1
|
Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene. BIOMED RESEARCH INTERNATIONAL 2015; 2015:514709. [PMID: 25918715 PMCID: PMC4396065 DOI: 10.1155/2015/514709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/12/2015] [Accepted: 02/26/2015] [Indexed: 01/05/2023]
Abstract
Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB) and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction.
Collapse
|
2
|
Phylipsen M, Gallivan MVE, Arkesteijn SGJ, Harteveld CL, Giordano PC. Occurrence of common and rare δ-globin gene defects in two multiethnic populations: thirteen new mutations and the significance of δ-globin gene defects in β-thalassemia diagnostics. Int J Lab Hematol 2011; 33:85-91. [PMID: 20678137 DOI: 10.1111/j.1751-553x.2010.01255.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The aim of this review is to study the frequency of common and the occurrence of rare and novel mutations of the delta-globin gene and of Hb Lepore defects that might interfere with thalassemia diagnostics and to report the rationale of HbA2 estimation in the presence of delta- or alpha-gene mutations. METHODS A total of 135 cases suspected to have a delta-globin gene defect collected in a diagnostic center in the USA and in a reference laboratory in the Netherlands were characterized by molecular analysis. RESULTS Hb B2 was found at a frequency of at least 0.5% in the USA and 0.87% in the Netherlands. Known variants such as Hb A2-Babinga, Hb A2-Sphakia, Hb A2-Fitzroy, Hb A2-Flatbush, Hb A2-NYU, Hb A2-Grovetown, HbA2-Yialousa, Hb A2-Indonesia and several delta-thalassemia mutations were found together with 13 new mutations and two new polymorphisms, while Hb Lepores were regularly observed. CONCLUSION HbA2 mutations either structurally stable and visible or undetectable because of a thalassemia effect or instability are clinically asymptomatic but may compromise the diagnosis of beta-thalassemia minor. Stable mutations result in two HbA2 fractions of about half of the expected value. Expression defects are undetectable as a protein fraction but reduce the amount of HbA2 by half.
Collapse
Affiliation(s)
- M Phylipsen
- Department of Human and Clinical Genetics, the Reference Hemoglobinopathies Laboratory, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
3
|
Patel VS, Ezaz T, Deakin JE, Graves JAM. Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution. Chromosome Res 2010; 18:897-907. [PMID: 21116705 DOI: 10.1007/s10577-010-9164-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3' end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5' end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.
Collapse
Affiliation(s)
- Vidushi S Patel
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
4
|
Abstract
Recent data published in BMC Biology from the globin gene clusters in platypus, together with data from other species, show that β-globin genes transposed from one chromosomal location to another. This resolves some controversies about vertebrate globin gene evolution but ignites new ones.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of Life Sciences, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Patel VS, Cooper SJB, Deakin JE, Fulton B, Graves T, Warren WC, Wilson RK, Graves JAM. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals. BMC Biol 2008; 6:34. [PMID: 18657265 PMCID: PMC2529266 DOI: 10.1186/1741-7007-6-34] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/25/2008] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. RESULTS The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. CONCLUSION We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression profiles in different lineages.
Collapse
Affiliation(s)
- Vidushi S Patel
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Steven JB Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA 5005, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA 5000, Australia
| | - Janine E Deakin
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Bob Fulton
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Tina Graves
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Wesley C Warren
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Richard K Wilson
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Jennifer AM Graves
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Characterization of the hemoglobins of the neonatal brushtailed possum Trichosurus vulpecula (Kerr): Evidence for a highly cooperative, aggregated isoform of hemoglobin. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:52-7. [DOI: 10.1016/j.cbpa.2008.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 11/23/2022]
|
7
|
Shigematsu A, Adachi Y, Matsubara J, Mukaide H, Koike-Kiriyama N, Minamino K, Shi M, Yanai S, Imamura M, Taketani S, Ikehara S. Analyses of expression of cytoglobin by immunohistochemical studies in human tissues. Hemoglobin 2008; 32:287-296. [PMID: 18473245 DOI: 10.1080/03630260802017261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cytoglobin (Cygb) is a recently discovered member of the vertebrate globin family, which includes probably most extensively studied proteins, hemoglobin (Hb), myoglobin (Mb) and neuroglobin (Ngb). It has been reported that Cygb is expressed ubiquitously at the mRNA or protein level. However, details of the distribution of Cygb in the various tissues have hitherto been unclear. In this experiment, we clarified the distribution of Cygb in various human tissues by immunohistochemical staining. First, we prepared a rabbit anti human Cygb polyclonal antibody. Using the antibody, we stained a tissue array slide containing 60 normal tissues from 40 human organs. We confirmed the staining patterns of the antibodies in these various tissues using autopsy samples from our university. In general, Cygb is positive in the epithelial cells, hepatocytes, pancreatic acinar cells, cardiomyocytes and skeletal muscle but rarely so in cells in the interstitial tissues. Cytoglobin is usually positive in the cytoplasm, but is also positive in the nucleus in some hepatocytes. In contrast, Cygb is negative in the smooth muscle. The distribution of Cygb could suggest its roles.
Collapse
Affiliation(s)
- Akio Shigematsu
- First Department of Pathology, Kansai Medical University, Moriguchi City, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
De Leo AA, Wheeler D, Lefevre C, Cheng JF, Hope R, Kuliwaba J, Nicholas KR, Westerman M, Graves JAM. Sequencing and mapping hemoglobin gene clusters in the Australian model dasyurid marsupial Sminthopsis macroura. Cytogenet Genome Res 2004; 108:333-41. [PMID: 15627754 DOI: 10.1159/000081528] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 07/26/2004] [Indexed: 11/19/2022] Open
Abstract
Comparing globin genes and their flanking sequences across many species has allowed globin gene evolution to be reconstructed in great detail. Marsupial globin sequences have proved to be of exceptional significance. A previous finding of a beta(beta)-like omega(omega) gene in the alpha(alpha) cluster in the tammar wallaby suggested that the alpha and beta cluster evolved via genome duplication and loss rather than tandem duplication. To confirm and extend this important finding we isolated and sequenced BACs containing the alpha and beta loci from the distantly related Australian marsupial Sminthopsis macroura. We report that the alpha gene lies in the same BAC as the beta-like omega gene, implying that the alpha-omega juxtaposition is likely to be conserved in all marsupials. The LUC7L gene was found 3' of the S. macroura alpha locus, a gene order shared with humans but not mouse, chicken or fugu. Sequencing a BAC contig that contained the S. macroura beta globin and epsilon globin loci showed that the globin cluster is flanked by olfactory genes, demonstrating a gene arrangement conserved for over 180 MY. Analysis of the region 5' to the S. macroura epsilon (epsilon) globin gene revealed a region similar to the eutherian LCR, containing sequences and potential transcription factor binding sites with homology to eutherian hypersensitive sites 1 to 5. FISH mapping of BACs containing S. macroura alpha and beta globin genes located the beta globin cluster on chromosome 3q and the alpha locus close to the centromere on 1q, resolving contradictory map locations obtained by previous radioactive in situ hybridization.
Collapse
Affiliation(s)
- A A De Leo
- Department of Zoology, The University of Melbourne, Melbourne, Vic, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wheeler D, Hope RM, Cooper SJB, Gooley AA, Holland RAB. Linkage of the beta-like omega-globin gene to alpha-like globin genes in an Australian marsupial supports the chromosome duplication model for separation of globin gene clusters. J Mol Evol 2004; 58:642-52. [PMID: 15461421 DOI: 10.1007/s00239-004-2584-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The structure, function, and evolutionary history of globin genes have been the subject of extensive investigation over a period of more than 40 years, yet new globin genes with highly specialized functions are still being discovered and much remains uncertain about their evolutionary history. Here we investigate the molecular evolution of the beta-globin gene family in a marsupial species, the tammar wallaby, Macropus eugenii. We report the complete DNA sequences of two beta-like globin genes and show by phylogenetic analyses that one of these genes is orthologous to embryonically expressed epsilon-globin genes of marsupials and eutherians and the other is orthologous to adult expressed beta-globin genes of marsupials and eutherians. We show that the tammar wallaby contains a third functional beta-like globin gene, omega-globin, which forms part of the alpha-globin gene cluster. The position of omega-globin on the 3' side of the alpha-globin cluster and its ancient phylogenetic history fit the criteria, originally proposed by Jeffreys et al. (1980), of a "fossil" beta-globin gene and suggest that an ancient chromosome or genome duplication preceded the evolution of unlinked clusters of alpha- and beta-globin genes in mammals and avians. In eutherian mammals, such as humans and mice, omega-globin has been silenced or translocated away from the alpha-globin locus, while in marsupials omega-globin is coordinately expressed with the adult alpha-globin gene just prior to birth to produce a functional hemoglobin (alpha2 omega2).
Collapse
Affiliation(s)
- David Wheeler
- Department of Molecular Biosciences, The University of Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
10
|
Abstract
The study of gene regulation on a genomic scale has been constrained by the modest pace with which new trans-regulatory factors have been identified and by the fact that cis-regulatory sequences have to date been described even in part for only a small fraction of vertebrate genes. An indirect approach for assessing the significance of cis- and trans-regulatory mechanisms on a global scale is to utilize gene expression as a surrogate for transcriptional regulation and to combine genome-scale transcriptional profiling with studies of genetic variation, classical genetic techniques such as linkage analysis, and examination of allelic expression patterns that reveal cis-regulatory variability. A number of recent studies employing these methods provide insight into questions of central importance to our understanding of the larger role of transcriptional regulation in the organization of the human and other complex genomes.
Collapse
|
11
|
Bulger M, Schübeler D, Bender MA, Hamilton J, Farrell CM, Hardison RC, Groudine M. A complex chromatin landscape revealed by patterns of nuclease sensitivity and histone modification within the mouse beta-globin locus. Mol Cell Biol 2003; 23:5234-44. [PMID: 12861010 PMCID: PMC165715 DOI: 10.1128/mcb.23.15.5234-5244.2003] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In order to create an extended map of chromatin features within a mammalian multigene locus, we have determined the extent of nuclease sensitivity and the pattern of histone modifications associated with the mouse beta-globin genes in adult erythroid tissue. We show that the nuclease-sensitive domain encompasses the beta-globin genes along with several flanking olfactory receptor genes that are inactive in erythroid cells. We describe enhancer-blocking or boundary elements on either side of the locus that are bound in vivo by the transcription factor CTCF, but we found that they do not coincide with transitions in nuclease sensitivity flanking the locus or with patterns of histone modifications within it. In addition, histone hyperacetylation and dimethylation of histone H3 K4 are not uniform features of the nuclease-sensitive mouse beta-globin domain but rather define distinct subdomains within it. Our results reveal a complex chromatin landscape for the active beta-globin locus and illustrate the complexity of broad structural changes that accompany gene activation.
Collapse
Affiliation(s)
- Michael Bulger
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Barrans JD, Ip J, Lam CW, Hwang IL, Dzau VJ, Liew CC. Chromosomal distribution of the human cardiovascular transcriptome. Genomics 2003; 81:519-24. [PMID: 12706110 DOI: 10.1016/s0888-7543(03)00008-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
On the basis of previous observations in chromosomes 21 and 22, we hypothesize that there is a tissue-specific organization of cardiovascular gene transcripts in the human genome. To examine the distribution of heart-derived transcripts, we assigned a nonredundant set of 4628 fetal and 3574 adult known and uncharacterized cardiovascular expressed-sequence tags (cvESTs) to 5-Mb chromosomal 'windows' on the basis of publicly available sequence mapping data. On a whole-genome level (36,617 genes), chromosome 17 (19.2% in fetal, 16.5% in adult) contained the highest proportion of cvESTs, whereas chromosome Y (2.0% in fetal and adult) contained the lowest. In total, 50 of the 639 windows contained a significantly higher proportion of cvESTs (P < 0.003) compared with the genome-wide cvEST gene density, particularly on gene-dense chromosomes (that is, 17, 19, 22) as opposed to gene-rich chromosomes (for example, 1, 2, 11). This report provides insight into a possible role for complex tissue-specific gene regulation in the human genome.
Collapse
Affiliation(s)
- J David Barrans
- The Cardiovascular Genome Unit, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Thorn 1334, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
13
|
Le Novère N, Corringer PJ, Changeux JP. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. JOURNAL OF NEUROBIOLOGY 2002; 53:447-56. [PMID: 12436412 DOI: 10.1002/neu.10153] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nicotinic acetylcholine receptors are made up of homologous subunits, which are encoded by a large multigene family. The wide number of receptor oligomers generated display variable pharmacological properties. One of the main questions underlying research in molecular pharmacology resides in the actual role of this diversity. It is generally assumed that the observed differences between the pharmacology of homologous receptors, for instance, the EC(50) for the endogenous agonist, or the kinetics of desensitization, bear some kind of physiologic relevance in vivo. Here we develop the quite challenging point of view that, at least within a given subfamily of nicotinic receptor subunits, the pharmacologic variability observed in vitro would not be directly relevant to the function of receptor proteins in vivo. In vivo responses are not expected to be sensitive to mild differences in affinities, and several examples of functional replacement of one subunit by another have been unravelled by knockout animals. The diversity of subunits might have been conserved through evolution primarily to account for the topologic diversity of subunit distribution patterns, at the cellular and subcellular levels. A quantitative variation of pharmacological properties would be tolerated within a physiologic envelope, as a consequence of a near-neutral genetic drift. Such a "gratuitous" pharmacologic diversity is nevertheless of practical interest for the design of drugs, which would specifically tackle particular receptor oligomers with a defined subunit composition among the multiple nicotinic receptors present in the organism.
Collapse
Affiliation(s)
- Nicolas Le Novère
- Receptors and Cognition, CNRS URA 2182, Institut Pasteur, 75724 Paris, France.
| | | | | |
Collapse
|
14
|
Burmester T, Ebner B, Weich B, Hankeln T. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 2002; 19:416-21. [PMID: 11919282 DOI: 10.1093/oxfordjournals.molbev.a004096] [Citation(s) in RCA: 367] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vertebrates possess multiple respiratory globins that differ in terms of structure, function, and tissue distribution. Three types of globins have been described so far: hemoglobin facilitates the transport of oxygen in the blood, myoglobin serves oxygen transport and storage in the muscle, and neuroglobin has a yet unidentified function in nerve cells. Here we report the identification of a fourth and novel type of globin in mouse, man, and zebrafish. It is expressed in apparently all types of human tissue and therefore has been called cytoglobin (CYGB). Mouse and human CYGBs comprise 190 amino acids; the zebrafish CYGB, 174 amino acids. The human CYGB gene is located on chromosome 17q25. The mammalian genes display a unique exon-intron pattern with an additional exon resulting in a C-terminal extension of the protein, which is absent in the fish CYGB. Phylogenetic analyses suggest that the CYGBs had a common ancestor with vertebrate myoglobins. This indicates that the vertebrate myoglobins are in fact a specialized intracellular globin that evolved in adaptation to the special needs of muscle cells.
Collapse
Affiliation(s)
- Thorsten Burmester
- Institute of Zoology, Biosafety Research and Consulting, Johannes Gutenberg University Mainz, Becherweg 32, D-55099 Mainz, Germany.
| | | | | | | |
Collapse
|
15
|
Forsberg EC, Bresnick EH. Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world. Bioessays 2001; 23:820-30. [PMID: 11536294 DOI: 10.1002/bies.1117] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Histone acetylation is an important regulatory mechanism that controls transcription and diverse nuclear processes. While great progress has been made in understanding how localized acetylation and deacetylation control promoter activity, virtually nothing is known about the consequences of acetylation throughout entire chromosomal regions. An increasing number of genes have been found to reside in large chromatin domains that are controlled by regulatory elements many kilobases away. Recent studies have shown that broad histone acetylation patterns are hallmarks of chromatin domains. The purpose of this review is to discuss how such patterns are established and their implications for regulating gene expression.
Collapse
Affiliation(s)
- E C Forsberg
- Department of Pharmacology, Molecular and Cellular Pharmacology Program, University of Wisconsin Medical School, 13090 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|