1
|
Zhong X, He H, Xiong Y, Sun J, Zeng N, Wang S, Xia Q. A bibliometric analysis of nucleic acid probe and its applications in oncology: towards more precise molecular medicine. Discov Oncol 2025; 16:702. [PMID: 40341658 PMCID: PMC12061834 DOI: 10.1007/s12672-025-02478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/23/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Nucleic acid probes, which are short sequences of nucleic acids designed to complement specific DNA or RNA targets, have broad applications in biosensing, genetic studies, and various other fields. In tumor diagnosis and treatment, nucleic acid probes offer a precise and accessible approach that is essential for improving patient care and quality of life. Despite substantial research on nucleic acid probes over the past three decades, few comprehensive reviews have retrospectively examined the field. METHODS This study extracted 30 years of nucleic acid probe-related research articles from the Web of Science Core Collection database. We used CiteSpace, VOSviewer, and R tools to systematically analyze the field's current status and developmental trends, with an emphasis on applications in oncology. RESULTS Our findings indicate a continuous growth trend in nucleic acid probe research, with the United States and China, along with their leading institutions and authors, making the most significant contributions. In oncology specifically, nucleic acid probe research has focused primarily on signal amplification, liquid biopsy, and drug delivery. The emergence of novel biomarkers and assay techniques has been a pivotal factor driving advancements in this field. CONCLUSION Nucleic acid probes show strong potential for applications in tumor precise diagnosis and treatment. Continued innovation and closer interdisciplinary collaboration will be vital for further advancements, while large-scale clinical studies are needed to validate their clinical utility.
Collapse
Affiliation(s)
- Xingyu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haodong He
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Xiong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qidong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Abdolahzadeh A, Ang QR, Caine JR, Panchapakesan SSS, Thio S, Cojocaru R, Unrau PJ. Turn-on RNA Mango Beacons for trans-acting fluorogenic nucleic acid detection. RNA (NEW YORK, N.Y.) 2024; 30:392-403. [PMID: 38282417 PMCID: PMC10946430 DOI: 10.1261/rna.079833.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
The Mango I and II RNA aptamers have been widely used in vivo and in vitro as genetically encodable fluorogenic markers that undergo large increases in fluorescence upon binding to their ligand, TO1-Biotin. However, while studying nucleic acid sequences, it is often desirable to have trans-acting probes that induce fluorescence upon binding to a target sequence. Here, we rationally design three types of light-up RNA Mango Beacons based on a minimized Mango core that induces fluorescence upon binding to a target RNA strand. Our first design is bimolecular in nature and uses a DNA inhibition strand to prevent folding of the Mango aptamer core until binding to a target RNA. Our second design is unimolecular in nature, and features hybridization arms flanking the core that inhibit G-quadruplex folding until refolding is triggered by binding to a target RNA strand. Our third design builds upon this structure, and incorporates a self-inhibiting domain into one of the flanking arms that deliberately binds to, and precludes folding of, the aptamer core until a target is bound. This design separates G-quadruplex folding inhibition and RNA target hybridization into separate modules, enabling a more universal unimolecular beacon design. All three Mango Beacons feature high contrasts and low costs when compared to conventional molecular beacons, with excellent potential for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Amir Abdolahzadeh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Quiana R Ang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jana R Caine
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | - Shinta Thio
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Razvan Cojocaru
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
3
|
Du J, He JS, Wang R, Wu J, Yu X. Ultrasensitive reporter DNA sensors built on nucleic acid amplification techniques: Application in the detection of trace amount of protein. Biosens Bioelectron 2024; 243:115761. [PMID: 37864901 DOI: 10.1016/j.bios.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The detection of protein is of great significance for the study of biological physiological function, early diagnosis of diseases and drug research. However, the sensitivity of traditional protein detection methods for detecting trace amount of proteins was relatively low. By integrating sensitive nucleic acid amplification techniques (NAAT) with protein detection methods, the detection limit of protein detection methods can be substantially improved. The DNA that can specifically bind to protein targets and convert protein signals into DNA signals is collectively referred to reporter DNA. Various NAATs have been used to establish NAAT-based reporter DNA sensors. And according to whether enzymes are involved in the amplification process, the NAAT-based reporter DNA sensors can be divided into two types: enzyme-assisted NAAT-based reporter DNA sensors and enzyme-free NAAT-based reporter DNA sensors. In this review, we will introduce the principles and applications of two types of NAAT-based reporter DNA sensors for detecting protein targets. Finally, the main challenges and application prospects of NAAT-based reporter DNA sensors are discussed.
Collapse
Affiliation(s)
- Jungang Du
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jin-Song He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Rui Wang
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China.
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Alotaibi BS, Tantry BA, Bandy A, Ahmad R, Khursheed SQ, Ahmad A, Hakami MA, Shah NN. Simultaneous Detection of Influenza A/B, Respiratory Syncytial Virus, and SARS-CoV-2 in Nasopharyngeal Swabs by One-Tube Multiplex Reverse Transcription Polymerase Chain Reaction. Trop Med Infect Dis 2023; 8:326. [PMID: 37368744 DOI: 10.3390/tropicalmed8060326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The treatment and outcome of respiratory virus infections differ. SARS-CoV-2, as well as other respiratory viruses such as influenza virus (A and B) and respiratory syncytial virus (RSV), require simultaneous, cost-effective, and rapid differential detection. We used a gold standard five-target single-step RT-PCR to detect influenza viruses, RSV, and SARS-CoV-2, and this method can be extended to detect influenza virus subtypes. As a result, this five-target single-step RT-PCR method is ideal for differentiating respiratory viruses. The 5' nuclease activity of Taq DNA polymerase is used in the real-time reverse transcription PCR assay. The Taq man fast viral 1-step enzyme is a 4× Master mix and five-target primer probe mix that detects influenza A, influenza B, SARS-CoV-2 ORF1ab, respiratory syncytial viruses A/B and actin. When compared with TaqMan TM and Invitrogen superscript TM III Platinum and the Meril Kit for SARS-CoV-2, the assay demonstrated 100% sensitivity, specificity, and amplification efficiency of 90.1% for target genes. In conclusion, our one-tube multiplex RT-PCR assay offers a rapid and reliable method for the simultaneous detection of influenza A/B, RSV, and SARS-CoV-2 from nasopharyngeal swabs. This assay has the potential to enhance diagnostic capabilities and improve public health responses during respiratory outbreaks, enabling timely interventions and informed decision making.
Collapse
Affiliation(s)
- Bader S Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 19257, Saudi Arabia
| | - Bilal Ahmad Tantry
- Department of Microbiology, Government Medical College, Srinagar 190010, India
| | - Altaf Bandy
- Department of Community Medicine, College of Medicine, Shaqra University, Shaqra 15273, Saudi Arabia
| | - Reyaz Ahmad
- Department of Microbiology, Government Medical College, Srinagar 190010, India
| | | | - Arshid Ahmad
- Department of Pulmonary Medicine, Government Medical College, Srinagar 190001, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 19257, Saudi Arabia
| | - Naveed Nazir Shah
- Department of Pulmonary Medicine, Government Medical College, Srinagar 190001, India
| |
Collapse
|
5
|
A molecular beacon biosensor for viral RNA detection based on HyCaSD strategy. Anal Chim Acta 2022; 1221:340134. [DOI: 10.1016/j.aca.2022.340134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022]
|
6
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
7
|
Highly multiplex PCR assays by coupling the 5'-flap endonuclease activity of Taq DNA polymerase and molecular beacon reporters. Proc Natl Acad Sci U S A 2022; 119:2110672119. [PMID: 35197282 PMCID: PMC8892341 DOI: 10.1073/pnas.2110672119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 01/23/2023] Open
Abstract
We describe a highly multiplex PCR approach that can identify 10-fold more targets in current real-time PCR assays without additional enzymes or separate reactions. This single-step, single-tube, homogeneous detection approach, termed MeltArray, is achieved by coupling the 5′-flap endonuclease activity of the Taq DNA polymerase and multiple annealing sites of the molecular beacon reporters. The 5′-flap endonuclease cleaves a probe specifically into a “mediator” primer, and one molecular beacon reporter allows for the extension of multiple “mediator” primers to produce a series of fluorescent hybrids with different melting temperatures unique to each target. The overall number of targets detectable per reaction is equal to the number of the reporters multiplied by the number of mediator primers per reporter. Real-time PCR is the most utilized nucleic acid testing tool in clinical settings. However, the number of targets detectable per reaction are restricted by current modes. Here, we describe a single-step, multiplex approach capable of detecting dozens of targets per reaction in a real-time PCR thermal cycler. The approach, termed MeltArray, utilizes the 5′-flap endonuclease activity of Taq DNA polymerase to cleave a mediator probe into a mediator primer that can bind to a molecular beacon reporter, which allows for the extension of multiple mediator primers to produce a series of fluorescent hybrids of different melting temperatures unique to each target. Using multiple molecular beacon reporters labeled with different fluorophores, the overall number of targets is equal to the number of the reporters multiplied by that of mediator primers per reporter. The use of MeltArray was explored in various scenarios, including in a 20-plex assay that detects human Y chromosome microdeletions, a 62-plex assay that determines Escherichia coli serovars, a 24-plex assay that simultaneously identifies and quantitates respiratory pathogens, and a minisequencing assay that identifies KRAS mutations, and all of these different assays were validated with clinical samples. MeltArray approach should find widespread use in clinical settings owing to its combined merits of multiplicity, versatility, simplicity, and accessibility.
Collapse
|
8
|
Lundberg DS, Pramoj Na Ayutthaya P, Strauß A, Shirsekar G, Lo WS, Lahaye T, Weigel D. Host-associated microbe PCR (hamPCR) enables convenient measurement of both microbial load and community composition. eLife 2021; 10:e66186. [PMID: 34292157 PMCID: PMC8387020 DOI: 10.7554/elife.66186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The ratio of microbial population size relative to the amount of host tissue, or 'microbial load', is a fundamental metric of colonization and infection, but it cannot be directly deduced from microbial amplicon data such as 16S rRNA gene counts. Because existing methods to determine load, such as serial dilution plating, quantitative PCR, and whole metagenome sequencing add substantial cost and/or experimental burden, they are only rarely paired with amplicon sequencing. We introduce host-associated microbe PCR (hamPCR), a robust strategy to both quantify microbial load and describe interkingdom microbial community composition in a single amplicon library. We demonstrate its accuracy across multiple study systems, including nematodes and major crops, and further present a cost-saving technique to reduce host overrepresentation in the library prior to sequencing. Because hamPCR provides an accessible experimental solution to the well-known limitations and statistical challenges of compositional data, it has far-reaching potential in culture-independent microbiology.
Collapse
Affiliation(s)
- Derek S Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | | | - Annett Strauß
- Department of Evolutionary Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Wen-Sui Lo
- ZMBP-General Genetics, University of TübingenTübingenGermany
| | - Thomas Lahaye
- ZMBP-General Genetics, University of TübingenTübingenGermany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| |
Collapse
|
9
|
Qasem A, Shaw AM, Elkamel E, Naser SA. Coronavirus Disease 2019 (COVID-19) Diagnostic Tools: A Focus on Detection Technologies and Limitations. Curr Issues Mol Biol 2021; 43:728-748. [PMID: 34287238 PMCID: PMC8929116 DOI: 10.3390/cimb43020053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
The ongoing coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a severe threat to human health and the global economy and has resulted in overwhelming stress on health care systems worldwide. Despite the global health catastrophe, especially in the number of infections and fatalities, the COVID-19 pandemic has also revolutionized research and discovery with remarkable success in diagnostics, treatments, and vaccine development. The use of many diagnostic methods has helped establish public health guidelines to mitigate the spread of COVID-19. However, limited information has been shared about these methods, and there is a need for the scientific community to learn about these technologies, in addition to their sensitivity, specificity, and limitations. This review article is focused on providing insights into the major methods used for SARS-CoV-2 detection. We describe in detail the core principle of each method, including molecular and serological approaches, along with reported claims about the rates of false negatives and false positives, the types of specimens needed, and the level of technology and the time required to perform each test. Although this study will not rank or prioritize these methods, the information will help in the development of guidelines and diagnostic protocols in clinical settings and reference laboratories.
Collapse
Affiliation(s)
| | | | | | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA; (A.Q.); (A.M.S.); (E.E.)
| |
Collapse
|
10
|
Bellassai N, D'Agata R, Spoto G. Novel nucleic acid origami structures and conventional molecular beacon-based platforms: a comparison in biosensing applications. Anal Bioanal Chem 2021; 413:6063-6077. [PMID: 33825006 PMCID: PMC8440263 DOI: 10.1007/s00216-021-03309-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Nucleic acid nanotechnology designs and develops synthetic nucleic acid strands to fabricate nanosized functional systems. Structural properties and the conformational polymorphism of nucleic acid sequences are inherent characteristics that make nucleic acid nanostructures attractive systems in biosensing. This review critically discusses recent advances in biosensing derived from molecular beacon and DNA origami structures. Molecular beacons belong to a conventional class of nucleic acid structures used in biosensing, whereas DNA origami nanostructures are fabricated by fully exploiting possibilities offered by nucleic acid nanotechnology. We present nucleic acid scaffolds divided into conventional hairpin molecular beacons and DNA origami, and discuss some relevant examples by focusing on peculiar aspects exploited in biosensing applications. We also critically evaluate analytical uses of the synthetic nucleic acid structures in biosensing to point out similarities and differences between traditional hairpin nucleic acid sequences and DNA origami.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
11
|
Markey FB, Parashar V, Batish M. Methods for spatial and temporal imaging of the different steps involved in RNA processing at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1608. [PMID: 32543077 DOI: 10.1002/wrna.1608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
RNA plays a quintessential role as a messenger of information from genotype (DNA) to phenotype (proteins), as well as acts as a regulatory molecule (noncoding RNAs). All steps in the journey of RNA from synthesis (transcription), splicing, transport, localization, translation, to its eventual degradation, comprise important steps in gene expression, thereby controlling the fate of the cell. This lifecycle refers to the majority of RNAs (primarily mRNAs), but not other RNAs such as tRNAs. Imaging these processes in fixed cells and in live cells has been an important tool in developing an understanding of the regulatory steps in RNAs journey. Single-cell and single-molecule imaging techniques enable a much deeper understanding of cellular biology, which is not possible with bulk studies involving RNA isolated from a large pool of cells. Classic techniques, such as fluorescence in situ hybridization (FISH), as well as more recent aptamer-based approaches, have provided detailed insights into RNA localization, and have helped to predict the functions carried out by many RNA species. However, there are still certain processing steps that await high-resolution imaging, which is an exciting and upcoming area of research. In this review, we will discuss the methods that have revolutionized single-molecule resolution imaging in general, the steps of RNA processing in which these methods have been used, and new emerging technologies. This article is categorized under: RNA Export and Localization > RNA Localization RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.
Collapse
Affiliation(s)
- Fatu Badiane Markey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Mona Batish
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
12
|
Wu H, Qian C, Wu C, Wang Z, Wang D, Ye Z, Ping J, Wu J, Ji F. End-point dual specific detection of nucleic acids using CRISPR/Cas12a based portable biosensor. Biosens Bioelectron 2020; 157:112153. [PMID: 32250930 DOI: 10.1016/j.bios.2020.112153] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/26/2022]
Abstract
A CRISPR/Cas12a based portable biosensor (Cas12a-PB) was developed to simultaneously visually detect CaMV35S promoter and Lectin gene from genetically modified (GM) soybean powders (Roundup Ready@). The Cas12a-PB, mainly made of polymethylmethacrylate (PMMA) and PMMA tape, has a connection structure, three channels and three detection chambers. The CRISPR/Cas12a detection reagents were preloaded in detection chambers and the reaction tube was connected to the connection structure by screw threads. After amplification, the amplicons were gone into three detection chambers by swinging the Cas12a-PB to conduct dual detection. Positive samples would produce green fluorescence while negative samples were black under the irradiation of 490 nm LED light. In this study, the Cas12a-PB successively combined with ordinary PCR, rapid PCR and loop-mediated isothermal amplification (LAMP) to achieve dual detection, which made detection process more convenient and portable. As low as 0.1% transgenic ingredients in soybean powders could be detected and the specificity of Cas12a-PB was confirmed with GM maize powders (MON810, GA21), GM soybean powders (DP305423), non-GM peanut and rice as targets. In the end, an amplification chamber combining with Cas12a-PB on a PMMA chip was further designed to eliminate the use of reaction tube and mineral oil, which made operation simpler. The established Cas12a-PB would provide a new reliable solution for multiple targets detection in clinic diagnostics, food safety, etc.
Collapse
Affiliation(s)
- Hui Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Qian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Cui Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Dacheng Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zunzhong Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Feng Ji
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Lee SH, Park SM, Kim BN, Kwon OS, Rho WY, Jun BH. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens Bioelectron 2019; 141:111448. [PMID: 31252258 DOI: 10.1016/j.bios.2019.111448] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, nucleic acid amplification tests (NAATs) including polymerase chain reaction (PCR) were an indispensable methodology for diagnosing cancers, viral and bacterial infections owing to their high sensitivity and specificity. Because the NAATs can recognize and discriminate even a few copies of nucleic acid (NA) and species-specific NA sequences, NAATs have become the gold standard in a wide range of applications. However, limitations of NAAT approaches have recently become more apparent by reason of their lengthy run time, large reaction volume, and complex protocol. To meet the current demands of clinicians and biomedical researchers, new NAATs have developed to achieve ultrafast sample-to-answer protocols for the point-of-care testing (POCT). In this review, ultrafast NA-POCT platforms are discussed, outlining their NA amplification principles as well as delineating recent advances in ultrafast NAAT applications. The main focus is to provide an overview of NA-POCT platforms in regard to sample preparation of NA, NA amplification, NA detection process, interpretation of the analysis, and evaluation of the platform design. Increasing importance will be given to innovative, ultrafast amplification methods and tools which incorporate artificial intelligence (AI)-associated data analysis processes and mobile-healthcare networks. The future prospects of NA POCT platforms are promising as they allow absolute quantitation of NA in individuals which is essential to precision medicine.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, CA, USA
| | | | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, FL, USA
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Won-Yep Rho
- School of International Engineering and Science, Chonbuk National University, Jeonju, South Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, South Korea.
| |
Collapse
|
14
|
Marras SAE, Tyagi S, Antson DO, Kramer FR. Color-coded molecular beacons for multiplex PCR screening assays. PLoS One 2019; 14:e0213906. [PMID: 30883590 PMCID: PMC6422326 DOI: 10.1371/journal.pone.0213906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
The number of different fluorescent colors that can be distinguished in a PCR screening assay restricts the number of different targets that can be detected. If only six colors can be distinguished, and the probe for each target is labeled with a unique color, then only six different targets can be identified. Yet, it is often desirable to identify more targets. For instance, the rapid identification of which bacterial species (if any) is present in a patient's normally sterile blood sample, out of a long list of species, would enable appropriate actions to be taken to prevent sepsis. We realized that the number of different targets that can be identified in a screening assay can be increased significantly by utilizing a unique combination of two colors for the identification of each target species. We prepared a demonstration assay in which 15 different molecular beacon probe pairs were present, each pair specific for the same identifying sequence in the 16S ribosomal RNA gene of a different bacterial species, and each pair labeled with a unique combination of two fluorophores out of the six differently colored fluorophores that our PCR instrument could distinguish. In a set of PCR assays, each containing all 30 color-coded molecular beacons, and each containing DNA from a different bacterial species, the only two colors that arose in each real-time assay identified the species-specific target sequence that was present. Due to the intrinsic low background of molecular beacon probes, these reactions were specific and extremely sensitive, and the threshold cycle reflected the abundance of the target sequence present in each sample.
Collapse
Affiliation(s)
- Salvatore A. E. Marras
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Dan-Oscar Antson
- Center for Technology Licensing, Weill Cornell Medical Center, Cornell University, New York, New York, United States of America
| | - Fred Russell Kramer
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
15
|
Saisuk W, Srisawat C, Yoksan S, Dharakul T. Hybridization Cascade Plus Strand-Displacement Isothermal Amplification of RNA Target with Secondary Structure Motifs and Its Application for Detecting Dengue and Zika Viruses. Anal Chem 2019; 91:3286-3293. [DOI: 10.1021/acs.analchem.8b03736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - S. Yoksan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand, 73170
| | | |
Collapse
|
16
|
Zhou Y, Chen Y, He H, Liao J, Duong HT, Parviz M, Jin D. A homogeneous DNA assay by recovering inhibited emission of rare earth ions-doped upconversion nanoparticles. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Multiplex PCR coupled with direct amplicon sequencing for simultaneous detection of numerous waterborne pathogens. Appl Microbiol Biotechnol 2018; 103:953-961. [PMID: 30417306 DOI: 10.1007/s00253-018-9498-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/08/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
The current water quality monitoring and regulation approaches use fecal indicator bacteria (FIB) to indirectly assess health risks from fecal pathogens. Direct detection of waterborne pathogens is expected to provide more accurate and comprehensive risk assessment, which however has been hindered by the lack of methods for simultaneous detection of the numerous waterborne pathogens. This study aimed to develop a mPCR-NGS approach that uses the high sequencing depth of NGS and sequence-based detection to significantly increase the multiplex level of mPCR for direct pathogen detection in water. Individual PCR primers were designed for 16 target marker genes of nine different bacterial pathogens, and an optimal combination of primers with least primer complementarities was identified for the multiplex setting. Using an artificial tester sample, the mPCR system was optimized for annealing temperature and primer concentration, and bioinformatic procedures were developed to directly detect the target marker gene amplicons in NGS sequence reads, which showed simultaneous detection of 14 different target genes in one reaction. The effectiveness of the developed mPCR-NGS approach was subsequently demonstrated on DNA extracts from stream water samples and their counterparts that were spiked with various target pathogen DNA, and all target genes spiked into the environmental water samples were successfully detected. Several key issues for further improving the mPCR-NGS approach were also identified and discussed.
Collapse
|
18
|
Pallás V, Sánchez-Navarro JA, James D. Recent Advances on the Multiplex Molecular Detection of Plant Viruses and Viroids. Front Microbiol 2018; 9:2087. [PMID: 30250456 PMCID: PMC6139301 DOI: 10.3389/fmicb.2018.02087] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Plant viruses are still one of the main contributors to economic losses in agriculture. It has been estimated that plant viruses can cause as much as 50 billion euros loss worldwide, per year. This situation may be worsened by recent climate change events and the associated changes in disease epidemiology. Reliable and early detection methods are still one of the main and most effective actions to develop control strategies for plant viral diseases. During the last years, considerable progress has been made to develop tools with high specificity and low detection limits for use in the detection of these plant pathogens. Time and cost reductions have been some of the main objectives pursued during the last few years as these increase their feasibility for routine use. Among other strategies, these objectives can be achieved by the simultaneous detection and (or) identification of several viruses in a single assay. Nucleic acid-based detection techniques are especially suitable for this purpose. Polyvalent detection has allowed the detection of multiple plant viruses at the genus level. Multiplexing RT polymerase chain reaction (PCR) has been optimized for the simultaneous detection of more than 10 plant viruses/viroids. In this short review, we provide an update on the progress made during the last decade on techniques such as multiplex PCR, polyvalent PCR, non-isotopic molecular hybridization techniques, real-time PCR, and array technologies to allow simultaneous detection of multiple plant viruses. Also, the potential and benefits of the powerful new technique of deep sequencing/next-generation sequencing are described.
Collapse
Affiliation(s)
- Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, IBMCP, Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A. Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, IBMCP, Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Delano James
- Sidney Laboratory, Canadian Food Inspection Agency, Sidney, BC, Canada
| |
Collapse
|
19
|
Wang G, Fu Y, Ren Z, Huang J, Best S, Li X, Han G. Upconversion nanocrystal 'armoured' silica fibres with superior photoluminescence for miRNA detection. Chem Commun (Camb) 2018; 54:6324-6327. [PMID: 29862401 DOI: 10.1039/c8cc03480j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have fabricated a flexible membrane, consisting of SiO2 nanofibres armoured with upconversion nanoparticles, exhibiting intense photoluminescence. These assemblies were subsequently grafted with molecular beacons to produce a biosensor suitable for the detection of specific microRNA and with applications in early cancer detection and point-of-care diagnosis.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen CY, Wang CM, Chen PS, Liao WS. Surface functional DNA density control by programmable molecular defects. Chem Commun (Camb) 2018; 54:4100-4103. [DOI: 10.1039/c7cc09908h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spatially programmable molecular-level defects via straightforward chemical lift-off manipulation leads to the direct regulation of complex surface DNA densities.
Collapse
Affiliation(s)
- Chong-You Chen
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chang-Ming Wang
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Pai-Shan Chen
- Department and Graduate Institute of Forensic Medicine
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|
21
|
He G, Li J, Qi C, Guo X. Single Nucleotide Polymorphism Genotyping in Single-Molecule Electronic Circuits. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700158. [PMID: 29201610 PMCID: PMC5700462 DOI: 10.1002/advs.201700158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/20/2017] [Indexed: 05/08/2023]
Abstract
Establishing low-cost, high-throughput, simple, and accurate single nucleotide polymorphism (SNP) genotyping techniques is beneficial for understanding the intrinsic relationship between individual genetic variations and their biological functions on a genomic scale. Here, a straightforward and reliable single-molecule approach is demonstrated for precise SNP authentication by directly measuring the fluctuations in electrical signals in an electronic circuit, which is fabricated from a high-gain field-effect silicon nanowire decorated with a single hairpin DNA, in the presence of different target DNAs. By simply comparing the proportion difference of a probe-target duplex structure throughout the process, this study implements allele-specific and accurate SNP detection. These results are supported by the statistical analyses of different dynamic parameters such as the mean lifetime and the unwinding probability of the duplex conformation. In comparison with conventional polymerase chain reaction and optical methods, this convenient and label-free method is complementary to existing optical methods and also shows several advantages, such as simple operation and no requirement for fluorescent labeling, thus promising a futuristic route toward the next-generation genotyping technique.
Collapse
Affiliation(s)
- Gen He
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Key Laboratory of RadiopharmaceuticalsMinistry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Jie Li
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Key Laboratory of RadiopharmaceuticalsMinistry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Chuanmin Qi
- Key Laboratory of RadiopharmaceuticalsMinistry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
22
|
Shah K, Bentley E, Tyler A, Richards KSR, Wright E, Easterbrook L, Lee D, Cleaver C, Usher L, Burton JE, Pitman JK, Bruce CB, Edge D, Lee M, Nazareth N, Norwood DA, Moschos SA. Field-deployable, quantitative, rapid identification of active Ebola virus infection in unprocessed blood. Chem Sci 2017; 8:7780-7797. [PMID: 29163915 PMCID: PMC5694917 DOI: 10.1039/c7sc03281a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 01/01/2023] Open
Abstract
The West African Ebola virus outbreak underlined the importance of delivering mass diagnostic capability outside the clinical or primary care setting in effectively containing public health emergencies caused by infectious disease. Yet, to date, there is no solution for reliably deploying at the point of need the gold standard diagnostic method, real time quantitative reverse transcription polymerase chain reaction (RT-qPCR), in a laboratory infrastructure-free manner. In this proof of principle work, we demonstrate direct performance of RT-qPCR on fresh blood using far-red fluorophores to resolve fluorogenic signal inhibition and controlled, rapid freeze/thawing to achieve viral genome extraction in a single reaction chamber assay. The resulting process is entirely free of manual or automated sample pre-processing, requires no microfluidics or magnetic/mechanical sample handling and thus utilizes low cost consumables. This enables a fast, laboratory infrastructure-free, minimal risk and simple standard operating procedure suited to frontline, field use. Developing this novel approach on recombinant bacteriophage and recombinant human immunodeficiency virus (HIV; Lentivirus), we demonstrate clinical utility in symptomatic EBOV patient screening using live, infectious Filoviruses and surrogate patient samples. Moreover, we evidence assay co-linearity independent of viral particle structure that may enable viral load quantification through pre-calibration, with no loss of specificity across an 8 log-linear maximum dynamic range. The resulting quantitative rapid identification (QuRapID) molecular diagnostic platform, openly accessible for assay development, meets the requirements of resource-limited countries and provides a fast response solution for mass public health screening against emerging biosecurity threats.
Collapse
Affiliation(s)
- Kavit Shah
- Westminster Genomic Services , Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
- BGResearch Ltd. , 6 The Business Centre, Harvard Way, Harvard Industrial Estate , Kimbolton , Huntingdon PE28 0NJ , UK
| | - Emma Bentley
- Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
| | - Adam Tyler
- BioGene Ltd. , 8 The Business Centre, Harvard Way, Harvard Industrial Estate , Kimbolton , Huntingdon PE28 0NJ , UK
| | - Kevin S R Richards
- Public Health England , National Infection Service , High Containment Microbiology Department , Porton Down , Salisbury , Wiltshire SP4 0JG , UK
| | - Edward Wright
- Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
| | - Linda Easterbrook
- Public Health England , National Infection Service , High Containment Microbiology Department , Porton Down , Salisbury , Wiltshire SP4 0JG , UK
| | - Diane Lee
- Fluorogenics LIMITED , Building 227, Tetricus Science Park, Dstl Porton Down , Salisbury , Wiltshire SP4 0JQ , UK
| | - Claire Cleaver
- Fluorogenics LIMITED , Building 227, Tetricus Science Park, Dstl Porton Down , Salisbury , Wiltshire SP4 0JQ , UK
| | - Louise Usher
- Westminster Genomic Services , Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
| | - Jane E Burton
- Public Health England , National Infection Service , High Containment Microbiology Department , Porton Down , Salisbury , Wiltshire SP4 0JG , UK
| | - James K Pitman
- Public Health England , National Infection Service , High Containment Microbiology Department , Porton Down , Salisbury , Wiltshire SP4 0JG , UK
| | - Christine B Bruce
- Public Health England , National Infection Service , High Containment Microbiology Department , Porton Down , Salisbury , Wiltshire SP4 0JG , UK
| | - David Edge
- BioGene Ltd. , 8 The Business Centre, Harvard Way, Harvard Industrial Estate , Kimbolton , Huntingdon PE28 0NJ , UK
| | - Martin Lee
- Fluorogenics LIMITED , Building 227, Tetricus Science Park, Dstl Porton Down , Salisbury , Wiltshire SP4 0JQ , UK
| | - Nelson Nazareth
- BioGene Ltd. , 8 The Business Centre, Harvard Way, Harvard Industrial Estate , Kimbolton , Huntingdon PE28 0NJ , UK
| | - David A Norwood
- Diagnostic Systems Division and Virology Division , United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD 21701-5011 , USA
| | - Sterghios A Moschos
- Westminster Genomic Services , Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
- Department of Biomedical Sciences , Faculty of Science and Technology , University of Westminster , 115 New Cavendish Str , London W1W 6UW , UK
- Department of Applied Sciences , Faculty of Health and Life Sciences , Northumbria University , C4.03 Ellison Building, Ellison Place , Newcastle Upon Tyne , Tyne and Wear NE1 8ST , UK . ; Tel: +44(0) 191 215 6623
| |
Collapse
|
23
|
|
24
|
James AM, Baker MB, Bao G, Searles CD. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA. Theranostics 2017; 7:634-646. [PMID: 28255356 PMCID: PMC5327639 DOI: 10.7150/thno.16840] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro. The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples.
Collapse
|
25
|
Liu W, Huang S, Liu N, Dong D, Yang Z, Tang Y, Ma W, He X, Ao D, Xu Y, Zou D, Huang L. Establishment of an accurate and fast detection method using molecular beacons in loop-mediated isothermal amplification assay. Sci Rep 2017; 7:40125. [PMID: 28059137 PMCID: PMC5216335 DOI: 10.1038/srep40125] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
This study established a constant-temperature fluorescence quantitative detection method, combining loop-mediated isothermal amplification (LAMP) with molecular beacons. The advantages of LAMP are its convenience and efficiency, as it does not require a thermocycler and results are easily visualized by the naked eye. However, a major disadvantage of current LAMP techniques is the use of indirect evaluation methods (e.g., electrophoresis, SYBR Green I dye, precipitation, hydroxynaphthol blue dye, the turbidimetric method, calcein/Mn2+ dye, and the composite probe method), which cannot distinguish between the desired products and products of nonspecific amplification, thereby leading to false positives. Use of molecular beacons avoids this problem because molecular beacons produce fluorescence signals only when binding to target DNA, thus acting as a direct indicator of amplification products. Our analyses determined the optimal conditions for molecular beacons as an evaluation tool in LAMP: beacon length of 25-45 bp, beacon concentration of 0.6-1 pmol/μL, and reaction temperature of 60-65 °C. In conclusion, we validated a novel molecular beacon loop-mediated isothermal amplification method (MB-LAMP), realizing the direct detection of LAMP product.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Simo Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ningwei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Derong Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yue Tang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wen Ma
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming He
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Da Ao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yaqing Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Dayang Zou
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
26
|
Zhou W, Dong S. A new AgNC fluorescence regulation mechanism caused by coiled DNA and its applications in constructing molecular beacons with low background and large signal enhancement. Chem Commun (Camb) 2017; 53:12290-12293. [DOI: 10.1039/c7cc06872g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A AgNC fluorescence interference strategy caused by a coiled DNA sequence (A) and its applications in target DNA detection (B).
Collapse
Affiliation(s)
- Weijun Zhou
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
27
|
Cassar O, Gessain A. Serological and Molecular Methods to Study Epidemiological Aspects of Human T-Cell Lymphotropic Virus Type 1 Infection. Methods Mol Biol 2017; 1582:3-24. [PMID: 28357658 DOI: 10.1007/978-1-4939-6872-5_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We estimated that at least 5-10 million individuals are infected with HTLV-1. Importantly, this number is based on the study of nearly 1.5 billion people living in known human T-cell lymphotropic virus type 1 (HTLV-1) endemic areas, for which reliable epidemiological data are available. However, for some highly populated regions including India, the Maghreb, East Africa, and some regions of China, no consistent data are yet available which prevents a more accurate estimation. Thus, the number of HTLV-1 infected people in the world is probably much higher. The prevalence of HTLV-1 prevalence varies depending on age, sex, and economic level in most HTLV-1 endemic areas. HTLV-1 seroprevalence gradually increases with age, especially in women. HTLV-1 has a simian origin and was originally acquired by humans through interspecies transmission from STLV-1 infected monkeys in the Old World. Three main modes of HTLV-1 transmission have been described; (1) from mother-to-child after prolonged breast-feeding lasting more than six months, (2) through sexual intercourse, which mainly, but not exclusively, occurs from male to female and lastly, (3) from contaminated blood products, which contain HTLV-1 infected lymphocytes. In specific areas, such as Central Africa, zoonotic transmission from STLV-1 infected monkeys to humans is still ongoing.The diagnostic methods used to study the epidemiological aspects of HTLV-1 infection mainly consist of serological assays for the detection of antibodies specifically directed against different HTLV-1 antigens. Screening tests are usually based on enzyme-linked immunoabsorbent assay (ELISA), chemiluminescence enzyme-linked immunoassay (CLEIA) or particle agglutination (PA). Confirmatory tests include mostly Western blots (WB)s or innogenetics line immunoassay (INNO-LIA™) and to a lesser extent immunofluorescence assay (IFA). The search for integrated provirus in the DNA from peripheral blood cells can be performed by qualitative and/or quantitative polymerase chain reaction (qPCR). qPCR is widely used in most diagnostic laboratories and quantification of proviral DNA is useful for the diagnosis and follow-up of HTLV-1 associated diseases such as adult T-cell leukemia (ATL) and tropical spastic paraparesis/HTLV-1 associated myelopathy (TSP/HAM). PCR also provides amplicons for further sequence analysis to determine the HTLV-1 genotype present in the infected person. The use of new generation sequencing methodologies to molecularly characterize full and/or partial HTLV-1 genomic regions is increasing. HTLV-1 genotyping generates valuable molecular epidemiological data to better understand the evolutionary history of this virus.
Collapse
Affiliation(s)
- Olivier Cassar
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, 28 rue du Dr. Roux, F-75015, Paris, France. .,CNRS, UMR 3569, 28 rue du Dr. Roux, F-75015, Paris, France.
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, 28 rue du Dr. Roux, F-75015, Paris, France.,CNRS, UMR 3569, 28 rue du Dr. Roux, F-75015, Paris, France
| |
Collapse
|
28
|
Poorghasem R, Saberi RS, Shayan M, Mehrgardi MA, Kiani A. Closed Bipolar Electrochemistry for the Detection of Human Immunodeficiency Virus Short Oligonucleotide. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Abstract
Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the fluorescence signals by specific in vitro/in vivo fluorescent labeling, and consequently, the fluorescent molecules indicate the presence of target molecules. The resultant fluorescence signals may be simply counted by either microfluidic device-integrated confocal microscopy or total internal reflection fluorescence-based single-molecule imaging. We have developed a series of single-molecule counting-based biosensors which can be classified as separation-free and separation-assisted assays. As a proof-of-concept, we demonstrate the applications of single-molecule counting-based biosensors for sensitive detection of various target biomolecules such as DNAs, miRNAs, proteins, enzymes, and intact cells, which may function as the disease-related biomarkers. Moreover, we give a summary of future directions to expand the usability of single-molecule counting-based biosensors including (1) the development of more user-friendly and automated instruments, (2) the discovery of new fluorescent labels and labeling strategies, and (3) the introduction of new concepts for the design of novel biosensors. Due to their high sensitivity, good selectivity, rapidity, and simplicity, we believe that the single-molecule counting-based fluorescent biosensors will indubitably find wide applications in biological research, clinical diagnostics, and drug discovery.
Collapse
Affiliation(s)
- Fei Ma
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Ying Li
- Medical
School, Shenzhen University, Shenzhen 518060, China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
30
|
Garg G, Kumar D, Asim M, Husain SA, Das BC, Kar P. Multiplex Reverse Transcriptase-PCR for Simultaneous Detection of Hepatitis B, C, and E Virus. J Clin Exp Hepatol 2016; 6:33-9. [PMID: 27194894 PMCID: PMC4862013 DOI: 10.1016/j.jceh.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/11/2015] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The hepatitis B virus (HBV), HCV, and HEV may occur as singly or concurrently in patients of different kind of liver disease. The rapid, reliable, and cost-effective screening of these pathogens is required for the large epidemiological studies. Therefore, a study has been planned to develop a multiplex Reverse Transcriptase-PCR assay which can be used for the screening of maximum number of pathogens at a time. METHODOLOGY To develop multiplex Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) assay for simultaneous detection of HBV, HCV, and HEV; the serum samples of 54 patients who were positive either singly or in co-infection with for HBV, HCV, and HEV serologically were screened by uniplex PCR/RT-PCR followed by multiplex RT-PCR for HBV, HCV, and HEV using specific primers. These primers can detect most genotypes of these viruses. Multiplex RT-PCR was done in one tube for the identification of viral DNA/RNA using a mixture of three pairs of specific primers for hepatitis B, C, and E viruses. Representative positive samples of these viruses by uniplex/multiplex RT-PCR were also confirmed by sequencing followed by alignment with reference strains sequence. RESULTS The specificity of multiplex PCR was 100% with high sensitivity 89%, 87%, and 74% for HBV, HCV, and HEV respectively. The sensitivity and specificity of RT-multiplex PCR demonstrated a good correlation with that of uniplex PCR. CONCLUSION The study suggests that multiplex RT-PCR can serve as a simple and reliable assay for rapid, sensitive, and cost-effective method for simultaneous detection of super-infections with HEV particularly in Asian countries as a cause of decompensation of chronic liver disease.
Collapse
Key Words
- ELISA, enzyme linked immunosorbent assay
- HAV, hepatitis A virus
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HEV, hepatitis E virus
- NATs, nucleic acid amplification technologies
- NPV, negative predictive value
- PCR, polymerase chain reaction
- PPV, positive predictive value
- RT-PCR, Reverse Transcriptase-Polymerase Chain Reaction
- hepatitis B virus
- hepatitis C virus
- hepatitis E virus
- liver diseases
- multiplex PCR
Collapse
Affiliation(s)
- Gunjan Garg
- Department of Medicine, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Deepak Kumar
- Department of Biotechnology & Molecular Medicine, Pt. B.D. Sharma Post Graduate Institute of Medical Sciences, Rohtak, India
| | - Mohammad Asim
- Department of Medicine, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | | | - Bhudev C. Das
- Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Premashis Kar
- Department of Medicine, Maulana Azad Medical College, University of Delhi, New Delhi, India,Address for correspondence: Premashis Kar, Director-Professor, Room No. 127, Ist Floor, B.L. Taneja Block, Department of Medicine, Maulana Azad Medical College, New Delhi 110002, India. Tel.: +91 9968604270; fax: +91 23235432.Department of Medicine, Maulana Azad Medical CollegeRoom No. 127, Ist Floor, B.L. Taneja BlockNew Delhi110002India
| |
Collapse
|
31
|
Huang L, Aryal GH, Tam-Chang SW, Publicover NG, Hunter KW. Self-assembled biosensor with universal reporter and dual-quenchers for detection of unlabelled nucleic acids. Analyst 2016; 141:1376-82. [PMID: 26757447 DOI: 10.1039/c5an02094h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel biosensor with universal reporter and dual quenchers was developed for rapid, sensitive, selective, and inexpensive detection of unlabelled nucleic acids. The biosensor is based on a single-strand DNA stem-loop motif with an extended universal reporter-binding region, a G-base rich stem region, and a universal address-binding region. The self-assembly of these stem-loop probes with fluorescence labeled universal reporter and a universal address region conjugated to gold nanoparticles forms the basis of a biosensor for DNA or microRNA targets in solution. The introduction of dual quenchers (G-base quenching and gold surface plasmon resonance-induced quenching) significantly reduces the fluorescence background to as low as 12% of its original fluorescence intensity and hence enhances the detection limit to 0.01 picomoles without signal ampilication.
Collapse
Affiliation(s)
- Liming Huang
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| | - Gyan H Aryal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| | - Suk-Wah Tam-Chang
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| | - Nelson G Publicover
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| | - Kenneth W Hunter
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
32
|
Mandappa IM, Joglekar P, Manonmani HK. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus. Journal of Food Science and Technology 2015; 52:4642-6. [PMID: 26139938 DOI: 10.1007/s13197-014-1525-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 11/30/2022]
Abstract
A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.
Collapse
Affiliation(s)
- I M Mandappa
- Fermentation Technology and Bioengineering Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka India
| | - Prasanna Joglekar
- Fermentation Technology and Bioengineering Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka India
| | - H K Manonmani
- Fermentation Technology and Bioengineering Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka India
| |
Collapse
|
33
|
Shen Q, Han L, Fan G, Zhang JR, Jiang L, Zhu JJ. "Signal-on" photoelectrochemical biosensor for sensitive detection of human T-Cell lymphotropic virus type II DNA: dual signal amplification strategy integrating enzymatic amplification with terminal deoxynucleotidyl transferase-mediated extension. Anal Chem 2015; 87:4949-56. [PMID: 25871300 DOI: 10.1021/acs.analchem.5b00679] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel "signal-on" photoelectrochemical (PEC) biosensor for sensitive detection of human T-cell lymphotropic virus type II (HTLV-II) DNA was developed on the basis of enzymatic amplification coupled with terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. The intensity of the photocurrent signal was proportional to the concentration of the HTLV-II DNA-target DNA (tDNA) by dual signal amplification. In this protocol, GR-CdS:Mn/ZnS nanocomposites were used as photoelectric conversion material, while pDNA was used as the tDNA recognizing unit. Moreover, the TdT-mediated extension and the enzymatic signal amplification technique were used to enhance the sensitivity of detection. Using this novel dual signal amplification strategy, the prototype of PEC DNA sensor can detect as low as ∼0.033 fM of HTLV-II DNA with a linear range of 0.1-5000 fM, with excellent differentiation ability even for single-base mismatches. This PEC DNA assay opens a promising platform to detect various DNA targets at ultralow levels for early diagnoses of different diseases.
Collapse
Affiliation(s)
- Qingming Shen
- †Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China
| | - Li Han
- †Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China
| | - Gaochao Fan
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jian-Rong Zhang
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Liping Jiang
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jun-Jie Zhu
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
34
|
Mangal M, Bansal S, Sharma SK, Gupta RK. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety. Crit Rev Food Sci Nutr 2015; 56:1568-84. [DOI: 10.1080/10408398.2013.782483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Zhang Y, Zhu C, Zhang L, Tan C, Yang J, Chen B, Wang L, Zhang H. DNA-templated silver nanoclusters for multiplexed fluorescent DNA detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1385-9. [PMID: 25491417 DOI: 10.1002/smll.201402044] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/28/2014] [Indexed: 05/28/2023]
Abstract
Novel label-free/conjugation-free molecular beacons are designed based on DNA templated-silver nanoclusters for multiplexed DNA detection. The assay is implemented in solution, which makes it easy for the in-situ and real-time analysis. This study demonstrates a new method for multiplexd detection of biological molecules by using fluorescent Ag nanocluster-based molecular beacon probes.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Del Bonis-O'Donnell JT, Fygenson DK, Pennathur S. Fluorescent silver nanocluster DNA probes for multiplexed detection using microfluidic capillary electrophoresis. Analyst 2015; 140:1609-15. [DOI: 10.1039/c4an01735h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We tune the electrophoretic mobilities of silver nanocluster DNA probes for Hepatitis A, B and C targets for single-color multiplexing by microfluidic capillary electrophoresis.
Collapse
Affiliation(s)
| | | | - Sumita Pennathur
- Department of Mechanical Engineering
- University of California Santa Barbara
- Santa Barbara
- USA
| |
Collapse
|
37
|
Tan X, Wang Y, Armitage BA, Bruchez MP. Label-free molecular beacons for biomolecular detection. Anal Chem 2014; 86:10864-9. [PMID: 25287123 DOI: 10.1021/ac502986g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomolecular detection and imaging methods provide quantitative measurements essential for biological research. In this context, molecular beacon based sensors have emerged as powerful, no-wash imaging agents, providing target-specific fluorescent activation for nucleic acids, proteins, and small molecules. Conventional molecular beacons require double-labeled DNA sequences, which are costly and time-consuming to prepare. To address this issue, we developed DNA based label-free molecular beacons consisting of two regions: a signal-generating region based on human telomeric G-quadruplex sequence that activates Thioflavin T fluorescence and a target recognition sequence designed to interact in a molecular beacon format. We demonstrated the utility of these probes for the selective detection of DNA, RNA, and protein. Multiple probes were applied against a single target to achieve improved brightness in fluorescence detection of nucleic acid targets. This label-free strategy provides a straightforward, cost-effective alternative to fluorescently labeled oligonucleotides in biomolecular detection and imaging.
Collapse
Affiliation(s)
- Xiaohong Tan
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | | | | | | |
Collapse
|
38
|
Sahore V, Fritsch I. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses. Anal Chem 2014; 86:9405-11. [PMID: 25171501 DOI: 10.1021/ac502014t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A proof-of-concept superparamagnetic microbead-enzyme complex was integrated with microfluidics pumped by redox-magneto-hydrodynamics (MHD) to take advantage of the magnet (0.56 T) beneath the chip and the uniform flat flow profile, as a first step toward developing multiple, parallel chemical analyses on a chip without the need for independent channels. The superparamagnetic beads were derivatized with alkaline phosphatase (a common enzyme label for biochemical assays) and magnetically immobilized at three different locations on the chip with one directly on the path to the detector and the other two locations adjacent to, but off the path, by a distance >5 times the detector diameter. Electroactive p-aminophenol, enzymatically generated at the bead-enzyme complex from its electroinactive precursor p-aminophenyl phosphate in a solution containing a redox species [Ru(NH3)6](3+/2+) for pumping and Tris buffer, was transported by redox-MHD and detected with square wave voltammetry at a 312 μm diameter gold microdisk stationed 2 mm downstream from the bead-complex on the flow path. Oppositely biased pumping electrodes, consisting of 2.5 cm long gold bands and separated by 5.6 mm, flanked the active flow region containing the bead-enzyme complex and detection site. The signal from adjacent paths was only 20% of that for the direct path and ≤8% when pumping electrodes were inactive.
Collapse
Affiliation(s)
- Vishal Sahore
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | | |
Collapse
|
39
|
Lai YH, Lee CC, King CC, Chuang MC, Ho JAA. Exploitation of stem-loop DNA as a dual-input gene sensing platform: extension to subtyping of influenza A viruses. Chem Sci 2014. [DOI: 10.1039/c4sc01289e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Hsieh ATH, Pan PJ, Lee AP. A real-time characterization method to rapidly optimize molecular beacon signal for sensitive nucleic acids analysis. Anal Bioanal Chem 2014; 406:3059-67. [PMID: 24722874 DOI: 10.1007/s00216-014-7721-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/15/2014] [Accepted: 02/21/2014] [Indexed: 11/26/2022]
Abstract
This research demonstrates an integrated microfluidic titration assay to characterize the cation concentrations in working buffer to rapidly optimize the signal-to-noise ratio (SNR) of molecular beacons (MBs). The "Microfluidic Droplet Array Titration Assay" (MiDATA) integrated the functions of sample dilution, sample loading, sample mixing, fluorescence analysis, and re-confirmation functions all together in a one-step process. It allows experimentalists to arbitrarily change sample concentration and acquire SNR measurements instantaneously. MiDATA greatly reduces sample dilution time, number of samples needed, sample consumption, and the total titration time. The maximum SNR of molecular beacons is achieved by optimizing the concentrations of the monovalent and divalent cation (i.e., Mg(2+) and K(+)) of the working buffer. MiDATA platform is able to reduce the total consumed reagents to less than 50 μL, and decrease the assay time to less than 30 min. The SNR of the designated MB is increased from 20 to 126 (i.e., enhanced the signal 630 %) using the optimal concentration of MgCl2 and KCl determined by MiDATA. This novel microfluidics-based titration method is not only useful for SNR optimization of molecular beacons but it also can be a general method for a wide range of fluorescence resonance energy transfer (FRET)-based molecular probes.
Collapse
Affiliation(s)
- Albert Tsung-Hsi Hsieh
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA, 92697-2715, USA,
| | | | | |
Collapse
|
41
|
Rödiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P. Nucleic acid detection based on the use of microbeads: a review. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1243-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Richardson JA, Morgan T, Andreou M, Brown T. Use of a large Stokes-shift fluorophore to increase the multiplexing capacity of a point-of-care DNA diagnostic device. Analyst 2013; 138:3626-8. [PMID: 23675581 DOI: 10.1039/c3an00593c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intense demand for fluorescence-based point of care (POC) DNA diagnostics is driving developments to reduce the size of instrumentation, imposing limitations on the optical hardware that can be included. Here we describe a combination of instrumentation and fluorogenic probes to detect three fluorophores using two excitation and two detection channels.
Collapse
Affiliation(s)
- James A Richardson
- Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | | | | | | |
Collapse
|
43
|
Li B, Li Z, Situ B, Dai Z, Liu Q, Wang Q, Gu D, Zheng L. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode. Biosens Bioelectron 2013; 52:330-6. [PMID: 24099877 DOI: 10.1016/j.bios.2013.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 12/13/2022]
Abstract
A novel electrochemical sensing assay for sensitive determination of HIV-1 in a homogeneous solution has been developed using an electrochemical molecular beacon combined with a nafion-graphene composite film modified screen-printed carbon electrode (nafion-graphene/SPCE). The electrochemical molecular beacon (CAs-MB), comprising a special recognition sequence for the conserved region of the HIV-1 gag gene and a pair of carminic acid molecules as a marker, can indicate the presence of the HIV-1 target by its on/off electrochemical signal behavior. It is suitable for direct, electrochemical determination of HIV-1, thereby simplifying the detection procedure and improving the signal-to-noise (S/N) ratio. To further improve the sensitivity, the nafion-graphene/SPCE was used to monitor changes in the CAs-MB, which has notable advantages, such as being ultrasensitive, inexpensive, and disposable. Under optimized conditions, the peak currents showed a linear relationship with the logarithm of target oligonucleotide concentrations ranging from 40 nM to 2.56 μM, with a detection limit of 5 nM (S/N=3). This sensing assay also displays a good stability, with a recovery of 88-106.8% and RSD<7% (n=5) in real serum samples. This work may lead to the development of an effective method for early point-of-care diagnosis of HIV-1 infection.
Collapse
Affiliation(s)
- Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Adult T cell leukaemia/lymphoma in Kerala, South India: are we staring at the tip of the iceberg? J Hematop 2013. [DOI: 10.1007/s12308-013-0191-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
45
|
Lu N, Gao A, Dai P, Li T, Wang Y, Gao X, Song S, Fan C, Wang Y. Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors. Methods 2013; 63:212-8. [PMID: 23886908 DOI: 10.1016/j.ymeth.2013.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/16/2013] [Accepted: 07/02/2013] [Indexed: 02/07/2023] Open
Abstract
Silicon nanowire field-effect transistors (SiNW-FETs) have recently emerged as a type of powerful nanoelectronic biosensors due to their ultrahigh sensitivity, selectivity, label-free and real-time detection capabilities. Here, we present a protocol as well as guidelines for detecting DNA with complementary metal oxide semiconductor (CMOS) compatible SiNW-FET sensors. SiNWs with high surface-to-volume ratio and controllable sizes were fabricated with an anisotropic self-stop etching technique. Probe DNA molecules specific for the target DNA were covalently modified onto the surface of the SiNWs. The SiNW-FET nanosensors exhibited an ultrahigh sensitivity for detecting the target DNA as low as 1 fM and good selectivity for discrimination from one-base mismatched DNA.
Collapse
Affiliation(s)
- Na Lu
- State Key Laboratories of Transducer Technology and Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Real-time PCR or quantitative PCR (QPCR) is a powerful technique that allows measurement of PCR product while the amplification reaction proceeds. It incorporates the fluorescent element into conventional PCR as the calculation standard to provide a quantitative result. In this sense, fluorescent chemistry is the key component in QPCR. Till now, two types of fluorescent chemistries have been adopted in the QPCR systems: one is nonspecific probe and the other is specific. As a brilliant invention by Kramer et al. in 1996, molecular beacon is naturally suited as the reporting element in real-time PCR and has been adapted for many molecular biology applications. In this chapter, we briefly introduce the working principle of QPCR and overview different fluorescent chemistries, and then we focus on the applications of molecular beacons-like gene expression study, single-nucleotide polymorphisms and mutation detection, and pathogenic detection.
Collapse
Affiliation(s)
- Chaoyong James Yang
- Department of Chemical Biology College of Chemistry and Chemical Xiamen University, Xiamen, Fujian China, People's Republic
| | - Weihong Tan
- Department of Biomedical Engineering and Department of Chemistry Hunan University, Changsha, China, People's Republic
| |
Collapse
|
47
|
Rajagopal A, Scherer A, Homyk A, Kartalov E. Supercolor coding methods for large-scale multiplexing of biochemical assays. Anal Chem 2013; 85:7629-36. [PMID: 23763357 DOI: 10.1021/ac401304t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a novel method for the encoding and decoding of multiplexed biochemical assays. The method enables a theoretically unlimited number of independent targets to be detected and uniquely identified in any combination in the same sample. For example, the method offers easy access to 12-plex and larger PCR assays, as contrasted to the current 4-plex assays. This advancement would allow for large panels of tests to be run simultaneously in the same sample, saving reagents, time, consumables, and manual labor, while also avoiding the traditional loss of sensitivity due to sample aliquoting. Thus, the presented method is a major technological breakthrough with far-reaching impact on biotechnology, biomedical science, and clinical diagnostics. Herein, we present the mathematical theory behind the method as well as its experimental proof of principle using Taqman PCR on sequences specific to infectious diseases.
Collapse
Affiliation(s)
- Aditya Rajagopal
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California 91125, United States.
| | | | | | | |
Collapse
|
48
|
Socher E, Knoll A, Seitz O. Dual fluorophore PNA FIT-probes--extremely responsive and bright hybridization probes for the sensitive detection of DNA and RNA. Org Biomol Chem 2013; 10:7363-71. [PMID: 22864341 DOI: 10.1039/c2ob25925g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fluorescently labeled oligonucleotides are commonly employed as probes to detect specific DNA or RNA sequences in homogeneous solution. Useful probes should experience strong increases in fluorescent emission upon hybridization with the target. We developed dual labeled peptide nucleic acid probes, which signal the presence of complementary DNA or RNA by up to 450-fold enhancements of fluorescence intensity. This enabled the very sensitive detection of a DNA target (40 pM LOD), which was detectable at less than 0.1% of the beacon concentration. In contrast to existing DNA-based molecular beacons, this PNA-based method does not require a stem sequence to enforce dye-dye communication. Rather, the method relies on the energy transfer between a "smart" thiazole orange (TO) nucleotide, which requires formation of the probe-target complex in order to become fluorescent, and terminally appended acceptor dyes. To improve upon fluorescence responsiveness the energy pathways were dissected. Hydrophobic, spectrally mismatched dye combinations allowed significant (99.97%) decreases of background emission in the absence of a target. By contrast, spectral overlap between TO donor emission and acceptor excitation enabled extremely bright FRET signals. This and the large apparent Stokes shift (82 nm) suggests potential applications in the detection of specific RNA targets in biogenic matrices without the need of sample pre-processing prior to detection.
Collapse
Affiliation(s)
- Elke Socher
- Department of Chemistry, Humboldt University Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
49
|
Ulrich S, Dumy P, Boturyn D, Renaudet O. Engineering of biomolecules for sensing and imaging applications. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Abstract
Molecular beacons are oligonucleotide (DNA or RNA) probes that have become increasingly important tools for RNA sensitive detection both in vitro and in living cells. From their inception, molecular beacons have been used to determine the expression levels of RNA transcripts, but they also have the specificity to identify splice variants and single-nucleotide polymorphisms. Our group has performed extensive studies on molecular beacon design, molecular beacon hybridization assays, and cellular imaging of mRNA molecules. Compared to other methods for assessing RNA transcript expression, such as qRT-PCR, the beacon-based approach is potentially simpler, faster, more cost effective, and more specific. Recently, our group demonstrated that molecular beacons can readily distinguish mature- and precursor microRNAs, and reliably quantify microRNA expression. MicroRNAs (miRNAs) are a class of short (19-25 nt), single-stranded, noncoding RNAs that regulate an array of cellular functions through the degradation and translational repression of mRNA targets. Importantly, tissue levels of specific miRNAs have been shown to correlate with pathological development of diseases. Thus, a rapid and efficient method of assessing miRNA expression is useful for diagnosing diseases and identifying novel therapeutic targets. Here, we describe the methods for designing and using molecular beacons to detect and quantify miRNA.
Collapse
Affiliation(s)
- Meredith B Baker
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|