1
|
Sokolova DV, Solovieva AE, Zaretsky AM, Shelenga TV. The potential of the amaranth collection maintained at VIR in the context of global plant breeding and utilization trends. Vavilovskii Zhurnal Genet Selektsii 2024; 28:731-743. [PMID: 39722668 PMCID: PMC11667576 DOI: 10.18699/vjgb-24-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 12/28/2024] Open
Abstract
Amaranth is an ancient crop of the family Amaranthaceae, but it is fairly new to Russia. Its seeds and leaf biomass contain a high-quality gluten-free protein, fatty acids, squalene (a polyunsaturated hydrocarbon), flavonoids, vitamins, and minerals. A comprehensive study of amaranth, enhancement of its breeding, and development of new cultivars will contribute to food quality improvement through the use of plant raw materials enriched for wholesome and highly nutritious components. At present, selection and hybridization still remain the main amaranth breeding techniques. Meanwhile, mutation breeding and polyploidy have been successfully employed to increase its seed yield and protein content. The genes encoding amaranth proteins have been used to produce transgenic plants of potato, bread wheat, and maize. Despite the great potential of amaranth, little research has been dedicated to the study of its genomics, concentrating mainly on the identification of its species diversity. Targets of breeding practice for amaranth include such characteristics as large size and nonshattering of seeds, short stem, earliness, high yield, cold hardiness, synchronized maturation, resistance to pests and diseases, and high nutritional value, including the content and quality of protein, lipids, squalene, and bioactive compounds. A unique collection of amaranth maintained at the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) currently incorporates 570 accessions from various countries. For 70 years it has been replenished with local varieties, commercial cultivars, and wild species supplied by collecting missions, research centers, botanical gardens, genebanks, and experimental breeding stations from all over the world. Long-standing studies have resulted in the formation of trait-specific groups of accessions, with high yields of seeds and leaf biomass, earliness, cold hardiness, high protein content in seeds and biomass, short stems, and resistance to seed shattering, earmarked for vegetable or ornamental purposes. The gene pool of amaranth preserved at VIR can provide unlimited opportunities for breeding and meet the needs of the country's population, enriching the human diet with ingredients produced from such a health-friendly and useful crop.
Collapse
Affiliation(s)
- D V Sokolova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A E Solovieva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A M Zaretsky
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - T V Shelenga
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
2
|
Samal I, Bhoi TK, Raj MN, Majhi PK, Murmu S, Pradhan AK, Kumar D, Paschapur AU, Joshi DC, Guru PN. Underutilized legumes: nutrient status and advanced breeding approaches for qualitative and quantitative enhancement. Front Nutr 2023; 10:1110750. [PMID: 37275642 PMCID: PMC10232757 DOI: 10.3389/fnut.2023.1110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Underutilized/orphan legumes provide food and nutritional security to resource-poor rural populations during periods of drought and extreme hunger, thus, saving millions of lives. The Leguminaceae, which is the third largest flowering plant family, has approximately 650 genera and 20,000 species and are distributed globally. There are various protein-rich accessible and edible legumes, such as soybean, cowpea, and others; nevertheless, their consumption rate is far higher than production, owing to ever-increasing demand. The growing global urge to switch from an animal-based protein diet to a vegetarian-based protein diet has also accelerated their demand. In this context, underutilized legumes offer significant potential for food security, nutritional requirements, and agricultural development. Many of the known legumes like Mucuna spp., Canavalia spp., Sesbania spp., Phaseolus spp., and others are reported to contain comparable amounts of protein, essential amino acids, polyunsaturated fatty acids (PUFAs), dietary fiber, essential minerals and vitamins along with other bioactive compounds. Keeping this in mind, the current review focuses on the potential of discovering underutilized legumes as a source of food, feed and pharmaceutically valuable chemicals, in order to provide baseline data for addressing malnutrition-related problems and sustaining pulse needs across the globe. There is a scarcity of information about underutilized legumes and is restricted to specific geographical zones with local or traditional significance. Around 700 genera and 20,000 species remain for domestication, improvement, and mainstreaming. Significant efforts in research, breeding, and development are required to transform existing local landraces of carefully selected, promising crops into types with broad adaptability and economic viability. Different breeding efforts and the use of biotechnological methods such as micro-propagation, molecular markers research and genetic transformation for the development of underutilized crops are offered to popularize lesser-known legume crops and help farmers diversify their agricultural systems and boost their profitability.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute, Jodhpur, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prasanta Kumar Majhi
- Regional Research and Technology Transfer Station, Odisha University of Agriculture and Technology, Keonjhar, Odisha, India
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dilip Kumar
- ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi, India
| | | | | | - P. N. Guru
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, India
| |
Collapse
|
3
|
Moreno-Nombela S, Romero-Parra J, Ruiz-Ojeda FJ, Solis-Urra P, Baig AT, Plaza-Diaz J. Genome Editing and Protein Energy Malnutrition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:215-232. [DOI: 10.1007/978-981-19-5642-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Recent Advances in Molecular Improvement for Potato Tuber Traits. Int J Mol Sci 2022; 23:ijms23179982. [PMID: 36077378 PMCID: PMC9456189 DOI: 10.3390/ijms23179982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Potato is an important crop due to its nutritional value and high yield potential. Improving the quality and quantity of tubers remains one of the most important breeding objectives. Genetic mapping helps to identify suitable markers for use in the molecular breeding, and combined with transgenic approaches provides an efficient way for gaining desirable traits. The advanced plant breeding tools and molecular techniques, e.g., TALENS, CRISPR-Cas9, RNAi, and cisgenesis, have been successfully used to improve the yield and nutritional value of potatoes in an increasing world population scenario. The emerging methods like genome editing tools can avoid incorporating transgene to keep the food more secure. Multiple success cases have been documented in genome editing literature. Recent advances in potato breeding and transgenic approaches to improve tuber quality and quantity have been summarized in this review.
Collapse
|
5
|
Assessment of Seasonal Drought Impact on Potato in the Northern Single Cropping Area of China. WATER 2022. [DOI: 10.3390/w14030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Drought is one of the key limiting factors for potato yield in the northern single cropping area (NSCA) in China. To analyze the impact of drought on potato yield in the NSCA, this study first analyzed the variation of dry/wet conditions in the plantable areas on a seasonal scale using the standardized precipitation evapotranspiration index (SPEI). Secondly, the changes in yield structure in the last 36 years were systematically analyzed and divided the total yield change into planting area contribution and climate yield contribution. Finally, a regression model of the seasonal drought index and contributing factors of total yield change in different administrative regions was constructed. The results showed that the main factors affecting the total potato yield of the NSCA began to change from yield to planting area in the 1990s, while the barycenter of the output structure and population moved to the southwest, with grassland being the main source; dry/wet conditions (year i) had varying degrees of effect on contributing factors (year i, year i + 1) of total yield change in different administrative regions that were not limited to the growing season; the non-overlap of high-yield area, high-adaptability area and planting area was the urgent problem to be solved for the NSCA. The results of this study can provide a scientific basis for NSCA crop management and communication with farmers, providing new ideas for sustainable production in other agricultural regions in the world.
Collapse
|
6
|
Balabanova L, Seitkalieva A, Yugay Y, Rusapetova T, Slepchenko L, Podvolotskaya A, Yatsunskaya M, Vasyutkina E, Son O, Tekutyeva L, Shkryl Y. Engineered Fungus Thermothelomyces thermophilus Producing Plant Storage Proteins. J Fungi (Basel) 2022; 8:jof8020119. [PMID: 35205873 PMCID: PMC8877005 DOI: 10.3390/jof8020119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
An efficient Agrobacterium-mediated genetic transformation based on the plant binary vector pPZP-RCS2 was carried out for the multiple heterologous protein production in filamentous fungus Thermothelomyces thermophilus F-859 (formerly Myceliophthora thermophila F-859). The engineered fungus Th. thermophilus was able to produce plant storage proteins of Zea mays (α-zein Z19) and Amaranthus hypochondriacus (albumin A1) to enrich fungal biomass by valuable nutritional proteins and improved amino acid content. The mRNA levels of z19 and a1 genes were significantly dependent on their driving promoters: the promoter of tryptophan synthase (PtrpC) was more efficient to express a1, while the promoter of translation elongation factor (Ptef) provided much higher levels of z19 transcript abundance. In general, the total recombinant proteins and amino acid contents were higher in the Ptef-containing clones. This work describes a new strategy to improve mycoprotein nutritive value by overexpression of plant storage proteins.
Collapse
Affiliation(s)
- Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (L.B.); (A.S.); (L.S.)
| | - Aleksandra Seitkalieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (L.B.); (A.S.); (L.S.)
| | - Yulia Yugay
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (Y.Y.); (T.R.); (M.Y.); (E.V.)
| | - Tatiana Rusapetova
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (Y.Y.); (T.R.); (M.Y.); (E.V.)
| | - Lubov Slepchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (L.B.); (A.S.); (L.S.)
| | - Anna Podvolotskaya
- Department of Bioeconomy and Food Security, Far Eastern Federal University, B417 Office, Bldg. 20, Ajax St., Russky Island, 690950 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, Centralnay St. 42, 692481 Volno-Nadezhdinskoye, Primorsky Krai, Russia
| | - Margarita Yatsunskaya
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (Y.Y.); (T.R.); (M.Y.); (E.V.)
| | - Elena Vasyutkina
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (Y.Y.); (T.R.); (M.Y.); (E.V.)
| | - Oksana Son
- Department of Bioeconomy and Food Security, Far Eastern Federal University, B417 Office, Bldg. 20, Ajax St., Russky Island, 690950 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, Centralnay St. 42, 692481 Volno-Nadezhdinskoye, Primorsky Krai, Russia
| | - Liudmila Tekutyeva
- Department of Bioeconomy and Food Security, Far Eastern Federal University, B417 Office, Bldg. 20, Ajax St., Russky Island, 690950 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, Centralnay St. 42, 692481 Volno-Nadezhdinskoye, Primorsky Krai, Russia
| | - Yury Shkryl
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (Y.Y.); (T.R.); (M.Y.); (E.V.)
- Correspondence: ; Tel.: +7-4232-312-129; Fax: +7-4232-310-193
| |
Collapse
|
7
|
Mir RA, Nazir M, Naik S, Mukhtar S, Ganai BA, Zargar SM. Utilizing the underutilized plant resources for development of life style foods: Putting nutrigenomics to use. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:128-138. [PMID: 34998100 DOI: 10.1016/j.plaphy.2021.12.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Sufficient amount of minerals, vitamins, and proteins in human diet play indispensable role in maintaining the active metabolism for better human health. All the essential nutrients that are requisite for an individual's survival are acquired from plants as well as animals. Micronutrients and macronutrients directly influence the metabolic pathways and their deficiencies play a substantial role in development of manifold disorders. In addition to environmental factors, quality and quantity of foods are key factors in maintaining the human health. Transition from healthy to diseased state is concurrent with the pattern of gene expression that is largely influenced by nutrition and environment. A combined approach to study the influence of nutrition on expression of numerous genes can be well explored through nutrigenomic studies. Nutrigenomics includes studies wherein applied genomics is used to investigate nutritional science to understand the compartmentalization of genes that influence the cause of diet-related complications. This review describes the role of underutilized crops as frontline foods to circumvent the health complications through the nutrigenomic studies. Further dynamics of nutrigenomic tools to study the impact of nutrition on the changing pattern of genome stability and gene expression for developing precise safety measures against wide range of health ailments linked to metabolic networks. Additionally, this review provides detailed information on nutrigenomic studies undertaken to unravel the potential of underutilized crops to augment the human health and to carry the agronomic/genomic approaches to enhance nutritional profile of underutilized crops to overcome diet-related disorders.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185131, India
| | - Muslima Nazir
- Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Samiullah Naik
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Shazia Mukhtar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India.
| |
Collapse
|
8
|
Upadhyaya DC, Bagri DS, Upadhyaya CP, Kumar A, Thiruvengadam M, Jain SK. Genetic engineering of potato (Solanum tuberosum L.) for enhanced α-tocopherols and abiotic stress tolerance. PHYSIOLOGIA PLANTARUM 2021; 173:116-128. [PMID: 33099781 DOI: 10.1111/ppl.13252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Vitamin E (α-tocopherol) is a lipid-soluble essential vitamin recognized for improvement in degenerative health conditions, abating cancer risk, and coronary heart diseases in humans. While in plants, it acts as a free radical scavenger that protects cells against oxidative and photooxidative damages. The daily consumption of potato makes it a key target for biofortification with vitamins for eliminating vitamin deficiency in large populations. Vitamin E biosynthetic pathway genes have been overexpressed in plants via genetic engineering to enhance the α-tocopherol content. Major genes involved in the vitamin E biosynthesis in plants viz. the homogentisate-phytyltransferase (At-HPT) and γ-tocopherol-methyltransferase (At-γ-TMT), isolated from Arabidopsis were constitutively overexpressed in potato (Solanum tuberosum L.). The molecular analyses of independent transgenic lines revealed a stable integration of both the genes in the plant genome. The transgenic potato exhibited significantly improved vitamin E contents up to 173-258% in comparison to the untransformed control plants. Transgenic tissues also exhibited increased cellular antioxidant enzymes, proline, osmolyte, and glutathione content that are directly correlated with the ability of the plant to withstand abiotic stresses imposed by salt (NaCl) and heavy metal (CdCl2 ). Therefore, the current strategy of increasing the vitamin E content in potato with enhanced tolerance to abiotic stresses might greatly aid efforts to engineer crops for human health benefits and greater yield under adverse environmental conditions.
Collapse
Affiliation(s)
| | - Deepak Singh Bagri
- Department of Biotechnology, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, India
| | | | - Ashwani Kumar
- Department of Botany, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, Republic of Korea
| | - Subodh Kumar Jain
- Department of Biotechnology, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, India
| |
Collapse
|
9
|
Kamenya SN, Mikwa EO, Song B, Odeny DA. Genetics and breeding for climate change in Orphan crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1787-1815. [PMID: 33486565 PMCID: PMC8205878 DOI: 10.1007/s00122-020-03755-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/16/2020] [Indexed: 05/17/2023]
Abstract
Climate change is rapidly changing how we live, what we eat and produce, the crops we breed and the target traits. Previously underutilized orphan crops that are climate resilient are receiving much attention from the crops research community, as they are often the only crops left in the field after periods of extreme weather conditions. There are several orphan crops with incredible resilience to biotic and abiotic stresses. Some are nutritious, while others provide good sources of biofuel, medicine and other industrial raw materials. Despite these benefits, orphan crops are still lacking in important genetic and genomic resources that could be used to fast track their improvement and make their production profitable. Progress has been made in generating draft genomes of at least 28 orphan crops over the last decade, thanks to the reducing cost of sequencing. The implementation of a structured breeding program that takes advantage of additional modern crop improvement tools such as genomic selection, speed breeding, genome editing, high throughput phenotyping and breeding digitization would make rapid improvement of these orphan crops possible, but would require coordinated research investment. Other production challenges such as lack of adequate germplasm conservation, poor/non-existent seed systems and agricultural extension services, as well as poor marketing channels will also need to be improved if orphan crops were to be profitable. We review the importance of breeding orphan crops under the increasing effects of climate change, highlight existing gaps that need to be addressed and share some lessons to be learned from major crops.
Collapse
Affiliation(s)
- Sandra Ndagire Kamenya
- African Center of Excellence in Agroecology and Livelihood Systems, Uganda Martyrs University, Kampala, Uganda
| | - Erick Owuor Mikwa
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute At Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518060, People's Republic of China.
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya.
| |
Collapse
|
10
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
11
|
De S. Strategies of Plant Biotechnology to Meet the Increasing Demand of Food and Nutrition in India. ACTA ACUST UNITED AC 2020. [DOI: 10.21467/ias.10.1.7-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A groundbreaking application of biotechnology research during the recent past has been improvement of crop health and production. India being one of the most rapidly developing countries with an enormous population and remarkable biodiversity, plant biotechnology promises significant potential to contribute to characterization and conservation of the biodiversity, increasing its usefulness. However, India’s green revolution was noted to be insufficient to feed the country's teeming millions. Therefore, novel approaches in crop biotechnology had to be aimed at ensuring better productivity and quality of cultivars. This paper provides a comprehensive review of research undertaken mainly in the last couple of decades along with potential strategies in plant biotechnology focusing on specific grain and seed crops of key agricultural as well as dietary importance to meet the growing demand of food and nutrition in India, while also proposing potential application of relevant global research findings in the Indian context. The analysis would help address the ever-increasing worldwide socio-economic necessity for greater food security, particularly during times of crisis such as the recent Coronavirus Infectious Disease 2019 (COVID-19) pandemic.
Collapse
|
12
|
Gururani K, Kumar A, Tiwari A, Agarwal A, Gupta S, Pandey D. Transcriptome wide identification and characterization of regulatory genes involved in EAA metabolism and validation through expression analysis in different developmental stages of finger millet spikes. 3 Biotech 2020; 10:347. [PMID: 32728514 DOI: 10.1007/s13205-020-02337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/12/2020] [Indexed: 12/27/2022] Open
Abstract
Finger millet is a rich source of seed storage proteins (SSPs). Various regulatory genes play an important role to maintain the quality and accumulation of SSPs in crop seeds. In the present study, nine regulatory genes of EAAs metabolic pathway, i.e., aspartate kinase, homoserine dehydrogenase, threonine synthase, threonine dehydratase, dihydrodipicolinate synthase, cystathionine γ synthase, anthranilate synthase, acetolactate synthase and lysine 2-oxoglutarato reductase/saccharopine dehydrogenase (LOR/SD) were identified from the transcriptomic data of developing spikes of two finger millet genotypes, i.e., GP-45 and GP-1. Results of sequence alignment search and motif/domain analysis showed high similarity of nucleotide sequences of identified regulatory genes with their respective homologs in rice. Results of promoter analysis revealed the presence of various cis-regulatory elements, like nitrogen responsive cis-elements (O2-site and GCN4), light responsive cis-elements, and stress responsive cis-elements. The presence of nine regulatory genes identified from the transcriptomic data of GP-45 and GP-1 was further confirmed by real time expression analysis in high and low protein containing genotypes, i.e., GE-3885 and GE-1437. Results of real time expression analysis showed significantly higher expression (p ≤ 0.01) of regulatory genes in GE-3885 rather than GE-1437 under control and treatment condition. Crude protein content of GE-3885 was found to be significantly higher (p ≤ 0.01) in comparison to GE-1437 under control condition, while under treatment condition GE-1437 was found to be more responsive to KNO3 treatment rather than GE-3885.
Collapse
Affiliation(s)
- Kavita Gururani
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| | - Anil Kumar
- Rani Laxmi Bai Central Agriculture University, Jhansi, Uttar Pradesh 284003 India
| | - Apoorv Tiwari
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007 Uttar Pradesh India
| | - Aparna Agarwal
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| | - Supriya Gupta
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| |
Collapse
|
13
|
Mohd Hanafiah N, Mispan MS, Lim PE, Baisakh N, Cheng A. The 21st Century Agriculture: When Rice Research Draws Attention to Climate Variability and How Weedy Rice and Underutilized Grains Come in Handy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E365. [PMID: 32188108 PMCID: PMC7154822 DOI: 10.3390/plants9030365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Rice, the first crop to be fully sequenced and annotated in the mid-2000s, is an excellent model species for crop research due mainly to its relatively small genome and rich genetic diversity. The 130-million-year-old cereal came into the limelight in the 1960s when the semi-dwarfing gene sd-1, better known as the "green revolution" gene, resulted in the establishment of a high-yielding semi-dwarf variety IR8. Deemed as the miracle rice, IR8 saved millions of lives and revolutionized irrigated rice farming particularly in the tropics. The technology, however, spurred some unintended negative consequences, especially in prompting ubiquitous monoculture systems that increase agricultural vulnerability to extreme weather events and climate variability. One feasible way to incorporate resilience in modern rice varieties with narrow genetic backgrounds is by introgressing alleles from the germplasm of its weedy and wild relatives, or perhaps from the suitable underutilized species that harbor novel genes responsive to various biotic and abiotic stresses. This review reminisces the fascinating half-century journey of rice research and highlights the potential utilization of weedy rice and underutilized grains in modern breeding programs. Other possible alternatives to improve the sustainability of crop production systems in a changing climate are also discussed.
Collapse
Affiliation(s)
- Noraikim Mohd Hanafiah
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhamad Shakirin Mispan
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- The Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Phaik Eem Lim
- Institute of Ocean and Earth Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Acga Cheng
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
14
|
Kaur A, Guleria S, Reddy MS, Kumar A. A robust genetic transformation protocol to obtain transgenic shoots of Solanum tuberosum L. cultivar 'Kufri Chipsona 1'. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:367-377. [PMID: 32158141 PMCID: PMC7036391 DOI: 10.1007/s12298-019-00747-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The genetic transformation of plants is an important biotechnological tool used for crop improvement for many decades. The present study was focussed to investigate various factors affecting genetic transformation of potato cultivar 'Kufri Chipsona 1'. It was observed that explants pre-cultured for 2 days on MS2 medium (MS medium containing 10 µM silver nitrate, 10 µM BA, 15 µM GA3), injured with a surgical blade and co-cultivated with Agrobacterium tumefaciens strain EHA105 [O.D600 (0.6)] for 2 days results in maximum transient β-glucuronidase (GUS) expression. The addition of 100 µM acetosyringone in MS2 medium also increased rate of transient GUS expression in both the explants. Clumps of putative transgenic shoots were regenerated using the optimised culture conditions from leaf and internodal explants. The stable integration of T-DNA was established using histochemical staining for GUS and amplification of DNA fragment specific to nptII and uidA genes. Within the clumps, around 67.85% of shoots showed uniform GUS expression in all the tissues and about 32.15% shoots show intermittent GUS expression establishing chimeric nature. Uniform GUS staining of the tissue was used as initial marker of non-chimeric transgenic shoots. Quantitative expression of nptII transgene was found to be directly proportional to uniformity of GUS staining in transgenic shoots. The present investigation indicated that manipulation of culture conditions and the medium composition may help to get transgenic shoots with uniform expression of transgene in all the tissues of potato cultivar 'Kufri Chipsona 1'.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - M. Sudhakara Reddy
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - Anil Kumar
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| |
Collapse
|
15
|
Gaur VS, Sood S, Tiwari S, Kumar A. Genome-wide identification and characterization of seed storage proteins (SSPs) of foxtail millet ( Setaria italica (L.) P. Beauv.). 3 Biotech 2018; 8:415. [PMID: 30237962 DOI: 10.1007/s13205-018-1431-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 09/10/2018] [Indexed: 11/30/2022] Open
Abstract
We report the identification of 47 foxtail millet (Setaria italica (L.) P. Beauv.) seed storage proteins (SSPs) consisting of 14 albumins, 12 prolamins, 18 globulins and 3 glutelins using computational approaches and compared their essential amino acid composition with 225 SSPs of rice, barley, sorghum and maize. Comparative analysis revealed several unique foxtail millet SSPs containing high amounts of essential amino acids. These include three 2s-albumin proteins containing 11.9%, 10.9%, 9.82% lysine, one 10-kDa prolamin containing 20% methionine residues and one each 7S-globulin, 10-kDa prolamin, alpha-zein proteins containing 9.2% threonine, 9.35% phenylalanine and 2.5% tryptophan, respectively. High lysine containing albumins and high methionine containing prolamins were also detected in other cereals indicating that these SSPs are widespread in cereals. Phylogenetic studies revealed that the foxtail millet SSPs are closer to sorghum and maize. The lysine-rich albumins and the methionine-rich prolamins formed a separate cluster. Motif analysis of lysine-rich albumins displayed several lysine containing conserved motifs across cereals including foxtail millet. The 10-kDa prolamin protein containing 20% methionine was unique as it lacked the characteristic repeat motifs of methionine found in the high methionine containing zeins and kafirins. The motif "NPAAFWQQQQLL" was uniquely repeated in the foxtail millet high tryptophan prolamin protein. The findings of the present study provide new insights in foxtail millet seed storage protein characterization and their nutritional importance in terms of essential amino acid composition.
Collapse
Affiliation(s)
- Vikram Singh Gaur
- College of Agriculture, Waraseoni, Balaghat, JNKVV, Jabalpur, 481331 India
| | - Salej Sood
- 2Division of Crop Improvement, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Sharad Tiwari
- Department of Plant Breeding and Genetics, JNKVV, Jabalpur, 482004 India
| | - Anil Kumar
- 4Department of Molecular Biology and Biotechnology, GB Pant University of Agriculture and Technology, Pantnagar, 263145 India
| |
Collapse
|
16
|
Hameed A, Zaidi SSEA, Shakir S, Mansoor S. Applications of New Breeding Technologies for Potato Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:925. [PMID: 30008733 PMCID: PMC6034203 DOI: 10.3389/fpls.2018.00925] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/11/2018] [Indexed: 05/17/2023]
Abstract
The first decade of genetic engineering primarily focused on quantitative crop improvement. With the advances in technology, the focus of agricultural biotechnology has shifted toward both quantitative and qualitative crop improvement, to deal with the challenges of food security and nutrition. Potato (Solanum tuberosum L.) is a solanaceous food crop having potential to feed the populating world. It can provide more carbohydrates, proteins, minerals, and vitamins per unit area of land as compared to other potential food crops, and is the major staple food in many developing countries. These aspects have driven the scientific attention to engineer potato for nutrition improvement, keeping the yield unaffected. Several studies have shown the improved nutritional value of potato tubers, for example by enhancing Amaranth Albumin-1 seed protein content, vitamin C content, β-carotene level, triacylglycerol, tuber methionine content, and amylose content, etc. Removal of anti-nutritional compounds like steroidal glycoalkaloids, acrylamide and food toxins is another research priority for scientists and breeders to improve potato tuber quality. Trait improvement using genetic engineering mostly involved the generation of transgenic products. The commercialization of these engineered products has been a challenge due to consumer preference and regulatory/ethical restrictions. In this context, new breeding technolgies like TALEN (transcription activator-like effector nucleases) and CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated 9) have been employed to generate transgene-free products in a more precise, prompt and effective way. Moreover, the availability of potato genome sequence and efficient potato transformation systems have remarkably facilitated potato genetic engineering. Here we summarize the potato trait improvement and potential application of new breeding technologies (NBTs) to genetically improve the overall agronomic profile of potato.
Collapse
Affiliation(s)
- Amir Hameed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Sara Shakir
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
17
|
Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Crit Rev Food Sci Nutr 2018; 59:1949-1975. [DOI: 10.1080/10408398.2018.1434480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Domancar Orona-Tamayo
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - María Elena Valverde
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| |
Collapse
|
18
|
Dutt M, Zambon FT, Erpen L, Soriano L, Grosser J. Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation. PLoS One 2018; 13:e0190413. [PMID: 29293649 PMCID: PMC5749800 DOI: 10.1371/journal.pone.0190413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/14/2017] [Indexed: 01/18/2023] Open
Abstract
The embryo-specific Dc3 gene promoter driving the VvMybA1 anthocyanin regulatory gene was used to develop a visual selection system for the genetic transformation of citrus. Agrobacterium-mediated transformation of cell suspension cultures resulted in the production of purple transgenic somatic embryos that could be easily separated from the green non-transgenic embryos. The somatic embryos produced phenotypically normal plants devoid of any visual purple coloration. These results were also confirmed using protoplast transformation. There was minimal gene expression in unstressed one-year-old transgenic lines. Cold and drought stress did not have any effect on gene expression, while exogenous ABA and NaCl application resulted in a minor change in gene expression in several transgenic lines. When gas exchange was measured in intact leaves, the transgenic lines were similar to controls under the same environment. Our results provide conclusive evidence for the utilization of a plant-derived, embryo-specific visual reporter system for the genetic transformation of citrus. Such a system could aid in the development of an all-plant, consumer-friendly GM citrus tree.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| | - Flavia T. Zambon
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Lígia Erpen
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, Brazil
| | - Leonardo Soriano
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, Brazil
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| |
Collapse
|
19
|
Guleria P, Kumar V, Guleria S. Genetic Engineering: A Possible Strategy for Protein-Energy Malnutrition Regulation. Mol Biotechnol 2017; 59:499-517. [PMID: 28828714 DOI: 10.1007/s12033-017-0033-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.
Collapse
Affiliation(s)
- Praveen Guleria
- Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India.
| | - Vineet Kumar
- Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shiwani Guleria
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
20
|
Zhao J, Zhang Y, Qian Y, Pan Z, Zhu Y, Zhang Y, Guo J, Xu L. Coincidence of variation in potato yield and climate in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:965-973. [PMID: 27599060 DOI: 10.1016/j.scitotenv.2016.08.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Understanding the effects of climate change on crops is vital for food security. We aimed to characterise the coincidence of yield variations with weather variable for potato in northern China using long-term datasets. Daily climate variables obtained from 607 meteorological stations from 1961 to 2014, detailed field experimental data for the period of 1982 to 2012 in northern China, and multivariate linear statistical model were used in this study. In particular, the first difference method was used to disentangle the contributions of climate change to potato yield. We concluded that during the potato growing, the average daily, maximum and minimum temperatures significantly increased by 0.23°C per decade, 0.20°C per decade and 0.36°C per decade from 1961 to 2014 in northern China, respectively. However, average total radiation, total annual precipitation and potential evapotranspiration from April to September all exhibited downward trends, but the variation of evapotranspiration (-9.99mm per decade) was greater than that of precipitation (-2.65mm per decade). The key climatic factors limiting potato yields in northern China over the past 30years at a regional scale were diurnal temperature range, precipitation, radiation and ET0. The potato yield in northern China was the most sensitive to variation of the diurnal temperature range followed by radiation, precipitation and reference crop evapotranspiration (ET0). Specifically, when the diurnal temperature range decreased 1°C, the potato yield increased 543.9kg·ha-1. When the total radiation decreased 1MJ·m2, the potato yield increased 63.8kg·ha-1. When the ET0 decreased 1mm, the potato yield increased 62.7kg·ha-1. When the precipitation increased 1mm, the potato yield increased 62.9kg·ha-1. A regression model describing the combined effects of different climate variables on potato yield in northern China was established.
Collapse
Affiliation(s)
- Junfang Zhao
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Yanhong Zhang
- National Meteorological Center, Beijing 10081, China
| | - Yonglan Qian
- National Meteorological Center, Beijing 10081, China
| | - Zhihua Pan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yujie Zhu
- China Meteorological Administration Training Centre, Beijing 10081, China
| | - Yi Zhang
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jianping Guo
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Lingling Xu
- National Meteorological Center, Beijing 10081, China
| |
Collapse
|
21
|
Yu J, Peng P, Zhang X, Zhao Q, Zhu D, Sun X, Liu J, Ao G. Seed-Specific Expression of the Lysine-Rich Protein Gene sb401 Significantly Increases Both Lysine and Total Protein Content in Maize Seeds. Food Nutr Bull 2016. [DOI: 10.1177/15648265050264s311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Khush GS. The Promise of Biotechnology in Addressing Current Nutritional Problems in Developing Countries. Food Nutr Bull 2016; 23:354-7. [PMID: 16619739 DOI: 10.1177/156482650202300406] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To meet the nutritional needs of a rapidly growing world population, which is likely to reach 8 billion by 2030, 50% more food grains with higher and more stable yields must be produced. Biofortification is considered the most effective way to increase micronutrient intakes. It is low cost and sustainable and does not require a change in eating habits or impose recurring costs. A research project to improve the iron and zinc content of rice was initiated at the International Rice Research Institute in 1992. Several experimental lines of rice with increased iron and zinc content have been produced. in another experiment rices with β-carotene have been produced. Other experimental efforts aim at raising the micronutrient content in wheat, maize, cassava, sweet potatoes, and beans. Maize with improved amino acid balance is being grown in several African countries.
Collapse
Affiliation(s)
- Gurdev S Khush
- The author is affiliated with the International Rice Research Institute, Los Baños, Laguna, Philippines
| |
Collapse
|
23
|
Cordero-de-los-Santos MY, Osuna-Castro JA, Borodanenko A, Paredes-López O. Physicochemical and Functional Characterisation of Amaranth (Amaranthus hypochondriacus) Protein Isolates Obtained by Isoelectric Precipitation and Micellisation. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013205056491] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amaranth protein isolates were obtained by two distinct methods, i.e. alkaline extraction-isoelectric precipitation (IP) and micellisation (MP). IP had a greater protein yield (56.4%) and protein content (93.1%) than MP (15.9 and 80.2%, respectively). The gel filtration chromatogram of IP isolates displayed a single peak of ca. 1,380 kDa, whereas MP isolates showed two peaks at 905kDa and 190kDa. A commercial soybean isolate (CSI), analysed for comparison purposes, presented two peaks with molecular weights of 340kDa and 62kDa. Differential scanning calorimetry showed that amaranth isolates were characterised by two endothermic events, predominating in both isolates the second endotherm with a denaturation temperature of 98.7 °C for IP and 97.2 °C for MP. The better definition of MP endotherms and their higher denaturation enthalpy suggested a more homogenous and less denatured protein population, in comparison to IP and CSI. The amaranth isolates had better solubility at alkaline pHs than the CSI. Foaming and emulsification were better at acidic pH for both IP and MP. Colorimetric evaluations showed that the two amaranth isolates had a higher whiteness index than the CSI. In conclusion, extreme pH treatments in IP resulted in a partial protein denaturation and milder treatments in MP resulted in less protein denaturation and improvement of some functional properties.
Collapse
Affiliation(s)
- M. Y. Cordero-de-los-Santos
- Centro de InvestigaciÛn y de Estudios Avanzados del Instituto PolitÈcnico Nacional, Unidad Irapuato. Apdo. Postal 629, Irapuato, Gto. 36500 MÈxico; Instituto de Ciencias AgrÌcolas, Universidad de Guanajuato. Ex-Hda. El Copal, Km. 8.5 Carretera Irapuato-Silao, Apdo. Postal 311, Irapuato, Gto. 36500 MÈxico
| | - J. A. Osuna-Castro
- Centro de InvestigaciÛn y de Estudios Avanzados del Instituto PolitÈcnico Nacional, Unidad Irapuato. Apdo. Postal 629, Irapuato, Gto. 36500, MÈxico
| | - A. Borodanenko
- Instituto de Ciencias AgrÌcolas, Universidad de Guanajuato. Ex-Hda. El Copal, Km. 8.5 Carretera Irapuato-Silao, Apdo. Postal 311, Irapuato, Gto. 36500 MÈxico
| | - O. Paredes-López
- Centro de InvestigaciÛn y de Estudios Avanzados del Instituto PolitÈcnico Nacional, Unidad Irapuato. Apdo. Postal 629, Irapuato, Gto. 36500, MÈxico
| |
Collapse
|
24
|
Kamthan A, Chaudhuri A, Kamthan M, Datta A. Genetically modified (GM) crops: milestones and new advances in crop improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1639-55. [PMID: 27381849 DOI: 10.1007/s00122-016-2747-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/25/2016] [Indexed: 05/22/2023]
Abstract
New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.
Collapse
Affiliation(s)
- Ayushi Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
25
|
Shekhar S, Agrawal L, Mishra D, Buragohain AK, Unnikrishnan M, Mohan C, Chakraborty S, Chakraborty N. Ectopic expression of amaranth seed storage albumin modulates photoassimilate transport and nutrient acquisition in sweetpotato. Sci Rep 2016; 6:25384. [PMID: 27147459 PMCID: PMC4857128 DOI: 10.1038/srep25384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
Storage proteins in plants, because of high nutrient value, have been a subject of intensive investigation. These proteins are synthesized de novo in the cytoplasm and transported to the storage organelles where they serve as reservoir of energy and supplement of nitrogen during rapid growth and development. Sweetpotato is the seventh most important food crop worldwide, and has a significant contribution to the source of nutrition, albeit with low protein content. To determine the behaviour of seed storage proteins in non-native system, a seed albumin, AmA1, was overexpressed in sweetpotato with an additional aim of improving nutritional quality of tuber proteins. Introduction of AmA1 imparted an increase in protein and amino acid contents as well as the phytophenols. The proteometabolomics analysis revealed a rebalancing of the proteome, with no significant effects on the global metabolome profile of the transgenic tubers. Additionally, the slower degradation of starch and cellulose in transgenic tubers, led to increased post-harvest durability. Present study provides a new insight into the role of a seed storage protein in the modulation of photoassimilate movement and nutrient acquisition.
Collapse
Affiliation(s)
- Shubhendu Shekhar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India.,Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Lalit Agrawal
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Divya Mishra
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | - Chokkappan Mohan
- Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
26
|
Abouseadaa HH, Osman GH, Ramadan AM, Hassanein SE, Abdelsattar MT, Morsy YB, Alameldin HF, El-Ghareeb DK, Nour-Eldin HA, Salem R, Gad AA, Elkhodary SE, Shehata MM, Mahfouz HM, Eissa HF, Bahieldin A. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects. BMC PLANT BIOLOGY 2015; 15:183. [PMID: 26194497 PMCID: PMC4508906 DOI: 10.1186/s12870-015-0570-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/07/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. RESULTS A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. CONCLUSION Transgenic wheat plants had improved resistance to Sitophilus granarius.
Collapse
Affiliation(s)
- Heba H Abouseadaa
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Gamal H Osman
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
- Department of Biology, Faculty of Applied Sciences, Umm Al Qura University, Makkah, 21955, Saudi Arabia.
| | - Ahmed M Ramadan
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, 80203, Saudi Arabia.
| | - Sameh E Hassanein
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
| | - Mohamed T Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
| | - Yasser B Morsy
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
| | - Hussien F Alameldin
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
- Plant Soil and Microbial Sciences Department, Michigan state University, East Lansing, M9, 48824, USA.
| | - Doaa K El-Ghareeb
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
- Department of Biology, Faculty of Applied Sciences, Umm Al Qura University, Makkah, 21955, Saudi Arabia.
| | - Hanan A Nour-Eldin
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
| | - Reda Salem
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
| | - Adel A Gad
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
| | - Soheir E Elkhodary
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Maher M Shehata
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Hala M Mahfouz
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Hala F Eissa
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, 12619, Egypt.
- College of Biotechnology, Misr University of Science and technology, Giza, Egypt.
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, 80203, Saudi Arabia.
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
27
|
Agrobacterium-mediated plant transformation: Factors, applications and recent advances. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Khan E, Liu JH. Plant Biotechnological Approaches for the Production and Commercialization of Transgenic Crops. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2009.10817654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
29
|
|
30
|
Agrawal L, Narula K, Basu S, Shekhar S, Ghosh S, Datta A, Chakraborty N, Chakraborty S. Comparative Proteomics Reveals a Role for Seed Storage Protein AmA1 in Cellular Growth, Development, and Nutrient Accumulation. J Proteome Res 2013; 12:4904-30. [DOI: 10.1021/pr4007987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lalit Agrawal
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Kanika Narula
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Swaraj Basu
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Shubhendu Shekhar
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Sudip Ghosh
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Asis Datta
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
31
|
Goo YM, Kim TW, Lee MK, Lee SW. Accumulation of PrLeg, a Perilla legumin protein in potato tuber results in enhanced level of sulphur-containing amino acids. C R Biol 2013; 336:433-9. [PMID: 24161240 DOI: 10.1016/j.crvi.2013.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
Potato is the fourth staple food in the world, following rice, wheat, and maize, whereas tubers contain high quality of starch, relatively high amounts of vitamin C and many other important substances. It also contains relatively good quality of protein (about 3 to 6% of the dried weight) and patatin, and 11S globulin is a major storage protein with high level of lysine. However, tuber protein contains relatively low amounts of sulphur-containing amino acids, which may result in low nutritional value. Recently, we cloned a gene encoding PrLeg polypeptide, a seed storage protein from Perilla, which contains relatively higher levels of sulphur-containing amino acids. We transformed PrLeg cDNA into a potato plant to over-express under the direction of the tuber-specific promoter, patatin. Most of the transgenic lines identified through PCR and RT-PCR analyses were able to accumulate high amount of prLeg transcript in their tuber tissue, while very little or no transcript that were detected in their leaf tissues. The level of methionine content was elevated up to three-fold compared to non-transgenic parental line, without any significant changes in other amino acids, suggesting that further research is required to get a deeper insight into their nutritional value.
Collapse
Affiliation(s)
- Young-Min Goo
- Sancheong Oriental Medicinal Herb Institute, Sancheong, Gyeongnam Province, South Korea
| | | | | | | |
Collapse
|
32
|
Day L. Proteins from land plants – Potential resources for human nutrition and food security. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.05.005] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Chakraborty N, Ghosh R, Ghosh S, Narula K, Tayal R, Datta A, Chakraborty S. Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase. PLANT PHYSIOLOGY 2013; 162:364-378. [PMID: 23482874 PMCID: PMC3641215 DOI: 10.1104/pp.112.209197] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/09/2013] [Indexed: 05/29/2023]
Abstract
The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants have met with little success. To investigate the role of OXDC and the metabolic consequences of oxalate down-regulation in a heterotrophic, oxalic acid-accumulating fruit, we generated transgenic tomato (Solanum lycopersicum) plants expressing an OXDC (FvOXDC) from the fungus Flammulina velutipes specifically in the fruit. These E8.2-OXDC fruit showed up to a 90% reduction in oxalate content, which correlated with concomitant increases in calcium, iron, and citrate. Expression of OXDC affected neither carbon dioxide assimilation rates nor resulted in any detectable morphological differences in the transgenic plants. Comparative proteomic analysis suggested that metabolic remodeling was associated with the decrease in oxalate content in transgenic fruit. Examination of the E8.2-OXDC fruit proteome revealed that OXDC-responsive proteins involved in metabolism and stress responses represented the most substantially up- and down-regulated categories, respectively, in the transgenic fruit, compared with those of wild-type plants. Collectively, our study provides insights into OXDC-regulated metabolic networks and may provide a widely applicable strategy for enhancing crop nutritional value.
Collapse
|
34
|
Pérez-Massot E, Banakar R, Gómez-Galera S, Zorrilla-López U, Sanahuja G, Arjó G, Miralpeix B, Vamvaka E, Farré G, Rivera SM, Dashevskaya S, Berman J, Sabalza M, Yuan D, Bai C, Bassie L, Twyman RM, Capell T, Christou P, Zhu C. The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. GENES & NUTRITION 2013; 8:29-41. [PMID: 22926437 PMCID: PMC3534993 DOI: 10.1007/s12263-012-0315-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Malnutrition is a prevalent and entrenched global socioeconomic challenge that reflects the combined impact of poverty, poor access to food, inefficient food distribution infrastructure, and an over-reliance on subsistence mono-agriculture. The dependence on staple cereals lacking many essential nutrients means that malnutrition is endemic in developing countries. Most individuals lack diverse diets and are therefore exposed to nutrient deficiencies. Plant biotechnology could play a major role in combating malnutrition through the engineering of nutritionally enhanced crops. In this article, we discuss different approaches that can enhance the nutritional content of staple crops by genetic engineering (GE) as well as the functionality and safety assessments required before nutritionally enhanced GE crops can be deployed in the field. We also consider major constraints that hinder the adoption of GE technology at different levels and suggest policies that could be adopted to accelerate the deployment of nutritionally enhanced GE crops within a multicomponent strategy to combat malnutrition.
Collapse
Affiliation(s)
- Eduard Pérez-Massot
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Raviraj Banakar
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Sonia Gómez-Galera
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Uxue Zorrilla-López
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Georgina Sanahuja
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Gemma Arjó
- />Department of Medicine, University of Lleida, Lleida, Spain
| | - Bruna Miralpeix
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Evangelia Vamvaka
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Gemma Farré
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Sol Maiam Rivera
- />Chemistry Department, ETSEA, University of Lleida, 25198 Lleida, Spain
| | - Svetlana Dashevskaya
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Judit Berman
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Maite Sabalza
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Dawei Yuan
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Chao Bai
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Ludovic Bassie
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Richard M. Twyman
- />Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Teresa Capell
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Paul Christou
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
- />Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Changfu Zhu
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| |
Collapse
|
35
|
Mehrotra S, Goyal V. Agrobacterium-mediated gene transfer in plants and biosafety considerations. Appl Biochem Biotechnol 2012; 168:1953-75. [PMID: 23090683 DOI: 10.1007/s12010-012-9910-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/03/2012] [Indexed: 12/21/2022]
Abstract
Agrobacterium, the natures' genetic engineer, has been used as a vector to create transgenic plants. Agrobacterium-mediated gene transfer in plants is a highly efficient transformation process which is governed by various factors including genotype of the host plant, explant, vector, plasmid, bacterial strain, composition of culture medium, tissue damage, and temperature of co-cultivation. Agrobacterium has been successfully used to transform various economically and horticulturally important monocot and dicot species by standard tissue culture and in planta transformation techniques like floral or seedling infilteration, apical meristem transformation, and the pistil drip methods. Monocots have been comparatively difficult to transform by Agrobacterium. However, successful transformations have been reported in the last few years based on the adjustment of the parameters that govern the responses of monocots to Agrobacterium. A novel Agrobacterium transferred DNA-derived nanocomplex method has been developed which will be highly valuable for plant biology and biotechnology. Agrobacterium-mediated genetic transformation is known to be the preferred method of creating transgenic plants from a commercial and biosafety perspective. Agrobacterium-mediated gene transfer predominantly results in the integration of foreign genes at a single locus in the host plant, without associated vector backbone and is also known to produce marker free plants, which are the prerequisites for commercialization of transgenic crops. Research in Agrobacterium-mediated transformation can provide new and novel insights into the understanding of the regulatory process controlling molecular, cellular, biochemical, physiological, and developmental processes occurring during Agrobacterium-mediated transformation and also into a wide range of aspects on biological safety of transgenic crops to improve crop production to meet the demands of ever-growing world's population.
Collapse
Affiliation(s)
- Shweta Mehrotra
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi 110012, India.
| | | |
Collapse
|
36
|
Adenle AA, Aworh OC, Akromah R, Parayil G. Developing GM super cassava for improved health and food security: future challenges in Africa. ACTA ACUST UNITED AC 2012. [DOI: 10.1186/2048-7010-1-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Abhary M, Siritunga D, Stevens G, Taylor NJ, Fauquet CM. Transgenic biofortification of the starchy staple cassava (Manihot esculenta) generates a novel sink for protein. PLoS One 2011; 6:e16256. [PMID: 21283593 PMCID: PMC3026814 DOI: 10.1371/journal.pone.0016256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 12/20/2010] [Indexed: 11/22/2022] Open
Abstract
Although calorie dense, the starchy, tuberous roots of cassava provide the lowest sources of dietary protein within the major staple food crops (Manihot esculenta Crantz). (Montagnac JA, Davis CR, Tanumihardjo SA. (2009) Compr Rev Food Sci Food Saf 8:181-194). Cassava was genetically modified to express zeolin, a nutritionally balanced storage protein under control of the patatin promoter. Transgenic plants accumulated zeolin within de novo protein bodies localized within the root storage tissues, resulting in total protein levels of 12.5% dry weight within this tissue, a fourfold increase compared to non-transgenic controls. No significant differences were seen for morphological or agronomic characteristics of transgenic and wild type plants in the greenhouse and field trials, but relative to controls, levels of cyanogenic compounds were reduced by up to 55% in both leaf and root tissues of transgenic plants. Data described here represent a proof of concept towards the potential transformation of cassava from a starchy staple, devoid of storage protein, to one capable of supplying inexpensive, plant-based proteins for food, feed and industrial applications.
Collapse
Affiliation(s)
- Mohammad Abhary
- International Laboratory for Tropical Agricultural Biotechnology, Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Dimuth Siritunga
- Department of Biology, University of Puerto Rico-Mayaguez, Mayaguez, Puerto Rico
| | - Gene Stevens
- University of Missouri-Delta Center, Portageville, Missouri, United States of America
| | - Nigel J. Taylor
- International Laboratory for Tropical Agricultural Biotechnology, Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Claude M. Fauquet
- International Laboratory for Tropical Agricultural Biotechnology, Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| |
Collapse
|
38
|
McGloughlin MN. Modifying agricultural crops for improved nutrition. N Biotechnol 2010; 27:494-504. [DOI: 10.1016/j.nbt.2010.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 07/08/2010] [Indexed: 01/17/2023]
|
39
|
Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc Natl Acad Sci U S A 2010; 107:17533-8. [PMID: 20855595 DOI: 10.1073/pnas.1006265107] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein deficiency is the most crucial factor that affects physical growth and development and that increases morbidity and mortality especially in developing countries. Efforts have been made to improve protein quality and quantity in crop plants but with limited success. Here, we report the development of transgenic potatoes with enhanced nutritive value by tuber-specific expression of a seed protein, AmA1 (Amaranth Albumin 1), in seven genotypic backgrounds suitable for cultivation in different agro-climatic regions. Analyses of the transgenic tubers revealed up to 60% increase in total protein content. In addition, the concentrations of several essential amino acids were increased significantly in transgenic tubers, which are otherwise limited in potato. Moreover, the transgenics also exhibited enhanced photosynthetic activity with a concomitant increase in total biomass. These results are striking because this genetic manipulation also resulted in a moderate increase in tuber yield. The comparative protein profiling suggests that the proteome rebalancing might cause increased protein content in transgenic tubers. Furthermore, the data on field performance and safety evaluation indicate that the transgenic potatoes are suitable for commercial cultivation. In vitro and in vivo studies on experimental animals demonstrate that the transgenic tubers are also safe for human consumption. Altogether, these results emphasize that the expression of AmA1 is a potential strategy for the nutritional improvement of food crops.
Collapse
|
40
|
Christou P, Twyman RM. The potential of genetically enhanced plants to address food insecurity. Nutr Res Rev 2009; 17:23-42. [PMID: 19079913 DOI: 10.1079/nrr200373] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food insecurity is one of the most important social issues faced today, with 840 million individuals enduring chronic hunger and three billion individuals suffering from nutrient deficiencies. Most of these individuals are poverty stricken and live in developing countries. Strategies to address food insecurity must aim to increase agricultural productivity in the developing world in order to tackle poverty, and must provide long-term improvements in crop yields to keep up with demand as the world's population grows. Genetically enhanced plants provide one route to sustainable higher yields, either by increasing the intrinsic yield capability of crop plants or by protecting them from biotic and abiotic constraints. The present paper discusses a range of transgenic approaches that could increase agricultural productivity if applied on a large scale, including the introduction of genes that confer resistance to pests and diseases, or tolerance of harsh environments, and genes that help to lift the intrinsic yield capacity by increasing metabolic flux towards storage carbohydrates, proteins and oils. The paper also explores how the nutritional value of plants can be improved by genetic engineering. Transgenic plants, as a component of integrated strategies to relieve poverty and deliver sustainable agriculture to subsistence farmers in developing countries, could have a significant impact on food security now and in the future.
Collapse
Affiliation(s)
- Paul Christou
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Grafschaft, Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | | |
Collapse
|
41
|
Robson AA. Preventing diet induced disease: bioavailable nutrient-rich, low-energy-dense diets. Nutr Health 2009; 20:135-66. [PMID: 19835109 DOI: 10.1177/026010600902000205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
What the World needs is an integrated and sustainable food policy that makes the best and most appropriate use of the technologies at our disposal to promote health and help prevent disease. Diet induced diseases account for the largest burden of chronic illnesses and health problems Worldwide. Historically a lack of knowledge about human nutritional requirements (including for the brain) helped promote diet induced disease. The scientific knowledge currently exists to help prevent many of the current deficiencies and imbalances in human diet. Primary prevention of cardiovascular disease and mental ill health starts, crucially, with maternal nutrition before the inception of pregnancy and continues throughout life of the new born and includes consuming more DHA and EPA omega-3 fats (and their cofactors) and other bioavailable brain nutrients and less high-energy-dense (>2 kcal g(-1)) foods (e.g. land-based cereal, chocolate, alcohol and refined sugar, fat and oil), so tissues synthesize less inflammatory mediators and to lower transient short-lived meal-induced oxidative stress, inflammation, proliferation and impaired nitric oxide (e.g. approximately 0.35-3.5 g DHA/ EPA day(-1) dependant on energy intake and noting the importance of cofactors). Micro- and nanotechnologies are already engineering nano foods for human (and livestock) consumption that may eventually (without excessive consumption) prevent the current diet induced disease epidemic, especially in future generations, by preventing the causal mechanisms of disease. Greater knowledge about the causal mechanisms of disease awaits to be discovered, which could further enhance the human desire to increase longevity in optimum health (creating more problems and challenges for society).
Collapse
Affiliation(s)
- Anthony A Robson
- Université de Bretagne Occidentale, IUEM (UMR CNRS 6539), LEMAR, Technopôle Brest-Iroise, Plouzané, France.
| |
Collapse
|
42
|
Tamás C, Kisgyörgy BN, Rakszegi M, Wilkinson MD, Yang MS, Láng L, Tamás L, Bedo Z. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. PLANT CELL REPORTS 2009; 28:1085-94. [PMID: 19466426 DOI: 10.1007/s00299-009-0716-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/09/2009] [Accepted: 05/08/2009] [Indexed: 05/15/2023]
Abstract
An amaranth (Amaranthus hypochondriacus) albumin gene, encoding the 35-kDa AmA1 protein of the seed, with a high content of essential amino acids, was used in the biolistic transformation of bread wheat (Triticum aestivum L.) variety Cadenza. The transformation cassette carried the ama1 gene under the control of a powerful wheat endosperm-specific promoter (1Bx17 HMW-GS). Southern-blot analysis of T(1) lines confirmed the integration of the foreign gene, while RT-PCR and Western-blot analyses of the samples confirmed the transcription and translation of the transgene. The effects of the extra albumin protein on the properties of flour, produced from bulked T(2) seeds, were calculated using total protein and essential amino acid content analysis, polymeric/monomeric protein and HMW/LMW glutenin subunit ratio measurements. The results indicated that not only can essential amino acid content be increased, but some parameters associated with functional quality may also be improved because of the expression of the AmA1 protein.
Collapse
Affiliation(s)
- Cecília Tamás
- Agricultural Research Institute of the Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sharma AK, Sharma MK. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 2009; 27:811-832. [PMID: 19576278 PMCID: PMC7125752 DOI: 10.1016/j.biotechadv.2009.06.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 12/18/2022]
Abstract
In recent years, the use of plants as bioreactors has emerged as an exciting area of research and significant advances have created new opportunities. The driving forces behind the rapid growth of plant bioreactors include low production cost, product safety and easy scale up. As the yield and concentration of a product is crucial for commercial viability, several strategies have been developed to boost up protein expression in transgenic plants. Augmenting tissue-specific transcription, elevating transcript stability, tissue-specific targeting, translation optimization and sub-cellular accumulation are some of the strategies employed. Various kinds of products that are currently being produced in plants include vaccine antigens, medical diagnostics proteins, industrial and pharmaceutical proteins, nutritional supplements like minerals, vitamins, carbohydrates and biopolymers. A large number of plant-derived recombinant proteins have reached advanced clinical trials. A few of these products have already been introduced in the market.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Manoj K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
44
|
Morandini P. Rethinking metabolic control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2009; 176:441-451. [PMID: 26493133 DOI: 10.1016/j.plantsci.2009.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/22/2008] [Accepted: 01/09/2009] [Indexed: 05/29/2023]
Abstract
Modulation of metabolic fluxes in plants is usually not a successful business. The main reason is our limited understanding of metabolic plasticity and metabolic control, with the latter still largely influenced by the idea that each pathway has a rate limiting step controlling the flux. Not only is experimental evidence for such steps lacking for most pathways, despite intensive search, but there are also theoretical arguments against the idea that highly regulated enzymes catalyzing reactions far from equilibrium must be considered a priori rate limiting. Conversely, it is argued that reactions close to equilibrium need a lot of enzyme to be maintained close to equilibrium and, contrary to accepted wisdom, begin to limit flux when reduced. Using a few key examples of plant metabolic pathways as case studies, I draw some general conclusions. The approach of augmenting flux by pushing a pathway from above is well exemplified by the attempts at increasing starch content in potato tubers, where several different approaches failed. Also pulling at the other end (close to the end product) has yielded little improvement, while targeting a reaction close to equilibrium (ADP/ATP translocation at the plastid envelope) successfully increased starch content. Rethinking control is equally well applicable to photosynthesis, with prime examples of 'neglected', unregulated enzymes exerting significant control and overprized 'limiting' enzymes having little control in normal conditions like rubisco. In this new paradigm, the role of most control mechanisms is also challenged: feedback inhibition and post-translational modification of enzymes are relevant to metabolite homeostasis rather than flux control, with moiety conservation being a major reason for this constraint. I advocate a more extensive use of control circuitry elements (e.g. sensors like riboswitches), metabolic shortcuts and transcription factors in metabolic engineering.
Collapse
Affiliation(s)
- Piero Morandini
- Department of Biology, University of Milan, CNR, Institute of Biophysics, via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
45
|
White PJ, Broadley MR. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine. THE NEW PHYTOLOGIST 2009; 182:49-84. [PMID: 19192191 DOI: 10.1111/j.1469-8137.2008.02738.x] [Citation(s) in RCA: 789] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The diets of over two-thirds of the world's population lack one or more essential mineral elements. This can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentrations and/or bioavailability of mineral elements in produce (biofortification). This article reviews aspects of soil science, plant physiology and genetics underpinning crop biofortification strategies, as well as agronomic and genetic approaches currently taken to biofortify food crops with the mineral elements most commonly lacking in human diets: iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se). Two complementary approaches have been successfully adopted to increase the concentrations of bioavailable mineral elements in food crops. First, agronomic approaches optimizing the application of mineral fertilizers and/or improving the solubilization and mobilization of mineral elements in the soil have been implemented. Secondly, crops have been developed with: increased abilities to acquire mineral elements and accumulate them in edible tissues; increased concentrations of 'promoter' substances, such as ascorbate, beta-carotene and cysteine-rich polypeptides which stimulate the absorption of essential mineral elements by the gut; and reduced concentrations of 'antinutrients', such as oxalate, polyphenolics or phytate, which interfere with their absorption. These approaches are addressing mineral malnutrition in humans globally.
Collapse
Affiliation(s)
- Philip J White
- The Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Martin R Broadley
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
46
|
Abstract
The analysis of transgene inheritance is an important step in the molecular and genetic characterization of transgenes. In this manuscript, two approaches to characterize the inheritance of transgenes are described. The first approach is based on the expression of the transgene phenotype and the second is based on the analysis of transgene DNA. Instructions on how to make crosses and develop breeding populations are outlined and the importance of these breeding populations in the analysis of transgene inheritance is explained. The number of individuals needed to determine segregation ratios and the statistic used to test these ratios are described. Examples of inheritance patterns that deviate from known expectations are provided and the possible causes of these deviations are discussed.
Collapse
|
47
|
Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N. Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res 2008; 7:3803-17. [PMID: 18672926 DOI: 10.1021/pr8000755] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberization in potato ( Solanum tuberosum L.) is a developmental process that serves a double function, as a storage organ and as a vegetative propagation system. It is a multistep, complex process and the underlying mechanisms governing these overlapping steps are not fully understood. To understand the molecular basis of tuberization in potato, a comparative proteomic approach has been applied to monitor differentially expressed proteins at different development stages using two-dimensional gel electrophoresis (2-DE). The differentially displayed proteomes revealed 219 protein spots that change their intensities more than 2.5-fold. The LC-ES-MS/MS analyses led to the identification of 97 differentially regulated proteins that include predicted and novel tuber-specific proteins. Nonhierarchical clustering revealed coexpression patterns of functionally similar proteins. The expression of reactive oxygen species catabolizing enzymes, viz., superoxide dismutase, ascorbate peroxidase and catalase, were induced by more than 2-fold indicating their possible role during the developmental transition from stolons into tubers. We demonstrate that nearly 100 proteins, some presumably associated with tuber cell differentiation, regulate diverse functions like protein biogenesis and storage, bioenergy and metabolism, and cell defense and rescue impinge on the complexity of tuber development in potato.
Collapse
Affiliation(s)
- Lalit Agrawal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | |
Collapse
|
48
|
Genetic Engineering of Seed Storage Proteins. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1755-0408(07)01005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
|
49
|
Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P. Transgenic strategies for the nutritional enhancement of plants. TRENDS IN PLANT SCIENCE 2007; 12:548-55. [PMID: 18006362 DOI: 10.1016/j.tplants.2007.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/19/2007] [Accepted: 09/26/2007] [Indexed: 05/07/2023]
Abstract
The nutrients in the human diet ultimately come from plants. However, all our major food crops lack certain essential vitamins and minerals. Although a varied diet provides adequate nutrition, much of the human population, particularly in developing countries, relies on staple crops, such as rice or maize, which does not provide the full complement of essential nutrients. Malnutrition is a significant public health issue in most of the developing world. One way to address this problem is through the enhancement of staple crops to increase their essential nutrient content. Here, we review the current strategies for the biofortification of crops, including mineral fertilization and conventional breeding but focusing on transgenic approaches which offer the most rapid way to develop high-nutrient commercial cultivars.
Collapse
Affiliation(s)
- Changfu Zhu
- Universitat de Lleida, Av. Alcalde Rovira Roure, 191, E-25198 Lleida, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Bicar EH, Woodman-Clikeman W, Sangtong V, Peterson JM, Yang SS, Lee M, Scott MP. Transgenic maize endosperm containing a milk protein has improved amino acid balance. Transgenic Res 2007; 17:59-71. [PMID: 17387628 DOI: 10.1007/s11248-007-9081-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 01/30/2007] [Indexed: 11/30/2022]
Abstract
In order to meet the protein nutrition needs of the world population, greater reliance on plant protein sources will become necessary. The amino acid balance of most plant protein sources does not match the nutritional requirements of monogastric animals, limiting their nutritional value. In cereals, the essential amino acid lysine is deficient. Maize is a major component of human and animal diets worldwide and especially where sources of plant protein are in critical need such as sub-Saharan Africa. To improve the amino acid balance of maize, we developed transgenic maize lines that produce the milk protein alpha-lactalbumin in the endosperm. Lines in which the transgene was inherited as a single dominant genetic locus were identified. Sibling kernels with or without the transgene were compared to determine the effect of the transgene on kernel traits in lines selected for their high content of alpha-lactalbumin. Total protein content in endosperm from transgene positive kernels was not significantly different from total protein content in endosperm from transgene negative kernels in three out of four comparisons, whereas the lysine content of the lines examined was 29-47% greater in endosperm from transgene positive kernels. The content of some other amino acids was changed to a lesser extent. Taken together, these changes resulted in the transgenic endosperms having an improved amino acid balance relative to non-transgenic endosperms produced on the same ear. Kernel appearance, weight, density and zein content did not exhibit substantial differences in kernels expressing the transgene when compared to non-expressing siblings. Assessment of the antigenicity and impacts on animal health will be required in order to determine the overall value of this technology.
Collapse
Affiliation(s)
- Earl H Bicar
- Agronomy Department, The Raymond F. Baker Center for Plant Breeding, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|