1
|
Tothero GK, Hoover RL, Farag IF, Kaplan DI, Weisenhorn P, Emerson D, Chan CS. Leptothrix ochracea genomes reveal potential for mixotrophic growth on Fe(II) and organic carbon. Appl Environ Microbiol 2024; 90:e0059924. [PMID: 39133000 PMCID: PMC11412304 DOI: 10.1128/aem.00599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Leptothrix ochracea creates distinctive iron-mineralized mats that carpet streams and wetlands. Easily recognized by its iron-mineralized sheaths, L. ochracea was one of the first microorganisms described in the 1800s. Yet it has never been isolated and does not have a complete genome sequence available, so key questions about its physiology remain unresolved. It is debated whether iron oxidation can be used for energy or growth and if L. ochracea is an autotroph, heterotroph, or mixotroph. To address these issues, we sampled L. ochracea-rich mats from three of its typical environments (a stream, wetlands, and a drainage channel) and reconstructed nine high-quality genomes of L. ochracea from metagenomes. These genomes contain iron oxidase genes cyc2 and mtoA, showing that L. ochracea has the potential to conserve energy from iron oxidation. Sox genes confer potential to oxidize sulfur for energy. There are genes for both carbon fixation (RuBisCO) and utilization of sugars and organic acids (acetate, lactate, and formate). In silico stoichiometric metabolic models further demonstrated the potential for growth using sugars and organic acids. Metatranscriptomes showed a high expression of genes for iron oxidation; aerobic respiration; and utilization of lactate, acetate, and sugars, as well as RuBisCO, supporting mixotrophic growth in the environment. In summary, our results suggest that L. ochracea has substantial metabolic flexibility. It is adapted to iron-rich, organic carbon-containing wetland niches, where it can thrive as a mixotrophic iron oxidizer by utilizing both iron oxidation and organics for energy generation and both inorganic and organic carbon for cell and sheath production. IMPORTANCE Winogradsky's observations of L. ochracea led him to propose autotrophic iron oxidation as a new microbial metabolism, following his work on autotrophic sulfur-oxidizers. While much culture-based research has ensued, isolation proved elusive, so most work on L. ochracea has been based in the environment and in microcosms. Meanwhile, the autotrophic Gallionella became the model for freshwater microbial iron oxidation, while heterotrophic and mixotrophic iron oxidation is not well-studied. Ecological studies have shown that Leptothrix overtakes Gallionella when dissolved organic carbon content increases, demonstrating distinct niches. This study presents the first near-complete genomes of L. ochracea, which share some features with autotrophic iron oxidizers, while also incorporating heterotrophic metabolisms. These genome, metabolic modeling, and transcriptome results give us a detailed metabolic picture of how the organism may combine lithoautotrophy with organoheterotrophy to promote Fe oxidation and C cycling and drive many biogeochemical processes resulting from microbial growth and iron oxyhydroxide formation in wetlands.
Collapse
Affiliation(s)
- Gracee K. Tothero
- Microbiology Graduate
Program, University of Delaware,
Newark, Delaware, USA
- Delaware Biotechnology
Institute, Newark,
Delaware, USA
- Department of Earth
Sciences, University of Delaware,
Newark, Delaware, USA
| | - Rene L. Hoover
- Microbiology Graduate
Program, University of Delaware,
Newark, Delaware, USA
- Delaware Biotechnology
Institute, Newark,
Delaware, USA
- Department of Earth
Sciences, University of Delaware,
Newark, Delaware, USA
| | - Ibrahim F. Farag
- School of Marine
Science and Policy, University of
Delaware, Newark,
Delaware, USA
| | - Daniel I. Kaplan
- Savannah River Ecology
Laboratory, University of Georgia,
Aiken, South Carolina,
USA
| | | | - David Emerson
- Bigelow Laboratory for
Ocean Sciences, East
Boothbay, Maine, USA
| | - Clara S. Chan
- Microbiology Graduate
Program, University of Delaware,
Newark, Delaware, USA
- Delaware Biotechnology
Institute, Newark,
Delaware, USA
- Department of Earth
Sciences, University of Delaware,
Newark, Delaware, USA
- School of Marine
Science and Policy, University of
Delaware, Newark,
Delaware, USA
| |
Collapse
|
2
|
Pollet RM, Foley MH, Kumar SS, Elmore A, Jabara NT, Venkatesh S, Vasconcelos Pereira G, Martens EC, Koropatkin NM. Multiple TonB homologs are important for carbohydrate utilization by Bacteroides thetaiotaomicron. J Bacteriol 2023; 205:e0021823. [PMID: 37874167 PMCID: PMC10662123 DOI: 10.1128/jb.00218-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.
Collapse
Affiliation(s)
- Rebecca M. Pollet
- Department of Chemistry, Vassar College, Poughkeepsie, New York, USA
- Biochemistry Program, Vassar College, Poughkeepsie, New York, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew H. Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Supriya Suresh Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amanda Elmore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Sameeksha Venkatesh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Mujakić I, Cabello-Yeves PJ, Villena-Alemany C, Piwosz K, Rodriguez-Valera F, Picazo A, Camacho A, Koblížek M. Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota. Microbiol Spectr 2023; 11:e0111223. [PMID: 37732776 PMCID: PMC10581226 DOI: 10.1128/spectrum.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
Gemmatimonadota is a diverse bacterial phylum commonly found in environments such as soils, rhizospheres, fresh waters, and sediments. So far, the phylum contains just six cultured species (five of them sequenced), which limits our understanding of their diversity and metabolism. Therefore, we analyzed over 400 metagenome-assembled genomes (MAGs) and 5 culture-derived genomes representing Gemmatimonadota from various aquatic environments, hydrothermal vents, sediments, soils, and host-associated (with marine sponges and coral) species. The principal coordinate analysis based on the presence/absence of genes in Gemmatimonadota genomes and phylogenomic analysis documented that marine and host-associated Gemmatimonadota were the most distant from freshwater and wastewater species. A smaller genome size and coding sequences (CDS) number reduction were observed in marine MAGs, pointing to an oligotrophic environmental adaptation. Several metabolic pathways are restricted to specific environments. For example, genes for anoxygenic phototrophy were found only in freshwater, wastewater, and soda lake sediment genomes. There were several genomes from soda lake sediments and wastewater containing type IC/ID ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Various genomes from wastewater harbored bacterial type II RuBisCO, whereas RuBisCO-like protein was found in genomes from fresh waters, soil, host-associated, and marine sediments. Gemmatimonadota does not contain nitrogen fixation genes; however, the nosZ gene, involved in the reduction of N2O, was present in genomes from most environments, missing only in marine water and host-associated Gemmatimonadota. The presented data suggest that Gemmatimonadota evolved as an organotrophic species relying on aerobic respiration and then remodeled its genome inventory when adapting to particular environments. IMPORTANCE Gemmatimonadota is a rarely studied bacterial phylum consisting of a handful of cultured species. Recent culture-independent studies documented that these organisms are distributed in many environments, including soil, marine, fresh, and waste waters. However, due to the lack of cultured species, information about their metabolic potential and environmental role is scarce. Therefore, we collected Gemmatimonadota metagenome-assembled genomes (MAGs) from different habitats and performed a systematic analysis of their genomic characteristics and metabolic potential. Our results show how Gemmatimonadota have adapted their genomes to different environments.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Pedro J. Cabello-Yeves
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
4
|
Pollet RM, Foley MH, Kumar SS, Elmore A, Jabara NT, Venkatesh S, Pereira GV, Martens EC, Koropatkin NM. Multiple TonB Homologs are Important for Carbohydrate Utilization by Bacteroides thetaiotaomicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548152. [PMID: 37461508 PMCID: PMC10350073 DOI: 10.1101/2023.07.07.548152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The human gut microbiota is able to degrade otherwise undigestible polysaccharides, largely through the activity of the Bacteroides. Uptake of polysaccharides into Bacteroides is controlled by TonB-dependent transporters (TBDT) whose transport is energized by an inner membrane complex composed of the proteins TonB, ExbB, and ExbD. Bacteroides thetaiotaomicron (B. theta) encodes 11 TonB homologs which are predicted to be able to contact TBDTs to facilitate transport. However, it is not clear which TonBs are important for polysaccharide uptake. Using strains in which each of the 11 predicted tonB genes are deleted, we show that TonB4 (BT2059) is important but not essential for proper growth on starch. In the absence of TonB4, we observed an increase in abundance of TonB6 (BT2762) in the membrane of B. theta, suggesting functional redundancy of these TonB proteins. Growth of the single deletion strains on pectin galactan, chondroitin sulfate, arabinan, and levan suggests a similar functional redundancy of the TonB proteins. A search for highly homologous proteins across other Bacteroides species and recent work in B. fragilis suggests that TonB4 is widely conserved and may play a common role in polysaccharide uptake. However, proteins similar to TonB6 are found only in B. theta and closely related species suggesting that the functional redundancy of TonB4 and TonB6 may be limited across the Bacteroides. This study extends our understanding of the protein network required for polysaccharide utilization in B. theta and highlights differences in TonB complexes across Bacteroides species.
Collapse
Affiliation(s)
- Rebecca M Pollet
- Department of Chemistry, Vassar College, Poughkeepsie, NY, 12604, USA
- Biochemistry Program, Vassar College, Poughkeepsie, NY, 12604, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew H Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Supriya Suresh Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amanda Elmore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nisrine T Jabara
- Biochemistry Program, Vassar College, Poughkeepsie, NY, 12604, USA
| | - Sameeksha Venkatesh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Wang WB, Liu L, Guo SS, Yuan QY, Lu SC, Shu LQ, Pan S. Recombinant expression and immunogenicity evaluation of a TonB-dependent receptor of Vibrio parahaemolyticus. Protein Expr Purif 2022; 197:106111. [PMID: 35588973 DOI: 10.1016/j.pep.2022.106111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
This study constructed the recombinant plasmid of a TonB-dependent receptor from V. parahaemolyticus and evaluated the immunogenicity of the recombinant protein in mice. The TonB-dependent receptor gene (GI: 28901321) was obtained by PCR amplification and cloned into plasmid pET-32a (+). The recombinant plasmids were transformed into Escherichia coli BL21, and the protein expression was induced by isopropyl-β-d-thiogalactopyranoside (IPTG). The 6 × His-tagged TonB-dependent receptor inclusion bodies were purified by Ni-NTA Agarose column and renatured by gradient urea dialysis. The soluble and inclusion bodies of the TonB-dependent receptor were emulsified with Freund's adjuvant and subcutaneously injected into BALB/c mice. The serum titers with seven V. parahaemolyticus strains, eight Vibrio species, and nine other bacteria were studied by enzyme-linked immunosorbent assay and immunoblotting. The results showed that the serum homogenously bound the target protein in the V. parahaemolyticus cell lysates. The titers against the immunized protein were above 89K, while the titer against whole cells of seven V. parahaemolyticus strains ranged from 4.12K to 12.5K. However, the titers were higher for the soluble TonB-dependent receptor. The serums reacted with E. coli strains but did not cross-react with eight Vibrio species and Photobacterium damselae. These results showed that the TonB-dependent receptor proteins in this study were immunogenic, and the serums showed adequate specificity for V. parahaemolyticus. However, the availability of the TonB-dependent receptor on V. parahaemolyticus cells is probably limited.
Collapse
Affiliation(s)
- Wen Bin Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China.
| | - Lei Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Shan Shan Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Qian Yun Yuan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Shuai Chen Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Liu Quan Shu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| |
Collapse
|
6
|
Zmyslowski AM, Baxa MC, Gagnon IA, Sosnick TR. HDX-MS performed on BtuB in E. coli outer membranes delineates the luminal domain's allostery and unfolding upon B12 and TonB binding. Proc Natl Acad Sci U S A 2022; 119:e2119436119. [PMID: 35549554 PMCID: PMC9171809 DOI: 10.1073/pnas.2119436119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/09/2022] [Indexed: 11/18/2022] Open
Abstract
To import large metabolites across the outer membrane of gram-negative bacteria, TonB-dependent transporters (TBDTs) undergo significant conformational change. After substrate binding in BtuB, the Escherichia coli vitamin B12 TBDT, TonB binds and couples BtuB to the inner-membrane proton motive force that powers transport [N. Noinaj, M. Guillier, T. J. Barnard, S. K. Buchanan, Annu. Rev. Microbiol. 64, 43–60 (2010)]. However, the role of TonB in rearranging the plug domain of BtuB to form a putative pore remains enigmatic. Some studies focus on force-mediated unfolding [S. J. Hickman, R. E. M. Cooper, L. Bellucci, E. Paci, D. J. Brockwell, Nat. Commun. 8, 14804 (2017)], while others propose force-independent pore formation by TonB binding [T. D. Nilaweera, D. A. Nyenhuis, D. S. Cafiso, eLife 10, e68548 (2021)], leading to breakage of a salt bridge termed the “Ionic Lock.” Our hydrogen–deuterium exchange/mass spectrometry (HDX-MS) measurements in E. coli outer membranes find that the region surrounding the Ionic Lock, far from the B12 site, is fully destabilized upon substrate binding. A comparison of the exchange between the B12-bound and the B12+TonB–bound complexes indicates that B12 binding is sufficient to unfold the Ionic Lock region, with the subsequent binding of a TonB fragment having much weaker effects. TonB binding accelerates exchange in the third substrate-binding loop, but pore formation does not obviously occur in this or any region. This study provides a detailed structural and energetic description of the early stages of B12 passage that provides support both for and against current models of the transport process.
Collapse
Affiliation(s)
- Adam M. Zmyslowski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Michael C. Baxa
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Isabelle A. Gagnon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Tobin R. Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Prizker School for Molecular Engineering, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
7
|
Functional Diversity of TonB-Like Proteins in the Heterocyst-Forming Cyanobacterium Anabaena sp. PCC 7120. mSphere 2021; 6:e0021421. [PMID: 34787445 PMCID: PMC8597729 DOI: 10.1128/msphere.00214-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The TonB-dependent transport of scarcely available substrates across the outer membrane is a conserved feature in Gram-negative bacteria. The plasma membrane-embedded TonB-ExbB-ExbD accomplishes complex functions as an energy transducer by physically interacting with TonB-dependent outer membrane transporters (TBDTs). TonB mediates structural rearrangements in the substrate-loaded TBDTs that are required for substrate translocation into the periplasm. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, four TonB-like proteins have been identified. Out of these TonB3 accomplishes the transport of ferric schizokinen, the siderophore which is secreted by Anabaena to scavenge iron. In contrast, TonB1 (SjdR) is exceptionally short and not involved in schizokinen transport. The proposed function of SjdR in peptidoglycan structuring eliminates the protein from the list of TonB proteins in Anabaena. Compared with the well-characterized properties of SjdR and TonB3, the functions of TonB2 and TonB4 are yet unknown. Here, we examined tonB2 and tonB4 mutants for siderophore transport capacities and other specific phenotypic features. Both mutants were not or only slightly affected in schizokinen transport, whereas they showed decreased nitrogenase activity in apparently normal heterocysts. Moreover, the cellular metal concentrations and pigment contents were altered in the mutants, most pronouncedly in the tonB2 mutant. This strain showed an altered susceptibility toward antibiotics and SDS and formed cell aggregates when grown in liquid culture, a phenotype associated with an elevated lipopolysaccharide (LPS) production. Thus, the TonB-like proteins in Anabaena appear to take over distinct functions, and the mutation of TonB2 strongly influences outer membrane integrity. IMPORTANCE The genomes of many organisms encode more than one TonB protein, and their number does not necessarily correlate with that of TonB-dependent outer membrane transporters. Consequently, specific as well as redundant functions of the different TonB proteins have been identified. In addition to a role in uptake of scarcely available nutrients, including iron complexes, TonB proteins are related to virulence, flagellum assembly, pilus localization, or envelope integrity, including antibiotic resistance. The knowledge about the function of TonB proteins in cyanobacteria is limited. Here, we compare the four TonB proteins of Anabaena sp. strain PCC 7120, providing evidence that their functions are in part distinct, since mutants of these proteins exhibit specific features but also show some common impairments.
Collapse
|
8
|
Rambo IM, Dombrowski N, Constant L, Erdner D, Baker BJ. Metabolic relationships of uncultured bacteria associated with the microalgae Gambierdiscus. Environ Microbiol 2019; 22:1764-1783. [PMID: 31775181 DOI: 10.1111/1462-2920.14878] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Microbial communities inhabit algae cell surfaces and produce a variety of compounds that can impact the fitness of the host. These interactions have been studied via culturing, single-gene diversity and metagenomic read survey methods that are limited by culturing biases and fragmented genetic characterizations. Higher-resolution frameworks are needed to resolve the physiological interactions within these algal-bacterial communities. Here, we infer the encoded metabolic capabilities of four uncultured bacterial genomes (reconstructed using metagenomic assembly and binning) associated with the marine dinoflagellates Gambierdiscus carolinianus and G. caribaeus. Phylogenetic analyses revealed that two of the genomes belong to the commonly algae-associated families Rhodobacteraceae and Flavobacteriaceae. The other two genomes belong to the Phycisphaeraceae and include the first algae-associated representative within the uncultured SM1A02 group. Analyses of all four genomes suggest these bacteria are facultative aerobes, with some capable of metabolizing phytoplanktonic organosulfur compounds including dimethylsulfoniopropionate and sulfated polysaccharides. These communities may biosynthesize compounds beneficial to both the algal host and other bacteria, including iron chelators, B vitamins, methionine, lycopene, squalene and polyketides. These findings have implications for marine carbon and nutrient cycling and provide a greater depth of understanding regarding the genetic potential for complex physiological interactions between microalgae and their associated bacteria.
Collapse
Affiliation(s)
- Ian M Rambo
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Nina Dombrowski
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA.,NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
| | - Lauren Constant
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Deana Erdner
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| |
Collapse
|
9
|
Identification and detection of iha subtypes in LEE-negative Shiga toxin-producing Escherichia coli (STEC) strains isolated from humans, cattle and food. Heliyon 2019; 5:e03015. [PMID: 31879713 PMCID: PMC6920203 DOI: 10.1016/j.heliyon.2019.e03015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 01/30/2023] Open
Abstract
LEE-negative Shiga toxin-producing Escherichia coli (STEC) strains are important cause of infection in humans and they should be included in the public health surveillance systems. Some isolates have been associated with haemolytic uremic syndrome (HUS) but the mechanisms of pathogenicity are is a field continuos broadening of knowledge. The IrgA homologue adhesin (Iha), encoded by iha, is an adherence-conferring protein and also a siderophore receptor distributed among LEE-negative STEC strains. This study reports the presence of different subtypes of iha in LEE-negative STEC strains. We used genomic analyses to design PCR assays for detecting each of the different iha subtypes and also, all the subtypes simultaneously. LEE-negative STEC strains were designed and different localizations of this gene in STEC subgroups were examinated. Genomic analysis detected iha in a high percentage of LEE-negative STEC strains. These strains generally carried iha sequences similar to those harbored by the Locus of Adhesion and Autoaggregation (LAA) or by the plasmid pO113. Besides, almost half of the strains carried both subtypes. Similar results were observed by PCR, detecting iha LAA in 87% of the strains (117/135) and iha pO113 in 32% of strains (43/135). Thus, we designed PCR assays that allow rapid detection of iha subtypes harbored by LEE-negative strains. These results highlight the need to investigate the individual and orchestrated role of virulence genes that determine the STEC capacity of causing serious disease, which would allow for identification of target candidates to develop therapies against HUS.
Collapse
|
10
|
Metagenomic and chemical characterization of soil cobalamin production. ISME JOURNAL 2019; 14:53-66. [PMID: 31492962 PMCID: PMC6908642 DOI: 10.1038/s41396-019-0502-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
Cobalamin (vitamin B12) is an essential enzyme cofactor for most branches of life. Despite the potential importance of this cofactor for soil microbial communities, the producers and consumers of cobalamin in terrestrial environments are still unknown. Here we provide the first metagenome-based assessment of soil cobalamin-producing bacteria and archaea, quantifying and classifying genes encoding proteins for cobalamin biosynthesis, transport, remodeling, and dependency in 155 soil metagenomes with profile hidden Markov models. We also measured several forms of cobalamin (CN-, Me-, OH-, Ado-B12) and the cobalamin lower ligand (5,6-dimethylbenzimidazole; DMB) in 40 diverse soil samples. Metagenomic analysis revealed that less than 10% of soil bacteria and archaea encode the genetic potential for de novo synthesis of this important enzyme cofactor. Predominant soil cobalamin producers were associated with the Proteobacteria, Actinobacteria, Firmicutes, Nitrospirae, and Thaumarchaeota. In contrast, a much larger proportion of abundant soil genera lacked cobalamin synthesis genes and instead were associated with gene sequences encoding cobalamin transport and cobalamin-dependent enzymes. The enrichment of DMB and corresponding DMB synthesis genes, relative to corrin ring synthesis genes, suggests an important role for cobalamin remodelers in terrestrial habitats. Together, our results indicate that microbial cobalamin production and repair serve as keystone functions that are significantly correlated with microbial community size, diversity, and biogeochemistry of terrestrial ecosystems.
Collapse
|
11
|
Josts I, Veith K, Tidow H. Ternary structure of the outer membrane transporter FoxA with resolved signalling domain provides insights into TonB-mediated siderophore uptake. eLife 2019; 8:48528. [PMID: 31385808 PMCID: PMC6699858 DOI: 10.7554/elife.48528] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/05/2019] [Indexed: 01/27/2023] Open
Abstract
Many microbes and fungi acquire the essential ion Fe3+ through the synthesis and secretion of high-affinity chelators termed siderophores. In Gram-negative bacteria, these ferric-siderophore complexes are actively taken up using highly specific TonB-dependent transporters (TBDTs) located in the outer bacterial membrane (OM). However, the detailed mechanism of how the inner-membrane protein TonB connects to the transporters in the OM as well as the interplay between siderophore- and TonB-binding to the transporter is still poorly understood. Here, we present three crystal structures of the TBDT FoxA from Pseudomonas aeruginosa (containing a signalling domain) in complex with the siderophore ferrioxamine B and TonB and combine them with a detailed analysis of binding constants. The structures show that both siderophore and TonB-binding is required to form a translocation-competent state of the FoxA transporter in a two-step TonB-binding mechanism. The complex structure also indicates how TonB-binding influences the orientation of the signalling domain.
Collapse
Affiliation(s)
- Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Katharina Veith
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Joseph B, Jaumann EA, Sikora A, Barth K, Prisner TF, Cafiso DS. In situ observation of conformational dynamics and protein ligand-substrate interactions in outer-membrane proteins with DEER/PELDOR spectroscopy. Nat Protoc 2019; 14:2344-2369. [PMID: 31278399 PMCID: PMC6886689 DOI: 10.1038/s41596-019-0182-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/18/2019] [Indexed: 12/01/2022]
Abstract
Observing structure and conformational dynamics of membrane proteins at high-resolution in their native environments is challenging because of the lack of suitable techniques. We have developed an approach for high-precision distance measurements in the nanometer range for outer membrane proteins (OMPs) in intact E. coli and native membranes. OMPs in Gram-negative bacteria rarely have reactive cysteines. This enables in-situ labeling of engineered cysteines with a methanethiosulfonate functionalized nitroxide spin label (MTSL) with minimal background signals. Following overexpression of the target protein, spin labeling is performed with E. coli or isolated outer membranes (OM) under selective conditions. The interspin distances are measured in-situ using pulsed electron-electron double resonance spectroscopy (PELDOR or DEER). The residual background signals, which are problematic for in-situ structural biology, contributes specifically to the intermolecular part of the signal and can be selectively removed to extract the desired interspin distance distribution. The initial cloning stage can take 5–7 d and the subsequent protein expression, OM isolation, spin labeling, PELDOR experiment, and the data analysis typically take 4–5 d. The described protocol provides a general strategy for observing protein-ligand/substrate interactions, oligomerization, and conformational dynamics of OMPs in the native OM and intact E. coli. EDITORIAL SUMMARY This protocol describes how to label bacterial outer membrane proteins with spin labels to study conformational changes and their interaction with ligands and substrates in native membranes and cells using Pulsed Electron-Electron Double Resonance (PELDOR or DEER) spectroscopy. TWEET A new protocol for studying conformational changes and ligand/substrate interactions of bacterial outer membrane proteins in-situ. COVER TEASER Studying membrane protein conformations in-situ
Collapse
Affiliation(s)
- Benesh Joseph
- Institute of Biophysics, Department of Physics, University of Frankfurt, Frankfurt am Main, Germany. .,Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany.
| | - Eva A Jaumann
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany
| | - Arthur Sikora
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, VA, USA
| | - Katja Barth
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
13
|
Oeemig JS, Ollila OS, Iwaï H. NMR structure of the C-terminal domain of TonB protein from Pseudomonas aeruginosa. PeerJ 2018; 6:e5412. [PMID: 30186676 PMCID: PMC6118199 DOI: 10.7717/peerj.5412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
The TonB protein plays an essential role in the energy transduction system to drive active transport across the outer membrane (OM) using the proton-motive force of the cytoplasmic membrane of Gram-negative bacteria. The C-terminal domain (CTD) of TonB protein is known to interact with the conserved TonB box motif of TonB-dependent OM transporters, which likely induces structural changes in the OM transporters. Several distinct conformations of differently dissected CTDs of Escherichia coli TonB have been previously reported. Here we determined the solution NMR structure of a 96-residue fragment of Pseudomonas aeruginosa TonB (PaTonB-96). The structure shows a monomeric structure with the flexible C-terminal region (residues 338-342), different from the NMR structure of E. coli TonB (EcTonB-137). The extended and flexible C-terminal residues are confirmed by 15N relaxation analysis and molecular dynamics simulation. We created models for the PaTonB-96/TonB box interaction and propose that the internal fluctuations of PaTonB-96 makes it more accessible for the interactions with the TonB box and possibly plays a role in disrupting the plug domain of the TonB-dependent OM transporters.
Collapse
Affiliation(s)
- Jesper S. Oeemig
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- VIB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Vrije Universiteit Brussel, Brussels, Belgium
| | - O.H. Samuli Ollila
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Sarver JL, Zhang M, Liu L, Nyenhuis D, Cafiso DS. A Dynamic Protein-Protein Coupling between the TonB-Dependent Transporter FhuA and TonB. Biochemistry 2018; 57:1045-1053. [PMID: 29338257 DOI: 10.1021/acs.biochem.7b01223] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial outer membrane TonB-dependent transporters function by executing cycles of binding and unbinding to the inner membrane protein TonB. In the vitamin B12 transporter BtuB and the ferric citrate transporter FecA, substrate binding increases the periplasmic exposure of the Ton box, an energy-coupling segment. This increased exposure appears to enhance the affinity of the transporter for TonB. Here, continuous wave and pulse EPR spectroscopy were used to examine the state of the Ton box in the Escherichia coli ferrichrome transporter FhuA. In its apo state, the Ton box of FhuA samples a broad range of positions and multiple conformational substates. When bound to ferrichrome, the Ton box does not extend further into the periplasm, although the structural states sampled by the FhuA Ton box are altered. When bound to a soluble fragment of TonB, the TonB-FhuA complex remains heterogeneous and dynamic, indicating that TonB does not make strong, specific contacts with either the FhuA barrel or the core region of the transporter. This result differs from that seen in the crystal structure of the TonB-FhuA complex. These data indicate that unlike BtuB and FecA, the periplasmic exposure of the Ton box in FhuA does not change significantly in the presence of substrate and that allosteric control of transporter-TonB interactions functions by a different mechanism than that seen in either BtuB or FecA. Moreover, the data indicate that models involving a rotation of TonB relative to the transporter are unlikely to underlie the mechanism that drives TonB-dependent transport.
Collapse
Affiliation(s)
- Jessica L Sarver
- Department of Chemistry and Center for Membrane Biology, University of Virginia , McCormick Road, Charlottesville, Virginia 22904, United States
| | - Michael Zhang
- Department of Chemistry and Center for Membrane Biology, University of Virginia , McCormick Road, Charlottesville, Virginia 22904, United States
| | - Lishan Liu
- Department of Chemistry and Center for Membrane Biology, University of Virginia , McCormick Road, Charlottesville, Virginia 22904, United States
| | - David Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia , McCormick Road, Charlottesville, Virginia 22904, United States
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia , McCormick Road, Charlottesville, Virginia 22904, United States
| |
Collapse
|
15
|
Sikora A, Joseph B, Matson M, Staley JR, Cafiso DS. Allosteric Signaling Is Bidirectional in an Outer-Membrane Transport Protein. Biophys J 2017; 111:1908-1918. [PMID: 27806272 DOI: 10.1016/j.bpj.2016.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
In BtuB, the Escherichia coli TonB-dependent transporter for vitamin B12, substrate binding to the extracellular surface unfolds a conserved energy coupling motif termed the Ton box into the periplasm. This transmembrane signaling event facilitates an interaction between BtuB and the inner-membrane protein TonB. In this study, continuous-wave and pulse electron paramagnetic resonance in a native outer-membrane preparation demonstrate that signaling also occurs from the periplasmic to the extracellular surface in BtuB. The binding of a TonB fragment to the periplasmic interface alters the configuration of the second extracellular loop and partially dissociates a spin-labeled substrate analog. Moreover, mutants in the periplasmic Ton box that are transport-defective alter the binding site for vitamin B12 in BtuB. This work demonstrates that the Ton box and the extracellular substrate binding site are allosterically coupled in BtuB, and that TonB binding may initiate a partial round of transport.
Collapse
Affiliation(s)
- Arthur Sikora
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Benesh Joseph
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany
| | - Morgan Matson
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Jacob R Staley
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
16
|
Going Outside the TonB Box: Identification of Novel FepA-TonB Interactions In Vivo. J Bacteriol 2017; 199:JB.00649-16. [PMID: 28264993 DOI: 10.1128/jb.00649-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/15/2017] [Indexed: 01/30/2023] Open
Abstract
In Gram-negative bacteria, the cytoplasmic membrane protein TonB transmits energy derived from proton motive force to energize transport of important nutrients through TonB-dependent transporters in the outer membrane. Each transporter consists of a beta barrel domain and a lumen-occluding cork domain containing an essential sequence called the TonB box. To date, the only identified site of transporter-TonB interaction is between the TonB box and residues ∼158 to 162 of TonB. While the mechanism of ligand transport is a mystery, a current model based on site-directed spin labeling and molecular dynamics simulations is that, following ligand binding, the otherwise-sequestered TonB box extends into the periplasm for recognition by TonB, which mediates transport by pulling or twisting the cork. In this study, we tested that hypothesis with the outer membrane transporter FepA using in vivo photo-cross-linking to explore interactions of its TonB box and determine whether additional FepA-TonB interaction sites exist. We found numerous specific sites of FepA interaction with TonB on the periplasmic face of the FepA cork in addition to the TonB box. Two residues, T32 and A33, might constitute a ligand-sensitive conformational switch. The facts that some interactions were enhanced in the absence of ligand and that other interactions did not require the TonB box argued against the current model and suggested that the transport process is more complex than originally conceived, with subtleties that might provide a mechanism for discrimination among ligand-loaded transporters. These results constitute the first study on the dynamics of TonB-gated transporter interaction with TonB in vivoIMPORTANCE The TonB system of Gram-negative bacteria has a noncanonical active transport mechanism involving signal transduction and proteins integral to both membranes. To achieve transport, the cytoplasmic membrane protein TonB physically contacts outer membrane transporters such as FepA. Only one contact between TonB and outer membrane transporters has been identified to date: the TonB box at the transporter amino terminus. The TonB box has low information content, raising the question of how TonB can discriminate among multiple different TonB-dependent transporters present in the bacterium if it is the only means of contact. Here we identified several additional sites through which FepA contacts TonB in vivo, including two neighboring residues that may explain how FepA signals to TonB that ligand has bound.
Collapse
|
17
|
Hickman SJ, Cooper REM, Bellucci L, Paci E, Brockwell DJ. Gating of TonB-dependent transporters by substrate-specific forced remodelling. Nat Commun 2017; 8:14804. [PMID: 28429713 PMCID: PMC5413942 DOI: 10.1038/ncomms14804] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Membrane proteins play vital roles in inside-out and outside-in signal transduction by responding to inputs that include mechanical stimuli. Mechanical gating may be mediated by the membrane or by protein(s) but evidence for the latter is scarce. Here we use force spectroscopy, protein engineering and bacterial growth assays to investigate the effects of force on complexes formed between TonB and TonB-dependent transporters (TBDT) from Gram-negative bacteria. We confirm the feasibility of protein-only mediated mechanical gating by demonstrating that the interaction between TonB and BtuB (a TBDT) is sufficiently strong under force to create a channel through the TBDT. In addition, by comparing the dimensions of the force-induced channel in BtuB and a second TBDT (FhuA), we show that the mechanical properties of the interaction are perfectly tuned to their function by inducing formation of a channel whose dimensions are tailored to the ligand.
Collapse
Affiliation(s)
- Samuel J Hickman
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Rachael E M Cooper
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Luca Bellucci
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro, 12-56127 Pisa, Italy
| | - Emanuele Paci
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
18
|
TonB-dependent ligand trapping in the BtuB transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3105-3112. [DOI: 10.1016/j.bbamem.2016.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
|
19
|
Ciragan A, Aranko AS, Tascon I, Iwaï H. Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool. J Mol Biol 2016; 428:4573-4588. [PMID: 27720988 DOI: 10.1016/j.jmb.2016.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 10/20/2022]
Abstract
Intervening protein sequences (inteins) from extremely halophilic haloarchaea can be inactive under low salinity but could be activated by increasing the salt content to a specific concentration for each intein. The halo-obligatory inteins confer high solubility under both low and high salinity conditions. We showed the broad utility of salt-dependent protein splicing in cis and trans by demonstrating backbone cyclization, self-cleavage for purification, and scarless protein ligation for segmental isotopic labeling. Artificially split MCM2 intein derived from Halorhabdus utahensis remained highly soluble and was capable of protein trans-splicing with excellent ligation kinetics by reassembly under high salinity conditions. Importantly, the MCM2 intein has the active site residue of Ser at the +1 position, which remains in the ligated product, instead of Cys as found in many other efficient split inteins. Since Ser is more abundant than Cys in proteins, the novel split intein could widen the applications of segmental labeling in protein NMR spectroscopy and traceless protein ligation by exploiting a Ser residue in the native sequences as the +1 position of the MCM2 intein. The split halo-obligatory intein was successfully used to demonstrate the utility in NMR investigation of intact proteins by producing segmentally isotope-labeled intact TonB protein from Helicobacter pylori.
Collapse
Affiliation(s)
- Annika Ciragan
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - A Sesilja Aranko
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - Igor Tascon
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland.
| |
Collapse
|
20
|
Wang R, Xu H, Du L, Chou SH, Liu H, Liu Y, Liu F, Qian G. A TonB-dependent receptor regulates antifungal HSAF biosynthesis in Lysobacter. Sci Rep 2016; 6:26881. [PMID: 27241275 PMCID: PMC4886534 DOI: 10.1038/srep26881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 11/25/2022] Open
Abstract
Lysobacter species are Gram-negative bacteria that are emerging as new sources of antibiotics, including HSAF (Heat Stable Antifungal Factor), which was identified from L. enzymogenes with a new mode of action. LesR, a LuxR solo, was recently shown to regulate the HSAF biosynthesis via an unidentified mechanism in L. enzymogenes OH11. Here, we used a comparative proteomic approach to identify the LesR targets and found that LesR influenced the expression of 33 proteins belonging to 10 functional groups, with 9 proteins belonging to the TBDR (TonB-Dependent Receptor) family. The fundamental role of bacterial TBDR in nutrient uptake motivates us to explore their potential regulation on HSAF biosynthesis which is also modulated by nutrient condition. Six out of 9 TBDR coding genes were individually in-frame deleted. Phenotypic and gene-expression assays showed that TBDR7, whose level was lower in a strain overexpressing lesR, was involved in regulating HSAF yield. TBDR7 was not involved in the growth, but played a vital role in transcribing the key HSAF biosynthetic gene. Taken together, the current lesR-based proteomic study provides the first report that TBDR7 plays a key role in regulating antibiotic (HSAF) biosynthesis, a function which has never been found for TBDRs in bacteria.
Collapse
Affiliation(s)
- Ruping Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huiyong Xu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Hongxia Liu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
21
|
Abstract
The rotational surveillance and energy transfer (ROSET) model of TonB action suggests a mechanism by which the electrochemical proton gradient across the Gram-negative bacterial inner membrane (IM) promotes the transport of iron through ligand-gated porins (LGP) in the outer membrane (OM). TonB associates with the IM by an N-terminal hydrophobic helix that forms a complex with ExbBD. It also contains a central extended length of rigid polypeptide that spans the periplasm and a dimeric C-terminal-ββαβ-domain (CTD) with LysM motifs that binds the peptidoglycan (PG) layer beneath the OM bilayer. The TonB CTD forms a dimer with affinity for both PG- and TonB-independent OM proteins (e.g., OmpA), localizing it near the periplasmic interface of the OM bilayer. Porins and other OM proteins associate with PG, and this general affinity allows the TonB CTD dimer to survey the periplasmic surface of the OM bilayer. Energized rotational motion of the TonB N terminus in the fluid IM bilayer promotes the lateral movement of the TonB-ExbBD complex in the IM and of the TonB CTD dimer across the inner surface of the OM. When it encounters an accessible TonB box of a (ligand-bound) LGP, the monomeric form of the CTD binds and recruits it into a 4-stranded β-sheet. Because the CTD is rotating, this binding reaction transfers kinetic energy, created by the electrochemical proton gradient across the IM, through the periplasm to the OM protein. The equilibration of the TonB C terminus between the dimeric and monomeric forms that engage in different binding reactions allows the identification of iron-loaded LGP and then the internalization of iron through their trans-outer membrane β-barrels. Hence, the ROSET model postulates a mechanism for the transfer of energy from the IM to the OM, triggering iron uptake.
Collapse
|
22
|
Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1717-31. [PMID: 24746518 DOI: 10.1016/j.bbamcr.2014.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/03/2023]
Abstract
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Young Chan Kim
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher N Penfold
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
23
|
|
24
|
Mutations in Escherichia coli ExbB transmembrane domains identify scaffolding and signal transduction functions and exclude participation in a proton pathway. J Bacteriol 2013; 195:2898-911. [PMID: 23603742 DOI: 10.1128/jb.00017-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The TonB system couples cytoplasmic membrane proton motive force (pmf) to active transport of diverse nutrients across the outer membrane. Current data suggest that cytoplasmic membrane proteins ExbB and ExbD harness pmf energy. Transmembrane domain (TMD) interactions between TonB and ExbD allow the ExbD C terminus to modulate conformational rearrangements of the periplasmic TonB C terminus in vivo. These conformational changes somehow allow energization of high-affinity TonB-gated transporters by direct interaction with TonB. While ExbB is essential for energy transduction, its role is not well understood. ExbB has N-terminus-out, C-terminus-in topology with three TMDs. TMDs 1 and 2 are punctuated by a cytoplasmic loop, with the C-terminal tail also occupying the cytoplasm. We tested the hypothesis that ExbB TMD residues play roles in proton translocation. Reassessment of TMD boundaries based on hydrophobic character and residue conservation among distantly related ExbB proteins brought earlier widely divergent predictions into congruence. All TMD residues with potentially function-specific side chains (Lys, Cys, Ser, Thr, Tyr, Glu, and Asn) and residues with probable structure-specific side chains (Trp, Gly, and Pro) were substituted with Ala and evaluated in multiple assays. While all three TMDs were essential, they had different roles: TMD1 was a region through which ExbB interacted with the TonB TMD. TMD2 and TMD3, the most conserved among the ExbB/TolQ/MotA/PomA family, played roles in signal transduction between cytoplasm and periplasm and the transition from ExbB homodimers to homotetramers. Consideration of combined data excludes ExbB TMD residues from direct participation in a proton pathway.
Collapse
|
25
|
Freed DM, Lukasik SM, Sikora A, Mokdad A, Cafiso DS. Monomeric TonB and the Ton box are required for the formation of a high-affinity transporter-TonB complex. Biochemistry 2013; 52:2638-48. [PMID: 23517233 DOI: 10.1021/bi3016108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The energy-dependent uptake of trace nutrients by Gram-negative bacteria involves the coupling of an outer membrane transport protein to the transperiplasmic protein TonB. In this study, a soluble construct of Escherichia coli TonB (residues 33-239) was used to determine the affinity of TonB for outer membrane transporters BtuB, FecA, and FhuA. Using fluorescence anisotropy, TonB(33-239) was found to bind with high affinity (tens of nanomolar) to both BtuB and FhuA; however, no high-affinity binding to FecA was observed. In BtuB, the high-affinity binding of TonB(33-239) was eliminated by mutations in the Ton box, which yield transport-defective protein, or by the addition of a Colicin E3 fragment, which stabilizes the Ton box in a folded state. These results indicate that transport requires a high-affinity transporter-TonB interaction that is mediated by the Ton box. Characterization of TonB(33-239) using double electron-electron resonance (DEER) demonstrates that a significant population of TonB(33-239) exists as a dimer; moreover, interspin distances are in approximate agreement with interlocked dimers observed previously by crystallography for shorter TonB fragments. When the TonB(33-239) dimer is bound to the outer membrane transporter, DEER shows that the TonB(33-239) dimer is converted to a monomeric form, suggesting that a dimer-monomer conversion takes place at the outer membrane during the TonB-dependent transport cycle.
Collapse
Affiliation(s)
- Daniel M Freed
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | | | | | | | | |
Collapse
|
26
|
Mokdad A, Herrick DZ, Kahn AK, Andrews E, Kim M, Cafiso DS. Ligand-induced structural changes in the Escherichia coli ferric citrate transporter reveal modes for regulating protein-protein interactions. J Mol Biol 2012; 423:818-30. [PMID: 22982293 DOI: 10.1016/j.jmb.2012.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 11/28/2022]
Abstract
Outer-membrane TonB-dependent transporters, such as the Escherichia coli ferric citrate transporter FecA, interact with the inner-membrane protein TonB through an energy-coupling segment termed the Ton box. In FecA, which regulates its own transcription, the Ton box is preceded by an N-terminal extension that interacts with the inner-membrane protein FecR. Here, site-directed spin labeling was used to examine the structural basis for transcriptional signaling and Ton box regulation in FecA. EPR spectroscopy indicates that regions of the N-terminal domain are in conformational exchange, consistent with its role as a protein binding element; however, the local fold and dynamics of the domain are not altered by substrate or TonB. Distance restraints derived from pulse EPR were used to generate models for the position of the extension in the apo, substrate-, and TonB-bound states. In the apo state, this domain is positioned at the periplasmic surface of FecA, where it interacts with the Ton box and blocks access of the Ton box to the periplasm. Substrate addition rotates the transcriptional domain and exposes the Ton box, leading to a disorder transition in the Ton box that may facilitate interactions with TonB. When a soluble fragment of TonB is bound to FecA, the transcriptional domain is displaced to one edge of the barrel, consistent with a proposed β-strand exchange mechanism. However, neither substrate nor TonB displaces the N-terminus further into the periplasm. This result suggests that the intact TonB system mediates both signaling and transport by unfolding portions of the transporter.
Collapse
Affiliation(s)
- Audrey Mokdad
- Department of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, VA 22904-4319, USA
| | | | | | | | | | | |
Collapse
|
27
|
Flores Jiménez RH, Cafiso DS. The N-terminal domain of a TonB-dependent transporter undergoes a reversible stepwise denaturation. Biochemistry 2012; 51:3642-50. [PMID: 22497281 DOI: 10.1021/bi300118a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gram-negative bacteria contain a family of outer membrane transport proteins that function in the uptake of rare nutrients, such as iron and vitamin B(12). These proteins are termed TonB-dependent because transport requires an interaction with the inner-membrane protein TonB. Using a combination of site-directed spin labeling and chemical denaturation, we examined the site-specific unfolding of regions of the Escherichia coli vitamin B(12) transporter, BtuB. The data indicate that a portion of the N-terminal region of the protein, which occupies the lumen of the BtuB barrel, denatures prior to the unfolding of the barrel and that the free energy of folding for the N-terminus is smaller than that typically seen for globular proteins. Moreover, the data indicate that the N-terminal domain does not unfold in a single event but unfolds in a series of independent steps. The unfolding of the N-terminus is reversible, and removal of denaturant restores the native fold of the protein. These data are consistent with proposed transport mechanisms that involve a transient rearrangement or unfolding of the N-terminus of the protein, and they provide evidence of a specific protein conformation that might be an intermediate accessed during transport.
Collapse
Affiliation(s)
- Ricardo H Flores Jiménez
- Department of Chemistry, Biophysics Program, and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | | |
Collapse
|
28
|
Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo. J Bacteriol 2012; 194:3078-87. [PMID: 22493017 DOI: 10.1128/jb.00018-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacteria, the cytoplasmic membrane proton-motive force energizes the active transport of TonB-dependent ligands through outer membrane TonB-gated transporters. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD couple the proton-motive force to conformational changes in TonB, which are hypothesized to form the basis of energy transduction through direct contact with the transporters. While the role of ExbB is not well understood, contact between periplasmic domains of TonB and ExbD is required, with the conformational response of TonB to presence or absence of proton motive force being modulated through ExbD. A region (residues 92 to 121) within the ExbD periplasmic domain was previously identified as being important for TonB interaction. Here, the specific sites of periplasmic domain interactions between that region and the TonB carboxy terminus were identified by examining 270 combinations of 45 TonB and 6 ExbD individual cysteine substitutions for disulfide-linked heterodimer formation. ExbD residues A92C, K97C, and T109C interacted with multiple TonB substitutions in four regions of the TonB carboxy terminus. Two regions were on each side of the TonB residues known to interact with the TonB box of TonB-gated transporters, suggesting that ExbD positions TonB for correct interaction at that site. A third region contained a functionally important glycine residue, and the fourth region involved a highly conserved predicted amphipathic helix. Three ExbD substitutions, F103C, L115C, and T121C, were nonreactive with any TonB cysteine substitutions. ExbD D25, a candidate to be on a proton translocation pathway, was important to support efficient TonB-ExbD heterodimerization at these specific regions.
Collapse
|
29
|
The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization. J Bacteriol 2012; 194:3069-77. [PMID: 22493019 DOI: 10.1128/jb.00015-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of gram-negative bacteria energizes the active transport of diverse nutrients through high-affinity TonB-gated outer membrane transporters using energy derived from the cytoplasmic membrane proton motive force. Cytoplasmic membrane proteins ExbB and ExbD harness the proton gradient to energize TonB, which directly contacts and transmits this energy to ligand-loaded transporters. In Escherichia coli, the periplasmic domain of ExbD appears to transition from proton motive force-independent to proton motive force-dependent interactions with TonB, catalyzing the conformational changes of TonB. A 10-residue deletion scanning analysis showed that while all regions except the extreme amino terminus of ExbD were indispensable for function, distinct roles for the amino- and carboxy-terminal regions of the ExbD periplasmic domain were evident. Like residue D25 in the ExbD transmembrane domain, periplasmic residues 42 to 61 facilitated the conformational response of ExbD to proton motive force. This region appears to be important for transmitting signals between the ExbD transmembrane domain and carboxy terminus. The carboxy terminus, encompassing periplasmic residues 62 to 141, was required for initial assembly with the periplasmic domain of TonB, a stage of interaction required for ExbD to transmit its conformational response to proton motive force to TonB. Residues 92 to 121 were important for all three interactions previously observed for formaldehyde-cross-linked ExbD: ExbD homodimers, TonB-ExbD heterodimers, and ExbD-ExbB heterodimers. The distinct requirement of this ExbD region for interaction with ExbB raised the possibility of direct interaction with the few residues of ExbB known to occupy the periplasm.
Collapse
|
30
|
Weitzel CS, Waldman VM, Graham TA, Oakley MG. A repeated coiled-coil interruption in the Escherichia coli condensin MukB. J Mol Biol 2011; 414:578-95. [PMID: 22041452 DOI: 10.1016/j.jmb.2011.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/18/2023]
Abstract
MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosome segregation and condensation in Escherichia coli and other γ-proteobacteria. MukB and canonical SMC proteins share a common five-domain structure in which globular N- and C-terminal regions combine to form an ATP-binding-cassette-like ATPase domain. This ATPase domain is connected to a central, globular dimerization domain by a long antiparallel coiled coil. The structures of both globular domains have been solved recently. In contrast, little is known about the coiled coil, in spite of its clear importance for SMC function. Recently, we identified interacting regions on the N- and C-terminal halves of the MukB coiled coil through photoaffinity cross-linking experiments. On the basis of these low-resolution experimental constraints, phylogenetic data, and coiled-coil prediction analysis, we proposed a preliminary model in which the MukB coiled coil is divided into multiple segments. Here, we use a disulfide cross-linking assay to detect paired residues on opposite strands of MukB's coiled coil. This method provides accurate register data and demonstrates the presence of at least five coiled-coil segments in this domain. Moreover, these studies show that the segments are interrupted by a repeated, unprecedented deviation from canonical coiled-coil structure. These experiments provide a sufficiently detailed view of the MukB coiled coil to allow rational manipulation of this region for the first time, opening the door for structure-function studies of this domain.
Collapse
|
31
|
Mutations in the ExbB cytoplasmic carboxy terminus prevent energy-dependent interaction between the TonB and ExbD periplasmic domains. J Bacteriol 2011; 193:5649-57. [PMID: 21840979 DOI: 10.1128/jb.05674-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of Gram-negative bacteria provides passage across the outer membrane (OM) diffusion barrier that otherwise limits access to large, scarce, or important nutrients. In Escherichia coli, the integral cytoplasmic membrane (CM) proteins TonB, ExbB, and ExbD couple the CM proton motive force (PMF) to active transport of iron-siderophore complexes and vitamin B(12) across the OM through high-affinity transporters. ExbB is an integral CM protein with three transmembrane domains. The majority of ExbB occupies the cytoplasm. Here, the importance of the cytoplasmic ExbB carboxy terminus (residues 195 to 244) was evaluated by cysteine scanning mutagenesis. D211C and some of the substitutions nearest the carboxy terminus spontaneously formed disulfide cross-links, even though the cytoplasm is a reducing environment. ExbB N196C and D211C substitutions were converted to Ala substitutions to stabilize them. Only N196A, D211A, A228C, and G244C substitutions significantly decreased ExbB activity. With the exception of ExbB(G244C), all of the substituted forms were dominant. Like wild-type ExbB, they all formed a formaldehyde cross-linked tetramer, as well as a tetramer cross-linked to an unidentified protein(s). In addition, they could be formaldehyde cross-linked to ExbD and TonB. Taken together, the data suggested that they assembled normally. Three of four ExbB mutants were defective in supporting both the PMF-dependent formaldehyde cross-link between the periplasmic domains of TonB and ExbD and the proteinase K-resistant conformation of TonB. Thus, mutations in a cytoplasmic region of ExbB prevented a periplasmic event and constituted evidence for signal transduction from cytoplasm to periplasm in the TonB system.
Collapse
|
32
|
Abstract
Bacteria are able to survive in low-iron environments by sequestering this metal ion from iron-containing proteins and other biomolecules such as transferrin, lactoferrin, heme, hemoglobin, or other heme-containing proteins. In addition, many bacteria secrete specific low molecular weight iron chelators termed siderophores. These iron sources are transported into the Gram-negative bacterial cell through an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. In different strains the outer membrane receptors can bind and transport ferric siderophores, heme, or Fe3+ as well as vitamin B12, nickel complexes, and carbohydrates. The energy that is required for the active transport of these substrates through the outer membrane receptor is provided by the TonB/ExbB/ExbD complex, which is located in the cytoplasmic membrane. In this minireview, we will briefly examine the three-dimensional structure of TonB and the current models for the mechanism of TonB-dependent energy transduction. Additionally, the role of TonB in colicin transport will be discussed.
Collapse
Affiliation(s)
- Karla D Krewulak
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
33
|
RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli. J Bacteriol 2011; 193:3785-93. [PMID: 21665978 DOI: 10.1128/jb.05032-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nickel and cobalt are both essential trace elements that are toxic when present in excess. The main resistance mechanism that bacteria use to overcome this toxicity is the efflux of these cations out of the cytoplasm. RND (resistance-nodulation-cell division)- and MFS (major facilitator superfamily)-type efflux systems are known to export either nickel or cobalt. The RcnA efflux pump, which belongs to a unique family, is responsible for the detoxification of Ni and Co in Escherichia coli. In this work, the role of the gene yohN, which is located downstream of rcnA, is investigated. yohN is cotranscribed with rcnA, and its expression is induced by Ni and Co. Surprisingly, in contrast to the effect of deleting rcnA, deletion of yohN conferred enhanced resistance to Ni and Co in E. coli, accompanied by decreased metal accumulation. We show that YohN is localized to the periplasm and does not bind Ni or Co ions directly. Physiological and genetic experiments demonstrate that YohN is not involved in Ni import. YohN is conserved among proteobacteria and belongs to a new family of proteins; consequently, yohN has been renamed rcnB. We show that the enhanced resistance of rcnB mutants to Ni and Co and their decreased Ni and Co intracellular accumulation are linked to the greater efflux of these ions in the absence of rcnB. Taken together, these results suggest that RcnB is required to maintain metal ion homeostasis, in conjunction with the efflux pump RcnA, presumably by modulating RcnA-mediated export of Ni and Co to avoid excess efflux of Ni and Co ions via an unknown novel mechanism.
Collapse
|
34
|
Nader M, Journet L, Meksem A, Guillon L, Schalk IJ. Mechanism of Ferripyoverdine Uptake by Pseudomonas aeruginosa Outer Membrane Transporter FpvA: No Diffusion Channel Formed at Any Time during Ferrisiderophore Uptake. Biochemistry 2011; 50:2530-40. [DOI: 10.1021/bi101821n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mirella Nader
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Laure Journet
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Ahmed Meksem
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Laurent Guillon
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Isabelle J. Schalk
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| |
Collapse
|
35
|
Dissecting iron uptake and homeostasis in Nitrosomonas europaea. Methods Enzymol 2010. [PMID: 21185446 DOI: 10.1016/b978-0-12-381294-0.00018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The chemolithoautotroph Nitrosomonas europaea oxidizes about 25 mol of NH(3) for each mole of CO(2) that is converted to biomass using an array of heme and nonheme Fe-containing proteins. Hence mechanisms of efficient iron (Fe) uptake and homeostasis are particularly important for this Betaproteobacterium. Among nitrifiers, N.europaea has been the most studied to date. Characteristics that make N.europaea a suitable model to study Fe uptake and homeostasis are as follows: (a) its sequenced genome, (b) its capability to grow relatively well in 0.2 μM Fe in the absence of heterologous siderophores, and (c) its amenability to mutagenesis. In this chapter, we describe the methodology we use in our laboratory to dissect Fe uptake and homeostasis in the ammonia oxidizer N. europaea.
Collapse
|
36
|
Abstract
The TonB system energizes transport of nutrients across the outer membrane of Escherichia coli using cytoplasmic membrane proton motive force (PMF) for energy. Integral cytoplasmic membrane proteins ExbB and ExbD appear to harvest PMF and transduce it to TonB. The carboxy terminus of TonB then physically interacts with outer membrane transporters to allow translocation of ligands into the periplasmic space. The structure of the TonB carboxy terminus (residues ~150 to 239) has been solved several times with similar results. Our previous results hinted that in vitro structures might not mimic the dimeric conformations that characterize TonB in vivo. To test structural predictions and to identify irreplaceable residues, the entire carboxy terminus of TonB was scanned with Cys substitutions. TonB I232C and N233C, predicted to efficiently form disulfide-linked dimers in the crystal structures, did not do so. In contrast, Cys substitutions positioned at large distances from one another in the crystal structures efficiently formed dimers. Cys scanning identified seven functionally important residues. However, no single residue was irreplaceable. The phenotypes conferred by changes of the seven residues depended on both the specific assay used and the residue substituted. All seven residues were synergistic with one another. The buried nature of the residues in the structures was also inconsistent with these properties. Taken together, these results indicate that the solved dimeric crystal structures of TonB do not exist. The most likely explanation for the aberrant structures is that they were obtained in the absence of the TonB transmembrane domain, ExbB, ExbD, and/or the PMF. The TonB system of Gram-negative bacteria is an attractive target for development of novel antibiotics because of its importance in iron acquisition and virulence. Logically, therefore, the structure of TonB must be accurately understood. TonB functions as a dimer in vivo, and two different but similar crystal structures of the dimeric carboxy-terminal ~90 amino acids gave rise to mechanistic models. Here we demonstrate that the crystal structures, and therefore the models based on them, are not biologically relevant. The idiosyncratic phenotypes conferred by substitutions at the only seven functionally important residues in the carboxy terminus suggest that similar to interaction of cytochromes P450 with numerous substrates, these residues allow TonB to differentially interact with different outer membrane transporters. Taken together, data suggest that TonB is maintained poised between order and disorder by ExbB, ExbD, and the proton motive force (PMF) before energy transduction to the outer membrane transporters.
Collapse
|
37
|
Cadieux N, Parra M, Cohen H, Maric D, Morris SL, Brennan MJ. Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein. MICROBIOLOGY-SGM 2010; 157:793-804. [PMID: 21081760 DOI: 10.1099/mic.0.041996-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PE_PGRS33 is the most studied member of the unique PE family of mycobacterial proteins. These proteins are composed of a PE domain (Pro-Glu motif), a linker region and a PGRS domain (polymorphic GC-rich-repetitive sequence). Previous studies have shown that PE_PGRS33 is surface-exposed, constitutively expressed during growth and infection, involved in creating antigenic diversity, and able to induce death in transfected or infected eukaryotic cells. In this study, we showed that PE_PGRS33 co-localizes to the mitochondria of transfected cells, a phenomenon dependent on the linker region and the PGRS domain, but not the PE domain. Using different genetic fusions and chimeras, we also demonstrated a direct correlation between localization to the host mitochondria and the induction of cell death. Finally, although all constructs localizing to the mitochondria did induce apoptosis, only the wild-type PE_PGRS33 with its own PE domain also induced primary necrosis, indicating a potentially important role for the PE domain. Considering the importance of primary necrosis in Mycobacterium tuberculosis dissemination during natural infection, the PE_PGRS33 protein may play a crucial role in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Nathalie Cadieux
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Marcela Parra
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Hannah Cohen
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow Cytometry Core Facility, NIH, Bethesda, MD, USA
| | - Sheldon L Morris
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Michael J Brennan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| |
Collapse
|
38
|
Lostao A, Peleato ML, Gómez-Moreno C, Fillat MF. Oligomerization properties of FurA from the cyanobacterium Anabaena sp. PCC 7120: direct visualization by in situ atomic force microscopy under different redox conditions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1723-9. [PMID: 20417733 DOI: 10.1016/j.bbapap.2010.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 11/16/2022]
Abstract
Fur proteins are global prokaryotic transcriptional regulators. Functional studies of FurA from the cyanobacterium Anabaena sp. PCC 7120 evidenced the influence of the redox environment in the activity of the regulator and its ability to aggregate through disulphide bridges. Atomic force microscopy allows single-molecule imaging and monitorization of the status of FurA under different redox conditions mimicking a physiological environment. The estimated FurA average diameter was of 4 nm. In the absence of reducing agents, the purified FurA is mainly associated as trimers, being 40 degrees the prevalent angle alpha conformed by protein monomers. Reducing conditions induces trimer rearrangement to protein monomers and a major fraction of FurA dimers. Disruption of the dimeric assemblies and appearance of higher order aggregates, namely trimers and tetramers are induced by oxidation with diamide or hydrogen peroxide. The homogeneity of the angles exhibited by the trimeric particles, as well as the occurrence of dimers in the presence of DTT, suggests the participation of relatively specific hydrophobic interactions maintaining the dimer. Direct visualization of the regulator under liquid phase at molecular resolution unravels the importance of non-polar interactions in FurA dynamics and shows that in Anabaena disulphide bridges are not essential for the dimerization of FurA.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | | | | | | |
Collapse
|
39
|
James KJ, Hancock MA, Gagnon JN, Coulton JW. TonB Interacts with BtuF, the Escherichia coli Periplasmic Binding Protein for Cyanocobalamin. Biochemistry 2009; 48:9212-20. [DOI: 10.1021/bi900722p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Gumbart J, Wiener MC, Tajkhorshid E. Coupling of calcium and substrate binding through loop alignment in the outer-membrane transporter BtuB. J Mol Biol 2009; 393:1129-42. [PMID: 19747487 DOI: 10.1016/j.jmb.2009.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/29/2022]
Abstract
In Gram-negative bacteria, TonB-dependent outer-membrane transporters bind large, scarce organometallic substrates with high affinity preceding active transport. The cobalamin transporter BtuB requires the additional binding of two Ca(2+) ions before substrate binding can occur, but the underlying molecular mechanism is unknown. Using the crystallographic structures available for different bound states of BtuB, we have carried out extended molecular dynamics simulations of multiple functional states of BtuB to address the role of Ca(2+) in substrate recruitment. We find that Ca(2+) binding both stabilizes and repositions key extracellular loops of BtuB, optimizing interactions with the substrate. Interestingly, replacement by Mg(2+) abolishes this effect, in accordance with experiments. Using a set of new force-field parameters developed for cyanocobalamin, we also simulated the substrate-bound form of BtuB, where we observed interactions not seen in the crystal structure between the substrate and loops previously found to be important for binding and transport. Based on our results, we suggest that the large size of cobalamin compared to other TonB-dependent transporter substrates explains the requirement of Ca(2+) binding for high-affinity substrate recruitment in BtuB.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
41
|
Abstract
Pyoverdines are siderophores secreted by Pseudomonas aeruginosa. Uptake of ferripyoverdine in P. aeruginosa PAO1 occurs via the FpvA receptor protein and requires the energy-transducing protein TonB1. Interaction of (ferri)pyoverdine with FpvA activates pyoverdine gene expression in a signaling process involving the cytoplasmic-membrane-spanning anti-sigma factor FpvR and the sigma factor PvdS. Here, we show that mutation of a region of FpvA that interacts with TonB1 (the TonB box) prevents this signaling process, as well as inhibiting bacterial growth in the presence of the iron-chelating compound ethylenediamine-di(o-hydroxy-phenylacetic acid). Signaling via wild-type FpvA was also eliminated in strains lacking TonB1 but was unaffected in strains lacking either (or both) of two other TonB proteins in P. aeruginosa, TonB2 and TonB3. An absence of pyoverdine-mediated signaling corresponded with proteolysis of PvdS. These data show that interactions between FpvA and TonB1 are required for (ferri)pyoverdine signal transduction, as well as for ferripyoverdine transport, consistent with a mechanistic link between the signaling and transport functions of FpvA.
Collapse
|
42
|
Molecular characterization of the TonB2 protein from the fish pathogen Vibrio anguillarum. Biochem J 2009; 418:49-59. [PMID: 18973471 DOI: 10.1042/bj20081462] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the fish pathogen Vibrio anguillarum the TonB2 protein is essential for the uptake of the indigenous siderophore anguibactin. Here we describe deletion mutants and alanine replacements affecting the final six amino acids of TonB2. Deletions of more than two amino acids of the TonB2 C-terminus abolished ferric-anguibactin transport, whereas replacement of the last three residues resulted in a protein with wild-type transport properties. We have solved the high-resolution solution structure of the TonB2 C-terminal domain by NMR spectroscopy. The core of this domain (residues 121-206) has an alphabetabetaalphabeta structure, whereas residues 76-120 are flexible and extended. This overall folding topology is similar to the Escherichia coli TonB C-terminal domain, albeit with two differences: the beta4 strand found at the C-terminus of TonB is absent in TonB2, and loop 3 is extended by 9 A (0.9 nm) in TonB2. By examining several mutants, we determined that a complete loop 3 is not essential for TonB2 activity. Our results indicate that the beta4 strand of E. coli TonB is not required for activity of the TonB system across Gram-negative bacterial species. We have also determined, through NMR chemical-shift-perturbation experiments, that the E. coli TonB binds in vitro to the TonB box from the TonB2-dependent outer membrane transporter FatA; moreover, it can substitute in vivo for TonB2 during ferric-anguibactin transport in V. anguillarum. Unexpectedly, TonB2 did not bind in vitro to the FatA TonB-box region, suggesting that additional factors may be required to promote this interaction. Overall our results indicate that TonB2 is a representative of a different class of TonB proteins.
Collapse
|
43
|
DeRocco AJ, Yost-Daljev MK, Kenney CD, Cornelissen CN. Kinetic analysis of ligand interaction with the gonococcal transferrin-iron acquisition system. Biometals 2008; 22:439-51. [PMID: 19048191 DOI: 10.1007/s10534-008-9179-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/07/2008] [Indexed: 11/30/2022]
Abstract
The transferrin iron acquisition system of Neisseria gonorrhoeae consists of two dissimilar transferrin binding proteins (Tbp) A and B. TbpA is a TonB dependent transporter while TbpB is a lipoprotein that makes iron acquisition from transferrin (Tf) more efficient. In an attempt to further define the individual roles of these receptors in the process of Tf-iron acquisition, the kinetics of the receptor proteins in regards to ligand association and dissociation were evaluated. Tf association with TbpB was rapid as compared to TbpA. Tf dissociation from the wild-type receptor occurred in a biphasic manner; an initial rapid release was followed by a slower dissociation over time. Both TbpA and TbpB demonstrated a two-phase release pattern; however, TbpA required both TonB and TbpB for efficient Tf dissociation from the cell surface. The roles of TbpA and TbpB in Tf dissociation were further examined, utilizing previously created HA fusion proteins. Using a Tf-utilization deficient TbpA-HA mutant, we concluded that the slower rate of ligand dissociation demonstrated by the wild-type transporter was a function of successful iron internalization. Insertion into the C-terminus of TbpB decreased the rate of Tf dissociation, while insertion into the N-terminus had no effect on this process. From these studies, we propose that TbpA and TbpB function synergistically during the process of Tf iron acquisition and that TbpB makes the process of Tf-iron acquisition more efficient at least in part by affecting association and dissociation of Tf from the cell surface.
Collapse
Affiliation(s)
- Amanda J DeRocco
- Department of Microbiology, Virginia Commonwealth University Medical Center, PO Box 980678, Richmond, VA 23298-0678, USA
| | | | | | | |
Collapse
|
44
|
Lohmiller S, Hantke K, Patzer SI, Braun V. TonB-dependent maltose transport by Caulobacter crescentus. MICROBIOLOGY-SGM 2008; 154:1748-1754. [PMID: 18524929 DOI: 10.1099/mic.0.2008/017350-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have shown previously that Caulobacter crescentus grows on maltodextrins which are actively transported across the outer membrane by the MalA protein. Evidence for energy-coupled transport was obtained by deletion of the exbB exbD genes which abolished transport. However, removal of the TonB protein, which together with the ExbB ExbD proteins is predicted to form an energy-coupling device between the cytoplasmic membrane and the outer membrane, left transport unaffected. Here we identify an additional tonB gene encoded by the cc2334a ORF, which when deleted abolished maltose transport. MalA contains a TonB box that reads EEVVIT and is predicted to interact with TonB. Replacement of valine number 15 in the TonB box by proline abolished maltose transport. Maltose was transported across the cytoplasmic membrane by the MalY protein (CC2283). Maltose transport was induced by maltose and repressed by the MalI protein (CC2284). In addition to MalA, MalY and MalI, the mal locus encodes two predicted cytoplasmic alpha-amylases (CC2285 and CC2286) and a periplasmic glucoamylase (CC2282). The TonB dependence together with the previously described ExbB ExbD dependence demonstrates energy-coupled maltose transport across the outer membrane. MalY is involved in maltose transport across the cytoplasmic membrane by a presumably ion-coupled mechanism.
Collapse
Affiliation(s)
- S Lohmiller
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Tübingen, Germany
- Microbiology/Membrane Physiology, University of Tübingen, Germany
| | - K Hantke
- Microbiology/Membrane Physiology, University of Tübingen, Germany
| | - S I Patzer
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Tübingen, Germany
| | - V Braun
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Tübingen, Germany
| |
Collapse
|
45
|
Eisenbeis S, Lohmiller S, Valdebenito M, Leicht S, Braun V. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J Bacteriol 2008; 190:5230-8. [PMID: 18539735 PMCID: PMC2493260 DOI: 10.1128/jb.00194-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/22/2008] [Indexed: 12/26/2022] Open
Abstract
Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-beta-D-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a beta-barrel composed of 22 antiparallel beta-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)(3) and (GlcNAc)(5) requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides.
Collapse
Affiliation(s)
- Simone Eisenbeis
- Microbiology/Membrane Physiology, Proteome Center, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
46
|
Abstract
The multiprotein TonB system of Escherichia coli involves proteins in both the cytoplasmic membrane and the outer membrane. By a still unclear mechanism, the proton-motive force of the cytoplasmic membrane is used to catalyze active transport through high-affinity transporters in the outer membrane. TonB, ExbB, and ExbD are required to transduce the cytoplasmic membrane energy to these transporters. For E. coli, transport ligands consist of iron-siderophore complexes, vitamin B(12), group B colicins, and bacteriophages T1 and ø80. Our experimental philosophy is that data gathered in vivo, where all known and unknown components are present at balanced chromosomal levels in the whole cell, can be interpreted with less ambiguity than when a subset of components is overexpressed or analysed in vitro. This chapter describes in vivo assays for the TonB system and their application.
Collapse
Affiliation(s)
- Kathleen Postle
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
47
|
Modulation by substrates of the interaction between the HasR outer membrane receptor and its specific TonB-like protein, HasB. J Mol Biol 2008; 378:840-51. [PMID: 18402979 DOI: 10.1016/j.jmb.2008.03.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/15/2008] [Accepted: 03/21/2008] [Indexed: 11/21/2022]
Abstract
TonB is a cytoplasmic membrane protein required for active transport of various essential substrates such as heme and iron siderophores through the outer membrane receptors of Gram-negative bacteria. This protein spans the periplasm, contacts outer membrane transporters by its C-terminal domain, and transduces energy from the protonmotive force to the transporters. The TonB box, a relatively conserved sequence localized on the periplasmic side of the transporters, has been shown to directly contact TonB. While Serratia marcescens TonB functions with various transporters, HasB, a TonB-like protein, is dedicated to the HasR transporter. HasR acquires heme either freely or via an extracellular heme carrier, the hemophore HasA, that binds to HasR and delivers heme to the transporter. Here, we study the interaction of HasR with a HasB C-terminal domain and compare it with that obtained with a TonB C-terminal fragment. Analysis of the thermodynamic parameters reveals that the interaction mode of HasR with HasB differs from that with TonB, the difference explaining the functional specificity of HasB for HasR. We also demonstrate that the presence of the substrate on the extracellular face of the transporter modifies, via enthalpy-entropy compensation, the interaction with HasB on the periplasmic face. The transmitted signal depends on the nature of the substrate. While the presence of heme on the transporter modifies only slightly the nature of interactions involved between HasR and HasB, hemophore binding on the transporter dramatically changes the interactions and seems to locally stabilize some structural motifs. In both cases, the HasR TonB box is the target for those modifications.
Collapse
|
48
|
Mora L, Klepsch M, Buckingham RH, Heurgué-Hamard V, Kervestin S, de Zamaroczy M. Dual Roles of the Central Domain of Colicin D tRNase in TonB-mediated Import and in Immunity. J Biol Chem 2008; 283:4993-5003. [DOI: 10.1074/jbc.m706846200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Cadieux N, Barekzi N, Bradbeer C. Observations on the Calcium Dependence and Reversibility of Cobalamin Transport across the Outer Membrane of Escherichia coli. J Biol Chem 2007; 282:34921-8. [PMID: 17908684 DOI: 10.1074/jbc.m707426200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium dependence of cobalamin (Cbl) binding to the BtuB protein of Escherichia coli and the reversibility of its function in the transport of Cbl across the outer membrane have been examined. The results show that the two calcium-binding sites in BtuB that were identified previously by others are responsible for the calcium dependence of high affinity Cbl binding. The affinity of the pure BtuB protein for Cbl was approximately 1000-fold higher in the presence of saturating levels of calcium than in its absence. The affinities of BtuB for both Cbl and calcium were decreased by insertion of alanine residues at position 51 of the mature protein and were increased by several mutations and deletions in the TonB box. Experiments on the uptake of Cbl into the periplasmic space showed that this process is reversible and that the exit of Cbl back into the medium does not require the protonmotive force. Our interpretation of these results is that the role of the TonB-ExbB-ExbD complex, potentiated by the protonmotive force, is to reduce the affinity of the Cbl-binding site, thus increasing the rate of Cbl release into the periplasmic space. The evidence also indicates that access of the Cbl-binding site of BtuB to the periplasmic space does not require removal of the hatch domain from the barrel.
Collapse
Affiliation(s)
- Nathalie Cadieux
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908-0733, USA
| | | | | |
Collapse
|
50
|
Interactions of the energy transducer TonB with noncognate energy-harvesting complexes. J Bacteriol 2007; 190:421-7. [PMID: 17965155 DOI: 10.1128/jb.01093-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB and TolA proteins are energy transducers that couple the ion electrochemical potential of the cytoplasmic membrane to support energy-dependent processes at the outer membrane of the gram-negative envelope. The transfer of energy to these transducers is facilitated by energy-harvesting complexes, which are heteromultimers of cytoplasmic membrane proteins with homologies to proton pump proteins of the flagellar motor. Although the cognate energy-harvesting complex best services each transducer, components of the complexes (for TonB, ExbB and ExbD; for TolA, TolQ and TolR) are sufficiently similar that each complex can imperfectly replace the other. Previous investigations of this molecular cross talk considered energy-harvesting complex components expressed from multicopy plasmids in strains in which the corresponding genes were interrupted by insertions, partially absent due to polarity, or missing due to a larger deletion. These questions were reexamined here using strains in which individual genes were removed by precise deletions and, where possible, components were expressed from single-copy genes with native promoters. By more closely approximating natural stoichiometries between components, this study provided insight into the roles of energy-harvesting complexes in both the energization and the stabilization of TonB. Further, the data suggest a distinct role for ExbD in the TonB energy transduction cycle.
Collapse
|