1
|
Campuzano IDG, Loo JA. Evolution of Mass Spectrometers for High m/ z Biological Ion Formation, Transmission, Analysis and Detection: A Personal Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:632-652. [PMID: 40043050 DOI: 10.1021/jasms.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Mass spectrometry (MS) has become an essential tool in virtually all academic, pharmaceutical, and biopharmaceutical analytical laboratories. The specialized and bespoke area of MS research and application of high m/z ion (>m/z 6000 and high mass, >150 kDa) formation, transmission, analysis, and detection is a relatively new area of focus for MS that has seen dramatic acceleration in interest over the last two decades. Herein we delve into this exciting aspect of MS, discussing how MS instrumentation has been refined and evolved for native-MS analysis. We cover the early groundbreaking experiments showing high m/z ion formation, transmission, and preservation of protein structure in the gas phase. Additionally, we discuss specific instrument optimizations and modifications that have advanced high m/z ion generation, transmission, analysis, and detection, contributing to the research area known as gas-phase structural biology. Native-MS sample introduction methods, emerging technologies, and future perspectives are also examined. Finally, we share personal opinions, observations, and experiences that are new to the community or previously unpublished.
Collapse
Affiliation(s)
- Iain D G Campuzano
- Large Molecule Discovery and Research Data Science, Amgen Research, Amgen, Thousand Oaks, California 91320, United States
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Fu L, Ellin NR, Pizzala NJ, Bolivar EGB, McLuckey SA. Digital Ion Trap Isolation and Mass Analysis of Macromolecular Analytes with Multiply Charged Ion Attachment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2237-2247. [PMID: 39158841 PMCID: PMC11795282 DOI: 10.1021/jasms.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Multiply charged ions produced by electrospray ionization (ESI) of heterogeneous mixtures of macromolecular analytes under native conditions are typically confined to relatively narrow ranges of mass-to-charge (m/z) ratio, often with extensive overlap. This scenario makes charge and mass assignments extremely challenging, particularly when individual charge states are unresolved. An ion/ion reaction strategy involving multiply charged ion attachment (MIA) to the mixture components in a narrow range of m/z can facilitate charge and mass assignment. In MIA operation, multiply charged reagent ions are attached to the analyte ions of opposite polarity to provide large m/z displacements resulting from both large changes in mass and charge. However, charge reduction of the high m/z ions initially generated under native ESI conditions requires the ability to isolate high m/z ions and to analyze even higher m/z product ions. Digital ion trap (DIT) operation offers means for both high m/z ion isolation and high m/z mass analysis, in addition to providing conditions for the reaction of oppositely charged ions. The feasibility of conducting MIA experiments in a DIT that takes advantage of high m/z ion operation is demonstrated here using a tandem 2D-3D DIT instrument. Proof-of-concept MIA experiments with cations derived from β-galactosidase using the 20- charge state of human serum immunoglobulin G (IgG, ∼149 kDa) as the reagent anion are described. MIA experiments involving mixtures of ions derived from the E. coli. ribosome are also described. For example, three components in a mixture of 70S particles (>2.2 MDa) were resolved and assigned with masses and charges following an MIA experiment involving the 20- charge state of human serum IgG.
Collapse
Affiliation(s)
| | | | | | | | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| |
Collapse
|
3
|
Pizzala NJ, Bhanot JS, Carrick IJ, Dziekonski ET, McLuckey SA. Ion parking in native mass spectrometry. Analyst 2024; 149:2966-2977. [PMID: 38600834 PMCID: PMC11089522 DOI: 10.1039/d4an00242c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
A forced, damped harmonic oscillator model for gas-phase ion parking using single-frequency resonance excitation is described and applied to high-mass ions of relevance to native mass spectrometry. Experimental data are provided to illustrate key findings revealed by the modelling. These include: (i) ion secular frequency spacings between adjacent charge states of a given protein are essentially constant and decrease with the mass of the protein (ii) the mechanism for ion parking of high mass ions is the separation of the ion clouds of the oppositely-charged ions with much less influence from an increase in the relative ion velocity due to resonance excitation, (iii) the size of the parked ion cloud ultimately limits ion parking at high m/z ratio, and (iv) the extent of ion parking of off-target ions is highly sensitive to the bath gas pressure in the ion trap. The model is applied to ions of 17 kDa, 467 kDa, and 2 MDa while experimental data are also provided for ions of horse skeletal muscle myoglobin (≈17 kDa) and β-galactosidase (≈467 kDa). The model predicts and data show that it is possible to effect ion parking on a 17 kDa protein to the 1+ charge state under trapping conditions that are readily accessible with commercially available ion traps. It is also possible to park β-galactosidase efficiently to a roughly equivalent m/z ratio (i.e., the 26+ charge state) under the same trapping conditions. However, as charge states decrease, analyte ion cloud sizes become too large to allow for efficient ion trapping. The model allows for a semi-quantitative prediction of ion trapping performance as a function of ion trapping, resonance excitation, and pressure conditions.
Collapse
Affiliation(s)
- Nicolas J Pizzala
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Jay S Bhanot
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Ian J Carrick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Eric T Dziekonski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
4
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
6
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Gavriilidou AFM, Sokratous K, Yen HY, De Colibus L. High-Throughput Native Mass Spectrometry Screening in Drug Discovery. Front Mol Biosci 2022; 9:837901. [PMID: 35495635 PMCID: PMC9047894 DOI: 10.3389/fmolb.2022.837901] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The design of new therapeutic molecules can be significantly informed by studying protein-ligand interactions using biophysical approaches directly after purification of the protein-ligand complex. Well-established techniques utilized in drug discovery include isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and structure-based drug discovery which mainly rely on protein crystallography and, more recently, cryo-electron microscopy. Protein-ligand complexes are dynamic, heterogeneous, and challenging systems that are best studied with several complementary techniques. Native mass spectrometry (MS) is a versatile method used to study proteins and their non-covalently driven assemblies in a native-like folded state, providing information on binding thermodynamics and stoichiometry as well as insights on ternary and quaternary protein structure. Here, we discuss the basic principles of native mass spectrometry, the field's recent progress, how native MS is integrated into a drug discovery pipeline, and its future developments in drug discovery.
Collapse
|
9
|
Frequency chasing of individual megadalton ions in an Orbitrap analyser improves precision of analysis in single-molecule mass spectrometry. Nat Chem 2022; 14:515-522. [PMID: 35273389 PMCID: PMC9068510 DOI: 10.1038/s41557-022-00897-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
To enhance the performance of charge-detection mass spectrometry, we investigated the behaviour of macromolecular single ions on their paths towards and within the Orbitrap analyser. Ions with a mass beyond one megadalton reach a plateau of stability and can be successfully trapped for seconds, travelling a path length of multiple kilometres, thereby enabling precise mass analysis with an effective resolution of greater than 100,000 at a mass-to-charge ratio of 35,000. Through monitoring the frequency of individual ions, we show that these high-mass ions, rather than being lost from the trap, can gradually lose residual solvent molecules and, in rare cases, a single elementary charge. We also demonstrate that the frequency drift of single ions due to desolvation and charge stripping can be corrected, which improves the effective ion sampling 23-fold and gives a twofold improvement in mass precision and resolution. ![]()
The mass precision and resolution in charge-detection mass spectrometry can be improved by correcting frequency drifts of single ions. Now, chasing these individual ions for seconds in an Orbitrap mass spectrometer has revealed the exceptional stability of ultra-high-mass ions, culminating in an effective resolution of greater than 100,000 at m/z = 35,000.
Collapse
|
10
|
Pitts-McCoy AM, Abdillahi AM, Lee KW, McLuckey SA. Multiply Charged Cation Attachment to Facilitate Mass Measurement in Negative-Mode Native Mass Spectrometry. Anal Chem 2022; 94:2220-2226. [PMID: 35029382 PMCID: PMC9670251 DOI: 10.1021/acs.analchem.1c04875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Native mass spectrometry (MS) is usually conducted in the positive-ion mode; however, in some cases, it is advantageous to use the negative-ion polarity. Challenges associated with native MS using ensemble measurements (i.e., the measurement of many ions at a time as opposed to the measurement of the charge and the mass-to-charge ratio of individual ions) include narrow charge state distributions with the potential for an overlap in neighboring charge states. These issues can either compromise or preclude confident charge state (and hence mass) determination. Charge state determination in challenging instances can be enabled via the attachment of multiply charged ions of opposite polarity. Multiply charged ion attachment facilitates the resolution of charge states and generates mass-to-charge (m/z) information across a broad m/z range. In this work, we demonstrated the attachment of multiply charged cations to anionic complexes generated under native MS conditions. To illustrate the flexibility available in selecting the mass and charge of the reagents, the 15+ and 20+ charge states of horse skeletal muscle apomyoglobin and the 20+ and 30+ charge states of bovine carbonic anhydrase were demonstrated to attach to model complex anions derived from either β-galactosidase or GroEL. The exclusive attachment of reagent ions is observed with no evidence for proton transfer, which is the key for the unambiguous interpretation of the post-ion/ion reaction product ion spectrum. To illustrate the application to mixtures of complex ions, the 10+ charge state of bovine ubiquitin was attached to mixtures of anions generated from the 30S and 50S particles of the Escherichia coli ribosome. Six and five major components were revealed, respectively. In the case of the 50S anion population, it was shown that the attachment of two 30+ cations of carbonic anhydrase revealed the same information as the attachment of six 10+ cations of ubiquitin. In neither case was the intact 50S particle observed. Rather, particles with different combinations of missing components were observed. This work demonstrated the utility of multiply charged cation attachment to facilitate charge state assignments in native MS ensemble measurements of heterogeneous mixtures.
Collapse
Affiliation(s)
- Anthony M. Pitts-McCoy
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Abdirahman M. Abdillahi
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Kenneth W. Lee
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Scott A. McLuckey
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| |
Collapse
|
11
|
Shiao YH. Promising Assays for Examining a Putative Role of Ribosomal Heterogeneity in COVID-19 Susceptibility and Severity. Life (Basel) 2022; 12:203. [PMID: 35207490 PMCID: PMC8880406 DOI: 10.3390/life12020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
The heterogeneity of ribosomes, characterized by structural variations, arises from differences in types, numbers, and/or post-translational modifications of participating ribosomal proteins (RPs), ribosomal RNAs (rRNAs) sequence variants plus post-transcriptional modifications, and additional molecules essential for forming a translational machinery. The ribosomal heterogeneity within an individual organism or a single cell leads to preferential translations of selected messenger RNA (mRNA) transcripts over others, especially in response to environmental cues. The role of ribosomal heterogeneity in SARS-CoV-2 coronavirus infection, propagation, related symptoms, or vaccine responses is not known, and a technique to examine these has not yet been developed. Tools to detect ribosomal heterogeneity or to profile translating mRNAs independently cannot identify unique or specialized ribosome(s) along with corresponding mRNA substrate(s). Concurrent characterizations of RPs and/or rRNAs with mRNA substrate from a single ribosome would be critical to decipher the putative role of ribosomal heterogeneity in the COVID-19 disease, caused by the SARS-CoV-2, which hijacks the host ribosome to preferentially translate its RNA genome. Such a protocol should be able to provide a high-throughput screening of clinical samples in a large population that would reach a statistical power for determining the impact of a specialized ribosome to specific characteristics of the disease. These characteristics may include host susceptibility, viral infectivity and transmissibility, severity of symptoms, antiviral treatment responses, and vaccine immunogenicity including its side effect and efficacy. In this study, several state-of-the-art techniques, in particular, chemical probing of ribosomal components or rRNA structures, proximity ligation to generate rRNA-mRNA chimeras for sequencing, nanopore gating of individual ribosomes, nanopore RNA sequencing and/or structural analyses, single-ribosome mass spectrometry, and microfluidic droplets for separating ribosomes or indexing rRNAs/mRNAs, are discussed. The key elements for further improvement and proper integration of the above techniques to potentially arrive at a high-throughput protocol for examining individual ribosomes and their mRNA substrates in a clinical setting are also presented.
Collapse
Affiliation(s)
- Yih-Horng Shiao
- US Patent Trademark Office, Department of Commerce, Alexandria, VA 22314, USA
| |
Collapse
|
12
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
13
|
Zoratto S, Weiss VU, van der Horst J, Commandeur J, Buengener C, Foettinger‐Vacha A, Pletzenauer R, Graninger M, Allmaier G. Molecular weight determination of adeno-associate virus serotype 8 virus-like particle either carrying or lacking genome via native nES gas-phase electrophoretic molecular mobility analysis and nESI QRTOF mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4786. [PMID: 34608711 PMCID: PMC9285973 DOI: 10.1002/jms.4786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Virus-like particles (VLPs) are proteinaceous shells derived from viruses lacking any viral genomic material. Adeno-associated virus (AAV) is a non-enveloped icosahedral virus used as VLP delivery system in gene therapy (GT). Its success as vehicle for GT is due to its selective tropism, high level of transduction, and low immunogenicity. In this study, two preparations of AAV serotype 8 (AAV8) VLPs either carrying or lacking completely genomic cargo (i.e., non-viral ssDNA) have been investigated by means of a native nano-electrospray gas-phase electrophoretic mobility molecular analyzer (GEMMA) (native nES GEMMA) and native nano-electrospray ionization quadrupole reflectron time-of-flight mass spectrometry (MS) (native nESI QRTOF MS). nES GEMMA is based on electrophoretic mobility principles: single-charge nanoparticles (NPs), that is, AAV8 particle, are separated in a laminar sheath flow of dry, particle-free air and a tunable orthogonal electric field. Thus, the electrophoretic mobility diameter (EMD) of a bio-NP (i.e., diameter of globular nano-objects) is obtained at atmospheric pressure, which can be converted into its MW based on a correlation. First is the native nESI QRTOF. MS's goal is to keep the native biological conformation of an analyte during the passage into the vacuum. Subsequently, highly accurate MW values are obtained from multiple-charged species after deconvolution. However, once applied to the analysis of megadalton species, native MS is challenging and requires customized instrumental modifications not readily available on standard devices. Hence, the analysis of AAV8 VLPs via native MS in our hands did not produce a defined charge state assignment, that is, charge deconvolution for exact MW determination was not possible. Nonetheless, the method we present is capable to estimate the MW of VLPs by combining the results from native nES GEMMA and native ESI QRTOF MS. In detail, our findings show a MW of 3.7 and 5.0 MDa for AAV8 VLPs either lacking or carrying an engineered genome, respectively.
Collapse
Affiliation(s)
- Samuele Zoratto
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | - Victor U. Weiss
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | | | | | - Carsten Buengener
- Pharmaceutical SciencesBaxalta Innovations (part of Takeda)ViennaAustria
| | | | - Robert Pletzenauer
- Pharmaceutical SciencesBaxalta Innovations (part of Takeda)ViennaAustria
| | - Michael Graninger
- Pharmaceutical SciencesBaxalta Innovations (part of Takeda)ViennaAustria
| | - Guenter Allmaier
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| |
Collapse
|
14
|
Mathew A, Buijs R, Eijkel GB, Giskes F, Dyachenko A, van der Horst J, Byelov D, Spaanderman DJ, Heck AJR, Porta Siegel T, Ellis SR, Heeren RMA. Ion Imaging of Native Protein Complexes Using Orthogonal Time-of-Flight Mass Spectrometry and a Timepix Detector. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:569-580. [PMID: 33439014 PMCID: PMC7863068 DOI: 10.1021/jasms.0c00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Native mass spectrometry (native MS) has emerged as a powerful technique to study the structure and stoichiometry of large protein complexes. Traditionally, native MS has been performed on modified time-of-flight (TOF) systems combined with detectors that do not provide information on the arrival coordinates of each ion at the detector. In this study, we describe the implementation of a Timepix (TPX) pixelated detector on a modified orthogonal TOF (O-TOF) mass spectrometer for the analysis and imaging of native protein complexes. In this unique experimental setup, we have used the impact positions of the ions at the detector to visualize the effects of various ion optical parameters on the flight path of ions. We also demonstrate the ability to unambiguously detect and image individual ion events, providing the first report of single-ion imaging of protein complexes in native MS. Furthermore, the simultaneous space- and time-sensitive nature of the TPX detector was critical in the identification of the origin of an unexpected TOF signal. A signal that could easily be mistaken as a fragment of the protein complex was explicitly identified as a secondary electron signal arising from ion-surface collisions inside the TOF housing. This work significantly extends the mass range previously detected with the TPX and exemplifies the value of simultaneous space- and time-resolved detection in the study of ion optical processes and ion trajectories in TOF mass spectrometers.
Collapse
Affiliation(s)
- Anjusha Mathew
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ronald Buijs
- NWO
Institute AMOLF Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Gert B. Eijkel
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Frans Giskes
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Andrey Dyachenko
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | | | - Dimitry Byelov
- Amsterdam
Scientific Instruments (ASI), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | | | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tiffany Porta Siegel
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Shane R. Ellis
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
15
|
Affiliation(s)
- James E. Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
16
|
Abdillahi AM, Lee KW, McLuckey SA. Mass Analysis of Macro-molecular Analytes via Multiply-Charged Ion Attachment. Anal Chem 2020; 92:16301-16306. [PMID: 33275425 DOI: 10.1021/acs.analchem.0c04335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel gas-phase charge and mass manipulation approach is demonstrated to facilitate the mass measurement of high mass complexes within the context of native mass spectrometry. Electrospray ionization applied to solutions generated under native or near-native conditions has been demonstrated to be capable of preserving biologically relevant complexes into the gas phase as multiply charged ions suitable for mass spectrometric analysis. However, charge state distributions tend to be narrow and extensive salt adduction, heterogeneity, and so on tend to lead to significantly broadened peaks. These issues can compromise mass measurement of high mass bio-complexes, particularly when charge states are not clearly resolved. In this work, we show that the attachment of high mass ions of known mass and charge to populations of ions of interest can lead to well-separated signals that can yield confident charge state and mass assignments from otherwise poorly resolved signals.
Collapse
Affiliation(s)
- Abdirahman M Abdillahi
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Kenneth W Lee
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
17
|
Gadkari VV, Ramírez CR, Vallejo DD, Kurulugama RT, Fjeldsted JC, Ruotolo BT. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions. Anal Chem 2020; 92:15489-15496. [PMID: 33166123 PMCID: PMC7861131 DOI: 10.1021/acs.analchem.0c03372] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) is capable of revealing much that remains unknown within the structural proteome, promising such information on refractory protein targets. Here, we report the development of a unique drift tube IM-MS (DTIM-MS) platform, which combines high-energy source optics for improved collision induced unfolding (CIU) experiments and an electromagnetostatic cell for electron capture dissociation (ECD). We measured a series of high precision collision cross section (CCS) values for protein and protein complex ions ranging from 6-1600 kDa, exhibiting an average relative standard deviation (RSD) of 0.43 ± 0.20%. Furthermore, we compare our CCS results to previously reported DTIM values, finding strong agreement across similarly configured instrumentation (average RSD of 0.82 ± 0.73%), and systematic differences for DTIM CCS values commonly used to calibrate traveling-wave IM separators (-3% average RSD). Our CIU experiments reveal that the modified DTIM-MS instrument described here achieves enhanced levels of ion activation when compared with any previously reported IM-MS platforms, allowing for comprehensive unfolding of large multiprotein complex ions as well as interplatform CIU comparisons. Using our modified DTIM instrument, we studied two protein complexes. The enhanced CIU capabilities enable us to study the gas phase stability of the GroEL 7-mer and 14-mer complexes. Finally, we report CIU-ECD experiments for the alcohol dehydrogenase tetramer, demonstrating improved sequence coverage by combining ECD fragmentation integrated over multiple CIU intermediates. Further improvements for such native top-down sequencing experiments were possible by leveraging IM separation, which enabled us to separate and analyze CID and ECD fragmentation simultaneously.
Collapse
Affiliation(s)
- Varun V Gadkari
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Daniel D Vallejo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ruwan T Kurulugama
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - John C Fjeldsted
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Schneeberger EM, Halper M, Palasser M, Heel SV, Vušurović J, Plangger R, Juen M, Kreutz C, Breuker K. Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. Nat Commun 2020; 11:5750. [PMID: 33188169 PMCID: PMC7666190 DOI: 10.1038/s41467-020-19144-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
Nuclear export complexes composed of rev response element (RRE) ribonucleic acid (RNA) and multiple molecules of rev protein are promising targets for the development of therapeutic strategies against human immunodeficiency virus type 1 (HIV-1), but their assembly remains poorly understood. Using native mass spectrometry, we show here that rev initially binds to the upper stem of RRE IIB, from where it is relayed to binding sites that allow for rev dimerization. The newly discovered binding region implies initial rev recognition by nucleotides that are not part of the internal loop of RRE stem IIB RNA, which was previously identified as the preferred binding region. Our study highlights the unique capability of native mass spectrometry to separately study the binding interfaces of RNA/protein complexes of different stoichiometry, and provides a detailed understanding of the mechanism of RRE/rev association with implications for the rational design of potential drugs against HIV-1 infection.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Halper
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael Palasser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jovana Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Roche Diagnostics GmbH, 82377, Penzberg, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
19
|
Barth M, Schmidt C. Native mass spectrometry-A valuable tool in structural biology. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4578. [PMID: 32662584 DOI: 10.1002/jms.4578] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/16/2023]
Abstract
Proteins and the complexes they form with their ligands are the players of cellular action. Their function is directly linked with their structure making the structural analysis of protein-ligand complexes essential. Classical techniques of structural biology include X-ray crystallography, nuclear magnetic resonance spectroscopy and recently distinguished cryo-electron microscopy. However, protein-ligand complexes are often dynamic and heterogeneous and consequently challenging for these techniques. Alternative approaches are therefore needed and gained importance during the last decades. One alternative is native mass spectrometry, which is the analysis of intact protein complexes in the gas phase. To achieve this, sample preparation and instrument conditions have to be optimised. Native mass spectrometry then reveals stoichiometry, protein interactions and topology of protein assemblies. Advanced techniques such as ion mobility and high-resolution mass spectrometry further add to the range of applications and deliver information on shape and microheterogeneity of the complexes. In this tutorial, we explain the basics of native mass spectrometry including sample requirements, instrument modifications and interpretation of native mass spectra. We further discuss the developments of native mass spectrometry and provide example spectra and applications.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
20
|
Robinson CV. Christopher Dobson, 1949-2019: Mentor, Friend, Scientist Extraordinaire. Annu Rev Biochem 2020; 89:1-19. [PMID: 32343910 DOI: 10.1146/annurev-biochem-011520-105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is impossible to do justice in one review article to a researcher of the stature of Christopher Dobson. His career spanned almost five decades, resulting in more than 870 publications and a legacy that will continue to influence the lives of many for decades to come. In this review, I have attempted to capture Chris's major contributions: his early work, dedicated to understanding protein-folding mechanisms; his collaborative work with physicists to understand the process of protein aggregation; and finally, his later career in which he developed strategies to prevent misfolding. However, it is not only this body of work but also the man himself who inspired an entire generation of scientists through his patience, ability to mentor, and innate generosity. These qualities remain a hallmark of the way in which he conducted his research-research that will leave a lasting imprint on science.
Collapse
Affiliation(s)
- Carol V Robinson
- Department of Physical and Theoretical Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
21
|
Greisch JF, Tamara S, Scheltema RA, Maxwell HWR, Fagerlund RD, Fineran PC, Tetter S, Hilvert D, Heck AJR. Expanding the mass range for UVPD-based native top-down mass spectrometry. Chem Sci 2019; 10:7163-7171. [PMID: 31588283 PMCID: PMC6764275 DOI: 10.1039/c9sc01857c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Native top-down proteomics using UVPD extended to mega Dalton protein assemblies.
Native top-down mass spectrometry is emerging as a methodology that can be used to structurally investigate protein assemblies. To extend the possibilities of native top-down mass spectrometry to larger and more heterogeneous biomolecular assemblies, advances in both the mass analyzer and applied fragmentation techniques are still essential. Here, we explore ultraviolet photodissociation (UVPD) of protein assemblies on an Orbitrap with extended mass range, expanding its usage to large and heterogeneous macromolecular complexes, reaching masses above 1 million Da. We demonstrate that UVPD can lead not only to the ejection of intact subunits directly from such large intact complexes, but also to backbone fragmentation of these subunits, providing enough sequence information for subunit identification. The Orbitrap mass analyzer enables simultaneous monitoring of the precursor, the subunits, and the subunit fragments formed upon UVPD activation. While only partial sequence coverage of the subunits is observed, the UVPD data yields information about the localization of chromophores covalently attached to the subunits of the light harvesting complex B-phycoerythrin, extensive backbone fragmentation in a subunit of a CRISPR-Cas Csy (type I–F Cascade) complex, and sequence modifications in a virus-like proteinaceous nano-container. Through these multiple applications we demonstrate for the first time that UVPD based native top-down mass spectrometry is feasible for large and heterogeneous particles, including ribonucleoprotein complexes and MDa virus-like particles.
Collapse
Affiliation(s)
- Jean-François Greisch
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 Utrecht , The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 Utrecht , The Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 Utrecht , The Netherlands
| | - Howard W R Maxwell
- Department of Microbiology and Immunology , University of Otago , PO Box 56 , 9054 Dunedin , New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology , University of Otago , PO Box 56 , 9054 Dunedin , New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology , University of Otago , PO Box 56 , 9054 Dunedin , New Zealand
| | - Stephan Tetter
- Laboratory of Organic Chemistry , Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry , Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 Utrecht , The Netherlands
| |
Collapse
|
22
|
How can native mass spectrometry contribute to characterization of biomacromolecular higher-order structure and interactions? Methods 2018; 144:3-13. [PMID: 29704661 DOI: 10.1016/j.ymeth.2018.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 01/16/2023] Open
Abstract
Native mass spectrometry (MS) is an emerging approach for characterizing biomacromolecular structure and interactions under physiologically relevant conditions. In native MS measurement, intact macromolecules or macromolecular complexes are directly ionized from a non-denaturing solvent, and key noncovalent interactions that hold the complexes together can be preserved for MS analysis in the gas phase. This technique provides unique multi-level structural information such as conformational changes, stoichiometry, topology and dynamics, complementing conventional biophysical techniques. Despite the maturation of native MS and greatly expanded range of applications in recent decades, further dissemination is needed to make the community aware of such a technique. In this review, we attempt to provide an overview of the current body of knowledge regarding major aspects of native MS and explain how such technique contributes to the characterization of biomacromolecular higher-order structure and interactions.
Collapse
|
23
|
Politis A, Schmidt C. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling. J Proteomics 2018; 175:34-41. [DOI: 10.1016/j.jprot.2017.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/14/2023]
|
24
|
Haupt C, Hofmann T, Wittig S, Kostmann S, Politis A, Schmidt C. Combining Chemical Cross-linking and Mass Spectrometry of Intact Protein Complexes to Study the Architecture of Multi-subunit Protein Assemblies. J Vis Exp 2017. [PMID: 29286378 PMCID: PMC5755487 DOI: 10.3791/56747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Proteins interact with their ligands to form active and dynamic assemblies which carry out various cellular functions. Elucidating these interactions is therefore fundamental for the understanding of cellular processes. However, many protein complexes are dynamic assemblies and are not accessible by conventional structural techniques. Mass spectrometry contributes to the structural investigation of these assemblies, and particularly the combination of various mass spectrometric techniques delivers valuable insights into their structural arrangement. In this article, we describe the application and combination of two complementary mass spectrometric techniques, namely chemical cross-linking coupled with mass spectrometry and native mass spectrometry. Chemical cross-linking involves the covalent linkage of amino acids in close proximity by using chemical reagents. After digestion with proteases, cross-linked di-peptides are identified by mass spectrometry and protein interactions sites are uncovered. Native mass spectrometry on the other hand is the analysis of intact protein assemblies in the gas phase of a mass spectrometer. It reveals protein stoichiometries as well as protein and ligand interactions. Both techniques therefore deliver complementary information on the structure of protein-ligand assemblies and their combination proved powerful in previous studies.
Collapse
Affiliation(s)
- Caroline Haupt
- Interdisciplinary research center HALOmem, Martin Luther University Halle-Wittenberg
| | - Tommy Hofmann
- Interdisciplinary research center HALOmem, Martin Luther University Halle-Wittenberg
| | - Sabine Wittig
- Interdisciplinary research center HALOmem, Martin Luther University Halle-Wittenberg
| | - Susann Kostmann
- Interdisciplinary research center HALOmem, Martin Luther University Halle-Wittenberg
| | | | - Carla Schmidt
- Interdisciplinary research center HALOmem, Martin Luther University Halle-Wittenberg;
| |
Collapse
|
25
|
From molecular chaperones to membrane motors: through the lens of a mass spectrometrist. Biochem Soc Trans 2017; 45:251-260. [PMID: 28202679 PMCID: PMC5310722 DOI: 10.1042/bst20160395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022]
Abstract
Twenty-five years ago, we obtained our first mass spectra of molecular chaperones in complex with protein ligands and entered a new field of gas-phase structural biology. It is perhaps now time to pause and reflect, and to ask how many of our initial structure predictions and models derived from mass spectrometry (MS) datasets were correct. With recent advances in structure determination, many of the most challenging complexes that we studied over the years have become tractable by other structural biology approaches enabling such comparisons to be made. Moreover, in the light of powerful new electron microscopy methods, what role is there now for MS? In considering these questions, I will give my personal view on progress and problems as well as my predictions for future directions.
Collapse
|
26
|
Fornelli L, Toby TK, Schachner LF, Doubleday PF, Srzentić K, DeHart CJ, Kelleher NL. Top-down proteomics: Where we are, where we are going? J Proteomics 2017; 175:3-4. [PMID: 28188863 DOI: 10.1016/j.jprot.2017.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/19/2017] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Timothy K Toby
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Peter F Doubleday
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Caroline J DeHart
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States.
| |
Collapse
|
27
|
High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat Methods 2017; 14:283-286. [PMID: 28114288 DOI: 10.1038/nmeth.4147] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022]
Abstract
Investigation of the structure, assembly and function of protein-nucleic acid macromolecular machines requires multidimensional molecular and structural biology approaches. We describe modifications to an Orbitrap mass spectrometer, enabling high-resolution native MS analysis of 0.8- to 2.3-MDa prokaryotic 30S, 50S and 70S ribosome particles and the 9-MDa Flock House virus. The instrument's improved mass range and sensitivity readily exposes unexpected binding of the ribosome-associated protein SRA.
Collapse
|
28
|
Leney AC, Heck AJR. Native Mass Spectrometry: What is in the Name? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:5-13. [PMID: 27909974 PMCID: PMC5174146 DOI: 10.1007/s13361-016-1545-3] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 05/11/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein-protein and protein-ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as "native MS," has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure-function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by "native MS," when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Aneika C Leney
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584CH, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Lössl P, van de Waterbeemd M, Heck AJ. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J 2016; 35:2634-2657. [PMID: 27797822 PMCID: PMC5167345 DOI: 10.15252/embj.201694818] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes.
Collapse
Affiliation(s)
- Philip Lössl
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
30
|
Cassaignau AME, Launay HMM, Karyadi ME, Wang X, Waudby CA, Deckert A, Robertson AL, Christodoulou J, Cabrita LD. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy. Nat Protoc 2016; 11:1492-507. [PMID: 27466710 DOI: 10.1038/nprot.2016.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.
Collapse
Affiliation(s)
- Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Hélène M M Launay
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Maria-Evangelia Karyadi
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Xiaolin Wang
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Annika Deckert
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Amy L Robertson
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| |
Collapse
|
31
|
Samulak BM, Niu S, Andrews PC, Ruotolo BT. Ion Mobility-Mass Spectrometry Analysis of Cross-Linked Intact Multiprotein Complexes: Enhanced Gas-Phase Stabilities and Altered Dissociation Pathways. Anal Chem 2016; 88:5290-8. [PMID: 27078797 PMCID: PMC5164941 DOI: 10.1021/acs.analchem.6b00518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Analysis of protein complexes by ion mobility-mass spectrometry is a valuable method for the rapid assessment of complex composition, binding stoichiometries, and structures. However, capturing labile, unknown protein assemblies directly from cells remains a challenge for the technology. Furthermore, ion mobility-mass spectrometry measurements of complexes, subcomplexes, and subunits are necessary to build complete models of intact assemblies, and such data can be difficult to acquire in a comprehensive fashion. Here, we present the use of novel mass spectrometry cleavable cross-linkers and tags to stabilize intact protein complexes for ion mobility-mass spectrometry. Our data reveal that tags and linkers bearing permanent charges are superior stabilizers relative to neutral cross-linkers, especially in the context of retaining compact forms of the assembly under a wide array of activating conditions. In addition, when cross-linked protein complexes are collisionally activated in the gas phase, a larger proportion of the product ions produced are often more compact and reflect native protein subcomplexes when compared with unmodified complexes activated in the same fashion, greatly enabling applications in structural biology.
Collapse
Affiliation(s)
- Billy M. Samulak
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Shuai Niu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Philip C. Andrews
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
32
|
Lippens JL, Mangrum J, McIntyre W, Redick B, Fabris D. A simple heated-capillary modification improves the analysis of non-covalent complexes by Z-spray electrospray ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:773-83. [PMID: 26864529 PMCID: PMC4868961 DOI: 10.1002/rcm.7490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 05/29/2023]
Abstract
RATIONALE The observation of intact non-covalent complexes by electrospray ionization mass spectrometry (ESI-MS) hinges on the ability to minimize in-source activation processes that take place during analyte desolvation. We explored the merits of replacing the sampling cone of a standard Z-spray source with a heated capillary that makes the desolvation process slower and more gradual. We employed well-characterized protein-RNA, RNA-RNA, and DNA-DNA assemblies to compare the alternative configurations. METHODS Mass analysis evaluated the integrity of the complexes, whereas traveling wave ion mobility experiments assessed the stability of biomolecular structure. Analyses were performed back-to-back on the same samples on a Synapt G2 HDMS equipped with either the standard sampling cone or the heated-capillary apparatus. In each configuration, the source/capillary temperature was varied in controlled fashion, while keeping all other desolvation parameters constant to monitor the in-source dissociation of selected DNA duplexes. Ion mobility data were obtained from the same precursor by using the alternative configurations under the same settings. RESULTS Monitoring the percentage of associated complex demonstrated that the heated capillary provided softer desolvation that was more conducive to the detection of intact non-covalent interactions. This configuration failed to produce complete dissociation of 14 bp and 24 bp duplexes, even when the source/capillary temperature was increased well above their solution melting points. Analyzed by IMS-MS, a selected construct displayed just one conformation with the heated capillary, but two with the standard sampling cone. CONCLUSIONS The heated capillary minimizes in-source activation processes that can lead to unintended dissociation of complexes and perturbation of biomolecular structure, which rely on the integrity of non-covalent interactions. This effect can be attributed to the attenuation of the supersonic expansion typical of the Z-spray geometry and the greater ability to control the energy imparted to the system. This hardware modification will be expected to benefit the analysis of biomolecular structure performed on this particular instrumental platform.
Collapse
Affiliation(s)
| | | | | | - Bill Redick
- The RNA Institute, University at Albany (SUNY)
| | - D. Fabris
- The RNA Institute, University at Albany (SUNY)
| |
Collapse
|
33
|
Chen F, Gülbakan B, Weidmann S, Fagerer SR, Ibáñez AJ, Zenobi R. Applying mass spectrometry to study non-covalent biomolecule complexes. MASS SPECTROMETRY REVIEWS 2016; 35:48-70. [PMID: 25945814 DOI: 10.1002/mas.21462] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/09/2014] [Indexed: 05/10/2023]
Abstract
Non-covalent interactions are essential for the structural organization of biomacromolecules and play an important role in molecular recognition processes, such as the interactions between proteins, glycans, lipids, DNA, and RNA. Mass spectrometry (MS) is a powerful tool for studying of non-covalent interactions, due to the low sample consumption, high sensitivity, and label-free nature. Nowadays, native-ESI MS is heavily used in studies of non-covalent interactions and to understand the architecture of biomolecular complexes. However, MALDI-MS is also becoming increasingly useful. It is challenging to detect the intact complex without fragmentation when analyzing non-covalent interactions with MALDI-MS. There are two methodological approaches to do so. In the first approach, different experimental and instrumental parameters are fine-tuned in order to find conditions under which the complex is stable, such as applying non-acidic matrices and collecting first-shot spectra. In the second approach, the interacting species are "artificially" stabilized by chemical crosslinking. Both approaches are capable of studying non-covalently bound biomolecules even in quite challenging systems, such as membrane protein complexes. Herein, we review and compare native-ESI and MALDI MS for the study of non-covalent interactions.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Basri Gülbakan
- Institute of Child Health, Division of Pediatric Basic Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Simon Weidmann
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Stephan R Fagerer
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Alfredo J Ibáñez
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| |
Collapse
|
34
|
Rajabi K, Ashcroft AE, Radford SE. Mass spectrometric methods to analyze the structural organization of macromolecular complexes. Methods 2015; 89:13-21. [DOI: 10.1016/j.ymeth.2015.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/25/2015] [Accepted: 03/06/2015] [Indexed: 01/14/2023] Open
|
35
|
Schmidt C, Beilsten-Edmands V, Robinson CV. Insights into Eukaryotic Translation Initiation from Mass Spectrometry of Macromolecular Protein Assemblies. J Mol Biol 2015; 428:344-356. [PMID: 26497764 DOI: 10.1016/j.jmb.2015.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 02/05/2023]
Abstract
Translation initiation in eukaryotes requires the interplay of at least 10 initiation factors that interact at the different steps of this phase of gene expression. The interactions of initiation factors and related proteins are in general controlled by phosphorylation, which serves as a regulatory switch to turn protein translation on or off. The structures of initiation factors and a complete description of their post-translational modification (PTM) status are therefore required in order to fully understand these processes. In recent years, mass spectrometry has contributed considerably to provide this information and nowadays is proving to be indispensable when studying dynamic heterogeneous protein complexes such as the eukaryotic initiation factors. Herein, we highlight mass spectrometric approaches commonly applied to identify interacting subunits and their PTMs and the structural techniques that allow the architecture of protein complexes to be assessed. We present recent structural investigations of initiation factors and their interactions with other factors and with ribosomes and we assess the models generated. These models allow us to locate PTMs within initiation factor complexes and to highlight possible roles for phosphorylation sites in regulating interaction interfaces.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | - Victoria Beilsten-Edmands
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| |
Collapse
|
36
|
Riml C, Glasner H, Rodgers MT, Micura R, Breuker K. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent. Nucleic Acids Res 2015; 43:5171-81. [PMID: 25904631 PMCID: PMC4446422 DOI: 10.1093/nar/gkv288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/14/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022] Open
Abstract
Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)(n+) and (M-nH)(n-) ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into C: and Y: ions from phosphodiester bond cleavage.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202-3489, United States
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
37
|
Abstract
Nucleic acids are diverse polymeric macromolecules that are essential for all life forms. These biomolecules possess a functional three-dimensional structure under aqueous physiological conditions. Mass spectrometry-based approaches have on the other hand opened the possibility to gain structural information on nucleic acids from gas-phase measurements. To correlate gas-phase structural probing results with solution structures, it is therefore important to grasp the extent to which nucleic acid structures are preserved, or altered, when transferred from the solution to a fully anhydrous environment. We will review here experimental and theoretical approaches available to characterize the structure of nucleic acids in the gas phase (with a focus on oligonucleotides and higher-order structures), and will summarize the structural features of nucleic acids that can be preserved in the gas phase on the experiment time scale.
Collapse
|
38
|
Schmidt C, Robinson CV. Dynamic protein ligand interactions--insights from MS. FEBS J 2014; 281:1950-64. [PMID: 24393119 PMCID: PMC4154455 DOI: 10.1111/febs.12707] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Proteins undergo dynamic interactions with carbohydrates, lipids and nucleotides to form catalytic cores, fine‐tuned for different cellular actions. The study of dynamic interactions between proteins and their cognate ligands is therefore fundamental to the understanding of biological systems. During the last two decades MS, and its associated techniques, has become accepted as a method for the study of protein–ligand interactions, not only for covalent complexes, where the use of MS is well established, but also, and significantly for protein–ligand interactions, for noncovalent assemblies. In this review, we employ a broad definition of a ligand to encompass protein subunits, drug molecules, oligonucleotides, carbohydrates, and lipids. Under the appropriate conditions, MS can reveal the composition, heterogeneity and dynamics of these protein–ligand interactions, and in some cases their structural arrangements and binding affinities. Herein, we highlight MS approaches for studying protein–ligand complexes, including those containing integral membrane subunits, and showcase examples from recent literature. Specifically, we tabulate the myriad of methodologies, including hydrogen exchange, proteomics, hydroxyl radical footprinting, intact complexes, and crosslinking, which, when combined with MS, provide insights into conformational changes and subtle modifications in response to ligand‐binding interactions.
Collapse
|
39
|
Schermann SM, Simmons DA, Konermann L. Mass spectrometry-based approaches to protein–ligand interactions. Expert Rev Proteomics 2014; 2:475-85. [PMID: 16097882 DOI: 10.1586/14789450.2.4.475] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the greatest current challenges in proteomics is to develop an understanding of cellular communication and regulation processes, most of which involve noncovalent interactions of proteins with various binding partners. Mass spectrometry plays an important role in all aspects of these research efforts. This article provides a survey of mass spectrometry-based approaches for exploring protein-ligand interactions. A wide array of techniques is available, and the choice of method depends on the specific problem at hand. For example, the high-throughput screening of compound libraries for binding to a specific receptor requires different approaches than structural studies on multiprotein complexes. This review is directed to readers wishing to obtain a concise yet comprehensive overview of existing experimental techniques. Specific emphasis is placed on emerging methods that have been developed within the last few years.
Collapse
Affiliation(s)
- Sonya M Schermann
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | | | | |
Collapse
|
40
|
Zhang Y, Deng L, Kitova EN, Klassen JS. Dissociation of multisubunit protein-ligand complexes in the gas phase. Evidence for ligand migration. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1573-1583. [PMID: 23943432 DOI: 10.1007/s13361-013-0712-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1)) and corresponding glycosphingolipid (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)(n+) ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)(n-) ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)(n+/-) ions, as well as for deprotonated (S4 + 4Btl)(n-) ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)(n+) ions was observed as a minor pathway. The (S4 + 4Btl)(n+) ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)(15+) ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein-ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | | | | | | |
Collapse
|
41
|
Zhang H, Cui W, Gross ML, Blankenship RE. Native mass spectrometry of photosynthetic pigment-protein complexes. FEBS Lett 2013; 587:1012-20. [PMID: 23337874 PMCID: PMC3856239 DOI: 10.1016/j.febslet.2013.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/25/2012] [Accepted: 01/06/2013] [Indexed: 12/16/2022]
Abstract
Native mass spectrometry (MS), or as is sometimes called "native electrospray ionization" allows proteins in their native or near-native states in solution to be introduced into the gas phase and interrogated by mass spectrometry. This approach is now a powerful tool to investigate protein complexes. This article reviews the background of native MS of protein complexes and describes its strengths, taking photosynthetic pigment-protein complexes as examples. Native MS can be utilized in combination with other MS-based approaches to obtain complementary information to that provided by tools such as X-ray crystallography and NMR spectroscopy to understand the structure-function relationships of protein complexes. When additional information beyond that provided by native MS is required, other MS-based strategies can be successfully applied to augment the results of native MS.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
42
|
Chen F, Gülbakan B, Zenobi R. Direct access to aptamer–protein complexes via MALDI-MS. Chem Sci 2013. [DOI: 10.1039/c3sc51410b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
43
|
High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 2012; 9:1084-6. [DOI: 10.1038/nmeth.2208] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/17/2012] [Indexed: 12/19/2022]
|
44
|
Deroo S, Hyung SJ, Marcoux J, Gordiyenko Y, Koripella RK, Sanyal S, Robinson CV. Mechanism and rates of exchange of L7/L12 between ribosomes and the effects of binding EF-G. ACS Chem Biol 2012; 7:1120-7. [PMID: 22489843 PMCID: PMC4058753 DOI: 10.1021/cb300081s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ribosomal stalk complex binds and recruits translation factors to the ribosome during protein biosynthesis. In Escherichia coli the stalk is composed of protein L10 and four copies of L7/L12. Despite the crucial role of the stalk, mechanistic details of L7/L12 subunit exchange are not established. By incubating isotopically labeled intact ribosomes with their unlabeled counterparts we monitored the exchange of the labile stalk proteins by recording mass spectra as a function of time. On the basis of kinetic analysis, we proposed a mechanism whereby exchange proceeds via L7/L12 monomers and dimers. We also compared exchange of L7/L12 from free ribosomes with exchange from ribosomes in complex with elongation factor G (EF-G), trapped in the posttranslocational state by fusidic acid. Results showed that binding of EF-G reduces the L7/L12 exchange reaction of monomers by ~27% and of dimers by ~47% compared with exchange from free ribosomes. This is consistent with a model in which binding of EF-G does not modify interactions between the L7/L12 monomers but rather one of the four monomers, and as a result one of the two dimers, become anchored to the ribosome-EF-G complex preventing their free exchange. Overall therefore our results not only provide mechanistic insight into the exchange of L7/L12 monomers and dimers and the effects of EF-G binding but also have implications for modulating stability in response to environmental and functional stimuli within the cell.
Collapse
Affiliation(s)
- Stéphanie Deroo
- University of Oxford, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - Suk-Joon Hyung
- University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | - Julien Marcoux
- University of Oxford, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - Yuliya Gordiyenko
- University of Oxford, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - Ravi Kiran Koripella
- Uppsala University, Department of Cell and Molecular Biology, BMC, Box-596, S-75 124 Uppsala, Sweden
| | - Suparna Sanyal
- Uppsala University, Department of Cell and Molecular Biology, BMC, Box-596, S-75 124 Uppsala, Sweden
| | - Carol V. Robinson
- University of Oxford, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
45
|
Hilton GR, Benesch JLP. Two decades of studying non-covalent biomolecular assemblies by means of electrospray ionization mass spectrometry. J R Soc Interface 2012; 9:801-16. [PMID: 22319100 PMCID: PMC3306659 DOI: 10.1098/rsif.2011.0823] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/16/2012] [Indexed: 12/31/2022] Open
Abstract
Mass spectrometry (MS) is a recognized approach for characterizing proteins and the complexes they assemble into. This application of a long-established physico-chemical tool to the frontiers of structural biology has stemmed from experiments performed in the early 1990s. While initial studies focused on the elucidation of stoichiometry by means of simple mass determination, developments in MS technology and methodology now allow researchers to address questions of shape, inter-subunit connectivity and protein dynamics. Here, we chart the remarkable rise of MS and its application to biomolecular complexes over the last two decades.
Collapse
Affiliation(s)
| | - Justin L. P. Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX3 1QZ, UK
| |
Collapse
|
46
|
Schmidt C, Kramer K, Urlaub H. Investigation of protein-RNA interactions by mass spectrometry--Techniques and applications. J Proteomics 2012; 75:3478-94. [PMID: 22575267 DOI: 10.1016/j.jprot.2012.04.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 12/26/2022]
Abstract
Protein-RNA complexes play many important roles in diverse cellular functions. They are involved in a wide variety of different processes in growth and differentiation at the various stages of the cell cycle. As their function and catalytic activity are directly coupled to the structural arrangement of their components--proteins and ribonucleic acids--the investigation of protein-RNA interactions is of great functional and structural importance. Here we discuss the most prominent examples of protein-RNA complexes and describe some frequently used purification strategies. We present various techniques and applications of mass spectrometry to study protein-RNA complexes. We discuss the analysis of intact complexes as well as proteomics-based and crosslinking-based approaches in which proteins are cleaved into smaller peptides. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Carla Schmidt
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
47
|
Chen F, Mädler S, Weidmann S, Zenobi R. MALDI-MS detection of noncovalent interactions of single stranded DNA with Escherichia coli single-stranded DNA-binding protein. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:560-566. [PMID: 22549990 DOI: 10.1002/jms.2989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Escherichia coli single-stranded DNA binding protein (SSB) selectively binds single-stranded (ss) DNA and participates in the process of DNA replication, recombination and repair. Different binding modes have previously been observed in SSB•ssDNA complexes, due to the four potential binding sites of SSB. Here, chemical cross-linking, combined with high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS), is used to determine the stoichiometry of the SSB•ssDNA complex. SSB forms a stable homotetramer in solution, but only the monomeric species (m/z 19,100) can be detected with standard MALDI-MS. With chemical cross-linking, the quaternary structure of SSB is conserved, and the tetramer (m/z 79,500) was observed. We found that ssDNA also functions as a stabilizer to conserve the quaternary structure of SSB, as evidenced by the detection of a SSB•ssDNA complex at m/z 94,200 even in the absence of chemical cross-linking. The stability of the SSB•ssDNA complex with MALDI strongly depends on the length and strand of oligonucleotides and the stoichiometry of the SSB•ssDNA complex, which could be attributed to electrostatic interactions that are enhanced in the gas phase. The key factor affecting the stoichiometry of the SSB•ssDNA complex is how ssDNA binds to SSB, rather than the protein-to-DNA ratio. This further suggests that detection of the complex by MALDI is a result of specific binding, and not due to non-specific aggregation in the MALDI plume.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
48
|
Liu L, Michelsen K, Kitova EN, Schnier PD, Klassen JS. Energetics of Lipid Binding in a Hydrophobic Protein Cavity. J Am Chem Soc 2012; 134:3054-60. [DOI: 10.1021/ja208909n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lan Liu
- Alberta Glycomics Centre and
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Klaus Michelsen
- Molecular Structure, Amgen, Thousand Oaks,
California 91320, United States
| | - Elena N. Kitova
- Alberta Glycomics Centre and
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Paul D. Schnier
- Molecular Structure, Amgen, Thousand Oaks,
California 91320, United States
| | - John S. Klassen
- Alberta Glycomics Centre and
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
49
|
Robinson CV. Finding the right balance - a personal journey from individual proteins to membrane-embedded motors. FEBS J 2012; 279:663-77. [DOI: 10.1111/j.1742-4658.2011.08460.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Serpa JJ, Parker CE, Petrotchenko EV, Han J, Pan J, Borchers CH. Mass spectrometry-based structural proteomics. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:251-267. [PMID: 22641729 DOI: 10.1255/ejms.1178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Structural proteomics is the application of protein chemistry and modern mass spectrometric techniques to problems such as the characterization of protein structures and assemblies and the detailed determination of protein-protein interactions. The techniques used in structural proteomics include crosslinking, photoaffinity labeling, limited proteolysis, chemical protein modification and hydrogen/deuterium exchange, all followed by mass spectrometric analysis. None of these methods alone can provide complete structural information, but a "combination" of these complementary approaches can be used to provide enough information for answering important biological questions. Structural proteomics can help to determine, for example, the detailed structure of the interfaces between proteins that may be important drug targets and the interactions between proteins and ligands. In this review, we have tried to provide a brief overview of structural proteomics methodologies, illustrated with examples from our laboratory and from the literature.
Collapse
Affiliation(s)
- Jason J Serpa
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | | | | | | | | | | |
Collapse
|