [DOI: 10.1016/j.pupt.2009.06.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 06/05/2009] [Accepted: 06/30/2009] [Indexed: 12/22/2022]
|
50
|
Shankaran H, Ippolito DL, Chrisler WB, Resat H, Bollinger N, Opresko LK, Wiley HS. Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol Syst Biol 2009; 5:332. [PMID: 19953086 PMCID: PMC2824491 DOI: 10.1038/msb.2009.90] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 10/22/2009] [Indexed: 11/16/2022] Open
Abstract
Although the ERK pathway has a central role in the response of cells to growth factors, its regulatory structure and dynamics are incompletely understood. To investigate ERK activation in real time, we expressed an ERK–GFP fusion protein in human mammary epithelial cells. On EGF stimulation, we observed sustained oscillations of the ERK–GFP fusion protein between the nucleus and cytoplasm with a periodicity of ∼15 min. The oscillations were persistent (>45 cycles), independent of cell cycle phase, and were highly dependent on cell density, essentially disappearing at confluency. Oscillations occurred even at ligand doses that elicited very low levels of ERK phosphorylation, and could be detected biochemically in both transfected and nontransfected cells. Mathematical modeling revealed that negative feedback from phosphorylated ERK to the cascade input was necessary to match the robustness of the oscillation characteristics observed over a broad range of ligand concentrations. Our characterization of single-cell ERK dynamics provides a quantitative foundation for understanding the regulatory structure of this signaling cascade.
Collapse
Affiliation(s)
- Harish Shankaran
- Systems Biology Program, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | | | | |
Collapse
|