1
|
Chung WH. Signification and Application of Mutator and Antimutator Phenotype-Induced Genetic Variations in Evolutionary Adaptation and Cancer Therapeutics. J Microbiol 2023; 61:1013-1024. [PMID: 38100001 DOI: 10.1007/s12275-023-00091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/11/2024]
Abstract
Mutations present a dichotomy in their implications for cellular processes. They primarily arise from DNA replication errors or damage repair processes induced by environmental challenges. Cumulative mutations underlie genetic variations and drive evolution, yet also contribute to degenerative diseases such as cancer and aging. The mutator phenotype elucidates the heightened mutation rates observed in malignant tumors. Evolutionary adaptation, analogous to bacterial and eukaryotic systems, manifests through mutator phenotypes during changing environmental conditions, highlighting the delicate balance between advantageous mutations and their potentially detrimental consequences. Leveraging the genetic tractability of Saccharomyces cerevisiae offers unique insights into mutator phenotypes and genome instability akin to human cancers. Innovative reporter assays in yeast model organisms enable the detection of diverse genome alterations, aiding a comprehensive analysis of mutator phenotypes. Despite significant advancements, our understanding of the intricate mechanisms governing spontaneous mutation rates and preserving genetic integrity remains incomplete. This review outlines various cellular pathways affecting mutation rates and explores the role of mutator genes and mutation-derived phenotypes, particularly prevalent in malignant tumor cells. An in-depth comprehension of mutator and antimutator activities in yeast and higher eukaryotes holds promise for effective cancer control strategies.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Republic of Korea.
- Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea.
| |
Collapse
|
2
|
Singh S, Singh N, Baranwal M, Sharma S. Polymorphisms in the MSH2 gene predict poor survival of North Indian lung cancer patients undergoing chemotherapy. Biomark Med 2022; 16:69-82. [PMID: 35081740 DOI: 10.2217/bmm-2021-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: To estimate if MSH2 polymorphisms, viz. rs63749993, rs2303425, rs2303426, rs4987188, rs2303428 and rs17217772, have any association with clinical outcomes in North Indian lung cancer patients. Materials & methods: PCR-RFLP was used for genotyping 500 cases. Logistic regression and survival analysis was performed by utilizing MedCalc software. Results & conclusion: Our study concluded, adenocarcinoma subjects having heterozygous genotype for rs2303425 have increased survival time (MST = 12.43, p = 0.03). In lung cancer patients undergoing paclitaxel therapy, heterozygous carriers for the rs17217772 polymorphism have reduced survival time (MST = 7.96 vs 2.63 months; HR = 2.09; p = 0.02). For rs63749993 polymorphism undergoing irinotecan therapy, subjects having mutant genotype showed poor survival (13.26 vs 6.06 months; HR = 5.37; p = 0.0004). The results suggest that MSH2 polymorphisms are involved in decreasing overall survival for patients undergoing platinum-based chemotherapy.
Collapse
Affiliation(s)
- Sidhartha Singh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147001, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147001, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147001, India
| |
Collapse
|
3
|
Ollodart AR, Yeh CLC, Miller AW, Shirts BH, Gordon AS, Dunham MJ. Multiplexing mutation rate assessment: determining pathogenicity of Msh2 variants in Saccharomyces cerevisiae. Genetics 2021; 218:iyab058. [PMID: 33848333 PMCID: PMC8225350 DOI: 10.1093/genetics/iyab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 01/01/2023] Open
Abstract
Despite the fundamental importance of mutation rate as a driving force in evolution and disease risk, common methods to assay mutation rate are time-consuming and tedious. Established methods such as fluctuation tests and mutation accumulation experiments are low-throughput and often require significant optimization to ensure accuracy. We established a new method to determine the mutation rate of many strains simultaneously by tracking mutation events in a chemostat continuous culture device and applying deep sequencing to link mutations to alleles of a DNA-repair gene. We applied this method to assay the mutation rate of hundreds of Saccharomyces cerevisiae strains carrying mutations in the gene encoding Msh2, a DNA repair enzyme in the mismatch repair pathway. Loss-of-function mutations in MSH2 are associated with hereditary nonpolyposis colorectal cancer, an inherited disorder that increases risk for many different cancers. However, the vast majority of MSH2 variants found in human populations have insufficient evidence to be classified as either pathogenic or benign. We first benchmarked our method against Luria-Delbrück fluctuation tests using a collection of published MSH2 missense variants. Our pooled screen successfully identified previously characterized nonfunctional alleles as high mutators. We then created an additional 185 human missense variants in the yeast ortholog, including both characterized and uncharacterized alleles curated from ClinVar and other clinical testing data. In a set of alleles of known pathogenicity, our assay recapitulated ClinVar's classification; we then estimated pathogenicity for 157 variants classified as uncertain or conflicting reports of significance. This method is capable of studying the mutation rate of many microbial species and can be applied to problems ranging from the generation of high-fidelity polymerases to measuring the frequency of antibiotic resistance emergence.
Collapse
Affiliation(s)
- Anja R Ollodart
- Molecular Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| | - Chiann-Ling C Yeh
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| | - Aaron W Miller
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| | - Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Adam S Gordon
- Department of Pharmacology, Northwestern University, Chicago, IL 60208, USA
| | - Maitreya J Dunham
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Arlow T, Kim J, Haye-Bertolozzi JE, Martínez CB, Fay C, Zorensky E, Rose MD, Gammie AE. MutSα mismatch repair protein stability is governed by subunit interaction, acetylation, and ubiquitination. G3 (BETHESDA, MD.) 2021; 11:jkaa065. [PMID: 33793773 PMCID: PMC8063085 DOI: 10.1093/g3journal/jkaa065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022]
Abstract
In eukaryotes, DNA mismatch recognition is accomplished by the highly conserved MutSα (Msh2/Msh6) and MutSβ (Msh2/Msh3) complexes. Previously, in the yeast Saccharomyces cerevisiae, we determined that deleting MSH6 caused wild-type Msh2 levels to drop by ∼50%. In this work, we determined that Msh6 steady-state levels are coupled to increasing or decreasing levels of Msh2. Although Msh6 and Msh2 are reciprocally regulated, Msh3 and Msh2 are not. Msh2 missense variants that are able to interact with Msh6 were destabilized when Msh6 was deleted; in contrast, variants that fail to dimerize were not further destabilized in cells lacking Msh6. In the absence of Msh6, Msh2 is turned over at a faster rate and degradation is mediated by the ubiquitin-proteasome pathway. Mutagenesis of certain conserved lysines near the dimer interface restored the levels of Msh2 in the absence of Msh6, further supporting a dimer stabilization mechanism. We identified two alternative forms of regulation both with the potential to act via lysine residues, including acetylation by Gcn5 and ubiquitination by the Not4 ligase. In the absence of Gcn5, Msh2 levels were significantly decreased; in contrast, deleting Not4 stabilized Msh2 and Msh2 missense variants with partial function. The stabilizing effect on Msh2 by either the presence of Msh6 or the absence of Not4 are dependent on Gcn5. Taken together, the results suggest that the wild-type MutSα mismatch repair protein stability is governed by subunit interaction, acetylation, and ubiquitination.
Collapse
Affiliation(s)
- Tim Arlow
- Ophthalmic Associates, Johnstown, PA
| | | | | | | | | | | | - Mark D. Rose
- Georgetown University, Georgetown, Washington D.C
| | | |
Collapse
|
5
|
Cervelli T, Lodovichi S, Bellè F, Galli A. Yeast-based assays for the functional characterization of cancer-associated variants of human DNA repair genes. MICROBIAL CELL 2020; 7:162-174. [PMID: 32656256 PMCID: PMC7328678 DOI: 10.15698/mic2020.07.721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Technological advances are continuously revealing new genetic variants that are often difficult to interpret. As one of the most genetically tractable model organisms, yeast can have a central role in determining the consequences of human genetic variation. DNA repair gene mutations are associated with many types of cancers, therefore the evaluation of the functional impact of these mutations is crucial for risk assessment and for determining therapeutic strategies. Owing to the evolutionary conservation of DNA repair pathways between human cells and the yeast Saccharomyces cerevisiae, several functional assays have been developed. Here, we describe assays for variants of human genes belonging to the major DNA repair pathways divided in functional assays for human genes with yeast orthologues and human genes lacking a yeast orthologue. Human genes with orthologues can be studied by introducing the correspondent human mutations directly in the yeast gene or expressing the human gene carrying the mutations; while the only possible approach for human genes without a yeast orthologue is the heterologous expression. The common principle of these approaches is that the mutated gene determines a phenotypic alteration that can vary according to the gene studied and the domain of the protein. Here, we show how the versatility of yeast can help in classifying cancer-associated variants.
Collapse
Affiliation(s)
- Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| | - Samuele Lodovichi
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| | - Francesca Bellè
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| |
Collapse
|
6
|
Kato T, Azegami J, Yokomori A, Dohra H, El Enshasy HA, Park EY. Genomic analysis of a riboflavin-overproducing Ashbya gossypii mutant isolated by disparity mutagenesis. BMC Genomics 2020; 21:319. [PMID: 32326906 PMCID: PMC7181572 DOI: 10.1186/s12864-020-6709-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/30/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out. RESULTS In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process. CONCLUSION This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Ami Yokomori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia
| | - Enoch Y. Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
7
|
Natali F, Rancati G. The Mutator Phenotype: Adapting Microbial Evolution to Cancer Biology. Front Genet 2019; 10:713. [PMID: 31447882 PMCID: PMC6691094 DOI: 10.3389/fgene.2019.00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
The mutator phenotype hypothesis was postulated almost 40 years ago to reconcile the observation that while cancer cells display widespread mutational burden, acquisition of mutations in non-transformed cells is a rare event. Moreover, it also suggested that cancer evolution could be fostered by increased genome instability. Given the evolutionary conservation throughout the tree of life and the genetic tractability of model organisms, yeast and bacterial species pioneered studies to dissect the functions of genes required for genome maintenance (caretaker genes) or for cell growth control (gatekeeper genes). In this review, we first provide an overview of what we learned from model organisms about the roles of these genes and the genome instability that arises as a consequence of their dysregulation. We then discuss our current understanding of how mutator phenotypes shape the evolution of bacteria and yeast species. We end by bringing clinical evidence that lessons learned from single-cell organisms can be applied to tumor evolution.
Collapse
Affiliation(s)
- Federica Natali
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
8
|
Graham WJ, Putnam CD, Kolodner RD. The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair. J Biol Chem 2018; 293:18055-18070. [PMID: 30237169 PMCID: PMC6254361 DOI: 10.1074/jbc.ra118.005439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Indexed: 11/30/2022] Open
Abstract
DNA mismatch repair (MMR) corrects mispaired DNA bases and small insertion/deletion loops generated by DNA replication errors. After binding a mispair, the eukaryotic mispair recognition complex Msh2–Msh6 binds ATP in both of its nucleotide-binding sites, which induces a conformational change resulting in the formation of an Msh2–Msh6 sliding clamp that releases from the mispair and slides freely along the DNA. However, the roles that Msh2–Msh6 sliding clamps play in MMR remain poorly understood. Here, using Saccharomyces cerevisiae, we created Msh2 and Msh6 Walker A nucleotide–binding site mutants that have defects in ATP binding in one or both nucleotide-binding sites of the Msh2–Msh6 heterodimer. We found that these mutations cause a complete MMR defect in vivo. The mutant Msh2–Msh6 complexes exhibited normal mispair recognition and were proficient at recruiting the MMR endonuclease Mlh1–Pms1 to mispaired DNA. At physiological (2.5 mm) ATP concentration, the mutant complexes displayed modest partial defects in supporting MMR in reconstituted Mlh1–Pms1-independent and Mlh1–Pms1-dependent MMR reactions in vitro and in activation of the Mlh1–Pms1 endonuclease and showed a more severe defect at low (0.1 mm) ATP concentration. In contrast, five of the mutants were completely defective and one was mostly defective for sliding clamp formation at high and low ATP concentrations. These findings suggest that mispair-dependent sliding clamp formation triggers binding of additional Msh2–Msh6 complexes and that further recruitment of additional downstream MMR proteins is required for signal amplification of mispair binding during MMR.
Collapse
Affiliation(s)
| | - Christopher D Putnam
- From the Ludwig Institute for Cancer Research San Diego,; Departments of Medicine and
| | - Richard D Kolodner
- From the Ludwig Institute for Cancer Research San Diego,; Cellular and Molecular Medicine,; Moores-UCSD Cancer Center, and; Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California 92093-0669.
| |
Collapse
|
9
|
Chakraborty U, Alani E. Understanding how mismatch repair proteins participate in the repair/anti-recombination decision. FEMS Yeast Res 2016; 16:fow071. [PMID: 27573382 PMCID: PMC5976031 DOI: 10.1093/femsyr/fow071] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/24/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Mismatch repair (MMR) systems correct DNA mismatches that result from DNA polymerase misincorporation errors. Mismatches also appear in heteroduplex DNA intermediates formed during recombination between nearly identical sequences, and can be corrected by MMR or removed through an unwinding mechanism, known as anti-recombination or heteroduplex rejection. We review studies, primarily in baker's yeast, which support how specific factors can regulate the MMR/anti-recombination decision. Based on recent advances, we present models for how DNA structure, relative amounts of key repair proteins, the timely localization of repair proteins to DNA substrates and epigenetic marks can modulate this critical decision.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| |
Collapse
|
10
|
Viterbo D, Michoud G, Mosbach V, Dujon B, Richard GF. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair. DNA Repair (Amst) 2016; 42:94-106. [DOI: 10.1016/j.dnarep.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/01/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
11
|
Gupta DK, Patra AT, Zhu L, Gupta AP, Bozdech Z. DNA damage regulation and its role in drug-related phenotypes in the malaria parasites. Sci Rep 2016; 6:23603. [PMID: 27033103 PMCID: PMC4817041 DOI: 10.1038/srep23603] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/10/2016] [Indexed: 11/29/2022] Open
Abstract
DNA of malaria parasites, Plasmodium falciparum, is subjected to extraordinary high levels of genotoxic insults during its complex life cycle within both the mosquito and human host. Accordingly, most of the components of DNA repair machinery are conserved in the parasite genome. Here, we investigated the genome-wide responses of P. falciparum to DNA damaging agents and provided transcriptional evidence of the existence of the double strand break and excision repair system. We also showed that acetylation at H3K9, H4K8, and H3K56 play a role in the direct and indirect response to DNA damage induced by an alkylating agent, methyl methanesulphonate (MMS). Artemisinin, the first line antimalarial chemotherapeutics elicits a similar response compared to MMS which suggests its activity as a DNA damaging agent. Moreover, in contrast to the wild-type P. falciparum, two strains (Dd2 and W2) previously shown to exhibit a mutator phenotype, fail to induce their DNA repair upon MMS-induced DNA damage. Genome sequencing of the two mutator strains identified point mutations in 18 DNA repair genes which may contribute to this phenomenon.
Collapse
Affiliation(s)
- Devendra Kumar Gupta
- School of Biological Sciences, Nanyang Technological University, 639798, Singapore
| | - Alok Tanala Patra
- School of Biological Sciences, Nanyang Technological University, 639798, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, 639798, Singapore
| | - Archana Patkar Gupta
- School of Biological Sciences, Nanyang Technological University, 639798, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
12
|
Peña-Diaz J, Rasmussen LJ. Approaches to diagnose DNA mismatch repair gene defects in cancer. DNA Repair (Amst) 2015; 38:147-154. [PMID: 26708048 DOI: 10.1016/j.dnarep.2015.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/12/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
The DNA repair pathway mismatch repair (MMR) is responsible for the recognition and correction of DNA biosynthetic errors caused by inaccurate nucleotide incorporation during replication. Faulty MMR leads to failure to address the mispairs or insertion deletion loops (IDLs) left behind by the replicative polymerases and results in increased mutation load at the genome. The realization that defective MMR leads to a hypermutation phenotype and increased risk of tumorigenesis highlights the relevance of this pathway for human disease. The association of MMR defects with increased risk of cancer development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome (LS) partly to include the associated risk of developing extra-colonic cancers. In addition, a number of non-hereditary, mostly epigenetic, alterations of MMR genes have been described in sporadic tumors. Besides conferring a strong cancer predisposition, genetic or epigenetic inactivation of MMR genes also renders cells resistant to some chemotherapeutic agents. Therefore, diagnosis of MMR deficiency has important implications for the management of the patients, the surveillance of their relatives in the case of LS and for the choice of treatment. Some of the alterations found in MMR genes have already been well defined and their pathogenicity assessed. Despite this substantial wealth of knowledge, the effects of a large number of alterations remain uncharacterized (variants of uncertain significance, VUSs). The advent of personalized genomics is likely to increase the list of VUSs found in MMR genes and anticipates the need of diagnostic tools for rapid assessment of their pathogenicity. This review describes current tools and future strategies for addressing the relevance of MMR gene alterations in human disease.
Collapse
Affiliation(s)
- Javier Peña-Diaz
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
13
|
Voordeckers K, Kominek J, Das A, Espinosa-Cantú A, De Maeyer D, Arslan A, Van Pee M, van der Zande E, Meert W, Yang Y, Zhu B, Marchal K, DeLuna A, Van Noort V, Jelier R, Verstrepen KJ. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways. PLoS Genet 2015; 11:e1005635. [PMID: 26545090 PMCID: PMC4636377 DOI: 10.1371/journal.pgen.1005635] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. Organisms can evolve resistance to specific stress factors, which allows them to thrive in environments where non-adapted organisms fail to grow. However, the molecular mechanisms that underlie adaptation to complex stress factors that interfere with basic cellular processes are poorly understood. In this study, we reveal how yeast populations adapt to high ethanol concentrations, an ecologically and industrially relevant stress that is still poorly understood. We exposed six independent populations of genetically identical yeast cells to gradually increasing ethanol levels, and we monitored the changes in their DNA sequence over a two-year period. Together with novel computational analyses, we could identify the mutational dynamics and molecular mechanisms underlying increased ethanol resistance. Our results show how adaptation to high ethanol is complex and can be reached through different mutational pathways. Together, our study offers a detailed picture of how populations adapt to a complex continuous stress and identifies several mutations that increase ethanol resistance, which opens new routes to obtain superior biofuel yeast strains.
Collapse
Affiliation(s)
- Karin Voordeckers
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Jacek Kominek
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Anupam Das
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, KU Leuven, Leuven, Belgium
| | - Adriana Espinosa-Cantú
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Dries De Maeyer
- CMPG Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Information Technology (INTEC, iMINDS), University of Ghent, Ghent, Belgium
| | - Ahmed Arslan
- CMPG Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | - Michiel Van Pee
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Elisa van der Zande
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Wim Meert
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Yudi Yang
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Bo Zhu
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- CMPG Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Information Technology (INTEC, iMINDS), University of Ghent, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, University of Ghent, Ghent, Belgium
| | - Alexander DeLuna
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Vera Van Noort
- CMPG Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | - Rob Jelier
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J. Verstrepen
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
14
|
Acosta S, Carela M, Garcia-Gonzalez A, Gines M, Vicens L, Cruet R, Massey SE. DNA Repair Is Associated with Information Content in Bacteria, Archaea, and DNA Viruses. J Hered 2015; 106:644-59. [PMID: 26320243 DOI: 10.1093/jhered/esv055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/07/2015] [Indexed: 11/13/2022] Open
Abstract
The concept of a "proteomic constraint" proposes that DNA repair capacity is positively correlated with the information content of a genome, which can be approximated to the size of the proteome (P). This in turn implies that DNA repair genes are more likely to be present in genomes with larger values of P. This stands in contrast to the common assumption that informational genes have a core function and so are evenly distributed across organisms. We examined the presence/absence of 18 DNA repair genes in bacterial genomes. A positive relationship between gene presence and P was observed for 17 genes in the total dataset, and 16 genes when only nonintracellular bacteria were examined. A marked reduction of DNA repair genes was observed in intracellular bacteria, consistent with their reduced value of P. We also examined archaeal and DNA virus genomes, and show that the presence of DNA repair genes is likewise related to a larger value of P. In addition, the products of the bacterial genes mutY, vsr, and ndk, involved in the correction of GC/AT mutations, are strongly associated with reduced genome GC content. We therefore propose that a reduction in information content leads to a loss of DNA repair genes and indirectly to a reduction in genome GC content in bacteria by exposure to the underlying AT mutation bias. The reduction in P may also indirectly lead to the increase in substitution rates observed in intracellular bacteria via loss of DNA repair genes.
Collapse
Affiliation(s)
- Sharlene Acosta
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Miguelina Carela
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Aurian Garcia-Gonzalez
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Mariela Gines
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Luis Vicens
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Ricardo Cruet
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Steven E Massey
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey).
| |
Collapse
|
15
|
Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments. PLoS Genet 2014; 10:e1004041. [PMID: 24415948 PMCID: PMC3886903 DOI: 10.1371/journal.pgen.1004041] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/07/2013] [Indexed: 01/08/2023] Open
Abstract
One of the central goals of evolutionary biology is to explain and predict the molecular basis of adaptive evolution. We studied the evolution of genetic networks in Saccharomyces cerevisiae (budding yeast) populations propagated for more than 200 generations in different nitrogen-limiting conditions. We find that rapid adaptive evolution in nitrogen-poor environments is dominated by the de novo generation and selection of copy number variants (CNVs), a large fraction of which contain genes encoding specific nitrogen transporters including PUT4, DUR3 and DAL4. The large fitness increases associated with these alleles limits the genetic heterogeneity of adapting populations even in environments with multiple nitrogen sources. Complete identification of acquired point mutations, in individual lineages and entire populations, identified heterogeneity at the level of genetic loci but common themes at the level of functional modules, including genes controlling phosphatidylinositol-3-phosphate metabolism and vacuole biogenesis. Adaptive strategies shared with other nutrient-limited environments point to selection of genetic variation in the TORC1 and Ras/PKA signaling pathways as a general mechanism underlying improved growth in nutrient-limited environments. Within a single population we observed the repeated independent selection of a multi-locus genotype, comprised of the functionally related genes GAT1, MEP2 and LST4. By studying the fitness of individual alleles, and their combination, as well as the evolutionary history of the evolving population, we find that the order in which these mutations are acquired is constrained by epistasis. The identification of repeatedly selected variation at functionally related loci that interact epistatically suggests that gene network polymorphisms (GNPs) may be a frequent outcome of adaptive evolution. Our results provide insight into the mechanistic basis by which cells adapt to nutrient-limited environments and suggest that knowledge of the selective environment and the regulatory mechanisms important for growth and survival in that environment greatly increase the predictability of adaptive evolution. We studied adaptive evolution in different nitrogen-limited environments using long-term selection of asexually reproducing Saccharomyces cerevisiae populations in chemostats. Using next generation sequencing and DNA microarrays, we identified all acquired genetic variation associated with increased fitness, in both individual lineages and entire populations. We find that amplification alleles that include nutrient transporter genes specific to the molecular form of the nitrogen present in the environment are a common mechanism underlying increased fitness. In addition, we identified a general strategy for adaptation to nitrogen-limited environments that entails remodeling of phospholipid biogenesis required for producing important cellular components including vacuoles and autophagosomes. More general strategies for adaptation to nutrient-limited environments point to a role for re-wiring of signaling pathways that coordinate cell growth with nutrient availability. We reconstructed the evolutionary dynamics of a population evolving in ammonium-limited conditions and find that a multi-locus genotype is repeatedly selected within the population and constrained by epistasis. We propose that this genotype constitutes a “gene network polymorphism (GNP),” which may be a common outcome of adaptive evolution. Our study suggests that when the selective pressure is understood the molecular basis of adaptive evolution in large microbial populations may be predicted with reasonable precision.
Collapse
|
16
|
Gómez R, Spampinato CP. Mismatch recognition function of Arabidopsis thaliana MutSγ. DNA Repair (Amst) 2013; 12:257-64. [PMID: 23380521 DOI: 10.1016/j.dnarep.2013.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/24/2022]
Abstract
Genetic stability depends in part on an efficient DNA lesion recognition and correction by the DNA mismatch repair (MMR) system. In eukaryotes, MMR is initiated by the binding of heterodimeric MutS homologue (MSH) complexes, MSH2-MSH6 and MSH2-MSH3, which recognize and bind mismatches and unpaired nucleotides. Plants encode another mismatch recognition protein, named MSH7. MSH7 forms a heterodimer with MSH2 and the protein complex is designated MutSγ. We here report the effect the expression of Arabidopsis MSH2 and MSH7 alone or in combination exert on the genomic stability of Saccharomyces cerevisiae. AtMSH2 and AtMutSγ proteins failed to complement the hypermutator phenotype of an msh2 deficient strain. However, overexpressing AtMutSγ in MMR proficient strains generated a 4-fold increase in CAN1 forward mutation rate, when compared to wild-type strains. Can(r) mutation spectrum analysis of AtMutSγ overproducing strains revealed a substantial increase in the frequency of base substitution mutations, including an increased accumulation of base pair changes from G:C to A:T and T:A to C:G, G:C or A:T. Taken together, these results suggest that AtMutSγ affects yeast genomic stability by recognizing specific mismatches and preventing correction by yeast MutSα and MutSβ, with subsequent inability to interact with yeast downstream proteins needed to complete MMR.
Collapse
Affiliation(s)
- Rodrigo Gómez
- Centro de Estudios Fotosintéticos y Bioquímicos CEFOBI, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | |
Collapse
|
17
|
Rasmussen LJ, Heinen CD, Royer-Pokora B, Drost M, Tavtigian S, Hofstra RMW, de Wind N. Pathological assessment of mismatch repair gene variants in Lynch syndrome: past, present, and future. Hum Mutat 2012; 33:1617-25. [PMID: 22833534 DOI: 10.1002/humu.22168] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose consequences for pathogenicity cannot be easily interpreted. Such variants are designated as "variants of uncertain significance" (VUS). Management of LS can be significantly improved by identifying individuals who carry a pathogenic variant and thus benefit from screening, preventive, and therapeutic measures. Also, identifying family members that do not carry the variant is important so they can be released from the intensive surveillance. Determining which genetic variants are pathogenic and which are neutral is a major challenge in clinical genetics. The profound mechanistic knowledge on the genetics and biochemistry of MMR enables the development and use of targeted assays to evaluate the pathogenicity of variants found in suspected patients with LS. We describe different approaches for the functional analysis of MMR gene VUS and propose development of a validated diagnostic framework. Furthermore, we call attention to common misconceptions about functional assays and endorse development of an integrated approach comprising validated assays for diagnosis of VUS in patients suspected of LS.
Collapse
Affiliation(s)
- Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
18
|
Heinen CD, Juel Rasmussen L. Determining the functional significance of mismatch repair gene missense variants using biochemical and cellular assays. Hered Cancer Clin Pract 2012; 10:9. [PMID: 22824075 PMCID: PMC3434035 DOI: 10.1186/1897-4287-10-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/28/2012] [Indexed: 12/15/2022] Open
Abstract
With the discovery that the hereditary cancer susceptibility disease Lynch syndrome (LS) is caused by deleterious germline mutations in the DNA mismatch repair (MMR) genes nearly 20 years ago, genetic testing can now be used to diagnose this disorder in patients. A definitive diagnosis of LS can direct how clinicians manage the disease as well as prevent future cancers for the patient and their families. A challenge emerges, however, when a germline missense variant is identified in a MMR gene in a suspected LS patient. The significance of a single amino acid change in these large repair proteins is not immediately obvious resulting in them being designated variants of uncertain significance (VUS). One important strategy for resolving this uncertainty is to determine whether the variant results in a non-functional protein. The ability to reconstitute the MMR reaction in vitro has provided an important experimental tool for studying the functional consequences of VUS. However, beyond this repair assay, a number of other experimental methods have been developed that allow us to test the effect of a VUS on discrete biochemical steps or other aspects of MMR function. Here, we describe some of these assays along with the challenges of using such assays to determine the functional consequences of MMR VUS which, in turn, can provide valuable insight into their clinical significance. With increased gene sequencing in patients, the number of identified VUS has expanded dramatically exacerbating this problem for clinicians. However, basic science research laboratories around the world continue to expand our knowledge of the overall MMR molecular mechanism providing new opportunities to understand the functional significance, and therefore pathogenic significance, of VUS.
Collapse
Affiliation(s)
- Christopher D Heinen
- Neag Comprehensive Cancer Center and Center for Molecular Medicine, University of Connecticut Health Center, 233 Farmington Avenue, ML3101 Farmington, CT, USA.
| | | |
Collapse
|
19
|
Esophageal cancer risk is associated with polymorphisms of DNA repair genes MSH2 and WRN in Chinese population. J Thorac Oncol 2012; 7:448-52. [PMID: 22173703 DOI: 10.1097/jto.0b013e31823c487a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Normal function of DNA repair system is essential for the removal of damage induced by many kinds of internal and environmental agents. Genetic polymorphisms in DNA repair genes associated with modified repair capacity may be related to the risk of developing esophageal cancer (EC). This article dealt whether single-nucleotide polymorphisms of DNA repair genes MSH2, WRN, and Ku70 potentially contributed to EC susceptibility. METHODS A hospital-based case-control study with 117 EC cases and 132 controls in a Chinese population was conducted. We genotyped three single-nucleotide polymorphisms MSH2 c.2063T>G, WRN c.4330T>C, and Ku70 c.-1310 C>G using polymerase chain reaction-based restriction fragment length polymorphism and then performed statistical analysis by calculating the adjusted odds ratios (OR) and 95% confidence intervals (95% CI). RESULTS Carriers of the MSH2 c.2063 G allele were at a higher risk of developing EC with the TT genotype as reference (OR = 4.53, 95% CI = 1.92-10.64, 33p = 0.001). Also for WRN c.4330T>C, individuals with at least one C allele (T/C or C/C) had a 2.21-fold increased risk for EC development compared with those who bore the T/T wild-type genotype (OR = 2.21, 95% CI = 1.06-4.59, 33p = 0.035). Moreover, statistically significant variant genotypic interaction was suggested between MSH2 and WRN as a result of a much increased predisposition to EC (33p = 0.016). No obvious correlation was observed between Ku70 c.-1310 CG and esophageal carcinogenesis (33p > 0.05). CONCLUSIONS Our findings indicated that genetic variants in DNA repair pathways may be involved in esophageal tumorigenesis. MSH2 c.2063 G allele and WRN c.4330 C allele, not Ku70 c.-1310 CG, conferred risk for the process of developing EC.
Collapse
|
20
|
Geng H, Sakato M, DeRocco V, Yamane K, Du C, Erie DA, Hingorani M, Hsieh P. Biochemical analysis of the human mismatch repair proteins hMutSα MSH2(G674A)-MSH6 and MSH2-MSH6(T1219D). J Biol Chem 2012; 287:9777-9791. [PMID: 22277660 DOI: 10.1074/jbc.m111.316919] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The heterodimeric human MSH2-MSH6 protein initiates DNA mismatch repair (MMR) by recognizing mismatched bases that result from replication errors. Msh2(G674A) or Msh6(T1217D) mice that have mutations in or near the ATP binding site of MSH2 or ATP hydrolysis catalytic site of MSH6 develop cancer and have a reduced lifespan due to loss of the MMR pathway (Lin, D. P., Wang, Y., Scherer, S. J., Clark, A. B., Yang, K., Avdievich, E., Jin, B., Werling, U., Parris, T., Kurihara, N., Umar, A., Kucherlapati, R., Lipkin, M., Kunkel, T. A., and Edelmann, W. (2004) Cancer Res. 64, 517-522; Yang, G., Scherer, S. J., Shell, S. S., Yang, K., Kim, M., Lipkin, M., Kucherlapati, R., Kolodner, R. D., and Edelmann, W. (2004) Cancer Cell 6, 139-150). Mouse embryonic fibroblasts from these mice retain an apoptotic response to DNA damage. Mutant human MutSα proteins MSH2(G674A)-MSH6(wt) and MSH2(wt)-MSH6(T1219D) are profiled in a variety of functional assays and as expected fail to support MMR in vitro, although they retain mismatch recognition activity. Kinetic analyses of DNA binding and ATPase activities and examination of the excision step of MMR reveal that the two mutants differ in their underlying molecular defects. MSH2(wt)-MSH6(T1219D) fails to couple nucleotide binding and mismatch recognition, whereas MSH2(G674A)-MSH6(wt) has a partial defect in nucleotide binding. Nevertheless, both mutant proteins remain bound to the mismatch and fail to promote efficient excision thereby inhibiting MMR in vitro in a dominant manner. Implications of these findings for MMR and DNA damage signaling by MMR proteins are discussed.
Collapse
Affiliation(s)
- Hui Geng
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Miho Sakato
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459, and
| | - Vanessa DeRocco
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kazuhiko Yamane
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Chunwei Du
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Manju Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459, and
| | - Peggy Hsieh
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892,.
| |
Collapse
|
21
|
Medina-Arana V, Delgado L, González L, Bravo A, Díaz H, Salido E, Riverol D, González-Aguilera JJ, Fernández-Peralta AM. Adrenocortical carcinoma, an unusual extracolonic tumor associated with Lynch II syndrome. Fam Cancer 2011; 10:265-71. [PMID: 21225464 DOI: 10.1007/s10689-010-9416-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lynch syndrome (LS) is an autosomal dominant condition that predisposes to colorectal cancer and specific other tumors. Extracolonic tumors occur mainly in the endometrium, stomach, ovary, small intestine and urinary tract. The presence of rare tumors in patients belonging to families who have Lynch syndrome is always interesting, because the question arises whether these tumors should be considered as a coincidence or are related with the syndrome. In this last case, they are also the result of the defect in the mismatch repair system, opening the possibility of extending the tumor spectrum associated with the syndrome. Here we describe a patient from a Lynch syndrome family with a germline mutation c.2063T>G (p.M688R) in the MSH2 gene, who developed an adrenal cortical carcinoma, a tumor not usually associated with LS. We analyzed the adrenocortical tumour for microsatellite instability (MSI), LOH and the presence of the germline c.2063T>G (M688R) mutation. The adrenal cortical carcinoma showed the MSH2 mutation, loss of heterozygosity of the normal allele in the MSH2 gene and loss of immunohistochemical expression for MSH2 protein, but no microsatellite instability. Additionally, the adrenal cortical carcinoma did not harbour a TP53 mutation. The molecular study indicates that this adrenal cortical cancer is probably due to the mismatch repair defect.
Collapse
Affiliation(s)
- V Medina-Arana
- Servicio de Cirugía General y Digestiva, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Preston BD, Albertson TM, Herr AJ. DNA replication fidelity and cancer. Semin Cancer Biol 2010; 20:281-93. [PMID: 20951805 PMCID: PMC2993855 DOI: 10.1016/j.semcancer.2010.10.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 10/07/2010] [Indexed: 12/14/2022]
Abstract
Cancer is fueled by mutations and driven by adaptive selection. Normal cells avoid deleterious mutations by replicating their genomes with extraordinary accuracy. Here we review the pathways governing DNA replication fidelity and discuss evidence implicating replication errors (point mutation instability or PIN) in carcinogenesis.
Collapse
Affiliation(s)
- Bradley D Preston
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
23
|
Arana ME, Holmes SF, Fortune JM, Moon AF, Pedersen LC, Kunkel TA. Functional residues on the surface of the N-terminal domain of yeast Pms1. DNA Repair (Amst) 2010; 9:448-57. [PMID: 20138591 PMCID: PMC2856611 DOI: 10.1016/j.dnarep.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 01/21/2023]
Abstract
Saccharomyces cerevisiae MutLalpha is a heterodimer of Mlh1 and Pms1 that participates in DNA mismatch repair (MMR). Both proteins have weakly conserved C-terminal regions (CTDs), with the CTD of Pms1 harboring an essential endonuclease activity. These proteins also have conserved N-terminal domains (NTDs) that bind and hydrolyze ATP and bind to DNA. To better understand Pms1 functions and potential interactions with DNA and/or other proteins, we solved the 2.5A crystal structure of yeast Pms1 (yPms1) NTD. The structure is similar to the homologous NTDs of Escherichia coli MutL and human PMS2, including the site involved in ATP binding and hydrolysis. The structure reveals a number of conserved, positively charged surface residues that do not interact with other residues in the NTD and are therefore candidates for interactions with DNA, with the CTD and/or with other proteins. When these were replaced with glutamate, several replacements resulted in yeast strains with elevated mutation rates. Two replacements also resulted in NTDs with decreased DNA binding affinity in vitro, suggesting that these residues contribute to DNA binding that is important for mismatch repair. Elevated mutation rates also resulted from surface residue replacements that did not affect DNA binding, suggesting that these conserved residues serve other functions, possibly involving interactions with other MMR proteins.
Collapse
Affiliation(s)
- Mercedes E. Arana
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Shannon F. Holmes
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - John M. Fortune
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Andrea F. Moon
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Lars C. Pedersen
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| |
Collapse
|
24
|
Spampinato CP, Gomez RL, Galles C, Lario LD. From bacteria to plants: a compendium of mismatch repair assays. Mutat Res 2009; 682:110-28. [PMID: 19622396 DOI: 10.1016/j.mrrev.2009.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/16/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
Mismatch repair (MMR) system maintains genome integrity by correcting mispaired or unpaired bases which have escaped the proofreading activity of DNA polymerases. The basic features of the pathway have been highly conserved throughout evolution, although the nature and number of the proteins involved in the mechanism vary from prokaryotes to eukaryotes and even between humans and plants. Cells deficient in MMR genes have been observed to display a mutator phenotype characterized by an increased rate in spontaneous mutation, instability of microsatellite sequences and illegitimate recombination between diverged DNA sequences. Studies of the mutator phenotype have demonstrated a critical role for the MMR system in mutation avoidance and genetic stability. Here, we briefly review our current knowledge of the MMR mechanism and then focus on the in vivo biochemical and genetic assays used to investigate the function of the MMR proteins in processing DNA mismatches generated during replication and mitotic recombination in Escherichia coli, Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana. An overview of the biochemical assays developed to study mismatch correction in vitro is also provided.
Collapse
Affiliation(s)
- Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina.
| | | | | | | |
Collapse
|
25
|
Niessen RC, Sijmons RH, Berends MJW, Ou J, Hofstra RMW, Kleibeuker JH. Hereditary non-polyposis colorectal cancer: identification of mutation carriers and assessing pathogenicity of mutations. Scand J Gastroenterol 2009:70-7. [PMID: 15696853 DOI: 10.1080/00855920410010915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Hereditary non-polyposis colorectal cancer (HNPCC), also referred to as Lynch syndrome, is an autosomal dominantly inherited disorder that is characterized by susceptibility to colorectal cancer and extracolonic malignancies, in particular endometrial cancer. HNPCC is caused by pathogenic mutations in the mismatch repair (MMR) genes, which play an important role in maintaining genomic stability during DNA replication. Identification of MMR gene mutation carriers is important as this enables them to enrol in surveillance programmes, thus reducing their risk of cancer and increasing survival. Clinical criteria as well as non-clinical criteria have been formulated to select patients for mutation analysis. In this paper we review the approaches used to select patients for mutation analysis. Mutation analysis in the MMR genes may yield mutations of which the pathogenic nature is unclear. Criteria to determine the pathogenicity of such variants are discussed, as well as differences in design of functional assays to assess pathogenicity.
Collapse
Affiliation(s)
- R C Niessen
- Dept. of Clinical Genetics, University Hospital Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Tomé S, Holt I, Edelmann W, Morris GE, Munnich A, Pearson CE, Gourdon G. MSH2 ATPase domain mutation affects CTG*CAG repeat instability in transgenic mice. PLoS Genet 2009; 5:e1000482. [PMID: 19436705 PMCID: PMC2674216 DOI: 10.1371/journal.pgen.1000482] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/14/2009] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is associated with one of the most highly unstable CTG•CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG•CAG tracts requires the mismatch repair (MMR) proteins MSH2 and MSH3, forming the MutSβ complex. It has been proposed that binding of MutSβ to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSβ is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG)300 repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base–base MMR, but does not affect the ability of MSH2 (associated with MSH6) to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2G674 mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system. Myotonic dystrophy type 1 is a neuromuscular disease characterized by highly variable clinical manifestations, including muscular and neuropsychological symptoms. DM1 results from the dramatic expansion of an unstable CTG repeat in the DMPK gene. Longer CTG repeats cause a more severe form of the disease and an earlier age of onset. The DNA mismatch repair proteins MSH2 and MSH3 are known to be major players in the formation of trinucleotide expansions. Nevertheless, the mode of action of these proteins remains elusive. In order to get further insight into the role of MSH2 in the formation of CTG expansions, we used a mouse model carrying a mutation in the conserved ATPase domain of Msh2. This mutation affects the function of this domain and alters the DNA repair mismatch activity. After breeding of these mice with mice carrying highly unstable CTG repeats, we found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions. Our findings show that expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and support the hypothesis, according to which a functional MMR activity is required to generate expansions.
Collapse
Affiliation(s)
- Stéphanie Tomé
- INSERM, U781, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, United Kingdom
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Glenn E. Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, United Kingdom
| | - Arnold Munnich
- INSERM, U781, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Geneviève Gourdon
- INSERM, U781, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
- * E-mail:
| |
Collapse
|
27
|
Arnold S, Buchanan DD, Barker M, Jaskowski L, Walsh MD, Birney G, Woods MO, Hopper JL, Jenkins MA, Brown MA, Tavtigian SV, Goldgar DE, Young JP, Spurdle AB. Classifying MLH1 and MSH2 variants using bioinformatic prediction, splicing assays, segregation, and tumor characteristics. Hum Mutat 2009; 30:757-70. [PMID: 19267393 PMCID: PMC2707453 DOI: 10.1002/humu.20936] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reliable methods for predicting functional consequences of variants in disease genes would be beneficial in the clinical setting. This study was undertaken to predict, and confirm in vitro, splicing aberrations associated with mismatch repair (MMR) variants identified in familial colon cancer patients. Six programs were used to predict the effect of 13 MLH1 and 6 MSH2 gene variants on pre-mRNA splicing. mRNA from cycloheximide-treated lymphoblastoid cell lines of variant carriers was screened for splicing aberrations. Tumors of variant carriers were tested for microsatellite instability and MMR protein expression. Variant segregation in families was assessed using Bayes factor causality analysis. Amino acid alterations were examined for evolutionary conservation and physicochemical properties. Splicing aberrations were detected for 10 variants, including a frameshift as a minor cDNA product, and altered ratio of known alternate splice products. Loss of splice sites was well predicted by splice-site prediction programs SpliceSiteFinder (90%) and NNSPLICE (90%), but consequence of splice site loss was less accurately predicted. No aberrations correlated with ESE predictions for the nine exonic variants studied. Seven of eight missense variants had normal splicing (88%), but only one was a substitution considered neutral from evolutionary/physicochemical analysis. Combined with information from tumor and segregation analysis, and literature review, 16 of 19 variants were considered clinically relevant. Bioinformatic tools for prediction of splicing aberrations need improvement before use without supporting studies to assess variant pathogenicity. Classification of mismatch repair gene variants is assisted by a comprehensive approach that includes in vitro, tumor pathology, clinical, and evolutionary conservation data.
Collapse
Affiliation(s)
- Sven Arnold
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
| | - Daniel D. Buchanan
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Melissa Barker
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
| | - Lesley Jaskowski
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
| | - Michael D. Walsh
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Genevieve Birney
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
| | - Michael O. Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - John L. Hopper
- Centre for Genetic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Mark A. Jenkins
- Centre for Genetic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Melissa A. Brown
- School of Medicine, and School of Molecular and Microbial Sciences, University of Queensland, Brisbane
| | | | - David E. Goldgar
- Department of Dermatology, University of Utah, Salt Lake City, Utah, USA
| | - Joanne P. Young
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Amanda B. Spurdle
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
28
|
A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat Biotechnol 2009; 27:369-77. [PMID: 19349972 DOI: 10.1038/nbt.1534] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/09/2009] [Indexed: 01/23/2023]
Abstract
We present a yeast chemical-genomics approach designed to identify genes that when mutated confer drug resistance, thereby providing insight about the modes of action of compounds. We developed a molecular barcoded yeast open reading frame (MoBY-ORF) library in which each gene, controlled by its native promoter and terminator, is cloned into a centromere-based vector along with two unique oligonucleotide barcodes. The MoBY-ORF resource has numerous genetic and chemical-genetic applications, but here we focus on cloning wild-type versions of mutant drug-resistance genes using a complementation strategy and on simultaneously assaying the fitness of all transformants with barcode microarrays. The complementation cloning was validated by mutation detection using whole-genome yeast tiling microarrays, which identified unique polymorphisms associated with a drug-resistant mutant. We used the MoBY-ORF library to identify the genetic basis of several drug-resistant mutants and in this analysis discovered a new class of sterol-binding compounds.
Collapse
|
29
|
Abstract
Genetically engineered mice are essential tools in both mechanistic studies and drug development in colon cancer research. Mice with mutations in the Apc gene, as well as in genes that modify or interact with Apc, are important models of familial adenomatous polyposis. Mice with mutations in the beta-catenin signaling pathway have also revealed important information about colon cancer pathogenesis, along with models for hereditary nonpolyposis colon cancer and inflammatory bowel diseases associated with colon cancer. Finally, transplantation models (xenografts)have been useful in the study of metastasis and for testing potential therapeutics. This review discusses what models have been developed most recently and what they have taught us about colon cancer formation, progression, and possible treatment strategies.
Collapse
Affiliation(s)
- Makoto Mark Taketo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
30
|
Couch FJ, Rasmussen LJ, Hofstra R, Monteiro ANA, Greenblatt MS, de Wind N, IARC Unclassified Genetic Variants Working Group. Assessment of functional effects of unclassified genetic variants. Hum Mutat 2008; 29:1314-26. [PMID: 18951449 PMCID: PMC2771414 DOI: 10.1002/humu.20899] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inherited predisposition to disease is often linked to reduced activity of a disease associated gene product. Thus, quantitation of the influence of inherited variants on gene function can potentially be used to predict the disease relevance of these variants. While many disease genes have been extensively characterized at the functional level, few assays based on functional properties of the encoded proteins have been established for the purpose of predicting the contribution of rare inherited variants to disease. Much of the difficulty in establishing predictive functional assays stems from the technical complexity of the assays. However, perhaps the most challenging aspect of functional assay development for clinical testing purposes is the absolute requirement for validation of the sensitivity and specificity of the assays and the determination of positive predictive values (PPVs) and negative predictive values (NPVs) of the assays relative to a "gold standard" measure of disease predisposition. In this commentary, we provide examples of some of the functional assays under development for several cancer predisposition genes (BRCA1, BRCA2, CDKN2A, and mismatch repair [MMR] genes MLH1, MSH2, MSH6, and PMS2) and present a detailed review of the issues associated with functional assay development. We conclude that validation is paramount for all assays that will be used for clinical interpretation of inherited variants of any gene, but note that in certain circumstances information derived from incompletely validated assays may be valuable for classification of variants for clinical purposes when used to supplement data derived from other sources.
Collapse
Affiliation(s)
- Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
Collaborators
Paolo Boffetta, Fergus Couch, Niels de Wind, Douglas Easton, Diana Eccles, William Foulkes, Maurizio Genuardi, David Goldgar, Marc Greenblatt, Robert Hofstra, Frans Hogervorst, Nicoline Hoogerbrugge, Sharon Plon, Paolo Radice, Lene Rasmussen, Olga Sinilnikova, Amanda Spurdle, Sean V Tavtigian,
Collapse
|
31
|
Kim HM, Narayanan V, Mieczkowski PA, Petes TD, Krasilnikova MM, Mirkin SM, Lobachev KS. Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J 2008; 27:2896-906. [PMID: 18833189 DOI: 10.1038/emboj.2008.205] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/15/2008] [Indexed: 11/10/2022] Open
Abstract
Expansion of triplex-forming GAA/TTC repeats in the first intron of FXN gene results in Friedreich's ataxia. Besides FXN, there are a number of other polymorphic GAA/TTC loci in the human genome where the size variations thus far have been considered to be a neutral event. Using yeast as a model system, we demonstrate that expanded GAA/TTC repeats represent a threat to eukaryotic genome integrity by triggering double-strand breaks and gross chromosomal rearrangements. The fragility potential strongly depends on the length of the tracts and orientation of the repeats relative to the replication origin, which correlates with their propensity to adopt triplex structure and to block replication progression. We show that fragility is mediated by mismatch repair machinery and requires the MutSbeta and endonuclease activity of MutLalpha. We suggest that the mechanism of GAA/TTC-induced chromosomal aberrations defined in yeast can also operate in human carriers with expanded tracts.
Collapse
Affiliation(s)
- Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex. Genetics 2008; 178:2113-21. [PMID: 18430937 DOI: 10.1534/genetics.107.081927] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The effective use of microsatellite loci as tools for microevolutionary analysis requires knowledge of the factors influencing the rate and pattern of mutation, much of which is derived from indirect inference from population samples. Interspecific variation in microsatellite stability also provides a glimpse into aspects of phylogenetic constancy of mutational processes. Using long-term series of mutation-accumulation lines, we have obtained direct estimates of the spectrum of microsatellite mutations in two model systems: the nematode Caenorhabditis elegans and the microcrustacean Daphnia pulex. Although the scaling of the mutation rate with the number of tandem repeats is highly consistent across distantly related species, including yeast and human, the per-cell-division mutation rate appears to be elevated in multicellular species. Contrary to the expectations under the stepwise mutation model, most microsatellite mutations in C. elegans and D. pulex involve changes of multiple repeat units, with expansions being much more common than contractions.
Collapse
|
33
|
Kadyrov FA, Holmes SF, Arana ME, Lukianova OA, O’Donnell M, Kunkel TA, Modrich P. Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 2007; 282:37181-90. [PMID: 17951253 PMCID: PMC2302834 DOI: 10.1074/jbc.m707617200] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
MutL homologs are crucial for mismatch repair and genetic stability, but their function is not well understood. Human MutLalpha (MLH1-PMS2 heterodimer) harbors a latent endonuclease that is dependent on the integrity of a PMS2 DQHA(X)2E(X)4E motif (Kadyrov, F. A., Dzantiev, L., Constantin, N., and Modrich, P. (2006) Cell 126, 297-308). This sequence element is conserved in many MutL homologs, including the PMS1 subunit of Saccharomyces cerevisiae MutLalpha, but is absent in MutL proteins from bacteria like Escherichia coli that rely on d(GATC) methylation for strand directionality. We show that yeast MutLalpha is a strand-directed endonuclease that incises DNA in a reaction that depends on a mismatch, yMutSalpha, yRFC, yPCNA, ATP, and a pre-existing strand break, whereas E. coli MutL is not. Amino acid substitution within the PMS1 DQHA(X)2E(X)4E motif abolishes yMutLalpha endonuclease activity in vitro and confers strong genetic instability in vivo, but does not affect yMutLalpha ATPase activity or the ability of the protein to support assembly of the yMutLalpha.yMutSalpha.heteroduplex ternary complex. The loaded form of yPCNA may play an important effector role in directing yMutLalpha incision to the discontinuous strand of a nicked heteroduplex.
Collapse
Affiliation(s)
- Farid A. Kadyrov
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Shannon F. Holmes
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Mercedes E. Arana
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Olga A. Lukianova
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Mike O’Donnell
- Laboratory of DNA replication, Rockefeller University, NY 10021-6399
- Howard Hughes Medical Institute, Rockefeller University, NY 10021-6399
| | - Thomas A. Kunkel
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Paul Modrich
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
34
|
Ou J, Niessen RC, Lützen A, Sijmons RH, Kleibeuker JH, de Wind N, Rasmussen LJ, Hofstra RMW. Functional analysis helps to clarify the clinical importance of unclassified variants in DNA mismatch repair genes. Hum Mutat 2007; 28:1047-54. [PMID: 17594722 DOI: 10.1002/humu.20580] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is caused by DNA variations in the DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and PMS2. Many of the mutations identified result in premature termination of translation and thus in loss-of-function of the encoded mutated protein. These DNA variations are thought to be pathogenic mutations. However, some patients carry other DNA mutations, referred to as unclassified variants (UVs), which do not lead to such a premature termination of translation; it is not known whether these contribute to the disease phenotype or merely represent rare polymorphisms. This is a major problem which has direct clinical consequences. Several criteria can be used to classify these UVs, such as: whether they segregate with the disease within pedigrees, are absent in control individuals, show a change of amino acid polarity or size, provoke an amino acid change in a domain that is evolutionary conserved and/or shared between proteins belonging to the same protein family, or show altered function in an in vitro assay. In this review we discuss the various functional assays reported for the HNPCC-associated MMR proteins and the outcomes of these tests on UVs identified in patients diagnosed with or suspected of having HNPCC. We conclude that a large proportion of MMR UVs are likely to be pathogenic, suggesting that missense variants of MMR proteins do indeed play a role in HNPCC.
Collapse
Affiliation(s)
- Jianghua Ou
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The eukaryotic mismatch repair protein Msh6 shares five domains in common with other MutS members. However, it also contains several hundred additional residues at its N-terminus. A few of these residues bind to PCNA, but the functions of the other amino acids in the N-terminal region (NTR) are unknown. Here we demonstrate that the Msh6 NTR binds to duplex DNA in a salt-sensitive, mismatch-independent manner. Partial proteolysis, DNA affinity chromatography and mass spectrometry identified a fragment comprised of residues 228–299 of yeast Msh6 that binds to DNA and is rich in positively charged residues. Deleting these residues, or replacing lysines and arginines with glutamate, reduces DNA binding in vitro and elevates spontaneous mutation rates and resistance to MNNG treatment in vivo. Similar in vivo defects are conferred by alanine substitutions in a highly conserved motif in the NTR that immediately precedes domain I of MutS proteins, the domain that interacts with mismatched DNA. These data suggest that, in addition to PCNA binding, DNA binding and possibly other functions in the amino terminal region of Msh6 are important for eukaryotic DNA mismatch repair and cellular response to alkylation damage.
Collapse
Affiliation(s)
- Alan B. Clark
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Leesa Deterding
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Kenneth B. Tomer
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Thomas A. Kunkel
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
- *To whom correspondence should be addressed. 919-541-2644919-541-7613
| |
Collapse
|
36
|
Deschênes SM, Tomer G, Nguyen M, Erdeniz N, Juba NC, Sepúlveda N, Pisani JE, Liskay RM. The E705K mutation in hPMS2 exerts recessive, not dominant, effects on mismatch repair. Cancer Lett 2007; 249:148-56. [PMID: 17029773 PMCID: PMC2366906 DOI: 10.1016/j.canlet.2006.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/04/2006] [Accepted: 08/08/2006] [Indexed: 11/21/2022]
Abstract
The hPMS2 mutation E705K is associated with Turcot syndrome. To elucidate the pathogenesis of hPMS2-E705K, we modeled this mutation in yeast and characterized its expression and effects on mutation avoidance in mammalian cells. We found that while hPMS2-E705K (pms1-E738K in yeast) did not significantly affect hPMS2 (Pms1p in yeast) stability or interaction with MLH1, it could not complement the mutator phenotype in MMR-deficient mouse or yeast cells. Furthermore, hPMS2-E705K/pms1-E738K inhibited MMR in wild-type (WT) mammalian cell extracts or yeast cells only when present in excess amounts relative to WT PMS2. Our results strongly suggest that hPMS2-E705K is a recessive loss-of-function allele.
Collapse
Affiliation(s)
- Suzanne M Deschênes
- Department of Biology, Sacred Heart University, 5151 Park Ave., Fairfield, CT 06825, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Holmes SF, Scarpinato KD, McCulloch SD, Schaaper RM, Kunkel TA. Specialized mismatch repair function of Glu339 in the Phe-X-Glu motif of yeast Msh6. DNA Repair (Amst) 2006; 6:293-303. [PMID: 17141577 PMCID: PMC1839834 DOI: 10.1016/j.dnarep.2006.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/20/2006] [Accepted: 10/21/2006] [Indexed: 01/23/2023]
Abstract
The major eukaryotic mismatch repair (MMR) pathway requires Msh2-Msh6, which, like Escherichia coli MutS, binds to and participates in repair of the two most common replication errors, single base-base and single base insertion-deletion mismatches. For both types of mismatches, the side chain of E. coli Glu38 in a conserved Phe-X-Glu motif interacts with a mismatched base. The Ovarepsilon of Glu38 forms a hydrogen bond with either the N7 of purines or the N3 of pyrimidines. We show here that changing E. coli Glu38 to alanine results in nearly complete loss of repair of both single base-base and single base deletion mismatches. In contrast, a yeast strain with alanine replacing homologous Glu339 in Msh6 has nearly normal repair for insertion-deletion and most base-base mismatches, but is defective in repairing base-base mismatches characteristic of oxidative stress, e.g. 8-oxo-G.A mismatches. The results suggest that bacterial MutS and yeast Msh2-Msh6 differ in how they recognize and/or process replication errors involving undamaged bases, and that Glu339 in Msh6 may have a specialized role in repairing mismatches containing oxidized bases.
Collapse
Affiliation(s)
- Shannon F. Holmes
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
| | | | - Scott D. McCulloch
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
| | - Roel M. Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Corresponding author: Phone: 919-541-2644, Fax: 919-541-7613
| |
Collapse
|
38
|
Ollila S, Sarantaus L, Kariola R, Chan P, Hampel H, Holinski-Feder E, Macrae F, Kohonen-Corish M, Gerdes AM, Peltomäki P, Mangold E, de la Chapelle A, Greenblatt M, Nyström M. Pathogenicity of MSH2 missense mutations is typically associated with impaired repair capability of the mutated protein. Gastroenterology 2006; 131:1408-17. [PMID: 17101317 DOI: 10.1053/j.gastro.2006.08.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 07/12/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Inherited deleterious mutations in mismatch repair genes MLH1, MSH2, and MSH6 predispose to hereditary nonpolyposis colorectal cancer. A major diagnostic challenge is the difficulty in evaluating the pathogenicity of missense mutations. Previously we showed that most missense variants in MSH6 do not impair MMR capability and are associated with no or low cancer susceptibility, whereas in MLH1, functional studies distinguished nontruncating mutations with severe defects from those not or slightly impaired in protein expression or function. The present study was undertaken to evaluate the pathogenicity of inherited missense mutations in MSH2. METHODS Fifteen mutated MSH2 proteins including 14 amino acid substitutions and one in-frame deletion were tested for expression/stability, MSH2/MSH6 interaction, and repair efficiency. The genetic and biochemical data were correlated with the clinical data. Comparative sequence analysis was performed to assess the value of sequence homology as a tool for predicting functional results. RESULTS None of the studied MSH2 mutations destroyed the protein or abolished MSH2/MSH6 interaction, whereas 12 mutations impaired the repair capability of the protein. Comparative sequence analysis correctly predicted functional studies for 13 of 14 amino acid substitutions. CONCLUSIONS Interpretation was pathogenic for 12, nonpathogenic for 2, and contradictory for 1 mutation. The pathogenicity could not be distinguished unambiguously by phenotypic characteristics, although correlation between the absence of staining for MSH2 and pathogenicity of the missense mutation was notable. Unlike in MSH6 and MLH1, the pathogenicity of missense mutations in MSH2 was always associated with impaired repair capability of the mutated protein.
Collapse
Affiliation(s)
- Saara Ollila
- Department of Biological and Environmental Sciences, Genetics, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Maertens O, Brems H, Vandesompele J, De Raedt T, Heyns I, Rosenbaum T, De Schepper S, De Paepe A, Mortier G, Janssens S, Speleman F, Legius E, Messiaen L. Comprehensive NF1 screening on cultured Schwann cells from neurofibromas. Hum Mutat 2006; 27:1030-40. [PMID: 16941471 DOI: 10.1002/humu.20389] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1) is mainly characterized by the occurrence of benign peripheral nerve sheath tumors or neurofibromas. Thorough investigation of the somatic mutation spectrum has thus far been hampered by the large size of the NF1 gene and the considerable proportion of NF1 heterozygous cells within the tumors. We developed an improved somatic mutation detection strategy on cultured Schwann cells derived from neurofibromas and investigated 38 tumors from nine NF1 patients. Twenty-nine somatic NF1 lesions were detected which represents the highest NF1 somatic mutation detection rate described so far (76%). Furthermore, our data strongly suggest that the acquired second hit underlies reduced NF1 expression in Schwann cell cultures. Together, these data clearly illustrate that two inactivating NF1 mutations, in a subpopulation of the Schwann cells, are required for neurofibroma formation in NF1 tumorigenesis. The observed somatic mutation spectrum shows that intragenic NF1 mutations (26/29) are most prevalent, particularly frameshift mutations (12/29, 41%). We hypothesize that this mutation signature might reflect slightly reduced DNA repair efficiency as a trigger for NF1 somatic inactivation preceding tumorigenesis. Joint analysis of the current and previously published NF1 mutation data revealed a significant difference in the somatic mutation spectrum in patients with a NF1 microdeletion vs. non-microdeletion patients with respect to the prevalence of loss of heterozygosity events (0/15 vs. 41/81). Differences in somatic inactivation mechanism might therefore exist between NF1 microdeletion patients and the general NF1 population.
Collapse
Affiliation(s)
- Ophélia Maertens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
AbstractHereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant disease, caused by germline mutations in DNA mismatch-repair genes (MMR). These mutations lead to microsatellite instability (MSI). It has been found that the MSI is not confined to the setting of hereditary disease and may be seen in approximately 12-17% of the sporadic CRCs. In 1998 a National Registry for CRC was instituted in Queen Giovanna Hospital, Sofia. A total of 150 patients have been selected for MSI analysis and 25 tumors showed to be unstable, 14 with loss of heterozygosity (LOH). These tumors were further analyzed for MLH1 promoter hypermethylation and a significant association between this epigenetic change and MSI/LOH sporadic cases. We proposed this method as a step that follows the analysis for MSI and prior to the screening for MMR mutations. The mutation screening detected four known and two novel mutations, one unpublished and four known intronic polymorphisms in both hMLH1 and hMSH2 genes. The use of IHC analysis has been found effective in the investigation of some unclear molecular variations.We developed an efficient diagnostic strategy for HNPCC testing and the mutation status of 80% MSI HNPCC cases could be detected.
Collapse
|
41
|
Antony E, Khubchandani S, Chen S, Hingorani MM. Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein. DNA Repair (Amst) 2005; 5:153-62. [PMID: 16214425 PMCID: PMC4674293 DOI: 10.1016/j.dnarep.2005.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 08/22/2005] [Accepted: 08/25/2005] [Indexed: 12/13/2022]
Abstract
Previous analyses of both Thermus aquaticus MutS homodimer and Saccharomyces cerevisiae Msh2-Msh6 heterodimer have revealed that the subunits in these protein complexes bind and hydrolyze ATP asymmetrically, emulating their asymmetric DNA binding properties. In the MutS homodimer, one subunit (S1) binds ATP with high affinity and hydrolyzes it rapidly, while the other subunit (S2) binds ATP with lower affinity and hydrolyzes it at an apparently slower rate. Interaction of MutS with mismatched DNA results in suppression of ATP hydrolysis at S1-but which of these subunits, S1 or S2, makes specific contact with the mismatch (e.g., base stacking by a conserved phenylalanine residue) remains unknown. In order to answer this question and to clarify the links between the DNA binding and ATPase activities of each subunit in the dimer, we made mutations in the ATPase sites of Msh2 and Msh6 and assessed their impact on the activity of the Msh2-Msh6 heterodimer (in Msh2-Msh6, only Msh6 makes base specific contact with the mismatch). The key findings are: (a) Msh6 hydrolyzes ATP rapidly, and thus resembles the S1 subunit of the MutS homodimer, (b) Msh2 hydrolyzes ATP at a slower rate, and thus resembles the S2 subunit of MutS, (c) though itself an apparently weak ATPase, Msh2 has a strong influence on the ATPase activity of Msh6, (d) Msh6 binding to mismatched DNA results in suppression of rapid ATP hydrolysis, revealing a "cis" linkage between its mismatch recognition and ATPase activities, (e) the resultant Msh2-Msh6 complex, with both subunits in the ATP-bound state, exhibits altered interactions with the mismatch.
Collapse
Affiliation(s)
| | | | | | - Manju M. Hingorani
- Corresponding author. Tel.: +1 860 685 2284; fax: +1 860 685 2141. (M.M. Hingorani)
| |
Collapse
|
42
|
Wada-Hiraike O, Yano T, Nei T, Matsumoto Y, Nagasaka K, Takizawa S, Oishi H, Arimoto T, Nakagawa S, Yasugi T, Kato S, Taketani Y. The DNA mismatch repair gene hMSH2 is a potent coactivator of oestrogen receptor alpha. Br J Cancer 2005; 92:2286-91. [PMID: 15886699 PMCID: PMC2361802 DOI: 10.1038/sj.bjc.6602614] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The DNA mismatch repair gene is a key regulator in the elimination of base–base mismatches and insertion/deletion loops (IDLs). Human MutS homologue 2 (hMSH2), originally identified as a human homologue of the bacterial MutS, is a tumour suppressor gene frequently mutated in hereditary nonpolyposis colorectal cancer. Hereditary nonpolyposis colorectal cancer is characterised by the early onset of colorectal cancer and the development of extracolonic cancers such as endometrial, ovarian, and urological cancers. Oestrogen receptor (ER) α and β are members of a nuclear receptor (NR) superfamily. Ligand-dependent transcription of ER is regulated by the p160 steroid receptor coactivator family, the thyroid hormone receptor-associated proteins/the vitamin D receptor-interacting proteins (TRAP/DRIP) mediator complex, and the TATA box-binding protein (TBP)-free TBP associated factor complex (TFTC) type histone acetyltransferase complex. Here, we report the interaction between ER α/β and hMSH2. Immunoprecipitation and glutathione-S-transferase pulldown assay revealed that ER α and hMSH2 interacted in a ligand-dependent manner, whereas ER β and hMSH2 interacted in a ligand-independent manner. Oestrogen receptor α/β bound to hMSH2 through the hMSH3/hMSH6 interaction domain of hMSH2. In a transient expression assay, hMSH2 potentiated the transactivation function of liganded ER α, but not that of ER β. These results suggest that hMSH2 may play an important role as a putative coactivator in ER α dependent gene expression.
Collapse
Affiliation(s)
- O Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1 Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Scherer SJ, Avdievich E, Edelmann W. Functional consequences of DNA mismatch repair missense mutations in murine models and their impact on cancer predisposition. Biochem Soc Trans 2005; 33:689-93. [PMID: 16042575 DOI: 10.1042/bst0330689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in MMR (DNA mismatch repair) genes underlie HNPCC (hereditary non-polyposis colon cancer) and also a significant proportion of sporadic colorectal cancers. MMR maintains genome stability and suppresses tumour formation by correcting DNA replication errors and by mediating an apoptotic response to DNA damage. Analysis of mouse lines with MMR missense mutations demonstrates that these MMR functions can be separated and allows the assessment of their individual roles in tumour suppression. These studies in mice indicate that, although the increased mutation rates caused by MMR defects are sufficient to drive tumorigenesis, both functions co-operate in tumour suppression.
Collapse
Affiliation(s)
- S J Scherer
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
44
|
MacAuley A, Ladiges WC. Approaches to determine clinical significance of genetic variants. Mutat Res 2005; 573:205-20. [PMID: 15829249 DOI: 10.1016/j.mrfmmm.2005.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 08/24/2004] [Indexed: 05/02/2023]
Abstract
The clinical significance of genetic variants (single nucleotide polymorphisms, SNPs) has implications for risk assessment and also for predicting the outcome of a disease process, especially in response to intervention. Approaches to determine the clinical significance of genetic polymorphisms are now beginning to be developed. The technology tools and procedures currently available have significant potential in identifying and validating polymorphisms associated with environmentally sensitive phenotypes. Numerous concepts can now provide the methodology to selectively identify SNPs with the potential for impacting gene function. These include computational algorithms, biochemical assays, yeast mutagenicity assays, and epidemiological studies, either as a stand-alone screen, or in various combinations depending on the gene of interest. Proof of principle will ultimately depend on large-scale epidemiological and clinical studies, but will require intensive resources. Therefore, the use of the mouse as a preclinical biological model is paramount in helping screen valid SNPs or combinations of SNPs for human studies. But more importantly, mouse modeling will help answer the question of what role gene variants play in sensitivity or resistance to a wide variety of environmental insults ranging from toxic chemicals and carcinogens to more mundane and routine exposure items, such as dietary factors, air quality, over the counter and prescription medications, and ultraviolet light. Our focus on SNPs that result in an amino acid change is a matter of expediency because these variants are more amenable to the prescreening approaches currently available that are expected to help identify SNPs that affect protein function. The mouse models generated to evaluate the environmental relevance of selected SNPs will be extremely valuable biological tools to validate gene variant and environment interaction in a variety of settings. Informative mouse models will also provide the basis of pursuing relevant SNPs in epidemiological and clinical investigations.
Collapse
Affiliation(s)
- Alasdair MacAuley
- Comparative Mouse Genomics Center, Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
45
|
Drotschmann K, Topping RP, Clodfelter JE, Salsbury FR. Mutations in the nucleotide-binding domain of MutS homologs uncouple cell death from cell survival. DNA Repair (Amst) 2004; 3:729-42. [PMID: 15177182 DOI: 10.1016/j.dnarep.2004.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/19/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
After genotoxic insult, the decision to repair or undergo cell death is pivotal for undamaged cell survival, and requires a highly controlled coordination of both pathways. Disruption of this regulation results in tumorigenesis and failure of cancer therapy. Mismatch repair (MMR) proteins have a unique role by contributing to both pathways, though direct evidence for their function in the DNA damage response is ambiguous. We report separation of function mutants in the ATPase domains of yeast MutS homologous (MSH) proteins that uncouple MMR-dependent DNA repair from damage response to cisplatin. While mutations in the ATPase domain have devastating effects on the mutation rate of the cell, ATPase processing is mostly dispensable for the cell death phenotype; only limited processing by the MSH6 subunit is required in DNA damage response. Different DNA binding patterns and nucleotide sensitivity of Msh2/Msh6-DNA adduct and protein-mismatch complexes, respectively, suggest that the presence of different DNA lesions influences the requirement for ATP. Limited proteolysis of purified protein gives first indications for differences in nucleotide-induced conformational changes in the presence of platinated DNA. Structural modeling of bacterial MutS proteins reinforces nucleotide-dependent differences in structures that contribute to the distinction between DNA damage response and repair. Our results demonstrate the uncoupling of MMR-dependent damage response from repair and present first indications for the involvement of distinct conformational changes in MSH proteins in this process. These data present evidence for a mechanism of MMR-dependent damage response that differs from MMR; these results have strong implications for the chemotherapeutic treatment of MMR-defective tumors.
Collapse
Affiliation(s)
- Karin Drotschmann
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
46
|
Alazzouzi H, Domingo E, González S, Blanco I, Armengol M, Espín E, Plaja A, Schwartz S, Capella G, Schwartz S. Low levels of microsatellite instability characterize MLH1 and MSH2 HNPCC carriers before tumor diagnosis. Hum Mol Genet 2004; 14:235-9. [PMID: 15563510 DOI: 10.1093/hmg/ddi021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microsatellite instability (MSI) characterizes tumors arising in patients with hereditary non-polyposis colorectal cancer (HNPCC) syndrome. HNPCC is a hereditary autosomal dominant disease caused by germline mutations in genes from the DNA (MMR) mismatch repair system. In these tumors, the loss of MMR compromises the genome integrity, allowing the progressive accumulation of mutations and the establishment of a mutator phenotype in a recessive manner. It is not clear, however, whether MSI can be detected in HNPCC carriers before tumor diagnosis. The aim of this study was to evaluate the presence of genetic instability in MMR gene carriers in peripheral blood lymphocytes of carriers and non-carriers members of two HNPCC families harboring a germline MLH1 and MSH2 mutation, respectively. An extensive analysis of the allelic distribution of single molecules of the polyA tract bat26 was performed using a highly sensitive PCR-cloning approach. In non-carriers, the allelic distribution of single bat26 molecules followed a gaussian distribution with no bat26 alleles shorter than (A)21. All mutation carriers showed unstable alleles [(A)20 or shorter] with an overall frequency of 5.6% (102/1814). We therefore suggest that low levels of genomic instability characterize MMR mutation carriers. These observations suggest that somatic mutations accumulate well before tumor diagnosis. Even though it is not clear whether this is due to the presence of a small percentage of cells with lost MMR or due to MMR haploinsufficiency, detection of these short unstable alleles might help in the identification of asymptomatic carriers belonging to families with no detectable MMR gene mutations.
Collapse
Affiliation(s)
- Hafid Alazzouzi
- Molecular Oncology and Aging Research, Centre d'Investigacions en Bioquímica i Biologia Molecular (CIBBIM), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Calabrese P, Tsao JL, Yatabe Y, Salovaara R, Mecklin JP, Järvinen HJ, Aaltonen LA, Tavaré S, Shibata D. Colorectal pretumor progression before and after loss of DNA mismatch repair. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1447-53. [PMID: 15039232 PMCID: PMC1615342 DOI: 10.1016/s0002-9440(10)63231-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A pretumor progression model predicts many oncogenic cancer mutations may first accumulate in normal appearing colon. Although direct observations of early pretumor mutations are impractical, it may be possible to retrospectively reconstruct tumor histories from contemporary cancer mutations. To infer when and in what order mutations occur during occult pretumor progression, we examined 14 cancers from individuals with heterozygous germline mutations in DNA mismatch repair (MMR) genes or hereditary nonpolyposis colorectal cancer (HNPCC). Somatic inactivation of the normal allele occurs sometime during a lifetime and results in loss of MMR, elevated mutation rates, and subsequent widespread somatic microsatellite mutations in HNPCC cancers. Patient ages at MMR loss can be estimated because intervals between MMR loss and cancer removal can be inferred from numbers of microsatellite tumor mutations. The relative order of MMR loss during pretumor progression may also be inferred from its collective ages of occurrence. Somatic MMR loss preceded cancer removal by an average of 6.1 years, occurred relatively late in life (average of 41.6 versus 47.7 years at cancer removal), and was a surprisingly late (fifth or sixth) step. Calculations indicate five or six oncogenic mutations could accumulate with relatively normal replication fidelity in normal appearing colon. HNPCC pretumor progression essentially begins from birth and ends with MMR loss, implying elevated mutation rates and tumorigenesis may be unnecessary for most progression.
Collapse
Affiliation(s)
- Peter Calabrese
- Department of Biological Sciences, Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lin DP, Wang Y, Scherer SJ, Clark AB, Yang K, Avdievich E, Jin B, Werling U, Parris T, Kurihara N, Umar A, Kucherlapati R, Lipkin M, Kunkel TA, Edelmann W. An Msh2 point mutation uncouples DNA mismatch repair and apoptosis. Cancer Res 2004; 64:517-22. [PMID: 14744764 DOI: 10.1158/0008-5472.can-03-2957] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the human DNA mismatch repair gene MSH2 are associated with hereditary nonpolyposis colorectal cancer as well as a significant proportion of sporadic colorectal cancer. The inactivation of MSH2 results in the accumulation of somatic mutations in the genome of tumor cells and resistance to the genotoxic effects of a variety of chemotherapeutic agents. Here we show that the DNA repair and DNA damage-induced apoptosis functions of Msh2 can be uncoupled using mice that carry the G674A missense mutation in the conserved ATPase domain. As a consequence, although Msh2(G674A) homozygous mutant mice are highly tumor prone, the onset of tumorigenesis is delayed as compared with Msh2-null mice. In addition, tumors that carry the mutant allele remain responsive to treatment with a chemotherapeutic agent. Our results indicate that Msh2-mediated apoptosis is an important component of tumor suppression and that certain MSH2 missense mutations can cause mismatch repair deficiency while retaining the signaling functions that confer sensitivity to chemotherapeutic agents.
Collapse
Affiliation(s)
- Diana P Lin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nielsen FC, Jäger AC, Lützen A, Bundgaard JR, Rasmussen LJ. Characterization of human exonuclease 1 in complex with mismatch repair proteins, subcellular localization and association with PCNA. Oncogene 2003; 23:1457-68. [PMID: 14676842 DOI: 10.1038/sj.onc.1207265] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human exonuclease 1 (hEXO1) has been implicated in DNA mismatch repair (MMR), replication, and recombination, but the nature of its interaction with these cellular processes is still ambiguous. We show that hEXO1 colocalizes with proliferating cell nuclear antigen (PCNA) at DNA replication sites and that the C-terminal region of hEXO1 is sufficient for this localization. We also show that both hMLH1-hPMS2 (MutLalpha) and hMLH1-hEXO1 complexes are formed in a reaction mixture containing all three proteins. Moreover, hEXO1 5' double-stranded exonuclease activity on a homoduplex substrate but not on a substrate containing a G/T mismatch was inhibited by complex formation with hMSH2-hMSH6 (MutSalpha) or MutLalpha. Taken together, the results support a model in which hEXO1 plays a role in events at the replication sites as well as a functional role in the MMR and/or recombination processes.
Collapse
Affiliation(s)
- Finn Cilius Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
50
|
Martin A, Li Z, Lin DP, Bardwell PD, Iglesias-Ussel MD, Edelmann W, Scharff MD. Msh2 ATPase activity is essential for somatic hypermutation at a-T basepairs and for efficient class switch recombination. ACTA ACUST UNITED AC 2003; 198:1171-8. [PMID: 14568978 PMCID: PMC2194233 DOI: 10.1084/jem.20030880] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytidine deaminase–mediated cytidine deamination of immunoglobulin genes. MutS homologue (Msh) 2−/− mice have reduced A-T mutations and CSR. This suggests that Msh2 may play a role in repairing activation-induced cytidine deaminase–generated G-U mismatches. However, because Msh2 not only initiates mismatch repair but also has other functions, such as signaling for apoptosis, it is not known which activity of Msh2 is responsible for the effects observed, and consequently, many models have been proposed. To further dissect the role of Msh2 in SHM and CSR, mice with a “knockin” mutation in the Msh2 gene that inactivates the adenosine triphosphatase domain were examined. This mutation (i.e., Msh2G674A), which does not affect apoptosis signaling, allows mismatches to be recognized but prevents Msh2 from initiating mismatch repair. Here, we show that, similar to Msh2−/− mice, SHM in Msh2G674A mice is biased toward G-C mutations. However, CSR is partially reduced, and switch junctions are more similar to those of postmeiotic segregation 2−/− mice than to Msh2−/− mice. These results indicate that Msh2 adenosine triphosphatase activity is required for A-T mutations, and suggest that Msh2 has more than one role in CSR.
Collapse
Affiliation(s)
- Alberto Martin
- Department of Immunology, University of Toronto, Medical Sciences Bldg., Toronto, Canada, M5S 1A8.
| | | | | | | | | | | | | |
Collapse
|