1
|
Kant S, Nithin C, Mukherjee S, Maity A, Bahadur RP. Protein-RNA Docking Benchmark v3.0 Integrated With Binding Affinity. Proteins 2025. [PMID: 40202108 DOI: 10.1002/prot.26825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
We introduce an updated non-redundant protein-RNA docking benchmark version 3.0 (PRDBv3.0) containing 197 test cases curated from 288 unique protein-RNA complexes available in the Protein Data Bank until July 2024. Among these, 27 are unbound-unbound (UU) type where both the binding partners are available in their unbound states, 160 are unbound-bound (UB) type where only the protein is available in unbound state and remaining 10 are bound-unbound (BU) type where only the RNA is available in unbound state. The benchmark is categorized into three classes based on the conformational flexibility of the protein interface: 117 rigid-body (R) complexes with minimal structural changes, 41 semi-flexible (S) complexes showing moderate conformational changes and 29 full-flexible (F) complexes with significant conformational changes. The current benchmark represents a 62% increase in the number of test cases compared to its previous version. Binding affinity (Kd) values for a subset of 105 protein-RNA complexes from PRDBv3.0 are catalogued along with additional experimental details to develop a comprehensive protein-RNA affinity benchmark. Moreover, a total of 255 unique RNA-binding domains, present in RNA-binding proteins, are also catalogued in this updated benchmark. PRDBv3.0 will facilitate the evaluation of both rigid-body and flexible docking methods as well as the methods that aim to predict binding affinity. The updated benchmark is freely available at http://www.csb.iitkgp.ac.in/applications/PRDBv3/PRDBv3.php.
Collapse
Affiliation(s)
- Shri Kant
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Chandran Nithin
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Atanu Maity
- Bioinformatics Center, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
- Bioinformatics Center, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
2
|
Ruszkowska A, Zheng YY, Mao S, Ruszkowski M, Sheng J. Structural Insights Into the 5′UG/3′GU Wobble Tandem in Complex With Ba2+ Cation. Front Mol Biosci 2022; 8:762786. [PMID: 35096964 PMCID: PMC8793689 DOI: 10.3389/fmolb.2021.762786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
G•U wobble base pair frequently occurs in RNA structures. The unique chemical, thermodynamic, and structural properties of the G•U pair are widely exploited in RNA biology. In several RNA molecules, the G•U pair plays key roles in folding, ribozyme catalysis, and interactions with proteins. G•U may occur as a single pair or in tandem motifs with different geometries, electrostatics, and thermodynamics, further extending its biological functions. The metal binding affinity, which is essential for RNA folding, catalysis, and other interactions, differs with respect to the tandem motif type due to the different electrostatic potentials of the major grooves. In this work, we present the crystal structure of an RNA 8-mer duplex r[UCGUGCGA]2, providing detailed structural insights into the tandem motif I (5′UG/3′GU) complexed with Ba2+ cation. We compare the electrostatic potential of the presented motif I major groove with previously published structures of tandem motifs I, II (5′GU/3′UG), and III (5′GG/3′UU). A local patch of a strongly negative electrostatic potential in the major groove of the presented structure forms the metal binding site with the contributions of three oxygen atoms from the tandem. These results give us a better understanding of the G•U tandem motif I as a divalent metal binder, a feature essential for RNA functions.
Collapse
Affiliation(s)
| | - Ya Ying Zheng
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Song Mao
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
3
|
Xia CQ, Pan X, Yang Y, Huang Y, Shen HB. Recent Progresses of Computational Analysis of RNA-Protein Interactions. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
4
|
Tirumalai MR, Kaelber JT, Park DR, Tran Q, Fox GE. Cryo-electron microscopy visualization of a large insertion in the 5S ribosomal RNA of the extremely halophilic archaeon Halococcus morrhuae. FEBS Open Bio 2020; 10:1938-1946. [PMID: 32865340 PMCID: PMC7530397 DOI: 10.1002/2211-5463.12962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The extreme halophile Halococcus morrhuae (ATCC® 17082) contains a 108-nucleotide insertion in its 5S rRNA. Large rRNA expansions in Archaea are rare. This one almost doubles the length of the 5S rRNA. In order to understand how such an insertion is accommodated in the ribosome, we obtained a cryo-electron microscopy reconstruction of the native large subunit at subnanometer resolution. The insertion site forms a four-way junction that fully preserves the canonical 5S rRNA structure. Moving away from the junction site, the inserted region is conformationally flexible and does not pack tightly against the large subunit. The high-salt requirement of the H. morrhuae ribosomes for their stability conflicted with the low-salt threshold for cryo-electron microscopy procedures. Despite this obstacle, this is the first cryo-electron microscopy map of Halococcus ribosomes.
Collapse
Affiliation(s)
| | - Jason T. Kaelber
- National Center for Macromolecular ImagingBaylor College of MedicineHoustonTXUSA
- Present address:
Rutgers New Jersey Cryo‐electron Microscopy & Tomography Core FacilityInstitute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNJUSA
| | - Donghyun R. Park
- National Center for Macromolecular ImagingBaylor College of MedicineHoustonTXUSA
- Present address:
Department of Microbial PathogenesisYale UniversityNew HavenCTUSA
| | - Quyen Tran
- Department of Biology and BiochemistryUniversity of HoustonTXUSA
| | - George E. Fox
- Department of Biology and BiochemistryUniversity of HoustonTXUSA
| |
Collapse
|
5
|
He J, Tao H, Huang SY. Protein-ensemble-RNA docking by efficient consideration of protein flexibility through homology models. Bioinformatics 2020; 35:4994-5002. [PMID: 31086984 DOI: 10.1093/bioinformatics/btz388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION Given the importance of protein-ribonucleic acid (RNA) interactions in many biological processes, a variety of docking algorithms have been developed to predict the complex structure from individual protein and RNA partners in the past decade. However, due to the impact of molecular flexibility, the performance of current methods has hit a bottleneck in realistic unbound docking. Pushing the limit, we have proposed a protein-ensemble-RNA docking strategy to explicitly consider the protein flexibility in protein-RNA docking through an ensemble of multiple protein structures, which is referred to as MPRDock. Instead of taking conformations from MD simulations or experimental structures, we obtained the multiple structures of a protein by building models from its homologous templates in the Protein Data Bank (PDB). RESULTS Our approach can not only avoid the reliability issue of structures from MD simulations but also circumvent the limited number of experimental structures for a target protein in the PDB. Tested on 68 unbound-bound and 18 unbound-unbound protein-RNA complexes, our MPRDock/DITScorePR considerably improved the docking performance and achieved a significantly higher success rate than single-protein rigid docking whether pseudo-unbound templates are included or not. Similar improvements were also observed when combining our ensemble docking strategy with other scoring functions. The present homology model-based ensemble docking approach will have a general application in molecular docking for other interactions. AVAILABILITY AND IMPLEMENTATION http://huanglab.phys.hust.edu.cn/mprdock/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiahua He
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huanyu Tao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-You Huang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Olson WK, Li S, Kaukonen T, Colasanti AV, Xin Y, Lu XJ. Effects of Noncanonical Base Pairing on RNA Folding: Structural Context and Spatial Arrangements of G·A Pairs. Biochemistry 2019; 58:2474-2487. [PMID: 31008589 PMCID: PMC6729125 DOI: 10.1021/acs.biochem.9b00122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Noncanonical base pairs play important roles in assembling the three-dimensional structures critical to the diverse functions of RNA. These associations contribute to the looped segments that intersperse the canonical double-helical elements within folded, globular RNA molecules. They stitch together various structural elements, serve as recognition elements for other molecules, and act as sites of intrinsic stiffness or deformability. This work takes advantage of new software (DSSR) designed to streamline the analysis and annotation of RNA three-dimensional structures. The multiscale structural information gathered for individual molecules, combined with the growing number of unique, well-resolved RNA structures, makes it possible to examine the collective features deeply and to uncover previously unrecognized patterns of chain organization. Here we focus on a subset of noncanonical base pairs involving guanine and adenine and the links between their modes of association, secondary structural context, and contributions to tertiary folding. The rigorous descriptions of base-pair geometry that we employ facilitate characterization of recurrent geometric motifs and the structural settings in which these arrangements occur. Moreover, the numerical parameters hint at the natural motions of the interacting bases and the pathways likely to connect different spatial forms. We draw attention to higher-order multiplexes involving two or more G·A pairs and the roles these associations appear to play in bridging different secondary structural units. The collective data reveal pairing propensities in base organization, secondary structural context, and deformability and serve as a starting point for further multiscale investigations and/or simulations of RNA folding.
Collapse
Affiliation(s)
- Wilma K. Olson
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Shuxiang Li
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Thomas Kaukonen
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Andrew V. Colasanti
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Yurong Xin
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
7
|
Kappel K, Das R. Sampling Native-like Structures of RNA-Protein Complexes through Rosetta Folding and Docking. Structure 2018; 27:140-151.e5. [PMID: 30416038 DOI: 10.1016/j.str.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/27/2018] [Accepted: 10/05/2018] [Indexed: 10/27/2022]
Abstract
RNA-protein complexes underlie numerous cellular processes including translation, splicing, and posttranscriptional regulation of gene expression. The structures of these complexes are crucial to their functions but often elude high-resolution structure determination. Computational methods are needed that can integrate low-resolution data for RNA-protein complexes while modeling de novo the large conformational changes of RNA components upon complex formation. To address this challenge, we describe RNP-denovo, a Rosetta method to simultaneously fold-and-dock RNA to a protein surface. On a benchmark set of diverse RNA-protein complexes not solvable with prior strategies, RNP-denovo consistently sampled native-like structures with better than nucleotide resolution. We revisited three past blind modeling challenges involving the spliceosome, telomerase, and a methyltransferase-ribosomal RNA complex in which previous methods gave poor results. When coupled with the same sparse FRET, crosslinking, and functional data used previously, RNP-denovo gave models with significantly improved accuracy. These results open a route to modeling global folds of RNA-protein complexes from low-resolution data.
Collapse
Affiliation(s)
- Kalli Kappel
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Kappel K, Liu S, Larsen KP, Skiniotis G, Puglisi EV, Puglisi JD, Zhou ZH, Zhao R, Das R. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nat Methods 2018; 15:947-954. [PMID: 30377372 PMCID: PMC6636682 DOI: 10.1038/s41592-018-0172-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Increasingly, cryo-electron microscopy (cryo-EM) is used to determine the structures of RNA-protein assemblies, but nearly all maps determined with this method have biologically important regions where the local resolution does not permit RNA coordinate tracing. To address these omissions, we present de novo ribonucleoprotein modeling in real space through assembly of fragments together with experimental density in Rosetta (DRRAFTER). We show that DRRAFTER recovers near-native models for a diverse benchmark set of RNA-protein complexes including the spliceosome, mitochondrial ribosome, and CRISPR-Cas9-sgRNA complexes; rigorous blind tests include yeast U1 snRNP and spliceosomal P complex maps. Additionally, to aid in model interpretation, we present a method for reliable in situ estimation of DRRAFTER model accuracy. Finally, we apply DRRAFTER to recently determined maps of telomerase, the HIV-1 reverse transcriptase initiation complex, and the packaged MS2 genome, demonstrating the acceleration of accurate model building in challenging cases.
Collapse
Affiliation(s)
- Kalli Kappel
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Shiheng Liu
- Electron Imaging Center for Nanomachines, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Kevin P Larsen
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Z Hong Zhou
- Electron Imaging Center for Nanomachines, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Physics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Mishra S, Ahmed T, Tyagi A, Shi J, Bhushan S. Structures of Mycobacterium smegmatis 70S ribosomes in complex with HPF, tmRNA, and P-tRNA. Sci Rep 2018; 8:13587. [PMID: 30206241 PMCID: PMC6133939 DOI: 10.1038/s41598-018-31850-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/23/2018] [Indexed: 11/09/2022] Open
Abstract
Ribosomes are the dynamic protein synthesis machineries of the cell. They may exist in different functional states in the cell. Therefore, it is essential to have structural information on these different functional states of ribosomes to understand their mechanism of action. Here, we present single particle cryo-EM reconstructions of the Mycobacterium smegmatis 70S ribosomes in the hibernating state (with HPF), trans-translating state (with tmRNA), and the P/P state (with P-tRNA) resolved to 4.1, 12.5, and 3.4 Å, respectively. A comparison of the P/P state with the hibernating state provides possible functional insights about the Mycobacteria-specific helix H54a rRNA segment. Interestingly, densities for all the four OB domains of bS1 protein is visible in the hibernating 70S ribosome displaying the molecular details of bS1-70S interactions. Our structural data shows a Mycobacteria-specific H54a-bS1 interaction which seems to prevent subunit dissociation and degradation during hibernation without the formation of 100S dimer. This indicates a new role of bS1 protein in 70S protection during hibernation in Mycobacteria in addition to its conserved function during translation initiation.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Models, Molecular
- Mycobacterium smegmatis/genetics
- Mycobacterium smegmatis/metabolism
- Mycobacterium smegmatis/ultrastructure
- Nucleic Acid Conformation
- Protein Binding
- Protein Biosynthesis
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- Satabdi Mishra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Tofayel Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anu Tyagi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jian Shi
- Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
10
|
An account of solvent accessibility in protein-RNA recognition. Sci Rep 2018; 8:10546. [PMID: 30002431 PMCID: PMC6043566 DOI: 10.1038/s41598-018-28373-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/21/2018] [Indexed: 01/16/2023] Open
Abstract
Protein–RNA recognition often induces conformational changes in binding partners. Consequently, the solvent accessible surface area (SASA) buried in contact estimated from the co-crystal structures may differ from that calculated using their unbound forms. To evaluate the change in accessibility upon binding, we compare SASA of 126 protein-RNA complexes between bound and unbound forms. We observe, in majority of cases the interface of both the binding partners gain accessibility upon binding, which is often associated with either large domain movements or secondary structural transitions in RNA-binding proteins (RBPs), and binding-induced conformational changes in RNAs. At the non-interface region, majority of RNAs lose accessibility upon binding, however, no such preference is observed for RBPs. Side chains of RBPs have major contribution in change in accessibility. In case of flexible binding, we find a moderate correlation between the binding free energy and change in accessibility at the interface. Finally, we introduce a parameter, the ratio of gain to loss of accessibility upon binding, which can be used to identify the native solution among the flexible docking models. Our findings provide fundamental insights into the relationship between flexibility and solvent accessibility, and advance our understanding on binding induced folding in protein-RNA recognition.
Collapse
|
11
|
Nikulin AD. Structural Aspects of Ribosomal RNA Recognition by Ribosomal Proteins. BIOCHEMISTRY (MOSCOW) 2018; 83:S111-S133. [DOI: 10.1134/s0006297918140109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Jiang H, Jiang M, Yang L, Yao P, Ma L, Wang C, Wang H, Qian G, Hu B, Fan J. The Ribosomal Protein RplY Is Required for Pectobacterium carotovorum Virulence and Is Induced by Zantedeschia elliotiana Extract. PHYTOPATHOLOGY 2017; 107:1322-1330. [PMID: 28853642 DOI: 10.1094/phyto-04-17-0161-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pectobacterium carotovorum subsp. carotovorum strain PccS1, a bacterial pathogen causing soft rot disease of Zantedeschia elliotiana (colored calla), was investigated for virulence genes induced by the host plant. Using a promoter-trap transposon (mariner), we obtained 500 transposon mutants showing kanamycin resistance dependent on extract of Z. elliotiana. One of these mutants, PM86, exhibited attenuated virulence on both Z. elliotiana and Brassica rapa subsp. pekinensis. The growth of PM86 was also reduced in minimal medium (MM), and the reduction was restored by adding plant extract to the MM. The gene containing the insertion site was identified as rplY. The deletion mutant ΔrplY, exhibited reduced virulence, motility and plant cell wall-degrading enzyme production but not biofilm formation. Analysis of gene expression and reporter fusions revealed that the rplY gene in PccS1 is up-regulated at both the transcriptional and the translational levels in the presence of plant extract. Our results suggest that rplY is induced by Z. elliotiana extract and is crucial for virulence in P. carotovorum subsp. carotovorum.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengyi Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liuke Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiyan Yao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunting Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gouliang Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baishi Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqin Fan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
13
|
Khusainov I, Vicens Q, Bochler A, Grosse F, Myasnikov A, Ménétret JF, Chicher J, Marzi S, Romby P, Yusupova G, Yusupov M, Hashem Y. Structure of the 70S ribosome from human pathogen Staphylococcus aureus. Nucleic Acids Res 2016; 44:10491-10504. [PMID: 27906650 PMCID: PMC5137454 DOI: 10.1093/nar/gkw933] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 01/07/2023] Open
Abstract
Comparative structural studies of ribosomes from various organisms keep offering exciting insights on how species-specific or environment-related structural features of ribosomes may impact translation specificity and its regulation. Although the importance of such features may be less obvious within more closely related organisms, their existence could account for vital yet species-specific mechanisms of translation regulation that would involve stalling, cell survival and antibiotic resistance. Here, we present the first full 70S ribosome structure from Staphylococcus aureus, a Gram-positive pathogenic bacterium, solved by cryo-electron microscopy. Comparative analysis with other known bacterial ribosomes pinpoints several unique features specific to S. aureus around a conserved core, at both the protein and the RNA levels. Our work provides the structural basis for the many studies aiming at understanding translation regulation in S. aureus and for designing drugs against this often multi-resistant pathogen.
Collapse
Affiliation(s)
- Iskander Khusainov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67400, France.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Quentin Vicens
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Anthony Bochler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - François Grosse
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Alexander Myasnikov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67400, France
| | - Jean-François Ménétret
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67400, France
| | - Johana Chicher
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Gulnara Yusupova
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67400, France
| | - Marat Yusupov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67400, France
| | - Yaser Hashem
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| |
Collapse
|
14
|
Kharde S, Calviño FR, Gumiero A, Wild K, Sinning I. The structure of Rpf2-Rrs1 explains its role in ribosome biogenesis. Nucleic Acids Res 2015; 43:7083-95. [PMID: 26117542 PMCID: PMC4538828 DOI: 10.1093/nar/gkv640] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/07/2015] [Indexed: 12/02/2022] Open
Abstract
The assembly of eukaryotic ribosomes is a hierarchical process involving about 200 biogenesis factors and a series of remodeling steps. The 5S RNP consisting of the 5S rRNA, RpL5 and RpL11 is recruited at an early stage, but has to rearrange during maturation of the pre-60S ribosomal subunit. Rpf2 and Rrs1 have been implicated in 5S RNP biogenesis, but their precise role was unclear. Here, we present the crystal structure of the Rpf2–Rrs1 complex from Aspergillus nidulans at 1.5 Å resolution and describe it as Brix domain of Rpf2 completed by Rrs1 to form two anticodon-binding domains with functionally important tails. Fitting the X-ray structure into the cryo-EM density of a previously described pre-60S particle correlates with biochemical data. The heterodimer forms specific contacts with the 5S rRNA, RpL5 and the biogenesis factor Rsa4. The flexible protein tails of Rpf2–Rrs1 localize to the central protuberance. Two helices in the Rrs1 C-terminal tail occupy a strategic position to block the rotation of 25S rRNA and the 5S RNP. Our data provide a structural model for 5S RNP recruitment to the pre-60S particle and explain why removal of Rpf2–Rrs1 is necessary for rearrangements to drive 60S maturation.
Collapse
Affiliation(s)
- Satyavati Kharde
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Fabiola R Calviño
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Andrea Gumiero
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Cheng H, Liao Y, Schaeffer RD, Grishin NV. Manual classification strategies in the ECOD database. Proteins 2015; 83:1238-51. [PMID: 25917548 DOI: 10.1002/prot.24818] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/30/2015] [Accepted: 04/19/2015] [Indexed: 12/28/2022]
Abstract
ECOD (Evolutionary Classification Of protein Domains) is a comprehensive and up-to-date protein structure classification database. The majority of new structures released from the PDB (Protein Data Bank) each week already have close homologs in the ECOD hierarchy and thus can be reliably partitioned into domains and classified by software without manual intervention. However, those proteins that lack confidently detectable homologs require careful analysis by experts. Although many bioinformatics resources rely on expert curation to some degree, specific examples of how this curation occurs and in what cases it is necessary are not always described. Here, we illustrate the manual classification strategy in ECOD by example, focusing on two major issues in protein classification: domain partitioning and the relationship between homology and similarity scores. Most examples show recently released and manually classified PDB structures. We discuss multi-domain proteins, discordance between sequence and structural similarities, difficulties with assessing homology with scores, and integral membrane proteins homologous to soluble proteins. By timely assimilation of newly available structures into its hierarchy, ECOD strives to provide a most accurate and updated view of the protein structure world as a result of combined computational and expert-driven analysis.
Collapse
Affiliation(s)
- Hua Cheng
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Yuxing Liao
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - R Dustin Schaeffer
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390.,Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
16
|
Aseev LV, Bylinkina NS, Boni IV. Regulation of the rplY gene encoding 5S rRNA binding protein L25 in Escherichia coli and related bacteria. RNA (NEW YORK, N.Y.) 2015; 21:851-61. [PMID: 25749694 PMCID: PMC4408793 DOI: 10.1261/rna.047381.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/22/2014] [Indexed: 05/09/2023]
Abstract
Ribosomal protein (r-protein) L25 is one of the three r-proteins (L25, L5, L18) that interact with 5S rRNA in eubacteria. Specific binding of L25 with a certain domain of 5S r-RNA, a so-called loop E, has been studied in detail, but information about regulation of L25 synthesis has remained totally lacking. In contrast to the rplE (L5) and rplR (L18) genes that belong to the polycistronic spc-operon and are regulated at the translation level by r-protein S8, the rplY (L25) gene forms an independent transcription unit. The main goal of this work was to study the regulation of the rplY expression in vivo. We show that the rplY promoter is down-regulated by ppGpp and its cofactor DksA in response to amino acid starvation. At the level of translation, the rplY expression is subjected to the negative feedback control. The 5'-untranslated region of the rplY mRNA comprises specific sequence/structure features, including an atypical SD-like sequence, which are highly conserved in a subset of gamma-proteobacterial families. Despite the lack of a canonical SD element, the rplY'-'lacZ single-copy reporter showed unusually high translation efficiency. Expression of the rplY gene in trans decreased the translation yield, indicating the mechanism of autogenous repression. Site-directed mutagenesis of the rplY 5' UTR revealed an important role of the conserved elements in the translation control. Thus, the rplY expression regulation represents one more example of regulatory pathways that control ribosome biogenesis in Escherichia coli and related bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Natalia S Bylinkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia Moscow Institute of Physics and Technology, 141700, Moscow Region, Dolgoprudny, Russia
| | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| |
Collapse
|
17
|
Anikaev AY, Korepanov AP, Korobeinikova AV, Kljashtorny VG, Piendl W, Nikonov SV, Garber MB, Gongadze GM. Mutant forms of Escherichia coli protein L25 unable to bind to 5S rRNA are incorporated efficiently into the ribosome in vivo. BIOCHEMISTRY (MOSCOW) 2014; 79:826-35. [DOI: 10.1134/s0006297914080112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics 2014; 109:400-16. [PMID: 25026440 DOI: 10.1016/j.jprot.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/09/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED We present a combined proteomic and bioinformatic investigation of mitochondrial proteins from the amoeboid protist Acanthamoeba castellanii, the first such comprehensive investigation in a free-living member of the supergroup Amoebozoa. This protist was chosen both for its phylogenetic position (as a sister to animals and fungi) and its ecological ubiquity and physiological flexibility. We report 1033 A. castellanii mitochondrial protein sequences, 709 supported by mass spectrometry data (676 nucleus-encoded and 33 mitochondrion-encoded), including two previously unannotated mtDNA-encoded proteins, which we identify as highly divergent mitochondrial ribosomal proteins. Other notable findings include duplicate proteins for all of the enzymes of the tricarboxylic acid (TCA) cycle-which, along with the identification of a mitochondrial malate synthase-isocitrate lyase fusion protein, suggests the interesting possibility that the glyoxylate cycle operates in A. castellanii mitochondria. Additionally, the A. castellanii genome encodes an unusually high number (at least 29) of mitochondrion-targeted pentatricopeptide repeat (PPR) proteins, organellar RNA metabolism factors in other organisms. We discuss several key mitochondrial pathways, including DNA replication, transcription and translation, protein degradation, protein import and Fe-S cluster biosynthesis, highlighting similarities and differences in these pathways in other eukaryotes. In compositional and functional complexity, the mitochondrial proteome of A. castellanii rivals that of multicellular eukaryotes. BIOLOGICAL SIGNIFICANCE Comprehensive proteomic surveys of mitochondria have been undertaken in a limited number of predominantly multicellular eukaryotes. This phylogenetically narrow perspective constrains and biases our insights into mitochondrial function and evolution, as it neglects protists, which account for most of the evolutionary and functional diversity within eukaryotes. We report here the first comprehensive investigation of the mitochondrial proteome in a member (A. castellanii) of the eukaryotic supergroup Amoebozoa. Through a combination of tandem mass spectrometry (MS/MS) and in silico data mining, we have retrieved 1033 candidate mitochondrial protein sequences, 709 having MS support. These data were used to reconstruct the metabolic pathways and protein complexes of A. castellanii mitochondria, and were integrated with data from other characterized mitochondrial proteomes to augment our understanding of mitochondrial proteome evolution. Our results demonstrate the power of combining direct proteomic and bioinformatic approaches in the discovery of novel mitochondrial proteins, both nucleus-encoded and mitochondrion-encoded, and highlight the compositional complexity of the A. castellanii mitochondrial proteome, which rivals that of animals, fungi and plants.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kenneth A Chisholm
- Mass Spectrometry and Proteomics Group, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Devanand M Pinto
- Mass Spectrometry and Proteomics Group, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Michael W Gray
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
19
|
Car-Parinello molecular dynamics simulations of thionitroxide and S-nitrosothiol in the gas phase, methanol, and water—A theoretical study of S-nitrosylation. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4712-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Abstract
The purpose of Reflections articles, it seems, is to give elderly scientists a chance to write about the "good old days," when everyone walked to school in the snow. They enjoy this activity so much that your editor, Martha Fedor, must have known that I would accept her invitation to write such an article, no matter how much I demurred at first. As everyone knows, flattery will get you everywhere. It may comfort the apprehensive reader to learn that there is not going to be much walking to school in the snow in this story. On the contrary, rather than thinking how hard I had it during my scientific career, I find it inconceivable that anyone could have had a smoother ride. At the time I began my career, science was an expanding enterprise in the United States that welcomed the young. Only in such an opportunity-rich environment would someone like me have stood a chance. The contrast between that world and the dog-eat-dog world young scientists confront today is stark.
Collapse
Affiliation(s)
- Peter B Moore
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
21
|
Bartlow P, Tiwari N, Beitle RR, Ataai MM. Evaluation of Escherichia coli proteins that burden nonaffinity-based chromatography as a potential strategy for improved purification performance. Biotechnol Prog 2011; 28:137-45. [DOI: 10.1002/btpr.703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/28/2011] [Indexed: 11/12/2022]
|
22
|
Korobeinikova AV, Gongadze GM, Korepanov AP, Eliseev BD, Bazhenova MV, Garber MB. 5S rRNA-recognition module of CTC family proteins and its evolution. BIOCHEMISTRY (MOSCOW) 2011; 73:156-63. [DOI: 10.1134/s0006297908020065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Sheng J, Huang Z. Selenium derivatization of nucleic acids for X-ray crystal-structure and function studies. Chem Biodivers 2010; 7:753-85. [PMID: 20397215 DOI: 10.1002/cbdv.200900200] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It is estimated that over two thirds of all new crystal structures of proteins are determined via the protein selenium derivatization (selenomethionine (Se-Met) strategy). This selenium derivatization strategy via MAD (multi-wavelength anomalous dispersion) phasing has revolutionized protein X-ray crystallography. Through our pioneer research, similarly, Se has also been successfully incorporated into nucleic acids to facilitate the X-ray crystal-structure and function studies of nucleic acids. Currently, Se has been stably introduced into nucleic acids by replacing nucleotide O-atom at the positions 2', 4', 5', and in nucleobases and non-bridging phosphates. The Se derivatization of nucleic acids can be achieved through solid-phase chemical synthesis and enzymatic methods, and the Se-derivatized nucleic acids (SeNA) can be easily purified by HPLC, FPLC, and gel electrophoresis to obtain high purity. It has also been demonstrated that the Se derivatization of nucleic acids facilitates the phase determination via MAD phasing without significant perturbation. A growing number of structures of DNAs, RNAs, and protein-nucleic acid complexes have been determined by the Se derivatization and MAD phasing. Furthermore, it was observed that the Se derivatization can facilitate crystallization, especially when it is introduced to the 2'-position. In addition, this novel derivatization strategy has many advantages over the conventional halogen derivatization, such as more choices of the modification sites via the atom-specific substitution of the nucleotide O-atom, better stability under X-ray radiation, and structure isomorphism. Therefore, our Se-derivatization strategy has great potentials to provide rational solutions for both phase determination and high-quality crystal growth in nucleic-acid crystallography. Moreover, the Se derivatization generates the nucleic acids with many new properties and creates a new paradigm of nucleic acids. This review summarizes the recent developments of the atomic site-specific Se derivatization of nucleic acids for structure determination and function study. Several applications of this Se-derivatization strategy in nucleic acid and protein research are also described in this review.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
24
|
Masquida B, Beckert B, Jossinet F. Exploring RNA structure by integrative molecular modelling. N Biotechnol 2010; 27:170-83. [PMID: 20206310 DOI: 10.1016/j.nbt.2010.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded in three dimensions (3D) and used as building blocks assembled manually during a bioinformatic interactive process. Comparing the models to the corresponding crystal structures has validated the method as being powerful to predict the RNA topology and architecture while being less accurate regarding the prediction of base-base interactions. These aspects as well as the necessary steps towards automation will be discussed.
Collapse
Affiliation(s)
- Benoît Masquida
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, Strasbourg, France.
| | | | | |
Collapse
|
25
|
|
26
|
Kauffmann AD, Campagna RJ, Bartels CB, Childs-Disney JL. Improvement of RNA secondary structure prediction using RNase H cleavage and randomized oligonucleotides. Nucleic Acids Res 2009; 37:e121. [PMID: 19596816 PMCID: PMC2764423 DOI: 10.1093/nar/gkp587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RNA secondary structure prediction using free energy minimization is one method to gain an approximation of structure. Constraints generated by enzymatic mapping or chemical modification can improve the accuracy of secondary structure prediction. We report a facile method that identifies single-stranded regions in RNA using short, randomized DNA oligonucleotides and RNase H cleavage. These regions are then used as constraints in secondary structure prediction. This method was used to improve the secondary structure prediction of Escherichia coli 5S rRNA. The lowest free energy structure without constraints has only 27% of the base pairs present in the phylogenetic structure. The addition of constraints from RNase H cleavage improves the prediction to 100% of base pairs. The same method was used to generate secondary structure constraints for yeast tRNAPhe, which is accurately predicted in the absence of constraints (95%). Although RNase H mapping does not improve secondary structure prediction, it does eliminate all other suboptimal structures predicted within 10% of the lowest free energy structure. The method is advantageous over other single-stranded nucleases since RNase H is functional in physiological conditions. Moreover, it can be used for any RNA to identify accessible binding sites for oligonucleotides or small molecules.
Collapse
Affiliation(s)
- Andrew D Kauffmann
- Department of Chemistry and Biochemistry, Canisius College, 2001 Main St., Buffalo, NY 14208, USA
| | | | | | | |
Collapse
|
27
|
Gongadze GM, Korepanov AP, Korobeinikova AV, Garber MB. Bacterial 5S rRNA-binding proteins of the CTC family. BIOCHEMISTRY (MOSCOW) 2009; 73:1405-17. [PMID: 19216708 DOI: 10.1134/s0006297908130038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The presence of CTC family proteins is a unique feature of bacterial cells. In the CTC family, there are true ribosomal proteins (found in ribosomes of exponentially growing cells), and at the same time there are also proteins temporarily associated with the ribosome (they are produced by the cells under stress only and incorporate into the ribosome). One feature is common for these proteins - they specifically bind to 5S rRNA. In this review, the history of investigations of the best known representatives of this family is described briefly. Structural organization of the CTC family proteins and their occurrence among known taxonomic bacterial groups are discussed. Structural features of 5S rRNA and CTC protein are described that predetermine their specific interaction. Taking into account the position of a CTC protein and its intermolecular contacts in the ribosome, a possible role of its complex with 5S rRNA in ribosome functioning is discussed.
Collapse
Affiliation(s)
- G M Gongadze
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
28
|
Korobeinikova A, Shestakov S, Korepanov A, Garber M, Gongadze G. Protein CTC from Aquifex aeolicus possesses a full-sized 5S rRNA-binding domain. Biochimie 2009; 91:453-6. [DOI: 10.1016/j.biochi.2008.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 11/06/2008] [Indexed: 12/01/2022]
|
29
|
Stolboushkina E, Nikonov S, Nikulin A, Bläsi U, Manstein DJ, Fedorov R, Garber M, Nikonov O. Crystal Structure of the Intact Archaeal Translation Initiation Factor 2 Demonstrates Very High Conformational Flexibility in the α- and β-Subunits. J Mol Biol 2008; 382:680-91. [DOI: 10.1016/j.jmb.2008.07.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/05/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
|
30
|
Chirgadze YN. Structural behavior of RNA-binding proteins in the free state and in complex with RNA: Escherichia coli ribosomal protein L25 and 5S rRNA. Mol Biol 2008. [DOI: 10.1134/s0026893308040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Abstract
Structural transitions are important for the stability and function of proteins, but these phenomena are poorly understood. An extensive analysis of Protein Data Bank entries reveals 103 regions in proteins with a tendency to transform from helical to nonhelical conformation and vice versa. We find that these dynamic helices, unlike other helices, are depleted in hydrophobic residues. Furthermore, the dynamic helices have higher surface accessibility and conformational mobility (P-value = 3.35e-07) than the rigid helices. Contact analyses show that these transitions result from protein-ligand, protein-nucleic acid, and crystal-contacts. The immediate structural environment differs quantitatively (P-value = 0.003) as well as qualitatively in the two alternate conformations. Often, dynamic helix experiences more contacts in its helical conformation than in the nonhelical counterpart (P-value = 0.001). There is differential preference for the type of short contacts observed in two conformational states. We also demonstrate that the regions in protein that can undergo such large conformational transitions can be predicted with a reasonable accuracy using logistic regression model of supervised learning. Our findings have implications in understanding the molecular basis of structural transitions that are coupled with binding and are important for the function and stability of the protein. Based on our observations, we propose that several functionally relevant regions on the protein surface can switch over their conformation from coil to helix and vice-versa, to regulate the recognition and binding of their partner and hence these may work as "molecular switches" in the proteins to regulate certain biological process. Our results supports the idea that protein structure-function paradigm should transform from static to a highly dynamic one.
Collapse
Affiliation(s)
- Kuljeet Singh Sandhu
- GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Delhi 110007, India
| | | |
Collapse
|
32
|
Reiter NJ, Maher LJ, Butcher SE. DNA mimicry by a high-affinity anti-NF-kappaB RNA aptamer. Nucleic Acids Res 2007; 36:1227-36. [PMID: 18160411 PMCID: PMC2275087 DOI: 10.1093/nar/gkm1141] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The binding of RNA molecules to proteins or other ligands can require extensive RNA folding to create an induced fit. Understanding the generality of this principle involves comparing structures of RNA before and after complex formation. Here we report the NMR solution structure of a 29-nt RNA aptamer whose crystal structure had previously been determined in complex with its transcription factor target, the p502 form of NF-κB. The RNA aptamer internal loop structure has pre-organized features that are also found in the complex, including non-canonical base pairing and cross-strand base stacking. Remarkably, the free RNA aptamer structure possesses a major groove that more closely resembles B-form DNA than RNA. Upon protein binding, changes in RNA structure include the kinking of the internal loop and distortion of the terminal tetraloop. Thus, complex formation involves both pre-formed and induced fit binding interactions. The high affinity of the NF-κB transcription factor for this RNA aptamer may largely be due to the structural pre-organization of the RNA that results in its ability to mimic DNA.
Collapse
Affiliation(s)
- Nicholas J Reiter
- Department of Biochemistry, University of Wisconsin-Madison, Rochester, MN, USA
| | | | | |
Collapse
|
33
|
Kouvela EC, Gerbanas GV, Xaplanteri MA, Petropoulos AD, Dinos GP, Kalpaxis DL. Changes in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine. Nucleic Acids Res 2007; 35:5108-19. [PMID: 17652323 PMCID: PMC1976436 DOI: 10.1093/nar/gkm546] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNAPhe at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent ‘loosening’ of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.
Collapse
|
34
|
Burroughs AM, Balaji S, Iyer LM, Aravind L. Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biol Direct 2007; 2:18. [PMID: 17605815 PMCID: PMC1949818 DOI: 10.1186/1745-6150-2-18] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 07/02/2007] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The beta-grasp fold (beta-GF), prototyped by ubiquitin (UB), has been recruited for a strikingly diverse range of biochemical functions. These functions include providing a scaffold for different enzymatic active sites (e.g. NUDIX phosphohydrolases) and iron-sulfur clusters, RNA-soluble-ligand and co-factor-binding, sulfur transfer, adaptor functions in signaling, assembly of macromolecular complexes and post-translational protein modification. To understand the basis for the functional versatility of this small fold we undertook a comprehensive sequence-structure analysis of the fold and developed a natural classification for its members. RESULTS As a result we were able to define the core distinguishing features of the fold and numerous elaborations, including several previously unrecognized variants. Systematic analysis of all known interactions of the fold showed that its manifold functional abilities arise primarily from the prominent beta-sheet, which provides an exposed surface for diverse interactions or additionally, by forming open barrel-like structures. We show that in the beta-GF both enzymatic activities and the binding of diverse co-factors (e.g. molybdopterin) have independently evolved on at least three occasions each, and iron-sulfur-cluster-binding on at least two independent occasions. Our analysis identified multiple previously unknown large monophyletic assemblages within the beta-GF, including one which unifies versions found in the fasciclin-1 superfamily, the ribosomal protein L25, the phosphoribosyl AMP cyclohydrolase (HisI) and glutamine synthetase. We also uncovered several new groups of beta-GF domains including a domain found in bacterial flagellar and fimbrial assembly components, and 5 new UB-like domains in the eukaryotes. CONCLUSION Evolutionary reconstruction indicates that the beta-GF had differentiated into at least 7 distinct lineages by the time of the last universal common ancestor of all extant organisms, encompassing much of the structural diversity observed in extant versions of the fold. The earliest beta-GF members were probably involved in RNA metabolism and subsequently radiated into various functional niches. Most of the structural diversification occurred in the prokaryotes, whereas the eukaryotic phase was mainly marked by a specific expansion of the ubiquitin-like beta-GF members. The eukaryotic UB superfamily diversified into at least 67 distinct families, of which at least 19-20 families were already present in the eukaryotic common ancestor, including several protein and one lipid conjugated forms. Another key aspect of the eukaryotic phase of evolution of the beta-GF was the dramatic increase in domain architectural complexity of proteins related to the expansion of UB-like domains in numerous adaptor roles.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
35
|
Xu D, Landon T, Greenbaum NL, Fenley MO. The electrostatic characteristics of G.U wobble base pairs. Nucleic Acids Res 2007; 35:3836-47. [PMID: 17526525 PMCID: PMC1920249 DOI: 10.1093/nar/gkm274] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
G.U wobble base pairs are the most common and highly conserved non-Watson-Crick base pairs in RNA. Previous surface maps imply uniformly negative electrostatic potential at the major groove of G.U wobble base pairs embedded in RNA helices, suitable for entrapment of cationic ligands. In this work, we have used a Poisson-Boltzmann approach to gain a more detailed and accurate characterization of the electrostatic profile. We found that the major groove edge of an isolated G.U wobble displays distinctly enhanced negativity compared with standard GC or AU base pairs; however, in the context of different helical motifs, the electrostatic pattern varies. G.U wobbles with distinct widening have similar major groove electrostatic potentials to their canonical counterparts, whereas those with minimal widening exhibit significantly enhanced electronegativity, ranging from 0.8 to 2.5 kT/e, depending upon structural features. We propose that the negativity at the major groove of G.U wobble base pairs is determined by the combined effect of the base atoms and the sugar-phosphate backbone, which is impacted by stacking pattern and groove width as a result of base sequence. These findings are significant in that they provide predictive power with respect to which G.U sites in RNA are most likely to bind cationic ligands.
Collapse
Affiliation(s)
- Darui Xu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Department of Physics, Florida State University, Tallahassee, FL 32306-4390, USA and Institute of Molecular Biophysics Florida State University, Tallahassee, FL 32306-4390, USA
| | - Theresa Landon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Department of Physics, Florida State University, Tallahassee, FL 32306-4390, USA and Institute of Molecular Biophysics Florida State University, Tallahassee, FL 32306-4390, USA
| | - Nancy L. Greenbaum
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Department of Physics, Florida State University, Tallahassee, FL 32306-4390, USA and Institute of Molecular Biophysics Florida State University, Tallahassee, FL 32306-4390, USA
- *To whom correspondence should be addressed. Marcia O. Fenley. +1-850-644-7961+1-850-644-7244 Correspondence may also be addressed to Nancy L. Greenbaum. +1-850-644-2005 +1-850-644-8281
| | - Marcia O. Fenley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Department of Physics, Florida State University, Tallahassee, FL 32306-4390, USA and Institute of Molecular Biophysics Florida State University, Tallahassee, FL 32306-4390, USA
- *To whom correspondence should be addressed. Marcia O. Fenley. +1-850-644-7961+1-850-644-7244 Correspondence may also be addressed to Nancy L. Greenbaum. +1-850-644-2005 +1-850-644-8281
| |
Collapse
|
36
|
Jiang J, Sheng J, Carrasco N, Huang Z. Selenium derivatization of nucleic acids for crystallography. Nucleic Acids Res 2006; 35:477-85. [PMID: 17169989 PMCID: PMC1802610 DOI: 10.1093/nar/gkl1070] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 11/14/2022] Open
Abstract
The high-resolution structure of the DNA (5'-GTGTACA-C-3') with the selenium derivatization at the 2'-position of T2 was determined via MAD and SAD phasing. The selenium-derivatized structure (1.28 A resolution) with the 2'-Se modification in the minor groove is isomorphorous to the native structure (2.0 A). To directly compare with the conventional bromine derivatization, we incorporated bromine into the 5-postion of T4, determined the bromine-derivatized DNA structure at 1.5 A resolution, and found that the local backbone torsion angles and solvent hydration patterns were altered in the structure with the Br incorporation in the major groove. Furthermore, while the native and Br-derivatized DNAs needed over a week to form reasonable-size crystals, we observed that the Se-derivatized DNAs grew crystals overnight with high-diffraction quality, suggesting that the Se derivatization facilitated the crystal formation. In addition, the Se-derivatized DNA sequences crystallized under a broader range of buffer conditions, and generally had a faster crystal growth rate. Our experimental results indicate that the selenium derivatization of DNAs may facilitate the determination of nucleic acid X-ray crystal structures in phasing and high-quality crystal growth. In addition, our results suggest that the Se derivatization can be an alternative to the conventional Br derivatization.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Department of Chemistry, Georgia State UniversityAtlanta, GA 30302, USA
- Department of Biology, Brookhaven National LaboratoryUpton, NY 11973, USA
| | - Jia Sheng
- Department of Chemistry, Georgia State UniversityAtlanta, GA 30302, USA
| | - Nicolas Carrasco
- Department of Chemistry, Georgia State UniversityAtlanta, GA 30302, USA
| | - Zhen Huang
- Department of Chemistry, Georgia State UniversityAtlanta, GA 30302, USA
| |
Collapse
|
37
|
Mueller M, Bunk S, Diterich I, Weichel M, Rauter C, Hassler D, Hermann C, Crameri R, Hartung T. Identification of Borrelia burgdorferi ribosomal protein L25 by the phage surface display method and evaluation of the protein's value for serodiagnosis. J Clin Microbiol 2006; 44:3778-80. [PMID: 17021109 PMCID: PMC1594769 DOI: 10.1128/jcm.00371-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phage surface display technique was used to identify Borrelia burgdorferi antigens. By affinity selection with immunoglobulin G from pooled sera of six Lyme borreliosis (LB) patients, the ribosomal protein L25 was identified. The diagnostic value of L25 was investigated by an enzyme-linked immunosorbent assay, using sera from 80 LB patients and 75 controls, and the use of the protein resulted in a specificity of 99% and a 23% sensitivity, which qualify L25 as a useful antigen when combined with others.
Collapse
Affiliation(s)
- Markus Mueller
- University of Konstanz, Biochemical Pharmacology, 78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Powell AJ, Liu ZJ, Nicholas RA, Davies C. Crystal Structures of the Lytic Transglycosylase MltA from N.gonorrhoeae and E.coli: Insights into Interdomain Movements and Substrate Binding. J Mol Biol 2006; 359:122-36. [PMID: 16618494 DOI: 10.1016/j.jmb.2006.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/08/2006] [Accepted: 03/12/2006] [Indexed: 11/22/2022]
Abstract
MltA is a lytic transglycosylase of Gram-negative bacteria that cleaves the beta-1,4 glycosidic linkages between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan. We have determined the crystal structures of MltA from Neisseria gonorrhoeae and Escherichia coli (NgMltA and EcMltA), which have only 21.5% sequence identity. Both proteins have two main domains separated by a deep groove. Domain 1 shows structural similarity with the so-called double-psi barrel family of proteins. Comparison of the two structures reveals substantial differences in the relative positions of domains 1 and 2 such that the active site groove in NgMltA is much wider and appears more able to accommodate peptidoglycan substrate than EcMltA, suggesting that domain closure occurs after substrate binding. Docking of a peptidoglycan molecule into the structure of NgMltA reveals a number of conserved residues that are likely involved in substrate binding, including a potential binding pocket for the peptidyl moieties. This structure supports the assignment of Asp405 as the acid catalyst responsible for cleavage of the glycosidic bond. In EcMltA, the equivalent residue is Asp328, which has been identified previously. The structures also suggest a catalytic role for Asp393 (Asp317 in EcMltA) in activating the C6 hydroxyl group during formation of the 1,6-anhydro linkage. Finally, in comparison to EcMltA, NgMltA contains a unique third domain that is an insertion within domain 2. The domain is beta in structure and may mediate protein-protein interactions that are specific to peptidoglycan metabolism in N.gonorrhoeae.
Collapse
Affiliation(s)
- Ailsa J Powell
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA
| | | | | | | |
Collapse
|
39
|
Bardiaux B, Malliavin TE, Nilges M, Mazur AK. Comparison of different torsion angle approaches for NMR structure determination. JOURNAL OF BIOMOLECULAR NMR 2006; 34:153-66. [PMID: 16604424 DOI: 10.1007/s10858-006-6889-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 01/17/2006] [Indexed: 05/08/2023]
Abstract
A new procedure for NMR structure determination, based on the Internal Coordinate Molecular Dynamics (ICMD) approach, is presented. The method finds biopolymer conformations that satisfy usual NMR-derived restraints by using high temperature dynamics in torsion angle space. A variable target function algorithm gradually increases the number of NOE-based restraints applied, with the treatment of ambiguous and floating restraints included. This soft procedure allows combining artificially high temperature with a general purpose force-field including Coulombic and Lennard-Jones non-bonded interactions, which improves the quality of the ensemble of conformations obtained in the gas-phase. The new method is compared to existing algorithms by using the structures of eight ribosomal proteins earlier obtained with state-of-the-art procedures and included into the RECOORD database [Nederveen, A., Doreleijers, J., Vranken, W., Miller, Z., Spronk, C., Nabuurs, S., Guntert, P., Livny, M., Markley, M., Nilges, M., Ulrich, E., Kaptein, R. and Bonvin, A.M. (2005) Proteins, 59, 662-672]. For the majority of tested proteins, the ICMD algorithm shows similar convergence and somewhat better quality Z scores for the phi, psi distributions. The new method is more computationally demanding although the overall load is reasonable.
Collapse
Affiliation(s)
- Benjamin Bardiaux
- Institut Pasteur Unité de Bioinformatique Structurale, CNRS URA 2185, Institut Pasteur 25-28 rue du Dr Roux, F-75724, Paris Cedex 15, France
| | | | | | | |
Collapse
|
40
|
Abstract
With the increase in the number of large, 3D, high-resolution nucleic acid structures, particularly of the 30S and 50S ribosomal subunits and the intact bacterial ribosome, advancements in the visualization of nucleic acid structural features are essential. Large molecular structures are complicated and detailed, and one goal of visualization software is to allow the user to simplify the display of some features and accent others. We describe an extension to the UCSF Chimera molecular visualization system for the purpose of displaying and highlighting nucleic acid characteristics, including a new representation of sugar pucker, several options for abstraction of base geometries that emphasize stacking and base pairing, and an adaptation of the ribbon backbone to accommodate the nucleic acid backbone. Molecules are displayed and manipulated interactively, allowing the user to change the representations as desired for small molecules, proteins and nucleic acids. This software is available as part of the UCSF Chimera molecular visualization system and thus is integrated with a suite of existing tools for molecular graphics.
Collapse
Affiliation(s)
| | - Donna K. Hendrix
- Department of Plant and Microbial Biology111 Koshland Hall # 3102University of CaliforniaBerkeley, CA 94720-3102, USA
| | - Thomas E. Ferrin
- To whom correspondence should be addressed. Tel: +1 415 476 2299; Fax: +1 415 502 1755;
| |
Collapse
|
41
|
Matsuo Y, Morimoto T, Kuwano M, Loh PC, Oshima T, Ogasawara N. The GTP-binding protein YlqF participates in the late step of 50 S ribosomal subunit assembly in Bacillus subtilis. J Biol Chem 2006; 281:8110-7. [PMID: 16431913 DOI: 10.1074/jbc.m512556200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus subtilis YlqF belongs to the Era/Obg subfamily of small GTP-binding proteins and is essential for bacterial growth. Here we report that YlqF participates in the late step of 50 S ribosomal subunit assembly. YlqF was co-fractionated with the 50 S subunit, depending on the presence of noncleavable GTP analog. Moreover, the GTPase activity of YlqF was stimulated specifically by the 50 S subunit in vitro. Dimethyl sulfate footprinting analysis disclosed that YlqF binds to a unique position in 23 S rRNA. Yeast two-hybrid data revealed interactions between YlqF and the B. subtilis L25 protein (Ctc). The interaction was confirmed by the pull-down assay of the purified proteins. Specifically, YlqF is positioned around the A-site and P-site on the 50 S subunit. Proteome analysis of the abnormal 50 S subunits that accumulated in YlqF-depleted cells showed that L16 and L27 proteins, located near the YlqF-binding domain, are missing. Our results collectively indicate that YlqF will organize the late step of 50 S ribosomal subunit assembly.
Collapse
Affiliation(s)
- Yoshitaka Matsuo
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
42
|
The Key Role of Large Clusters of Polar Residues of RNA-Binding Proteins in the Formation of Complexes with RNA. Mol Biol 2005. [DOI: 10.1007/s11008-005-0110-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Stoll H, Dengjel J, Nerz C, Götz F. Staphylococcus aureus deficient in lipidation of prelipoproteins is attenuated in growth and immune activation. Infect Immun 2005; 73:2411-23. [PMID: 15784587 PMCID: PMC1087423 DOI: 10.1128/iai.73.4.2411-2423.2005] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A lipoprotein diacylglyceryl transferase (lgt) deletion mutant of Staphylococcus aureus SA113 was constructed. The lipoprotein and prelipoprotein expression, the growth behavior, and the ability of the mutant to elicit an immune response in various host cells were studied. In the wild type, the majority of [14C]palmitate-labeled lipoproteins were located in the membrane fraction, although some lipoproteins were also present on the cell surface and in the culture supernatant. The lgt mutant completely lacked palmitate-labeled lipoproteins and released high amounts of some unmodified prelipoproteins, e.g., the oligopeptide-binding protein OppA, the peptidyl-prolyl cis-trans isomerase PrsA, and the staphylococcal iron transporter SitC, into the culture supernatant. The growth of the lgt mutant was hardly affected in rich medium but was retarded under nutrient limitation. The lgt mutant and its crude lysate induced much fewer proinflammatory cytokines and chemokines in human monocytic (MonoMac6), epithelial (pulmonary A549), and endothelial (human umbilical vein endothelial) cells than the wild type. However, in whole blood samples, the culture supernatant of the lgt mutant was equal or even superior to the wild-type supernatant in tumor necrosis factor alpha induction. Lipoprotein fractionation experiments provided evidence that a small proportion of the mature lipoproteins are released by the S. aureus wild type despite the lipid anchor and are trapped in part by the cell wall, thereby exposing the immune-activating lipid structure on the cell surface. Bacterial lipoproteins appear to be essential for a complete immune stimulation by gram-positive bacteria.
Collapse
Affiliation(s)
- Hartmut Stoll
- Mikrobielle Genetik, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
44
|
Gongadze GM, Korepanov AP, Stolboushkina EA, Zelinskaya NV, Korobeinikova AV, Ruzanov MV, Eliseev BD, Nikonov OS, Nikonov SV, Garber MB, Lim VI. The Crucial Role of Conserved Intermolecular H-bonds Inaccessible to the Solvent in Formation and Stabilization of the TL5·5 SrRNA Complex. J Biol Chem 2005; 280:16151-6. [PMID: 15718233 DOI: 10.1074/jbc.m413596200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of the structures of two complexes of 5 S rRNA with homologous ribosomal proteins, Escherichia coli L25 and Thermus thermophilus TL5, revealed that amino acid residues interacting with RNA can be divided into two different groups. The first group consists of non-conserved residues, which form intermolecular hydrogen bonds accessible to solvent. The second group, comprised of strongly conserved residues, form intermolecular hydrogen bonds that are shielded from solvent. Site-directed mutagenesis was used to introduce mutations into the RNA-binding site of protein TL5. We found that replacement of residues of the first group does not influence the stability of the TL5.5 S rRNA complex, whereas replacement of residues of the second group leads to destabilization or disruption of the complex. Stereochemical analysis shows that the replacements of residues of the second group always create complexes with uncompensated losses of intermolecular hydrogen bonds. We suggest that these shielded intermolecular hydrogen bonds are responsible for the recognition between the protein and RNA.
Collapse
Affiliation(s)
- George M Gongadze
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee JC, Gutell RR. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs. J Mol Biol 2005; 344:1225-49. [PMID: 15561141 DOI: 10.1016/j.jmb.2004.09.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 09/20/2004] [Accepted: 09/24/2004] [Indexed: 11/16/2022]
Abstract
In addition to the canonical base-pairs comprising the standard Watson-Crick (C:G and U:A) and wobble U:G conformations, an analysis of the base-pair types and conformations in the rRNAs in the high-resolution crystal structures of the Thermus thermophilus 30S and Haloarcula marismortui 50S ribosomal subunits has identified a wide variety of non-canonical base-pair types and conformations. However, the existing nomenclatures do not describe all of the observed non-canonical conformations or describe them with some ambiguity. Thus, a standardized system is required to classify all of these non-canonical conformations appropriately. Here, we propose a new, simple and systematic nomenclature that unambiguously classifies base-pair conformations occurring in base-pairs, base-triples and base-quadruples that are associated with secondary and tertiary interactions. This system is based on the topological arrangement of the two bases and glycosidic bonds in a given base-pair. Base-pairs in the internal positions of regular secondary structure helices usually form with canonical base-pair groups (C:G, U:A, and U:G) and canonical conformations (C:G WC, U:A WC, and U:G Wb). In contrast, non-helical base-pairs outside of regular structure helices usually have non-canonical base-pair groups and conformations. In addition, many non-helical base-pairs are involved in RNA motifs that form a defined set of non-canonical conformations. Thus, each rare non-canonical conformation may be functionally and structurally important. Finally, the topology-based isostericity of base-pair conformations can rationalize base-pair exchanges in the evolution of RNA molecules.
Collapse
Affiliation(s)
- Jung C Lee
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712-0159, USA
| | | |
Collapse
|
46
|
Golden BL, Kim H, Chase E. Crystal structure of a phage Twort group I ribozyme–product complex. Nat Struct Mol Biol 2004; 12:82-9. [PMID: 15580277 DOI: 10.1038/nsmb868] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 10/26/2004] [Indexed: 11/09/2022]
Abstract
Group I introns are catalytic RNAs capable of orchestrating two sequential phosphotransesterification reactions that result in self-splicing. To understand how the group I intron active site facilitates catalysis, we have solved the structure of an active ribozyme derived from the orf142-I2 intron from phage Twort bound to a four-nucleotide product RNA at a resolution of 3.6 A. In addition to the three conserved domains characteristic of all group I introns, the Twort ribozyme has peripheral insertions characteristic of phage introns. These elements form a ring that completely envelops the active site, where a snug pocket for guanosine is formed by a series of stacked base triples. The structure of the active site reveals three potential binding sites for catalytic metals, and invokes a role for the 2' hydroxyl of the guanosine substrate in organization of the active site for catalysis.
Collapse
Affiliation(s)
- Barbara L Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907, USA.
| | | | | |
Collapse
|
47
|
Abstract
NMR spectroscopy is a powerful tool for studying proteins and nucleic acids in solution. This is illustrated by the fact that nearly half of all current RNA structures were determined by using NMR techniques. Information about the structure, dynamics, and interactions with other RNA molecules, proteins, ions, and small ligands can be obtained for RNA molecules up to 100 nucleotides. This review provides insight into the resonance assignment methods that are the first and crucial step of all NMR studies, into the determination of base-pair geometry, into the examination of local and global RNA conformation, and into the detection of interaction sites of RNA. Examples of NMR investigations of RNA are given by using several different RNA molecules to illustrate the information content obtainable by NMR spectroscopy and the applicability of NMR techniques to a wide range of biologically interesting RNA molecules.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Marie-Curie-Strasse 11, 60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
48
|
Réblová K, Spacková N, Koca J, Leontis NB, Sponer J. Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex. Biophys J 2004; 87:3397-412. [PMID: 15339800 PMCID: PMC1304806 DOI: 10.1529/biophysj.104.047126] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations of RNA-protein complex between Escherichia coli loop E/helix IV (LE/HeIV) rRNA and L25 protein reveal a qualitative agreement between the experimental and simulated structures. The major groove of LE is a prominent rRNA cation-binding site. Divalent cations rigidify the LE major groove geometry whereas in the absence of divalent cations LE extensively interacts with monovalent cations via inner-shell binding. The HeIV region shows bistability of its major groove explaining the observed differences between x-ray and NMR structures. In agreement with the experiments, the simulations suggest that helix-alpha1 of L25 is the least stable part of the protein. Inclusion of Mg2+ cations into the simulations causes perturbation of basepairing at the LE/HeIV junction, which does not, however, affect the protein binding. The rRNA-protein complex is mediated by a number of highly specific hydration sites with long-residing water molecules and two of them are bound throughout the entire 24-ns simulation. Long-residing water molecules are seen also outside the RNA-protein contact areas with water-binding times substantially enhanced compared to simulations of free RNA. Long-residency hydration sites thus represent important elements of the three-dimensional structure of rRNA.
Collapse
Affiliation(s)
- Kamila Réblová
- National Centre for Biomolecular Research, Faculty of Sciences, Masaryk University, Kotlárská 2, 61137 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
49
|
Zarivach R, Bashan A, Berisio R, Harms J, Auerbach T, Schluenzen F, Bartels H, Baram D, Pyetan E, Sittner A, Amit M, Hansen HAS, Kessler M, Liebe C, Wolff A, Agmon I, Yonath A. Functional aspects of ribosomal architecture: symmetry, chirality and regulation. J PHYS ORG CHEM 2004. [DOI: 10.1002/poc.831] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Raz Zarivach
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Anat Bashan
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Rita Berisio
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Joerg Harms
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Tamar Auerbach
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Frank Schluenzen
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Heike Bartels
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - David Baram
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Erez Pyetan
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Assa Sittner
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Maya Amit
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Harly A. S. Hansen
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Maggie Kessler
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Christa Liebe
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Anja Wolff
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Ilana Agmon
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Ada Yonath
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| |
Collapse
|
50
|
Klein DJ, Moore PB, Steitz TA. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J Mol Biol 2004; 340:141-77. [PMID: 15184028 DOI: 10.1016/j.jmb.2004.03.076] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 03/16/2004] [Accepted: 03/23/2004] [Indexed: 11/21/2022]
Abstract
The structures of ribosomal proteins and their interactions with RNA have been examined in the refined crystal structure of the Haloarcula marismortui large ribosomal subunit. The protein structures fall into six groups based on their topology. The 50S subunit proteins function primarily to stabilize inter-domain interactions that are necessary to maintain the subunit's structural integrity. An extraordinary variety of protein-RNA interactions is observed. Electrostatic interactions between numerous arginine and lysine residues, particularly those in tail extensions, and the phosphate groups of the RNA backbone mediate many protein-RNA contacts. Base recognition occurs via both the minor groove and widened major groove of RNA helices, as well as through hydrophobic binding pockets that capture bulged nucleotides and through insertion of amino acid residues into hydrophobic crevices in the RNA. Primary binding sites on contiguous RNA are identified for 20 of the 50S ribosomal proteins, which along with few large protein-protein interfaces, suggest the order of assembly for some proteins and that the protein extensions fold cooperatively with RNA. The structure supports the hypothesis of co-transcriptional assembly, centered around L24 in domain I. Finally, comparing the structures and locations of the 50S ribosomal proteins from H.marismortui and D.radiodurans revealed striking examples of molecular mimicry. These comparisons illustrate that identical RNA structures can be stabilized by unrelated proteins.
Collapse
Affiliation(s)
- D J Klein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|