1
|
Kinghorn AB, Guo W, Wang L, Tang MYH, Wang F, Shiu SC, Lau KK, Jinata C, Poonam AD, Shum HC, Tanner JA. Evolution Driven Microscale Combinatorial Chemistry in Intracellular Mimicking Droplets to Engineer Thermostable RNA for Cellular Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409911. [PMID: 39865936 PMCID: PMC11878259 DOI: 10.1002/smll.202409911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/01/2025] [Indexed: 01/28/2025]
Abstract
Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape. This system is integrated with microfluidic droplet sorting to evolve RNA aptamers. Through this approach, an RNA aptamer is engineered with improved fluorescence activity by exploring the chemical fitness landscape under biomimetic conditions. The enhanced RNA aptamer named eBroccoli has increased fluorescence intensity and thermal stability, both in vitro and in vivo in bacterial and mammalian cells. In mammalian cell culture conditions, a fluorescence improvement of 3.9-times is observed and biological thermal stability up to 45 °C is observed in bacterial systems. eBroccoli enable real-time visualization of nanoscale stress granule formation in mammalian cells during heat shock at 42 °C. By introducing the concept of "biomimetic equivalence" based on RNA folding, the platform offers a simple yet effective strategy to mimic intracellular complexity in evolution-based engineering.
Collapse
Affiliation(s)
- Andrew Brian Kinghorn
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Wei Guo
- Department of Mechanical EngineeringFaculty of EngineeringThe University of Hong KongHong KongChina
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, Shatin, New TerritoriesHong KongChina
| | - Lin Wang
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongChina
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, Shatin, New TerritoriesHong KongChina
| | - Matthew Yuk Heng Tang
- Department of Mechanical EngineeringFaculty of EngineeringThe University of Hong KongHong KongChina
| | - Fang Wang
- Faculty of Health and Environmental EngineeringShenzhen Technology University3002 Lantian RoadShenzhenGuangdong518118China
| | - Simon Chi‐Chin Shiu
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Kwan Kiu Lau
- Department of Mechanical EngineeringFaculty of EngineeringThe University of Hong KongHong KongChina
| | - Chandra Jinata
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongChina
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, Shatin, New TerritoriesHong KongChina
| | - Aditi Dey Poonam
- Department of Mechanical EngineeringFaculty of EngineeringThe University of Hong KongHong KongChina
| | - Ho Cheung Shum
- Department of Mechanical EngineeringFaculty of EngineeringThe University of Hong KongHong KongChina
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, Shatin, New TerritoriesHong KongChina
- Department of Chemistry and Department of Biomedical EngineeringCity University of Hong KongHong KongChina
| | - Julian Alexander Tanner
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongChina
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, Shatin, New TerritoriesHong KongChina
- Materials Innovation Institute for Life Sciences and Energy (MILES)HKU‐SIRIShenzhenGuangdong518063China
| |
Collapse
|
2
|
Kaloudas D, Pavlova N, Penchovsky R. Computational Design of Allosteric Ribozymes via Genetic Algorithms. Methods Mol Biol 2024; 2822:443-469. [PMID: 38907934 DOI: 10.1007/978-1-0716-3918-4_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
In vitro selection of allosteric ribozymes has many challenges, such as complex and time-consuming experimental procedures, uncertain results, and the unwanted functionality of the enriched sequences. The precise computational design of allosteric ribozymes is achievable using RNA secondary structure folding principles. The computational design of allosteric ribozymes is based on experimentally validated EAs, random search algorithms, and a partition function for RNA folding. The in silico design achieves an accuracy exceeding 90%. Various algorithms with different logic gates have been automated via computer programs that can quickly create many allosteric sequences. This can eliminate the need for in vitro selection of allosteric ribozymes, thus vastly reducing the time and cost required.
Collapse
Affiliation(s)
- Dimitrios Kaloudas
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Nikolet Pavlova
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria.
| |
Collapse
|
3
|
Kläge D, Müller E, Hartig JS. A comparative survey of the influence of small self-cleaving ribozymes on gene expression in human cell culture. RNA Biol 2024; 21:1-11. [PMID: 38146121 PMCID: PMC10761166 DOI: 10.1080/15476286.2023.2296203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
Self-cleaving ribozymes are versatile tools for synthetic biologists when it comes to controlling gene expression. Up to date, 12 different classes are known, and over the past decades more and more details about their structure, cleavage mechanisms and natural environments have been uncovered. However, when these motifs are applied to mammalian gene expression constructs, the outcome can often be unexpected. A variety of factors, such as surrounding sequences and positioning of the ribozyme influences the activity and hence performance of catalytic RNAs. While some information about the efficiency of individual ribozymes (each tested in specific contexts) is known, general trends obtained from standardized, comparable experiments are lacking, complicating decisions such as which ribozyme to choose and where to insert it into the target mRNA. In many cases, application-specific optimization is required, which can be very laborious. Here, we systematically compared different classes of ribozymes within the 3'-UTR of a given reporter gene. We then examined position-dependent effects of the best-performing ribozymes. Moreover, we tested additional variants of already widely used hammerhead ribozymes originating from various organisms. We were able to identify functional structures suited for aptazyme design and generated highly efficient hammerhead ribozyme variants originating from the human genome. The present dataset will aide decisions about how to apply ribozymes for affecting gene expression as well as for developing ribozyme-based switches for controlling gene expression in human cells.
Collapse
Affiliation(s)
- Dennis Kläge
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Elisabeth Müller
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Jörg S. Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
4
|
Du X, He PP, Wang C, Wang X, Mu Y, Guo W. Fast Transport and Transformation of Biomacromolecular Substances via Thermo-Stimulated Active "Inhalation-Exhalation" Cycles of Hierarchically Structured Smart pNIPAM-DNA Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206302. [PMID: 36268982 DOI: 10.1002/adma.202206302] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Although smart hydrogels hold great promise in biosensing and biomedical applications, their response to external stimuli is governed by the passive diffusion-dependent substance transport between hydrogels and environments and within the 3D hydrogel matrices, resulting in slow response to biomacromolecules and limiting their extensive applications. Herein, inspired by the respiration systems of organisms, an active strategy to achieve highly efficient biomolecular substance transport through the thermo-stimulated "inhalation-exhalation" cycles of hydrogel matrices is demonstrated. The cryo-structured poly(N-isopropylacrylamide) (pNIPAM)-DNA hydrogels, composed of functional DNA-tethered pNIPAM networks and free-water-containing macroporous channels, exhibit thermally triggered fast and reversible shrinking/swelling cycles with high-volume changes, which drive the formation of dynamic water stream to accelerate the intake of external substances and expelling of endogenous substances, thus promoting the functional properties of hydrogel systems. Demonstrated by catalytic DNAzyme and CRISPR-Cas12a-incorporating hydrogels, significantly enhanced catalytic efficiency with up to 280% and 390% is achieved, upon the introduction of active "inhalation-exhalation" cycles, respectively. Moreover, remotely near-infrared (NIR)-triggering of "inhalation-exhalation" cycles is achieved after the introduction of NIR-responsive MXene nanosheets into the hydrogel matrix. These hydrogel systems with enhanced substance transport and transformation properties hold promise in the development of more effective biosensing and therapeutic systems.
Collapse
Affiliation(s)
- Xiaoxue Du
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ping-Ping He
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chunyan Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaowen Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yali Mu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
5
|
Pacin-Ruiz B, Cortese MF, Tabernero D, Sopena S, Gregori J, García-García S, Casillas R, Najarro A, Aldama U, Palom A, Rando-Segura A, Galán A, Vila M, Riveiro-Barciela M, Quer J, González-Aseguinolaza G, Buti M, Rodríguez-Frías F. Inspecting the Ribozyme Region of Hepatitis Delta Virus Genotype 1: Conservation and Variability. Viruses 2022; 14:215. [PMID: 35215809 PMCID: PMC8877431 DOI: 10.3390/v14020215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
The hepatitis delta virus (HDV) genome has an autocatalytic region called the ribozyme, which is essential for viral replication. The aim of this study was to use next-generation sequencing (NGS) to analyze the ribozyme quasispecies (QS) in order to study its evolution and identify highly conserved regions potentially suitable for a gene-silencing strategy. HDV RNA was extracted from 2 longitudinal samples of chronic HDV patients and the ribozyme (nucleotide, nt 688-771) was analyzed using NGS. QS conservation, variability and genetic distance were analyzed. Mutations were identified by aligning sequences with their specific genotype consensus. The main relevant mutations were tested in vitro. The ribozyme was conserved overall, with a hyper-conserved region between nt 715-745. No difference in QS was observed over time. The most variable region was between nt 739-769. Thirteen mutations were observed, with three showing a higher frequency: T23C, T69C and C64 deletion. This last strongly reduced HDV replication by more than 1 log in vitro. HDV Ribozyme QS was generally highly conserved and was maintained during follow-up. The most conserved portion may be a valuable target for a gene-silencing strategy. The presence of the C64 deletion may strongly impair viral replication, as it is a potential mechanism of viral persistence.
Collapse
Affiliation(s)
- Beatriz Pacin-Ruiz
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
| | - María Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
| | - Sara Sopena
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Josep Gregori
- Liver Unit, Liver Disease, Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.G.); (J.Q.)
| | - Selene García-García
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
| | - Rosario Casillas
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Adrián Najarro
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Unai Aldama
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Adriana Palom
- Liver Unit, Department of Internal Medicine, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Ariadna Rando-Segura
- Department of Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Anna Galán
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Marta Vila
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
- Liver Unit, Department of Internal Medicine, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Josep Quer
- Liver Unit, Liver Disease, Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.G.); (J.Q.)
| | | | - María Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
- Liver Unit, Department of Internal Medicine, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Plaça Cívica, 08193 Bellaterra, Spain
| |
Collapse
|
6
|
Winkler L, Dimitrova N. A mechanistic view of long noncoding RNAs in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1699. [PMID: 34668345 PMCID: PMC9016092 DOI: 10.1002/wrna.1699] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important modulators of a wide range of biological processes in normal and disease states. In particular, lncRNAs have garnered significant interest as novel players in the molecular pathology of cancer, spurring efforts to define the functions, and elucidate the mechanisms through which cancer‐associated lncRNAs operate. In this review, we discuss the prevalent mechanisms employed by lncRNAs, with a critical assessment of the methodologies used to determine each molecular function. We survey the abilities of cancer‐associated lncRNAs to enact diverse trans functions throughout the nucleus and in the cytoplasm and examine the local roles of cis‐acting lncRNAs in modulating the expression of neighboring genes. In linking lncRNA functions and mechanisms to their roles in cancer biology, we contend that a detailed molecular understanding of lncRNA functionality is key to elucidating their contributions to tumorigenesis and to unlocking their therapeutic potential. This article is categorized under:Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Lauren Winkler
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
DasGupta S, Nykiel K, Piccirilli JA. The hammerhead self-cleaving motif as a precursor to complex endonucleolytic ribozymes. RNA (NEW YORK, N.Y.) 2021; 27:1017-1024. [PMID: 34131025 PMCID: PMC8370743 DOI: 10.1261/rna.078813.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Connections between distinct catalytic RNA motifs through networks of mutations that retain catalytic function (neutral networks) were likely central to the evolution of biocatalysis. Despite suggestions that functional RNAs collectively form an interconnected web of neutral networks, little evidence has emerged to demonstrate the existence of such intersecting networks in naturally occurring RNAs. Here we show that neutral networks of two naturally occurring, seemingly unrelated endonucleolytic ribozymes, the hammerhead (HH) and hairpin (HP), intersect. Sequences at the intersection of these networks exhibit catalytic functions corresponding to both ribozymes by potentially populating both catalytic folds and enable a smooth crossover between the two. Small and structurally simple endonucleolytic motifs like the HH ribozyme could, through mutational walks along their neutral networks, encounter novel catalytic phenotypes, and structurally flexible, bifunctional sequences at the intersection of these networks could have acted as nodes for evolutionary diversification in an RNA world. Considering the simplicity and small size of the HH ribozyme, we propose that this self-cleaving motif could have been a precursor to other more complex endonucleolytic ribozymes. More generally, our results suggest that RNAs that possess distinct sequences, structures, and catalytic functions, can potentially share evolutionary history through mutational connections in sequence space.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kamila Nykiel
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph A Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
8
|
Guo W, Kinghorn AB, Zhang Y, Li Q, Poonam AD, Tanner JA, Shum HC. Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Nat Commun 2021; 12:3194. [PMID: 34045455 PMCID: PMC8160217 DOI: 10.1038/s41467-021-23410-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
The synthetic pathways of life’s building blocks are envisaged to be through a series of complex prebiotic reactions and processes. However, the strategy to compartmentalize and concentrate biopolymers under prebiotic conditions remains elusive. Liquid-liquid phase separation is a mechanism by which membraneless organelles form inside cells, and has been hypothesized as a potential mechanism for prebiotic compartmentalization. Associative phase separation of oppositely charged species has been shown to partition RNA, but the strongly negative charge exhibited by RNA suggests that RNA-polycation interactions could inhibit RNA folding and its functioning inside the coacervates. Here, we present a prebiotically plausible pathway for non-associative phase separation within an evaporating all-aqueous sessile droplet. We quantitatively investigate the kinetic pathway of phase separation triggered by the non-uniform evaporation rate, together with the Marangoni flow-driven hydrodynamics inside the sessile droplet. With the ability to undergo liquid-liquid phase separation, the drying droplets provide a robust mechanism for formation of prebiotic membraneless compartments, as demonstrated by localization and storage of nucleic acids, in vitro transcription, as well as a three-fold enhancement of ribozyme activity. The compartmentalization mechanism illustrated in this model system is feasible on wet organophilic silica-rich surfaces during early molecular evolution. Prebiotic compartmentalization could prove essential for the evolution of life. Guo et al. show that liquid-liquid separation in an aqueous two-phase system driven by evaporation may already suffice to facilitate chemical processes required for the RNA world hypothesis.
Collapse
Affiliation(s)
- Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Yage Zhang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Qingchuan Li
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China.,School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, 250100, China
| | - Aditi Dey Poonam
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China.
| |
Collapse
|
9
|
Panchapakesan SSS, Breaker RR. The case of the missing allosteric ribozymes. Nat Chem Biol 2021; 17:375-382. [PMID: 33495645 PMCID: PMC8880209 DOI: 10.1038/s41589-020-00713-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/13/2020] [Indexed: 01/28/2023]
Abstract
The RNA World theory encompasses the hypothesis that sophisticated ribozymes and riboswitches were the primary drivers of metabolic processes in ancient organisms. Several types of catalytic RNAs and many classes of ligand-sensing RNA switches still exist in modern cells. Curiously, allosteric ribozymes formed by the merger of RNA enzyme and RNA switch components are largely absent in today's biological systems. This is true despite the striking abundances of various classes of both self-cleaving ribozymes and riboswitch aptamers. Here we present the known types of ligand-controlled ribozymes and riboswitches and discuss the possible reasons why fused ribozyme-aptamer constructs have been disfavored through evolution.
Collapse
Affiliation(s)
- Shanker S. S. Panchapakesan
- Department of Molecular, Cellular and Developmental
Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental
Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA.,Howard Hughes Medical Institute, Yale University, P.O. Box
208103, New Haven, CT 06520-8103, USA.,Department of Molecular Biophysics and Biochemistry, Yale
University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| |
Collapse
|
10
|
B2 and ALU retrotransposons are self-cleaving ribozymes whose activity is enhanced by EZH2. Proc Natl Acad Sci U S A 2019; 117:415-425. [PMID: 31871160 DOI: 10.1073/pnas.1917190117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transposable elements make up half of the mammalian genome. One of the most abundant is the short interspersed nuclear element (SINE). Among their million copies, B2 accounts for ∼350,000 in the mouse genome and has garnered special interest because of emerging roles in epigenetic regulation. Our recent work demonstrated that B2 RNA binds stress genes to retard transcription elongation. Although epigenetically silenced, B2s become massively up-regulated during thermal and other types of stress. Specifically, an interaction between B2 RNA and the Polycomb protein, EZH2, results in cleavage of B2 RNA, release of B2 RNA from chromatin, and activation of thermal stress genes. Although an established RNA-binding protein and histone methyltransferase, EZH2 is not known to be a nuclease. Here, we provide evidence for the surprising conclusion that B2 is a self-cleaving ribozyme. Ribozyme activity depends on Mg+2 and monovalent cations but is resistant to protease treatment. However, contact with EZH2 accelerates cleavage rate by >100-fold, suggesting that EZH2 promotes a cleavage-competent RNA conformation. B2 modification-interference analysis demonstrates that phosphorothioate changes at A and C nucleotides can substitute for EZH2. B2 nucleotides 45 to 55 and 100 to 101 are essential for activity. Finally, another family of SINEs, the human ALU element, also produces a self-cleaving RNA and is cleaved during T-cell activation as well as thermal and endoplasmic reticulum (ER) stress. Thus, B2/ALU SINEs may be classified as "epigenetic ribozymes" that function as transcriptional switches during stress. Given their high copy numbers, B2 and ALU may represent the predominant ribozyme activity in mammalian cells.
Collapse
|
11
|
Moon WJ, Liu J. Replacing Mg2+by Fe2+for RNA‐Cleaving DNAzymes. Chembiochem 2019; 21:401-407. [DOI: 10.1002/cbic.201900344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Woohyun J. Moon
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
12
|
Weinberg CE, Weinberg Z, Hammann C. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Res 2019; 47:9480-9494. [PMID: 31504786 PMCID: PMC6765202 DOI: 10.1093/nar/gkz737] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Small endonucleolytic ribozymes promote the self-cleavage of their own phosphodiester backbone at a specific linkage. The structures of and the reactions catalysed by members of individual families have been studied in great detail in the past decades. In recent years, bioinformatics studies have uncovered a considerable number of new examples of known catalytic RNA motifs. Importantly, entirely novel ribozyme classes were also discovered, for most of which both structural and biochemical information became rapidly available. However, for the majority of the new ribozymes, which are found in the genomes of a variety of species, a biological function remains elusive. Here, we concentrate on the different approaches to find catalytic RNA motifs in sequence databases. We summarize the emerging principles of RNA catalysis as observed for small endonucleolytic ribozymes. Finally, we address the biological functions of those ribozymes, where relevant information is available and common themes on their cellular activities are emerging. We conclude by speculating on the possibility that the identification and characterization of proteins that we hypothesize to be endogenously associated with catalytic RNA might help in answering the ever-present question of the biological function of the growing number of genomically encoded, small endonucleolytic ribozymes.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16–18, 04107 Leipzig, Germany
| | - Christian Hammann
- Ribogenetics & Biochemistry, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
13
|
A qualitative criterion for identifying the root of the tree of life. J Theor Biol 2019; 464:126-131. [DOI: 10.1016/j.jtbi.2018.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 11/18/2022]
|
14
|
Studying Parasite Gene Function and Interaction Through Ribozymes and Riboswitches Design Mechanism. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Stephenson JD, Popović M, Bristow TF, Ditzler MA. Evolution of ribozymes in the presence of a mineral surface. RNA (NEW YORK, N.Y.) 2016; 22:1893-1901. [PMID: 27793980 PMCID: PMC5113209 DOI: 10.1261/rna.057703.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Mineral surfaces are often proposed as the sites of critical processes in the emergence of life. Clay minerals in particular are thought to play significant roles in the origin of life including polymerizing, concentrating, organizing, and protecting biopolymers. In these scenarios, the impact of minerals on biopolymer folding is expected to influence evolutionary processes. These processes include both the initial emergence of functional structures in the presence of the mineral and the subsequent transition away from the mineral-associated niche. The initial evolution of function depends upon the number and distribution of sequences capable of functioning in the presence of the mineral, and the transition to new environments depends upon the overlap between sequences that evolve on the mineral surface and sequences that can perform the same functions in the mineral's absence. To examine these processes, we evolved self-cleaving ribozymes in vitro in the presence or absence of Na-saturated montmorillonite clay mineral particles. Starting from a shared population of random sequences, RNA populations were evolved in parallel, along separate evolutionary trajectories. Comparative sequence analysis and activity assays show that the impact of this clay mineral on functional structure selection was minimal; it neither prevented common structures from emerging, nor did it promote the emergence of new structures. This suggests that montmorillonite does not improve RNA's ability to evolve functional structures; however, it also suggests that RNAs that do evolve in contact with montmorillonite retain the same structures in mineral-free environments, potentially facilitating an evolutionary transition away from a mineral-associated niche.
Collapse
Affiliation(s)
- James D Stephenson
- NASA Postdoctoral Program, NASA Ames Research Center, Moffett Field, California 94035, USA
- Space Science and Astrobiology Division, Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, USA
| | - Milena Popović
- Space Science and Astrobiology Division, Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, USA
- Blue Marble Space Institute of Science, Seattle, Washington 98145, USA
| | - Thomas F Bristow
- Space Science and Astrobiology Division, Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, USA
| | - Mark A Ditzler
- Space Science and Astrobiology Division, Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, USA
| |
Collapse
|
16
|
Rossetti M, Ranallo S, Idili A, Palleschi G, Porchetta A, Ricci F. Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs. Chem Sci 2016; 8:914-920. [PMID: 28572901 PMCID: PMC5452262 DOI: 10.1039/c6sc03404g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
A rationally designed new class of DNA-based nanoswitches allosterically regulated by specific biological targets, antibodies and transcription factors, can load and release a molecular cargo in a controlled fashion.
Here we demonstrate the rational design of a new class of DNA-based nanoswitches which are allosterically regulated by specific biological targets, antibodies and transcription factors, and are able to load and release a molecular cargo (i.e. doxorubicin) in a controlled fashion. In our first model system we rationally designed a stem-loop DNA-nanoswitch that adopts two mutually exclusive conformations: a “Load” conformation containing a doxorubicin-intercalating domain and a “Release” conformation containing a duplex portion recognized by a specific transcription-factor (here Tata Binding Protein). The binding of the transcription factor pushes this conformational equilibrium towards the “Release” state thus leading to doxorubicin release from the nanoswitch. In our second model system we designed a similar stem-loop DNA-nanoswitch for which conformational change and subsequent doxorubicin release can be triggered by a specific antibody. Our approach augments the current tool kit of smart drug release mechanisms regulated by different biological inputs.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Simona Ranallo
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Andrea Idili
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Giuseppe Palleschi
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Alessandro Porchetta
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Francesco Ricci
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| |
Collapse
|
17
|
Parlea L, Puri A, Kasprzak W, Bindewald E, Zakrevsky P, Satterwhite E, Joseph K, Afonin KA, Shapiro BA. Cellular Delivery of RNA Nanoparticles. ACS COMBINATORIAL SCIENCE 2016; 18:527-47. [PMID: 27509068 PMCID: PMC6345529 DOI: 10.1021/acscombsci.6b00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA nanostructures can be programmed to exhibit defined sizes, shapes and stoichiometries from naturally occurring or de novo designed RNA motifs. These constructs can be used as scaffolds to attach functional moieties, such as ligand binding motifs or gene expression regulators, for nanobiology applications. This review is focused on four areas of importance to RNA nanotechnology: the types of RNAs of particular interest for nanobiology, the assembly of RNA nanoconstructs, the challenges of cellular delivery of RNAs in vivo, and the delivery carriers that aid in the matter. The available strategies for the design of nucleic acid nanostructures, as well as for formulation of their carriers, make RNA nanotechnology an important tool in both basic research and applied biomedical science.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Anu Puri
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Paul Zakrevsky
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily Satterwhite
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kenya Joseph
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
18
|
Jimenez RM, Polanco JA, Lupták A. Chemistry and Biology of Self-Cleaving Ribozymes. Trends Biochem Sci 2015; 40:648-661. [PMID: 26481500 DOI: 10.1016/j.tibs.2015.09.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 11/26/2022]
Abstract
Self-cleaving ribozymes were discovered 30 years ago, but their biological distribution and catalytic mechanisms are only beginning to be defined. Each ribozyme family is defined by a distinct structure, with unique active sites accelerating the same transesterification reaction across the families. Biochemical studies show that general acid-base catalysis is the most common mechanism of self-cleavage, but metal ions and metabolites can be used as cofactors. Ribozymes have been discovered in highly diverse genomic contexts throughout nature, from viroids to vertebrates. Their biological roles include self-scission during rolling-circle replication of RNA genomes, co-transcriptional processing of retrotransposons, and metabolite-dependent gene expression regulation in bacteria. Other examples, including highly conserved mammalian ribozymes, suggest that many new biological roles are yet to be discovered.
Collapse
Affiliation(s)
- Randi M Jimenez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Julio A Polanco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
19
|
Endo M, Takeuchi Y, Suzuki Y, Emura T, Hidaka K, Wang F, Willner I, Sugiyama H. Single-Molecule Visualization of the Activity of a Zn2+
-Dependent DNAzyme. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Endo M, Takeuchi Y, Suzuki Y, Emura T, Hidaka K, Wang F, Willner I, Sugiyama H. Single-Molecule Visualization of the Activity of a Zn(2+)-Dependent DNAzyme. Angew Chem Int Ed Engl 2015. [PMID: 26195344 DOI: 10.1002/anie.201504656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We demonstrate the single-molecule imaging of the catalytic reaction of a Zn(2+)-dependent DNAzyme in a DNA origami nanostructure. The single-molecule catalytic activity of the DNAzyme was examined in the designed nanostructure, a DNA frame. The DNAzyme and a substrate strand attached to two supported dsDNA molecules were assembled in the DNA frame in two different configurations. The reaction was monitored by observing the configurational changes of the incorporated DNA strands in the DNA frame. This configurational changes were clearly observed in accordance with the progress of the reaction. The separation processes of the dsDNA molecules, as induced by the cleavage by the DNAzyme, were directly visualized by high-speed atomic force microscopy (AFM). This nanostructure-based AFM imaging technique is suitable for the monitoring of various chemical and biochemical catalytic reactions at the single-molecule level.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan).
- CREST (Japan) Science and Technology Agency (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan).
| | - Yosuke Takeuchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Yuki Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Fuan Wang
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel).
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan).
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan).
- CREST (Japan) Science and Technology Agency (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan).
| |
Collapse
|
21
|
Adornetto G, Porchetta A, Palleschi G, Plaxco KW, Ricci F. A general approach to the design of allosteric, transcription factor-regulated DNAzymes. Chem Sci 2015; 6:3692-3696. [PMID: 28706715 PMCID: PMC5496187 DOI: 10.1039/c5sc00228a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/09/2015] [Indexed: 12/26/2022] Open
Abstract
Here we explore a general strategy for the rational design of nucleic acid catalysts that can be allosterically activated by specific nucleic-acid binding proteins. To demonstrate this we have combined a catalytic DNAzyme sequence and the consensus sequence recognized by specific transcription factors to create a construct exhibiting two low-energy conformations: a more stable conformation lacking catalytic activity and lacking the transcription factor binding site, and a less stable conformation that is both catalytically active and competent to bind the transcription factor. The presence of the target transcription factor pushes the equilibrium between these states towards the latter conformation, concomitantly activating catalysis. To demonstrate this we have designed and characterized two peroxidase-like DNAzymes whose activities are triggered upon binding either TATA binding protein or the microphthalmia-associated transcription factor. Our approach augments the current tool kit for the allosteric control of DNAzymes and ribozymes and, because transcription factors control many key biological functions, could have important clinical and diagnostic applications.
Collapse
Affiliation(s)
- G Adornetto
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
| | - A Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| | - G Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| | - K W Plaxco
- Department of Chemistry and Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106 , USA
- Center for Bioengineering , University of California Santa Barbara , Santa Barbara , California 93106 , USA
| | - F Ricci
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| |
Collapse
|
22
|
New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nat Chem Biol 2015; 11:606-10. [PMID: 26167874 PMCID: PMC4509812 DOI: 10.1038/nchembio.1846] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022]
Abstract
Enzymes made of RNA catalyze reactions that are essential for protein synthesis and RNA processing. However, such natural ribozymes are exceedingly rare, as evident by the fact that the discovery rate for new classes has dropped to one per decade from about one per year during the 1980s. Indeed, only 11 distinct ribozyme classes have been experimentally validated to date. Recently, we recognized that self-cleaving ribozymes frequently associate with certain types of genes from bacteria. Herein this synteny was exploited to identify divergent architectures for two previously known ribozyme classes and to discover additional noncoding RNA motifs that are self-cleaving RNA candidates. Three new self-cleaving classes, named twister sister, pistol and hatchet, have been identified from this collection, suggesting that even more ribozymes remain hidden in modern cells.
Collapse
|
23
|
Popović M, Fliss PS, Ditzler MA. In vitro evolution of distinct self-cleaving ribozymes in diverse environments. Nucleic Acids Res 2015; 43:7070-82. [PMID: 26130717 PMCID: PMC4538833 DOI: 10.1093/nar/gkv648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/11/2015] [Indexed: 01/08/2023] Open
Abstract
In vitro evolution experiments have long been used to evaluate the roles of RNA in both modern and ancient biology, and as a tool for biotechnology applications. The conditions under which these experiments have been conducted, however, do not reflect the range of cellular environments in modern biology or our understanding of chemical environments on the early earth, when the atmosphere and oceans were largely anoxic and soluble Fe2+ was abundant. To test the impact of environmental factors relevant to RNA's potential role in the earliest forms of life, we evolved populations of self-cleaving ribozymes in an anoxic atmosphere with varying pH in the presence of either Fe2+ or Mg2+. Populations evolved under these different conditions are dominated by different sequences and secondary structures, demonstrating global differences in the underlying fitness landscapes. Comparisons between evolutionary outcomes and catalytic activities also indicate that Mg2+ can readily take the place of Fe2+ in supporting the catalysis of RNA cleavage at neutral pH, but not at lower pH. These results highlight the importance of considering the specific environments in which functional biopolymers evolve when evaluating their potential roles in the origin of life, extant biology, or biotechnology.
Collapse
Affiliation(s)
- Milena Popović
- NASA Postdoctoral Program, NASA Ames Research Center, Moffett Field, CA 94035, USA Space Science and Astrobiology Division, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA Blue Marble Space Institute of Science, Seattle, WA 98145, USA
| | - Palmer S Fliss
- Blue Marble Space Institute of Science, Seattle, WA 98145, USA
| | - Mark A Ditzler
- Space Science and Astrobiology Division, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
24
|
Ryckelynck M, Baudrey S, Rick C, Marin A, Coldren F, Westhof E, Griffiths AD. Using droplet-based microfluidics to improve the catalytic properties of RNA under multiple-turnover conditions. RNA (NEW YORK, N.Y.) 2015; 21:458-69. [PMID: 25605963 PMCID: PMC4338340 DOI: 10.1261/rna.048033.114] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/09/2014] [Indexed: 05/19/2023]
Abstract
In vitro evolution methodologies are powerful approaches to identify RNA with new functionalities. While Systematic Evolution of Ligands by Exponential enrichment (SELEX) is an efficient approach to generate new RNA aptamers, it is less suited for the isolation of efficient ribozymes as it does not select directly for the catalysis. In vitro compartmentalization (IVC) in aqueous droplets in emulsions allows catalytic RNAs to be selected under multiple-turnover conditions but suffers severe limitations that can be overcome using the droplet-based microfluidics workflow described in this paper. Using microfluidics, millions of genes in a library can be individually compartmentalized in highly monodisperse aqueous droplets and serial operations performed on them. This allows the different steps of the evolution process (gene amplification, transcription, and phenotypic assay) to be uncoupled, making the method highly flexible, applicable to the selection and evolution of a variety of RNAs, and easily adaptable for evolution of DNA or proteins. To demonstrate the method, we performed cycles of random mutagenesis and selection to evolve the X-motif, a ribozyme which, like many ribozymes selected using SELEX, has limited multiple-turnover activity. This led to the selection of variants, likely to be the optimal ribozymes that can be generated using point mutagenesis alone, with a turnover number under multiple-turnover conditions, k(ss) cat, ∼ 28-fold higher than the original X-motif, primarily due to an increase in the rate of product release, the rate-limiting step in the multiple-turnover reaction.
Collapse
Affiliation(s)
- Michael Ryckelynck
- Architecture et Réactivité de l'ARN, CNRS UPR 9002, Université de Strasbourg, 67084 Strasbourg, France Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67083 Strasbourg, France
| | - Stéphanie Baudrey
- Architecture et Réactivité de l'ARN, CNRS UPR 9002, Université de Strasbourg, 67084 Strasbourg, France
| | - Christian Rick
- Architecture et Réactivité de l'ARN, CNRS UPR 9002, Université de Strasbourg, 67084 Strasbourg, France Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67083 Strasbourg, France
| | - Annick Marin
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67083 Strasbourg, France
| | - Faith Coldren
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67083 Strasbourg, France
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, CNRS UPR 9002, Université de Strasbourg, 67084 Strasbourg, France
| | - Andrew D Griffiths
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67083 Strasbourg, France Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), CNRS UMR 8231, 75231 Paris, France
| |
Collapse
|
25
|
Boza G, Szilágyi A, Kun Á, Santos M, Szathmáry E. Evolution of the division of labor between genes and enzymes in the RNA world. PLoS Comput Biol 2014; 10:e1003936. [PMID: 25474573 PMCID: PMC4256009 DOI: 10.1371/journal.pcbi.1003936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/26/2014] [Indexed: 11/18/2022] Open
Abstract
The RNA world is a very likely interim stage of the evolution after the first replicators and before the advent of the genetic code and translated proteins. Ribozymes are known to be able to catalyze many reaction types, including cofactor-aided metabolic transformations. In a metabolically complex RNA world, early division of labor between genes and enzymes could have evolved, where the ribozymes would have been transcribed from the genes more often than the other way round, benefiting the encapsulating cells through this dosage effect. Here we show, by computer simulations of protocells harboring unlinked RNA replicators, that the origin of replicational asymmetry producing more ribozymes from a gene template than gene strands from a ribozyme template is feasible and robust. Enzymatic activities of the two modeled ribozymes are in trade-off with their replication rates, and the relative replication rates compared to those of complementary strands are evolvable traits of the ribozymes. The degree of trade-off is shown to have the strongest effect in favor of the division of labor. Although some asymmetry between gene and enzymatic strands could have evolved even in earlier, surface-bound systems, the shown mechanism in protocells seems inevitable and under strong positive selection. This could have preadapted the genetic system for transcription after the subsequent origin of chromosomes and DNA.
Collapse
Affiliation(s)
- Gergely Boza
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE-MTMT Ecology Research Group, Budapest, Hungary
| | - András Szilágyi
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Parmenides Center for the Conceptual Foundations of Science, Pullach, Germany
- MTA-ELTE Research Group in Theoretical Biology and Evolutionary Ecology, Budapest, Hungary
| | - Ádám Kun
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE-MTMT Ecology Research Group, Budapest, Hungary
- Parmenides Center for the Conceptual Foundations of Science, Pullach, Germany
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eörs Szathmáry
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Parmenides Center for the Conceptual Foundations of Science, Pullach, Germany
- MTA-ELTE Research Group in Theoretical Biology and Evolutionary Ecology, Budapest, Hungary
- * E-mail:
| |
Collapse
|
26
|
Szilágyi A, Kun Á, Szathmáry E. Local neutral networks help maintain inaccurately replicating ribozymes. PLoS One 2014; 9:e109987. [PMID: 25299454 PMCID: PMC4192543 DOI: 10.1371/journal.pone.0109987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/05/2014] [Indexed: 12/03/2022] Open
Abstract
The error threshold of replication limits the selectively maintainable genome size against recurrent deleterious mutations for most fitness landscapes. In the context of RNA replication a distinction between the genotypic and the phenotypic error threshold has been made; where the latter concerns the maintenance of secondary structure rather than sequence. RNA secondary structure is treated as a proxy for function. The phenotypic error threshold allows higher per digit mutation rates than its genotypic counterpart, and is known to increase with the frequency of neutral mutations in sequence space. Here we show that the degree of neutrality, i.e. the frequency of nearest-neighbour (one-step) neutral mutants is a remarkably accurate proxy for the overall frequency of such mutants in an experimentally verifiable formula for the phenotypic error threshold; this we achieve by the full numerical solution for the concentration of all sequences in mutation-selection balance up to length 16. We reinforce our previous result that currently known ribozymes could be selectively maintained by the accuracy known from the best available polymerase ribozymes. Furthermore, we show that in silico stabilizing selection can increase the mutational robustness of ribozymes due to the fact that they were produced by artificial directional selection in the first place. Our finding offers a better understanding of the error threshold and provides further insight into the plausibility of an ancient RNA world.
Collapse
Affiliation(s)
- András Szilágyi
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
| | - Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
27
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
28
|
Roth A, Weinberg Z, Chen AGY, Kim PB, Ames TD, Breaker RR. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol 2014; 10:56-60. [PMID: 24240507 PMCID: PMC3867598 DOI: 10.1038/nchembio.1386] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 09/25/2013] [Indexed: 11/12/2022]
Abstract
Ribozymes are noncoding RNAs that promote chemical transformations with rate enhancements approaching those of protein enzymes. Although ribozymes are likely to have been abundant during the RNA world era, only ten classes are known to exist among contemporary organisms. We report the discovery and analysis of an additional self-cleaving ribozyme class, called twister, which is present in many species of bacteria and eukarya. Nearly 2,700 twister ribozymes were identified that conform to a secondary structure consensus that is small yet complex, with three stems conjoined by internal and terminal loops. Two pseudoknots provide tertiary structure contacts that are critical for catalytic activity. The twister ribozyme motif provides another example of a natural RNA catalyst and calls attention to the potentially varied biological roles of this and other classes of widely distributed self-cleaving RNAs.
Collapse
Affiliation(s)
- Adam Roth
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103, USA
| | - Zasha Weinberg
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103, USA
| | - Andy G. Y. Chen
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103, USA
| | - Peter B. Kim
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103, USA
| | - Tyler D. Ames
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520-8103, USA
| |
Collapse
|
29
|
Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 2013; 505:701-5. [PMID: 24336214 PMCID: PMC3966492 DOI: 10.1038/nature12894] [Citation(s) in RCA: 667] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
RNA plays a dual role as an informational molecule and a direct effector of biological tasks. The latter function is enabled by RNA’s ability to adopt complex secondary and tertiary folds and thus has motivated extensive computational1–2 and experimental3–8 efforts for determining RNA structures. Existing approaches for evaluating RNA structure have been largely limited to in vitro systems, yet the thermodynamic forces which drive RNA folding in vitro may not be sufficient to predict stable RNA structures in vivo5. Indeed, the presence of RNA binding proteins and ATP-dependent helicases can influence which structures are present inside cells. Here we present an approach for globally monitoring RNA structure in native conditions in vivo with single nucleotide precision. This method is based on in vivo modification with dimethyl sulfate (DMS), which reacts with unpaired adenine and cytosine residues9, followed by deep sequencing to monitor modifications. Our data from yeast and mammalian cells are in excellent agreement with known mRNA structures and with the high-resolution crystal structure of the Saccharomyces cerevisiae ribosome10. Comparison between in vivo and in vitro data reveals that in rapidly dividing cells there are vastly fewer structured mRNA regions in vivo than in vitro. Even thermostable RNA structures are often denatured in cells, highlighting the importance of cellular processes in regulating RNA structure. Indeed, analysis of mRNA structure under ATP-depleted conditions in yeast reveals that energy-dependent processes strongly contribute to the predominantly unfolded state of mRNAs inside cells. Our studies broadly enable the functional analysis of physiological RNA structures and reveal that, in contrast to the Anfinsen view of protein folding, thermodynamics play an incomplete role in determining mRNA structure in vivo.
Collapse
Affiliation(s)
- Silvi Rouskin
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biology, Center for RNA Systems Biology, Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| | - Meghan Zubradt
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biology, Center for RNA Systems Biology, Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| | - Stefan Washietl
- 1] Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] The Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Manolis Kellis
- 1] Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] The Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biology, Center for RNA Systems Biology, Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| |
Collapse
|
30
|
Lau MWL, Ferré-D'Amaré AR. An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence. Nat Chem Biol 2013; 9:805-10. [PMID: 24096303 DOI: 10.1038/nchembio.1360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/05/2013] [Indexed: 12/26/2022]
Abstract
Uniquely among known ribozymes, the glmS ribozyme-riboswitch requires a small-molecule coenzyme, glucosamine-6-phosphate (GlcN6P). Although consistent with its gene-regulatory function, the use of GlcN6P is unexpected because all of the other characterized self-cleaving ribozymes use RNA functional groups or divalent cations for catalysis. To determine what active site features make this ribozyme reliant on GlcN6P and to evaluate whether it might have evolved from a coenzyme-independent ancestor, we isolated a GlcN6P-independent variant through in vitro selection. Three active site mutations suffice to generate a highly reactive RNA that adopts the wild-type fold but uses divalent cations for catalysis and is insensitive to GlcN6P. Biochemical and crystallographic comparisons of wild-type and mutant ribozymes show that a handful of functional groups fine-tune the RNA to be either coenzyme or cation dependent. These results indicate that a few mutations can confer new biochemical activities on structured RNAs. Thus, families of structurally related ribozymes with divergent function may exist.
Collapse
Affiliation(s)
- Matthew W L Lau
- National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
31
|
Eickbush DG, Burke WD, Eickbush TH. Evolution of the R2 retrotransposon ribozyme and its self-cleavage site. PLoS One 2013; 8:e66441. [PMID: 24066021 PMCID: PMC3774820 DOI: 10.1371/journal.pone.0066441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/07/2013] [Indexed: 12/23/2022] Open
Abstract
R2 is a non-long terminal repeat retrotransposon that inserts site-specifically in the tandem 28S rRNA genes of many animals. Previously, R2 RNA from various species of Drosophila was shown to self-cleave from the 28S rRNA/R2 co-transcript by a hepatitis D virus (HDV)-like ribozyme encoded at its 5' end. RNA cleavage was at the precise 5' junction of the element with the 28S gene. Here we report that RNAs encompassing the 5' ends of R2 elements from throughout its species range fold into HDV-like ribozymes. In vitro assays of RNA self-cleavage conducted in many R2 lineages confirmed activity. For many R2s, RNA self-cleavage was not at the 5' end of the element but at 28S rRNA sequences up to 36 nucleotides upstream of the junction. The location of cleavage correlated well with the types of endogenous R2 5' junctions from different species. R2 5' junctions were uniform for most R2s in which RNA cleavage was upstream in the rRNA sequences. The 28S sequences remaining on the first DNA strand synthesized during retrotransposition are postulated to anneal to the target site and uniformly prime second strand DNA synthesis. In species where RNA cleavage occurred at the R2 5' end, the 5' junctions were variable. This junction variation is postulated to result from the priming of second strand DNA synthesis by chance microhomologies between the target site and the first DNA strand. Finally, features of R2 ribozyme evolution, especially changes in cleavage site and convergence on the same active site sequences, are discussed.
Collapse
Affiliation(s)
- Danna G. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - William D. Burke
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Thomas H. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Gu H, Furukawa K, Weinberg Z, Berenson DF, Breaker RR. Small, highly active DNAs that hydrolyze DNA. J Am Chem Soc 2013; 135:9121-9. [PMID: 23679108 PMCID: PMC3763483 DOI: 10.1021/ja403585e] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA phosphoester bonds are exceedingly resistant to hydrolysis in the absence of chemical or enzymatic catalysts. This property is particularly important for organisms with large genomes, as resistance to hydrolytic degradation permits the long-term storage of genetic information. Here we report the creation and analysis of two classes of engineered deoxyribozymes that selectively and rapidly hydrolyze DNA. Members of class I deoxyribozymes carry a catalytic core composed of only 15 conserved nucleotides and attain an observed rate constant (k(obs)) of ~1 min(-1) when incubated near neutral pH in the presence of Zn(2+). Natural DNA sequences conforming to the class I consensus sequence and structure were found that undergo hydrolysis under selection conditions (2 mM Zn(2+), pH 7), which demonstrates that the inherent structure of certain DNA regions might promote catalytic reactions, leading to genomic instability.
Collapse
Affiliation(s)
- Hongzhou Gu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520 United States
- Howard Hughes Medical Institute, New Haven, Connecticut, 06520 United States
| | - Kazuhiro Furukawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520 United States
| | - Zasha Weinberg
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520 United States
- Howard Hughes Medical Institute, New Haven, Connecticut, 06520 United States
| | - Daniel F. Berenson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520 United States
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520 United States
- Howard Hughes Medical Institute, New Haven, Connecticut, 06520 United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520 United States
| |
Collapse
|
33
|
Ramlan EI, Zauner KP. In-silico design of computational nucleic acids for molecular information processing. J Cheminform 2013; 5:22. [PMID: 23647621 PMCID: PMC3664215 DOI: 10.1186/1758-2946-5-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/03/2013] [Indexed: 11/10/2022] Open
Abstract
Within recent years nucleic acids have become a focus of interest for prototype implementations of molecular computing concepts. During the same period the importance of ribonucleic acids as components of the regulatory networks within living cells has increasingly been revealed. Molecular computers are attractive due to their ability to function within a biological system; an application area extraneous to the present information technology paradigm. The existence of natural information processing architectures (predominately exemplified by protein) demonstrates that computing based on physical substrates that are radically different from silicon is feasible. Two key principles underlie molecular level information processing in organisms: conformational dynamics of macromolecules and self-assembly of macromolecules. Nucleic acids support both principles, and moreover computational design of these molecules is practicable. This study demonstrates the simplicity with which one can construct a set of nucleic acid computing units using a new computational protocol. With the new protocol, diverse classes of nucleic acids imitating the complete set of boolean logical operators were constructed. These nucleic acid classes display favourable thermodynamic properties and are significantly similar to the approximation of successful candidates implemented in the laboratory. This new protocol would enable the construction of a network of interconnecting nucleic acids (as a circuit) for molecular information processing.
Collapse
Affiliation(s)
- Effirul Ikhwan Ramlan
- Department of Artificial Intelligence, Faculty of Computer, Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | |
Collapse
|
34
|
Reba A, Meyer AG, Barrick JE. Computational tests of a thermal cycling strategy to isolate more complex functional nucleic acid motifs from random sequence pools by in vitro selection. ARTIFICIAL LIFE 13 : PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON THE SIMULATION AND SYNTHESIS OF LIVING SYSTEMS. INTERNATIONAL CONFERENCE ON THE SIMULATION AND SYNTHESIS OF LIVING SYSTEMS (13TH : 2012 : EAST LANSING, MICH.) 2013; 13:473-480. [PMID: 36129423 PMCID: PMC9484335 DOI: 10.7551/978-0-262-31050-5-ch062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dual information-function nature of nucleic acids has been exploited in the laboratory to isolate novel receptors and catalysts from random DNA and RNA sequences by cycles of in vitro selection and amplification. This strategy is particularly effective because, unlike polypeptides with random amino acid sequences, nucleic acids with random base sequences are often capable of stably folding into defined three-dimensional structures. However, the pervasive base-pairing potential of nucleic acids is also known to lead to kinetic traps in their folding landscapes. That is, the same DNA or RNA sequence can often adopt alternative base-paired structures that are local energy minima, and these folds may interconvert very slowly. We have used simulations with nucleic acid folding algorithms to evaluate the effect of misfolding on in vitro selection experiments. We demonstrate that kinetic traps can prevent the recovery of novel families of complex functional motifs by two mechanisms. First, misfolding can lead to the stochastic loss of unique sequences in the first round of selection. Second, frequent misfolding can reduce the average activity of multiple copies of a sequence to such an extent that it will be outcompeted after multiple rounds of selection. In these simulations, adding thermal cycling to sample multiple folds of one sequence during a selection for a self-modifying catalytic activity can improve the recovery of rare examples of more complex structures. Although newly isolated sequences may fold poorly, they can represent footholds in sequence space that can be improved to reliably fold after a few mutations. Thus, it is plausible that thermal cycling by day-night cycles or other mechanisms on the primordial earth may have been important for the evolution of the first RNA catalysts, and a fold sampling strategy might be used to search for more effective nucleic acid catalysts in the laboratory today.
Collapse
Affiliation(s)
- Aaron Reba
- Department of Chemistry and Biochemistry, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin
| | - Austin G Meyer
- Department of Chemistry and Biochemistry, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin
| | - Jeffrey E Barrick
- Department of Chemistry and Biochemistry, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin
- Center for Systems and Synthetic Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin
| |
Collapse
|
35
|
|
36
|
Ruminski DJ, Webb CHT, Riccitelli NJ, Lupták A. Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. J Biol Chem 2011; 286:41286-41295. [PMID: 21994949 DOI: 10.1074/jbc.m111.297283] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many non-long terminal repeat (non-LTR) retrotransposons lack internal promoters and are co-transcribed with their host genes. These transcripts need to be liberated before inserting into new loci. Using structure-based bioinformatics, we show that several classes of retrotransposons in phyla-spanning arthropods, nematodes, and chordates utilize self-cleaving ribozymes of the hepatitis delta virus (HDV) family for processing their 5' termini. Ribozyme-terminated retrotransposons include rDNA-specific R2, R4, and R6, telomere-specific SART, and Baggins and RTE. The self-scission of the R2 ribozyme is strongly modulated by the insertion site sequence in the rDNA, with the most common insertion sequences promoting faster processing. The ribozymes also promote translation initiation of downstream open reading frames in vitro and in vivo. In some organisms HDV-like and hammerhead ribozymes appear to be dedicated to processing long and short interspersed elements, respectively. HDV-like ribozymes serve several distinct functions in non-LTR retrotransposition, including 5' processing, translation initiation, and potentially trans-templating.
Collapse
Affiliation(s)
- Dana J Ruminski
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Chiu-Ho T Webb
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | | | - Andrej Lupták
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697; Department of Chemistry, University of California, Irvine, California 92697; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697.
| |
Collapse
|
37
|
|
38
|
Perreault J, Weinberg Z, Roth A, Popescu O, Chartrand P, Ferbeyre G, Breaker RR. Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput Biol 2011; 7:e1002031. [PMID: 21573207 PMCID: PMC3088659 DOI: 10.1371/journal.pcbi.1002031] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/25/2011] [Indexed: 02/07/2023] Open
Abstract
Hammerhead ribozymes are small self-cleaving RNAs that promote strand scission by internal phosphoester transfer. Comparative sequence analysis was used to identify numerous additional representatives of this ribozyme class than were previously known, including the first representatives in fungi and archaea. Moreover, we have uncovered the first natural examples of "type II" hammerheads, and our findings reveal that this permuted form occurs in bacteria as frequently as type I and III architectures. We also identified a commonly occurring pseudoknot that forms a tertiary interaction critical for high-speed ribozyme activity. Genomic contexts of many hammerhead ribozymes indicate that they perform biological functions different from their known role in generating unit-length RNA transcripts of multimeric viroid and satellite virus genomes. In rare instances, nucleotide variation occurs at positions within the catalytic core that are otherwise strictly conserved, suggesting that core mutations are occasionally tolerated or preferred.
Collapse
Affiliation(s)
- Jonathan Perreault
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Zasha Weinberg
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Adam Roth
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Olivia Popescu
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
39
|
Jimenez RM, Delwart E, Lupták A. Structure-based search reveals hammerhead ribozymes in the human microbiome. J Biol Chem 2011; 286:7737-7743. [PMID: 21257745 DOI: 10.1074/jbc.c110.209288] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deep sequencing of viral or bacterial nucleic acids monitors the presence and diversity of microbes in select populations and locations. Metagenomic study of mammalian viromes can help trace paths of viral transmissions within or between species. High throughput sequencing of patient and untreated sewage microbiomes showed many sequences with no similarity to genomic sequences of known function or origin. To estimate the distribution of functional RNAs in these microbiomes, we used the hammerhead ribozyme (HHR) motif to search for sequences capable of assuming its three-way junction fold. Although only two of the three possible natural HHR topologies had been known, our analysis revealed highly active ribozymes that terminated in any of the three stems. The most abundant of these are type II HHRs, one of which is the fastest natural cis-acting HHR yet discovered. Altogether, 13 ribozymes were confirmed in vitro, but only one showed sequence similarity to previously described HHRs. Sequences surrounding the ribozymes do not generally show similarity to known genes, except in one case, where a ribozyme is immediately preceded by a bacterial RadC gene. We demonstrate that a structure-based search for a known functional RNA is a powerful tool for analysis of metagenomic datasets, complementing sequence alignments.
Collapse
Affiliation(s)
| | - Eric Delwart
- the Blood Systems Research Institute and; Department of Laboratory Medicine, University of California, San Francisco, California 94118
| | - Andrej Lupták
- From the Departments of Pharmaceutical Sciences,; Chemistry, and; Molecular Biology and Biochemistry, University of California, Irvine, California 92697 and.
| |
Collapse
|
40
|
Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP. Computational approaches for RNA energy parameter estimation. RNA (NEW YORK, N.Y.) 2010; 16:2304-18. [PMID: 20940338 PMCID: PMC2995392 DOI: 10.1261/rna.1950510] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Methods for efficient and accurate prediction of RNA structure are increasingly valuable, given the current rapid advances in understanding the diverse functions of RNA molecules in the cell. To enhance the accuracy of secondary structure predictions, we developed and refined optimization techniques for the estimation of energy parameters. We build on two previous approaches to RNA free-energy parameter estimation: (1) the Constraint Generation (CG) method, which iteratively generates constraints that enforce known structures to have energies lower than other structures for the same molecule; and (2) the Boltzmann Likelihood (BL) method, which infers a set of RNA free-energy parameters that maximize the conditional likelihood of a set of reference RNA structures. Here, we extend these approaches in two main ways: We propose (1) a max-margin extension of CG, and (2) a novel linear Gaussian Bayesian network that models feature relationships, which effectively makes use of sparse data by sharing statistical strength between parameters. We obtain significant improvements in the accuracy of RNA minimum free-energy pseudoknot-free secondary structure prediction when measured on a comprehensive set of 2518 RNA molecules with reference structures. Our parameters can be used in conjunction with software that predicts RNA secondary structures, RNA hybridization, or ensembles of structures. Our data, software, results, and parameter sets in various formats are freely available at http://www.cs.ubc.ca/labs/beta/Projects/RNA-Params.
Collapse
Affiliation(s)
- Mirela Andronescu
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
41
|
Brown JW, Birmingham A, Griffiths PE, Jossinet F, Kachouri-Lafond R, Knight R, Lang BF, Leontis N, Steger G, Stombaugh J, Westhof E. The RNA structure alignment ontology. RNA (NEW YORK, N.Y.) 2009; 15:1623-31. [PMID: 19622678 PMCID: PMC2743057 DOI: 10.1261/rna.1601409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 05/26/2009] [Indexed: 05/19/2023]
Abstract
Multiple sequence alignments are powerful tools for understanding the structures, functions, and evolutionary histories of linear biological macromolecules (DNA, RNA, and proteins), and for finding homologs in sequence databases. We address several ontological issues related to RNA sequence alignments that are informed by structure. Multiple sequence alignments are usually shown as two-dimensional (2D) matrices, with rows representing individual sequences, and columns identifying nucleotides from different sequences that correspond structurally, functionally, and/or evolutionarily. However, the requirement that sequences and structures correspond nucleotide-by-nucleotide is unrealistic and hinders representation of important biological relationships. High-throughput sequencing efforts are also rapidly making 2D alignments unmanageable because of vertical and horizontal expansion as more sequences are added. Solving the shortcomings of traditional RNA sequence alignments requires explicit annotation of the meaning of each relationship within the alignment. We introduce the notion of "correspondence," which is an equivalence relation between RNA elements in sets of sequences as the basis of an RNA alignment ontology. The purpose of this ontology is twofold: first, to enable the development of new representations of RNA data and of software tools that resolve the expansion problems with current RNA sequence alignments, and second, to facilitate the integration of sequence data with secondary and three-dimensional structural information, as well as other experimental information, to create simultaneously more accurate and more exploitable RNA alignments.
Collapse
|
42
|
Schlosser K, Li Y. Biologically Inspired Synthetic Enzymes Made from DNA. ACTA ACUST UNITED AC 2009; 16:311-22. [DOI: 10.1016/j.chembiol.2009.01.008] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/12/2009] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
|
43
|
Ellington AD, Chen X, Robertson M, Syrett A. Evolutionary origins and directed evolution of RNA. Int J Biochem Cell Biol 2008; 41:254-65. [PMID: 18775793 DOI: 10.1016/j.biocel.2008.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/16/2008] [Accepted: 08/01/2008] [Indexed: 11/24/2022]
Abstract
In vitro selection experiments show first and foremost that it is possible that functional nucleic acids can arise from random sequence libraries. Indeed, even simple sequence and structural motifs can prove to be robust binding species and catalysts, indicating that it may have been possible to transition from even the earliest self-replicators to a nascent, RNA-catalyzed metabolism. Because of the diversity of aptamers and ribozymes that can be selected, it is possible to construct a 'fossil record' of the evolution of the RNA world, with in vitro selected catalysts filling in as doppelgangers for molecules long gone. In this way a plausible pathway from simple oligonucleotide replicators to genomic polymerases can be imagined, as can a pathway from basal ribozyme activities to the ribosome. Most importantly, though, in vitro selection experiments can give a true and quantitative idea of the likelihood that these scenarios could have played out in the RNA world. Simple binding species and catalysts could have evolved into other structures and functions. As replicating sequences grew longer, new, more complex functions or faster catalytic activities could have been accessed. Some activities may have been isolated in sequence space, but others could have been approached along large, interconnected neutral networks. As the number, type, and length of ribozymes increased, RNA genomes would have evolved and eventually there would have been no area in a fitness landscape that would have been inaccessible. Self-replication would have inexorably led to life.
Collapse
Affiliation(s)
- Andrew D Ellington
- Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States.
| | | | | | | |
Collapse
|
44
|
Win MN, Smolke CD. RNA as a versatile and powerful platform for engineering genetic regulatory tools. Biotechnol Genet Eng Rev 2008; 24:311-46. [PMID: 18059640 DOI: 10.1080/02648725.2007.10648106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maung Nyan Win
- Department of Chemical Engineering, MC 210-41, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | | |
Collapse
|
45
|
Willner I, Shlyahovsky B, Zayats M, Willner B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 2008; 37:1153-65. [DOI: 10.1039/b718428j] [Citation(s) in RCA: 669] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Abstract
A discussion of experimental approaches and theoretical difficulties in the identification of ribozymes with novel catalytic functions. New regulatory RNAs with complex structures have recently been discovered, among them the first catalytic riboswitch, a gene-regulatory RNA sequence with catalytic activity. Here we discuss some of the experimental approaches and theoretical difficulties attached to the identification of new ribozymes in genomes.
Collapse
Affiliation(s)
- Christian Hammann
- Research Group Molecular Interactions, Department of Genetics, FB 18 Naturwissenschaften, Universität Kassel, D-34132 Kassel, Germany
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS, rue René Descartes, F-67084 Strasbourg Cedex, France
| |
Collapse
|
47
|
Lladser ME, Betterton MD, Knight R. Multiple pattern matching: a Markov chain approach. J Math Biol 2007; 56:51-92. [PMID: 17668213 DOI: 10.1007/s00285-007-0109-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 05/15/2007] [Indexed: 10/23/2022]
Abstract
RNA motifs typically consist of short, modular patterns that include base pairs formed within and between modules. Estimating the abundance of these patterns is of fundamental importance for assessing the statistical significance of matches in genomewide searches, and for predicting whether a given function has evolved many times in different species or arose from a single common ancestor. In this manuscript, we review in an integrated and self-contained manner some basic concepts of automata theory, generating functions and transfer matrix methods that are relevant to pattern analysis in biological sequences. We formalize, in a general framework, the concept of Markov chain embedding to analyze patterns in random strings produced by a memoryless source. This conceptualization, together with the capability of automata to recognize complicated patterns, allows a systematic analysis of problems related to the occurrence and frequency of patterns in random strings. The applications we present focus on the concept of synchronization of automata, as well as automata used to search for a finite number of keywords (including sets of patterns generated according to base pairing rules) in a general text.
Collapse
Affiliation(s)
- Manuel E Lladser
- Department of Applied Mathematics, University of Colorado at Boulder, 526 UCB, Boulder, CO 80309-0526, USA.
| | | | | |
Collapse
|
48
|
Chiuman W, Li Y. Evolution of High-Branching Deoxyribozymes from a Catalytic DNA with a Three-Way Junction. ACTA ACUST UNITED AC 2006; 13:1061-9. [PMID: 17052610 DOI: 10.1016/j.chembiol.2006.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/11/2006] [Accepted: 08/25/2006] [Indexed: 11/25/2022]
Abstract
Here, we report the evolution of two star-shaped (five-way junction) deoxyribozymes from a catalytic DNA containing a three-way junction scaffold. The transition was shown to be a switch rather than a gradual progression. The star-shaped motifs, surprisingly, only took five selection cycles to be detected, and another four to dominate the evolving population. Chemical probing experiments indicated that the two deoxyribozymes belong to the same family despite noticeable variations in both the primary sequence and the secondary structure. Our findings not only describe the evolution of high-branching nucleic acid structures from a low-branching catalytic module, but they also illustrate the idea of deriving a rare structural motif by sampling the sequence variants of a given functional nucleic acid.
Collapse
Affiliation(s)
- William Chiuman
- Department of Biochemistry and Biomedical Sciences and Department of Chemistry, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
49
|
Abstract
RNA molecules play important and diverse regulatory roles in the cell by virtue of their interaction with other nucleic acids, proteins and small molecules. Inspired by this natural versatility, researchers have engineered RNA molecules with new biological functions. In the last two years efforts in synthetic biology have produced novel, synthetic RNA components capable of regulating gene expression in vivo largely in bacteria and yeast, setting the stage for scalable and programmable cellular behavior. Immediate challenges for this emerging field include determining how computational and directed-evolution techniques can be implemented to increase the complexity of engineered RNA systems, as well as determining how such systems can be broadly extended to mammalian systems. Further challenges include designing RNA molecules to be sensors of intracellular and environmental stimuli, probes to explore the behavior of biological networks and components of engineered cellular control systems.
Collapse
Affiliation(s)
- Farren J Isaacs
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
50
|
Schlosser K, Lam JC, Li Y. Characterization of long RNA-cleaving deoxyribozymes with short catalytic cores: the effect of excess sequence elements on the outcome of in vitro selection. Nucleic Acids Res 2006; 34:2445-54. [PMID: 16682452 PMCID: PMC1458524 DOI: 10.1093/nar/gkl276] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously conducted an in vitro selection experiment for RNA-cleaving deoxyribozymes, using a combinatorial DNA library containing 80 random nucleotides. Ultimately, 110 different sequence classes were isolated, but the vast majority contained a short14-15 nt catalytic DNA motif commonly known as 8-17. Herein, we report extensive truncation experiments conducted on multiple sequence classes to confirm the suspected catalytic role played by 8-17 and to determine the effect of excess sequence elements on the activity of this motif and the outcome of selection. Although we observed beneficial, detrimental and neutral consequences for activity, the magnitude of the effect rarely exceeded 2-fold. These deoxyribozymes appear to have survived increasing selection pressure despite the presence of additional sequence elements, rather than because of them. A new deoxyribozyme with comparable activity, called G15-30, was approximately 2.5-fold larger and experienced a approximately 4-fold greater inhibitory effect from excess sequence elements than the average 8-17 motif. Our results suggest that 8-17 may be less susceptible to the potential inhibitory effects of excess arbitrary sequence than larger motifs, which represents a previously unappreciated selective advantage that may contribute to its widespread recurrence.
Collapse
Affiliation(s)
| | | | - Yingfu Li
- To whom correspondence should be addressed. Tel: 1 905 5259140; Fax: 1 905 522 9033;
| |
Collapse
|