1
|
Zhang Y, Zhang J, Wan H, Wu Z, Xu H, Zhang Z, Wang Y, Wang J. New Insights into the Dependence of CPEB3 Ribozyme Cleavage on Mn 2+ and Mg 2. J Phys Chem Lett 2024; 15:2708-2714. [PMID: 38427973 DOI: 10.1021/acs.jpclett.3c03221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
CPEB3 ribozyme is a self-cleaving RNA that occurs naturally in mammals and requires divalent metal ions for efficient activity. Ribozymes exhibit preferences for specific metal ions, but the exact differences in the catalytic mechanisms of various metal ions on the CPEB3 ribozyme remain unclear. Our findings reveal that Mn2+ functions as a more effective cofactor for CPEB3 ribozyme catalysis compared to Mg2+, as confirmed by its stronger binding affinity to CPEB3 by EPR. Cleavage assays of CPEB3 mutants and molecular docking analyses further showed that excessive Mn2+ ions can bind to a second binding site near the catalytic site, hindering CPEB3 catalytic efficiency and contributing to the Mn2+ bell-shaped curve. These results implicate a pivotal role for the local nucleobase-Mn2+ interactions in facilitating RNA folding and modulating the directed attack of nucleophilic reagents. Our study provides new insights and experimental evidence for exploring the divalent cation dependent cleavage mechanism of the CPEB3 ribozyme.
Collapse
Affiliation(s)
- Yaoyao Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hengjia Wan
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ziwei Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huangtao Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Zhe Zhang
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yujuan Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei 230031, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
- International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei 230031, China
| |
Collapse
|
2
|
Jash B, Kool ET. Conjugation of RNA via 2'-OH acylation: Mechanisms determining nucleotide reactivity. Chem Commun (Camb) 2022; 58:3693-3696. [PMID: 35226025 PMCID: PMC9211027 DOI: 10.1039/d2cc00660j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The acylation reactivity of RNA 2'-OH groups has proven broadly useful for labeling and mapping RNA. Here we perform kinetics studies to test the mechanisms governing this reaction, and we find strong steric and inductive effects modulating reactivity. The results shed light on new strategies for improved conjugation and mapping.
Collapse
Affiliation(s)
- Biswarup Jash
- Department of Chemistry and ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| | - Eric T Kool
- Department of Chemistry and ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Jones EL, Mlotkowski AJ, Hebert SP, Schlegel HB, Chow CS. Calculations of p Ka Values for a Series of Naturally Occurring Modified Nucleobases. J Phys Chem A 2022; 126:1518-1529. [PMID: 35201779 DOI: 10.1021/acs.jpca.1c10905] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Modified nucleobases are found in functionally important regions of RNA and are often responsible for essential structural roles. Many of these nucleobase modifications are dynamically regulated in nature, with each modification having a different biological role in RNA. Despite the high abundance of modifications, many of their characteristics are still poorly understood. One important property of a nucleobase is its pKa value, which has been widely studied for unmodified nucleobases, but not for the modified versions. In this study, the pKa values of modified nucleobases were determined by performing ab initio quantum mechanical calculations using a B3LYP density functional with the 6-31+G(d,p) basis set and a combination of implicit-explicit solvation systems. This method, which was previously employed to determine the pKa values of unmodified nucleobases, is applicable to a variety of modified nucleobases. Comparisons of the pKa values of modified nucleobases give insight into their structural and energetic impacts within nucleic acids.
Collapse
Affiliation(s)
- Evan L Jones
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Alan J Mlotkowski
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sebastien P Hebert
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
Messina KJ, Kierzek R, Tracey MA, Bevilacqua PC. Small Molecule Rescue and Glycosidic Conformational Analysis of the Twister Ribozyme. Biochemistry 2019; 58:4857-4868. [PMID: 31742390 PMCID: PMC6901379 DOI: 10.1021/acs.biochem.9b00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The number of self-cleaving ribozymes has increased sharply in recent years, giving rise to elaborations of the four known ribozyme catalytic strategies, α, β, γ, and δ. One such extension is utilized by the twister ribozyme, which is hypothesized to conduct δ, or general acid catalysis, via N3 of the syn adenine +1 nucleobase indirectly via buffer catalysis at biological pH and directly at lower pH. Herein, we test the δ catalysis role of A1 via chemical rescue and the catalytic relevance of the syn orientation of the nucleobase by conformational analysis. Using inhibited twister ribozyme variants with A1(N3) deaza or A1 abasic modifications, we observe >100-fold chemical rescue effects in the presence of protonatable biological small molecules such as imidazole and histidine, similar to observed rescue values previously reported for C75U/C76Δ in the HDV ribozyme. Brønsted plots for the twister variants support a model in which small molecules rescue catalytic activity via a proton transfer mechanism, suggesting that A1 in the wild type is involved in proton transfer, most likely general acid catalysis. Additionally, through glycosidic conformational analysis in an appropriate background that accommodates the bromine atom, we observe that an 8BrA1-modified twister ribozyme is up to 10-fold faster than a nonmodified A1 ribozyme, supporting crystallographic data that show that A1 is syn when conducting proton transfer. Overall, this study provides functional evidence that the nucleotide immediately downstream of the cleavage site participates directly or indirectly in general acid-base catalysis in the twister ribozyme while occupying the syn conformation.
Collapse
Affiliation(s)
- Kyle J. Messina
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Matthew A. Tracey
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Current Address: Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
5
|
Messina KJ, Bevilacqua PC. Cellular Small Molecules Contribute to Twister Ribozyme Catalysis. J Am Chem Soc 2018; 140:10578-10582. [PMID: 30102530 PMCID: PMC6472948 DOI: 10.1021/jacs.8b06065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The number of self-cleaving small ribozymes has increased sharply in recent years. Advances have been made in describing these ribozymes in terms of four catalytic strategies: α describes in-line attack, β describes neutralization of the nonbridging oxygens, γ describes activation of the nucleophile, and δ describes stabilization of the leaving group. Current literature presents the rapid self-cleavage of the twister ribozyme in terms of all four of these classic catalytic strategies. Herein, we describe the nonspecific contribution of small molecules to ribozyme catalysis. At biological pH, the rate of the wild-type twister ribozyme is enhanced up to 5-fold in the presence of moderate buffer concentrations, similar to the 3-5-fold effects reported previously for buffer catalysis for protein enzymes. We observe this catalytic enhancement not only with standard laboratory buffers, but also with diverse biological small molecules, including imidazole, amino acids, and amino sugars. Brønsted plots suggest that small molecules assist in proton transfer, most likely with δ catalysis. Cellular small molecules provide a simple way to overcome the limited functional diversity of RNA and have the potential to participate in the catalytic mechanisms of many ribozymes in vivo.
Collapse
Affiliation(s)
- Kyle J. Messina
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 United States
| |
Collapse
|
6
|
Ren H, Cheyne CG, Fleming AM, Burrows CJ, White HS. Single-Molecule Titration in a Protein Nanoreactor Reveals the Protonation/Deprotonation Mechanism of a C:C Mismatch in DNA. J Am Chem Soc 2018; 140:5153-5160. [PMID: 29562130 DOI: 10.1021/jacs.8b00593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Measurement of single-molecule reactions can elucidate microscopic mechanisms that are often hidden from ensemble analysis. Herein, we report the acid-base titration of a single DNA duplex confined within the wild-type α-hemolysin (α-HL) nanopore for up to 3 h, while monitoring the ionic current through the nanopore. Modulation between two states in the current-time trace for duplexes containing the C:C mismatch in proximity to the latch constriction of α-HL is attributed to the base flipping of the C:C mismatch. As the pH is lowered, the rate for the C:C mismatch to flip from the intra-helical state to the extra-helical state ( kintra-extra) decreases, while the rate for base flipping from the extra-helical state to the intra-helical state ( kextra-intra) remains unchanged. Both kintra-extra and kextra-intra are on the order of 1 × 10-2 s-1 to 1 × 10-1 s-1 and remain stable over the time scale of the measurement (several hours). Analysis of the pH-dependent kinetics of base flipping using a hidden Markov kinetic model demonstrates that protonation/deprotonation occurs while the base pair is in the intra-helical state. We also demonstrate that the rate of protonation is limited by transport of H+ into the α-HL nanopore. Single-molecule kinetic isotope experiments exhibit a large kinetic isotope effect (KIE) for kintra-extra ( kH/ kD ≈ 5) but a limited KIE for kextra-intra ( kH/ kD ≈ 1.3), supporting our model. Our experiments correspond to the longest single-molecule measurements performed using a nanopore, and demonstrate its application in interrogating mechanisms of single-molecule reactions in confined geometries.
Collapse
Affiliation(s)
- Hang Ren
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Cameron G Cheyne
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Henry S White
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
7
|
Vu QT, Yamada H, Yogo K. Exploring the Role of Imidazoles in Amine-Impregnated Mesoporous Silica for CO2 Capture. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Quyen T. Vu
- Graduate
School of Material Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma,
Nara 630-0192, Japan
| | - Hidetaka Yamada
- Graduate
School of Material Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma,
Nara 630-0192, Japan
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Katsunori Yogo
- Graduate
School of Material Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma,
Nara 630-0192, Japan
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| |
Collapse
|
8
|
Wilson TJ, Liu Y, Domnick C, Kath-Schorr S, Lilley DMJ. The Novel Chemical Mechanism of the Twister Ribozyme. J Am Chem Soc 2016; 138:6151-62. [PMID: 27153229 DOI: 10.1021/jacs.5b11791] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe the multifactorial origins of catalysis by the twister ribozyme. We provide evidence that the adenine immediately 3' to the scissile phosphate (A1) acts as a general acid. Substitution of ring nitrogen atoms indicates that very unusually the N3 of A1 is the proton donor to the oxyanion leaving group. A1 is accommodated in a specific binding pocket that raises its pKa toward neutrality, juxtaposes its N3 with the O5' to be protonated, and helps create the in-line trajectory required for nucleophilic attack. A1 performs general acid catalysis while G33 acts as a general base. A 100-fold stereospecific phosphorothioate effect at the scissile phosphate is consistent with a significant stabilization of the transition state by the ribozyme, and functional group substitution at G33 indicates that its exocyclic N2 interacts directly with the scissile phosphate. A model of the ribozyme active site is proposed that accommodates these catalytic strategies.
Collapse
Affiliation(s)
- Timothy J Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee , Dow Street, Dundee DD1 5EH, U.K
| | - Yijin Liu
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee , Dow Street, Dundee DD1 5EH, U.K
| | - Christof Domnick
- Life and Medical Sciences Institute, University of Bonn , Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Stephanie Kath-Schorr
- Life and Medical Sciences Institute, University of Bonn , Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee , Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
9
|
Lee TS, Radak BK, Harris ME, York DM. A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation. ACS Catal 2016; 6:1853-1869. [PMID: 27774349 DOI: 10.1021/acscatal.5b02158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheless, questions remain regarding the precise roles of divalent metal ions and key nucleotides in catalysis. In an effort to establish a reaction mechanism model consistent with available experimental data, we utilize molecular dynamics simulations to explore different conformations and metal ion binding modes along the HDVr reaction path. Building upon recent crystallographic data, our results provide a dynamic model of the HDVr reaction mechanism involving a conformational switch between multiple non-canonical G25:U20 base pair conformations in the active site. These local nucleobase dynamics play an important role in catalysis by modulating the metal binding environments of two Mg2+ ions that support catalysis at different steps of the reaction pathway. The first ion plays a structural role by inducing a base pair flip necessary to obtain the catalytic fold in which C75 moves towards to the scissile phosphate in the active site. Ejection of this ion then permits a second ion to bind elsewhere in the active site and facilitate nucleophile activation. The simulations collectively describe a mechanistic scenario that is consistent with currently available experimental data from crystallography, phosphorothioate substitutions, and chemical probing studies. Avenues for further experimental verification are suggested.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Brian K. Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United State
| | - Michael E. Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Darrin M. York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
10
|
Radak BK, Lee TS, Harris ME, York DM. Assessment of metal-assisted nucleophile activation in the hepatitis delta virus ribozyme from molecular simulation and 3D-RISM. RNA (NEW YORK, N.Y.) 2015; 21:1566-1577. [PMID: 26170378 PMCID: PMC4536318 DOI: 10.1261/rna.051466.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The hepatitis delta virus ribozyme is an efficient catalyst of RNA 2'-O-transphosphorylation and has emerged as a key experimental system for identifying and characterizing fundamental features of RNA catalysis. Recent structural and biochemical data have led to a proposed mechanistic model whereby an active site Mg(2+) ion facilitates deprotonation of the O2' nucleophile, and a protonated cytosine residue (C75) acts as an acid to donate a proton to the O5' leaving group as noted in a previous study. This model assumes that the active site Mg(2+) ion forms an inner-sphere coordination with the O2' nucleophile and a nonbridging oxygen of the scissile phosphate. These contacts, however, are not fully resolved in the crystal structure, and biochemical data are not able to unambiguously exclude other mechanistic models. In order to explore the feasibility of this model, we exhaustively mapped the free energy surfaces with different active site ion occupancies via quantum mechanical/molecular mechanical (QM/MM) simulations. We further incorporate a three-dimensional reference interaction site model for the solvated ion atmosphere that allows these calculations to consider not only the rate associated with the chemical steps, but also the probability of observing the system in the presumed active state with the Mg(2+) ion bound. The QM/MM results predict that a pathway involving metal-assisted nucleophile activation is feasible based on the rate-controlling transition state barrier departing from the presumed metal-bound active state. However, QM/MM results for a similar pathway in the absence of Mg(2+) are not consistent with experimental data, suggesting that a structural model in which the crystallographically determined Mg(2+) is simply replaced with Na(+) is likely incorrect. It should be emphasized, however, that these results hinge upon the assumption of the validity of the presumed Mg(2+)-bound starting state, which has not yet been definitively verified experimentally, nor explored in depth computationally. Thus, further experimental and theoretical study is needed such that a consensus view of the catalytic mechanism emerges.
Collapse
Affiliation(s)
- Brian K Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Darrin M York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| |
Collapse
|
11
|
Koo SC, Lu J, Li NS, Leung E, Das SR, Harris ME, Piccirilli JA. Transition State Features in the Hepatitis Delta Virus Ribozyme Reaction Revealed by Atomic Perturbations. J Am Chem Soc 2015; 137:8973-82. [PMID: 26125657 PMCID: PMC4758122 DOI: 10.1021/jacs.5b01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endonucleolytic ribozymes constitute a class of non-coding RNAs that catalyze single-strand RNA scission. With crystal structures available for all of the known ribozymes, a major challenge involves relating functional data to the physically observed RNA architecture. In the case of the hepatitis delta virus (HDV) ribozyme, there are three high-resolution crystal structures, the product state of the reaction and two precursor variants, with distinct mechanistic implications. Here, we develop new strategies to probe the structure and catalytic mechanism of a ribozyme. First, we use double-mutant cycles to distinguish differences in functional group proximity implicated by the crystal structures. Second, we use a corrected form of the Brønsted equation to assess the functional significance of general acid catalysis in the system. Our results delineate the functional relevance of atomic interactions inferred from structure, and suggest that the HDV ribozyme transition state resembles the cleavage product in the degree of proton transfer to the leaving group.
Collapse
Affiliation(s)
- Selene C. Koo
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Jun Lu
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Nan-Sheng Li
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Edward Leung
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Subha R. Das
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Michael E. Harris
- Department of Biochemistry and Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Joseph A. Piccirilli
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
12
|
Decrey L, Kazama S, Udert KM, Kohn T. Ammonia as an in situ sanitizer: inactivation kinetics and mechanisms of the ssRNA virus MS2 by NH3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1060-7. [PMID: 25496714 DOI: 10.1021/es5044529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sanitizing human and animal waste (e.g., urine, fecal sludge, or grey water) is a critical step in reducing the spread of disease and ensuring microbially safe reuse of waste materials. Viruses are particularly persistent pathogens and can be transmitted through inadequately sanitized waste. However, adequate storage or digestion of waste can strongly reduce the number of viruses due to increases in pH and uncharged aqueous ammonia (NH3), a known biocide. In this study we investigated the kinetics and mechanisms of inactivation of the single-stranded RNA virus MS2 under temperature, pH and NH3 conditions representative of waste storage. MS2 inactivation was mainly controlled by the activity of NH3 over a pH range of 7.0–9.5 and temperatures lower than 40 °C. Other bases (e.g., hydroxide, carbonate) additionally contributed to the observed reduction of infective MS2. The loss in MS2 infectivity could be rationalized by a loss in genome integrity, which was attributed to genome cleavage via alkaline transesterification. The contribution of each base to genome transesterification, and hence inactivation, could be related to the base pKa by means of a Bronsted relationship. The Bronsted relationship in conjunction with the activity of bases in solution enabled an accurate prediction of MS2 inactivation rates.
Collapse
|
13
|
Kapral GJ, Jain S, Noeske J, Doudna JA, Richardson DC, Richardson JS. New tools provide a second look at HDV ribozyme structure, dynamics and cleavage. Nucleic Acids Res 2014; 42:12833-46. [PMID: 25326328 PMCID: PMC4227795 DOI: 10.1093/nar/gku992] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme essential for processing viral transcripts during rolling circle viral replication. The first crystal structure of the cleaved ribozyme was solved in 1998, followed by structures of uncleaved, mutant-inhibited and ion-complexed forms. Recently, methods have been developed that make the task of modeling RNA structure and dynamics significantly easier and more reliable. We have used ERRASER and PHENIX to rebuild and re-refine the cleaved and cis-acting C75U-inhibited structures of the HDV ribozyme. The results correct local conformations and identify alternates for RNA residues, many in functionally important regions, leading to improved R values and model validation statistics for both structures. We compare the rebuilt structures to a higher resolution, trans-acting deoxy-inhibited structure of the ribozyme, and conclude that although both inhibited structures are consistent with the currently accepted hammerhead-like mechanism of cleavage, they do not add direct structural evidence to the biochemical and modeling data. However, the rebuilt structures (PDBs: 4PR6, 4PRF) provide a more robust starting point for research on the dynamics and catalytic mechanism of the HDV ribozyme and demonstrate the power of new techniques to make significant improvements in RNA structures that impact biologically relevant conclusions.
Collapse
Affiliation(s)
- Gary J Kapral
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Swati Jain
- Department of Biochemistry, Duke University, Durham, NC 27710, USA Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Jonas Noeske
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
14
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
15
|
Goh GB, Hulbert BS, Zhou H, Brooks CL. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism. Proteins 2014; 82:1319-31. [PMID: 24375620 DOI: 10.1002/prot.24499] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 11/13/2013] [Accepted: 12/12/2013] [Indexed: 12/14/2022]
Abstract
pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMD(MSλD)). In the CPHMD(MSλD) framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMD(MSλD) simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMD(MSλD) framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules-proteins and nucleic acids is now possible.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | | | |
Collapse
|
16
|
Thaplyal P, Ganguly A, Golden BL, Hammes-Schiffer S, Bevilacqua PC. Thio effects and an unconventional metal ion rescue in the genomic hepatitis delta virus ribozyme. Biochemistry 2013; 52:6499-514. [PMID: 24001219 DOI: 10.1021/bi4000673] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metal ion and nucleobase catalysis are important for ribozyme mechanism, but the extent to which they cooperate is unclear. A crystal structure of the hepatitis delta virus (HDV) ribozyme suggested that the pro-RP oxygen at the scissile phosphate directly coordinates a catalytic Mg(2+) ion and is within hydrogen bonding distance of the amine of the general acid C75. Prior studies of the genomic HDV ribozyme, however, showed neither a thio effect nor metal ion rescue using Mn(2+). Here, we combine experiment and theory to explore phosphorothioate substitutions at the scissile phosphate. We report significant thio effects at the scissile phosphate and metal ion rescue with Cd(2+). Reaction profiles with an SP-phosphorothioate substitution are indistinguishable from those of the unmodified substrate in the presence of Mg(2+) or Cd(2+), supporting the idea that the pro-SP oxygen does not coordinate metal ions. The RP-phosphorothioate substitution, however, exhibits biphasic kinetics, with the fast-reacting phase displaying a thio effect of up to 5-fold and the slow-reacting phase displaying a thio effect of ~1000-fold. Moreover, the fast- and slow-reacting phases give metal ion rescues in Cd(2+) of up to 10- and 330-fold, respectively. The metal ion rescues are unconventional in that they arise from Cd(2+) inhibiting the oxo substrate but not the RP substrate. This metal ion rescue suggests a direct interaction of the catalytic metal ion with the pro-RP oxygen, in line with experiments with the antigenomic HDV ribozyme. Experiments without divalent ions, with a double mutant that interferes with Mg(2+) binding, or with C75 deleted suggest that the pro-RP oxygen plays at most a redundant role in positioning C75. Quantum mechanical/molecular mechanical (QM/MM) studies indicate that the metal ion contributes to catalysis by interacting with both the pro-RP oxygen and the nucleophilic 2'-hydroxyl, supporting the experimental findings.
Collapse
Affiliation(s)
- Pallavi Thaplyal
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
17
|
Goh GB, Knight JL, Brooks CL. Towards Accurate Prediction of Protonation Equilibrium of Nucleic Acids. J Phys Chem Lett 2013; 4:760-766. [PMID: 23526474 PMCID: PMC3601767 DOI: 10.1021/jz400078d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The role of protonated nucleotides in modulating the pH-dependent properties of nucleic acids is one of the emerging frontiers in the field of nucleic acid biology. The recent development of a constant pH molecular dynamics simulation (CPHMDMSλD) framework for simulating nucleic acids has provided a tool for realistic simulations of pH-dependent dynamics. We enhanced the CPHMDMSλD framework with pH-based replica exchange (pH-REX), which significantly improves the sampling of both titration and spatial coordinates. The results from our pKa calculations for the GAAA tetraloop, which was predicted with lower accuracy previously due to sampling challenges, demonstrates that pH-REX reduces the average unsigned error (AUE) to 0.7 pKa units, and the error of the most poorly predicted residue A17 was drastically reduced from 2.9 to 1.2 pKa unit. Lastly, we show that pH-REX CPHMDMSλD simulations can be used to identify the dominant conformation of nucleic acid structures in alternate pH environments. This work suggests that pH-REX CPHMDMSλD simulations provide a practical tool for predicting nucleic acid protonation equilibrium from first-principles, and offering structural and mechanistic insight into the study of pH-dependent properties of nucleic acids.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
18
|
Abstract
The role of pH-dependent protonation equilibrium in modulating RNA dynamics and function is one of the key unanswered questions in RNA biology. Molecular dynamics (MD) simulations can provide insight into the mechanistic roles of protonated nucleotides, but it is only capable of modeling fixed protonation states and requires prior knowledge of the key residue's protonation state. Recently, we developed a framework for constant pH molecular dynamics simulations (CPHMDMSλD) of nucleic acids, where the nucleotides' protonation states are modeled as dynamic variables that are coupled to the structural dynamics of the RNA. In the present study, we demonstrate the application of CPHMDMSλD to the lead-dependent ribozyme; establishing the validity of this approach for modeling complex RNA structures. We show that CPHMDMSλD accurately predicts the direction of the pKa shifts and reproduces experimentally-measured microscopic pKa values with an average unsigned error of 1.3 pKa units. The effects of coupled titration states in RNA structures are modeled, and the importance of conformation sampling is highlighted. The general accuracy of CPHMDMSλD simulations in reproducing pH-dependent observables reported in this work demonstrates that constant pH simulations provides a powerful tool to investigate pH-dependent processes in nucleic acids.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
19
|
Biondi E, Poudyal RR, Forgy JC, Sawyer AW, Maxwell AWR, Burke DH. Lewis acid catalysis of phosphoryl transfer from a copper(II)-NTP complex in a kinase ribozyme. Nucleic Acids Res 2013; 41:3327-38. [PMID: 23358821 PMCID: PMC3597699 DOI: 10.1093/nar/gkt039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The chemical strategies used by ribozymes to enhance reaction rates are revealed in part from their metal ion and pH requirements. We find that kinase ribozyme K28(1-77)C, in contrast with previously characterized kinase ribozymes, requires Cu2+ for optimal catalysis of thiophosphoryl transfer from GTPγS. Phosphoryl transfer from GTP is greatly reduced in the absence of Cu2+, indicating a specific catalytic role independent of any potential interactions with the GTPγS thiophosphoryl group. In-line probing and ATPγS competition both argue against direct Cu2+ binding by RNA; rather, these data establish that Cu2+ enters the active site within a Cu2+•GTPγS or Cu2+•GTP chelation complex, and that Cu2+•nucleobase interactions further enforce Cu2+ selectivity and position the metal ion for Lewis acid catalysis. Replacing Mg2+ with [Co(NH3)6]3+ significantly reduced product yield, but not kobs, indicating that the role of inner-sphere Mg2+ coordination is structural rather than catalytic. Replacing Mg2+ with alkaline earths of increasing ionic radii (Ca2+, Sr2+ and Ba2+) gave lower yields and approximately linear rates of product accumulation. Finally, we observe that reaction rates increased with pH in log-linear fashion with an apparent pKa = 8.0 ± 0.1, indicating deprotonation in the rate-limiting step.
Collapse
Affiliation(s)
- Elisa Biondi
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst.
Collapse
Affiliation(s)
- Júlia Viladoms
- Department of Chemical Physiology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
21
|
Šponer J, Mládek A, Šponer JE, Svozil D, Zgarbová M, Banáš P, Jurečka P, Otyepka M. The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Phys Chem Chem Phys 2012; 14:15257-77. [PMID: 23072945 DOI: 10.1039/c2cp41987d] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Knowledge of geometrical and physico-chemical properties of the sugar-phosphate backbone substantially contributes to the comprehension of the structural dynamics, function and evolution of nucleic acids. We provide a side by side overview of structural biology/bioinformatics, quantum chemical and molecular mechanical/simulation studies of the nucleic acids backbone. We highlight main features, advantages and limitations of these techniques, with a special emphasis given to their synergy. The present status of the research is then illustrated by selected examples which include classification of DNA and RNA backbone families, benchmark structure-energy quantum chemical calculations, parameterization of the dihedral space of simulation force fields, incorporation of arsenate into DNA, sugar-phosphate backbone self-cleavage in small RNA enzymes, and intricate geometries of the backbone in recurrent RNA building blocks. Although not apparent from the current literature showing limited overlaps between the QM, simulation and bioinformatics studies of the nucleic acids backbone, there in fact should be a major cooperative interaction between these three approaches in studies of the sugar-phosphate backbone.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Goh GB, Knight JL, Brooks CL. Constant pH Molecular Dynamics Simulations of Nucleic Acids in Explicit Solvent. J Chem Theory Comput 2011; 8:36-46. [PMID: 22337595 DOI: 10.1021/ct2006314] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleosides of adenine and cytosine have pKa values of 3.50 and 4.08, respectively, and are assumed to be unprotonated under physiological conditions. However, evidence from recent NMR and X-Ray crystallography studies has revealed the prevalence of protonated adenine and cytosine in RNA macromolecules. Such nucleotides with elevated pKa values may play a role in stabilizing RNA structure and participate in the mechanism of ribozyme catalysis. With the work presented here, we establish the framework and demonstrate the first constant pH MD simulations (CPHMD) for nucleic acids in explicit solvent in which the protonation state is coupled to the dynamical evolution of the RNA system via λ-dynamics. We adopt the new functional form λ(Nexp) for λ that was recently developed for Multi-Site λ-Dynamics (MSλD) and demonstrate good sampling characteristics in which rapid and frequent transitions between the protonated and unprotonated states at pH = pKa are achieved. Our calculated pKa values of simple nucleotides are in a good agreement with experimentally measured values, with a mean absolute error of 0.24 pKa units. This work demonstrates that CPHMD can be used as a powerful tool to investigate pH-dependent biological properties of RNA macromolecules.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
23
|
Golden BL. Two distinct catalytic strategies in the hepatitis δ virus ribozyme cleavage reaction. Biochemistry 2011; 50:9424-33. [PMID: 22003985 DOI: 10.1021/bi201157t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.
Collapse
Affiliation(s)
- Barbara L Golden
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, United States.
| |
Collapse
|
24
|
Veeraraghavan N, Ganguly A, Chen JH, Bevilacqua PC, Hammes-Schiffer S, Golden BL. Metal binding motif in the active site of the HDV ribozyme binds divalent and monovalent ions. Biochemistry 2011; 50:2672-82. [PMID: 21348498 PMCID: PMC3068245 DOI: 10.1021/bi2000164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme uses both metal ion and nucleobase catalysis in its cleavage mechanism. A reverse G·U wobble was observed in a recent crystal structure of the precleaved state. This unusual base pair positions a Mg(2+) ion to participate in catalysis. Herein, we used molecular dynamics (MD) and X-ray crystallography to characterize the conformation and metal binding characteristics of this base pair in product and precleaved forms. Beginning with a crystal structure of the product form, we observed formation of the reverse G·U wobble during MD trajectories. We also demonstrated that this base pair is compatible with the diffraction data for the product-bound state. During MD trajectories of the product form, Na(+) ions interacted with the reverse G·U wobble in the RNA active site, and a Mg(2+) ion, introduced in certain trajectories, remained bound at this site. Beginning with a crystal structure of the precleaved form, the reverse G·U wobble with bound Mg(2+) remained intact during MD simulations. When we removed Mg(2+) from the starting precleaved structure, Na(+) ions interacted with the reverse G·U wobble. In support of the computational results, we observed competition between Na(+) and Mg(2+) in the precleaved ribozyme crystallographically. Nonlinear Poisson-Boltzmann calculations revealed a negatively charged patch near the reverse G·U wobble. This anionic pocket likely serves to bind metal ions and to help shift the pK(a) of the catalytic nucleobase, C75. Thus, the reverse G·U wobble motif serves to organize two catalytic elements, a metal ion and catalytic nucleobase, within the active site of the HDV ribozyme.
Collapse
Affiliation(s)
- Narayanan Veeraraghavan
- Huck Institutes of Life Sciences, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Abir Ganguly
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907
| | - Philip C. Bevilacqua
- Huck Institutes of Life Sciences, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| | - Sharon Hammes-Schiffer
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| |
Collapse
|
25
|
Xin Y, Hamelberg D. Deciphering the role of glucosamine-6-phosphate in the riboswitch action of glmS ribozyme. RNA (NEW YORK, N.Y.) 2010; 16:2455-63. [PMID: 20971809 PMCID: PMC2995406 DOI: 10.1261/rna.2334110] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/16/2010] [Indexed: 05/23/2023]
Abstract
The GlmS ribozyme is believed to exploit a general acid-base catalytic mechanism in the presence of glucosamine-6-phosphate (GlcN6P) to accelerate self-cleavage by approximately six orders of magnitude. The general acid and general base are not known, and the role of the GlcN6P cofactor is even less well understood. The amine group of GlcN6P has the ability to either accept or donate a proton and could therefore potentially act as an acid or a base. In order to decipher the role of GlcN6P in the self-cleavage of glmS, we have determined the preferred protonation state of the amine group in the wild-type and an inactive G40A mutant using molecular dynamics simulations and free energy calculations. Here we show that, upon binding of GlcN6P to wild-type glmS, the pK(a) of the amine moiety is altered by the active site environment, decreasing by about 2.2 from a solution pK(a) of about 8.2. On the other hand, we show that the pK(a) of the amine group slightly increases to about 8.4 upon binding to the G40A inactive mutant of glmS. These results suggest that GlcN6P acts as a general acid in the self-cleavage of glmS. Upon binding to glmS, GlcN6P can easily release a proton to the 5'-oxygen of G1 during self-cleavage of the backbone phosphodiester bond. However, in the G40A inactive mutant of glmS, the results suggest that the ability of GlcN6P to easily release its proton is diminished, in addition to the possible lack of G40 as an effective base.
Collapse
Affiliation(s)
- Yao Xin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, USA
| | | |
Collapse
|
26
|
Ren Q, Ranaghan KE, Mulholland AJ, Harvey JN, Manby FR, Balint-Kurti GG. Optimal control design of laser pulses for mode specific vibrational excitation in an enzyme–substrate complex. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.03.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Lu J, Li NS, Koo SC, Piccirilli JA. Synthesis of Pyridine, Pyrimidine and Pyridinone C-Nucleoside Phosphoramidites for Probing Cytosine Function in RNA. J Org Chem 2009; 74:8021-30. [DOI: 10.1021/jo9016919] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Lu
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| | - Nan-Sheng Li
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| | - Selene C. Koo
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| | - Joseph A. Piccirilli
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| |
Collapse
|
28
|
Frederiksen JK, Piccirilli JA. Identification of catalytic metal ion ligands in ribozymes. Methods 2009; 49:148-66. [PMID: 19651216 DOI: 10.1016/j.ymeth.2009.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 01/05/2023] Open
Abstract
Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
29
|
Abstract
Self-cleaving hammerhead, hairpin, hepatitis delta virus, and glmS ribozymes comprise a family of small catalytic RNA motifs that catalyze the same reversible phosphodiester cleavage reaction, but each motif adopts a unique structure and displays a unique array of biochemical properties. Recent structural, biochemical, and biophysical studies of these self-cleaving RNAs have begun to reveal how active site nucleotides exploit general acid-base catalysis, electrostatic stabilization, substrate destabilization, and positioning and orientation to reduce the free energy barrier to catalysis. Insights into the variety of catalytic strategies available to these model RNA enzymes are likely to have important implications for understanding more complex RNA-catalyzed reactions fundamental to RNA processing and protein synthesis.
Collapse
Affiliation(s)
- Martha J Fedor
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Chen JH, Gong B, Bevilacqua PC, Carey PR, Golden BL. A catalytic metal ion interacts with the cleavage Site G.U wobble in the HDV ribozyme. Biochemistry 2009; 48:1498-507. [PMID: 19178151 PMCID: PMC2645270 DOI: 10.1021/bi8020108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HDV ribozyme self-cleaves by a chemical mechanism involving general acid-base catalysis to generate 2',3'-cyclic phosphate and 5'-hydroxyl termini. Biochemical studies from several laboratories have implicated C75 as the general acid and hydrated magnesium as the general base. We have previously shown that C75 has a pK(a) shifted >2 pH units toward neutrality [Gong, B., Chen, J. H., Chase, E., Chadalavada, D. M., Yajima, R., Golden, B. L., Bevilacqua, P. C., and Carey, P. R. (2007) J. Am. Chem. Soc. 129, 13335-13342], while in crystal structures, it is well-positioned for proton transfer. However, no evidence for a hydrated magnesium poised to serve as a general base in the reaction has been observed in high-resolution crystal structures of various reaction states and mutants. Herein, we use solution kinetic experiments and parallel Raman crystallographic studies to examine the effects of pH on the rate and Mg(2+) binding properties of wild-type and 7-deazaguanosine mutants of the HDV ribozyme. These data suggest that a previously unobserved hydrated magnesium ion interacts with N7 of the cleavage site G.U wobble base pair. Integrating this metal ion binding site with the available crystal structures provides a new three-dimensional model for the active site of the ribozyme that accommodates all available biochemical data and appears competent for catalysis. The position of this metal is consistent with a role of a magnesium-bound hydroxide as a general base as dictated by biochemical data.
Collapse
Affiliation(s)
- Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907
| | - Bo Gong
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Paul R. Carey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907
| |
Collapse
|
31
|
Cerrone-Szakal AL, Siegfried NA, Bevilacqua PC. Mechanistic characterization of the HDV genomic ribozyme: solvent isotope effects and proton inventories in the absence of divalent metal ions support C75 as the general acid. J Am Chem Soc 2008; 130:14504-20. [PMID: 18842044 DOI: 10.1021/ja801816k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme uses the nucleobase C75 and a hydrated Mg(2+) ion as the general acid-base catalysts in phosphodiester bond cleavage at physiological salt. A mechanistic framework has been advanced that involves one Mg(2+)-independent and two Mg(2+)-dependent channels. The rate-pH profile for wild-type (WT) ribozyme in the Mg(2+)-free channel is inverted relative to the fully Mg(2+)-dependent channel, with each having a near-neutral pKa. Inversion of the rate-pH profile was used as the crux of a mechanistic argument that C75 serves as general acid both in the presence and absence of Mg(2+). However, subsequent studies on a double mutant (DM) ribozyme suggested that the pKa observed for WT in the absence of Mg(2+) arises from ionization of C41, a structural nucleobase. To investigate this further, we acquired rate-pH/pD profiles and proton inventories for WT and DM in the absence of Mg(2+). Corrections were made for effects of ionic strength on hydrogen ion activity and pH meter readings. Results are accommodated by a model wherein the Mg(2+)-free pKa observed for WT arises from ionization of C75, and DM reactivity is compromised by protonation of C41. The Brønsted base appears to be water or hydroxide ion depending on pH. The observed pKa's are related to salt-dependent pH titrations of a model oligonucleotide, as well as electrostatic calculations, which support the local environment for C75 in the absence of Mg(2+) being similar to that in the presence of Mg(2+) and impervious to bulk ions. Accordingly, the catalytic role of C75 as the general acid does not appear to depend on divalent ions or the identity of the Brønsted base.
Collapse
Affiliation(s)
- Andrea L Cerrone-Szakal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
32
|
Smith MD, Mehdizadeh R, Olive JE, Collins RA. The ionic environment determines ribozyme cleavage rate by modulation of nucleobase pK a. RNA (NEW YORK, N.Y.) 2008; 14:1942-9. [PMID: 18697921 PMCID: PMC2525962 DOI: 10.1261/rna.1102308] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 06/02/2008] [Indexed: 05/20/2023]
Abstract
Several small ribozymes employ general acid-base catalysis as a mechanism to enhance site-specific RNA cleavage, even though the functional groups on the ribonucleoside building blocks of RNA have pK (a) values far removed from physiological pH. The rate of the cleavage reaction is strongly affected by the identity of the metal cation present in the reaction solution; however, the mechanism(s) by which different cations contribute to rate enhancement has not been determined. Using the Neurospora VS ribozyme, we provide evidence that different cations confer particular shifts in the apparent pK (a) values of the catalytic nucleobases, which in turn determines the fraction of RNA in the protonation state competent for general acid-base catalysis at a given pH, which determines the observed rate of the cleavage reaction. Despite large differences in observed rates of cleavage in different cations, mathematical models of general acid-base catalysis indicate that k (1), the intrinsic rate of the bond-breaking step, is essentially constant irrespective of the identity of the cation(s) in the reaction solution. Thus, in contrast to models that invoke unique roles for metal ions in ribozyme chemical mechanisms, we find that most, and possibly all, of the ion-specific rate enhancement in the VS ribozyme can be explained solely by the effect of the ions on nucleobase pK (a). The inference that k (1) is essentially constant suggests a resolution of the problem of kinetic ambiguity in favor of a model in which the lower pK (a) is that of the general acid and the higher pK (a) is that of the general base.
Collapse
Affiliation(s)
- M Duane Smith
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
33
|
Abstract
[Structure: see text]. Five naturally occurring nucleolytic ribozymes have been identified: the hammerhead, hairpin, glmS, hepatitis delta virus (HDV), and Varkud satellite (VS) ribozymes. All of these RNA enzymes catalyze self-scission of the RNA backbone using a chemical mechanism equivalent to that of RNase A. RNase A uses four basic strategies to promote this reaction: geometric constraints, activation of the nucleophile, transition-state stabilization, and leaving group protonation. In this Account, we discuss the current thinking on how nucleolytic ribozymes harness RNase A's four sources of catalytic power. The geometry of the phosphodiester cleavage reaction constrains the nucleotides flanking the scissile phosphate so that they are unstacked from a canonical A-form helix and thus require alternative stabilization. Crystal structures and mutational analysis reveal that cross-strand base pairing, along with unconventional stacking and tertiary hydrogen-bonding interactions, work to stabilize the splayed conformation in nucleolytic ribozymes. Deprotonation of the 2'-OH nucleophile greatly increases its nucleophilicity in the strand scission reaction. Crystal structures of the hammerhead, hairpin, and glmS ribozymes reveal the N1 of a G residue within hydrogen-bonding distance of the 2'-OH. In each case, this residue has also been shown to be important for catalysis. In the HDV ribozyme, a hydrated magnesium has been implicated as the general base. Catalysis by the VS ribozyme requires both an A and a G, but the precise role of either has not been elucidated. Enzymes can lower the energy of a chemical reaction by binding more tightly to the transition state than to the ground states. Comparison of the hairpin ground- and transition-state mimic structures reveal greater hydrogen bonding to the transition-state mimic structure, suggesting transition-state stabilization as a possible catalytic strategy. However, the hydrogen-bonding pattern in the glmS ribozyme transition-state mimic structure and the ground-state structures are equivalent. Protonation of the 5'-O leaving group by a variety of functional groups can promote the cleavage reaction. In the HDV ribozyme, the general acid is a conserved C residue. In the hairpin ribozyme, a G residue has been implicated in protonation of the leaving group. An A in the hammerhead ribozyme probably plays a similar role. In the glmS ribozyme, an exogenous cofactor may provide the general acid. This diversity is in contrast to the relatively small number of functional groups that serve as a general base, where at least three of the nucleolytic ribozymes may use the N1 of a G.
Collapse
Affiliation(s)
- Jesse C. Cochrane
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
| | - Scott A. Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
- Department of Chemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520
| |
Collapse
|
34
|
Jaikaran D, Smith MD, Mehdizadeh R, Olive J, Collins RA. An important role of G638 in the cis-cleavage reaction of the Neurospora VS ribozyme revealed by a novel nucleotide analog incorporation method. RNA (NEW YORK, N.Y.) 2008; 14:938-49. [PMID: 18356538 PMCID: PMC2327350 DOI: 10.1261/rna.936508] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We describe a chemical coupling procedure that allows joining of two RNAs, one of which contains a site-specific base analog substitution, in the absence of divalent ions. This method allows incorporation of nucleotide analogs at specific positions even into large, cis-cleaving ribozymes. Using this method we have studied the effects of substitution of G638 in the cleavage site loop of the VS ribozyme with a variety of purine analogs having different functional groups and pK(a) values. Cleavage rate versus pH profiles combined with kinetic solvent isotope experiments indicate an important role for G638 in proton transfer during the rate-limiting step of the cis-cleavage reaction.
Collapse
Affiliation(s)
- Dominic Jaikaran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
35
|
Anderson VE, Ruszczycky MW, Harris ME. Activation of oxygen nucleophiles in enzyme catalysis. Chem Rev 2007; 106:3236-51. [PMID: 16895326 DOI: 10.1021/cr050281z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vernon E Anderson
- Department of Biochemistry and the Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
36
|
Smith MD, Collins RA. Evidence for proton transfer in the rate-limiting step of a fast-cleaving Varkud satellite ribozyme. Proc Natl Acad Sci U S A 2007; 104:5818-23. [PMID: 17389378 PMCID: PMC1851575 DOI: 10.1073/pnas.0608864104] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Indexed: 11/18/2022] Open
Abstract
A fast-cleaving version of the Varkud satellite ribozyme, called RG, shows an apparent cis-cleavage rate constant of 5 sec(-1), similar to the rates of protein enzymes that catalyze similar reactions. Here, we describe mutational, pH-rate, and kinetic solvent isotope experiments that investigate the identity and rate constant of the rate-limiting step in this reaction. Self-cleavage of RG exhibits a bell-shaped rate vs. pH profile with apparent pK(a)s of 5.8 and 8.3, consistent with the protonation state of two nucleotides being important for the rate of cleavage. Cleavage experiments in heavy water (D(2)O) revealed a kinetic solvent isotope effect consistent with proton transfer in the rate-limiting step. A mutant RNA that disrupts a peripheral loop-loop interaction involved in RNA folding exhibits pH- and D(2)O-independent cleavage approximately 10(3)-fold slower than wild type, suggesting that this mutant is limited by a different step than wild type. Substitution of adenosine 756 in the putative active-site loop with cytosine also decreases the cleavage rate approximately 10(3)-fold, but the A756C mutant retains pH- and D(2)O-sensitivity similar to wild type, consistent with this mutant and wild type being limited by the chemical step of the reaction. These results suggest that the RG ribozyme provides a good experimental system to investigate the nature of fast, rate-limiting steps in a ribozyme cleavage reaction.
Collapse
Affiliation(s)
- M. Duane Smith
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Richard A. Collins
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
37
|
Ke A, Ding F, Batchelor JD, Doudna JA. Structural Roles of Monovalent Cations in the HDV Ribozyme. Structure 2007; 15:281-7. [PMID: 17355864 DOI: 10.1016/j.str.2007.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 11/22/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure and function, we determined the crystal structure of the precursor HDV ribozyme in the presence of thallium ions (Tl(+)). Two Tl(+) ions can occupy a previously observed divalent metal ion hexahydrate-binding site located near the scissile phosphate, but are easily competed away by cobalt hexammine, a magnesium hexahydrate mimic and potent reaction inhibitor. Intriguingly, a third Tl(+) ion forms direct inner-sphere contacts with the ribose 2'-OH nucleophile and the pro-S(p) scissile phosphate oxygen. We discuss possible structural and catalytic implications of monovalent cation binding for the HDV ribozyme mechanism.
Collapse
Affiliation(s)
- Ailong Ke
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
38
|
Tinsley RA, Walter NG. Long-range impact of peripheral joining elements on structure and function of the hepatitis delta virus ribozyme. Biol Chem 2007; 388:705-15. [PMID: 17570823 DOI: 10.1515/bc.2007.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The HDV ribozyme is an RNA enzyme from the human pathogenic hepatitis delta virus (HDV) that has recently also been identified in the human genome. It folds into a compact, nested double-pseudoknot. We examined here the functional relevance of the capping loop L4 and the helical crossover J1/2, which tightly interlace the two helical stacks of the ribozyme. Peripheral structural elements such as these are present in cis-acting, but not trans-acting ribozymes, which may explain the order-of-magnitude decrease in cleavage activity observed in trans-acting ribozymes with promise in gene therapy applications. Comparison of a systematic set of cis- and trans-acting HDV ribozymes shows that the absence of either L4 or J1/2 significantly and independently impacts catalytic activity. Using terbium(III) footprinting and affinity studies, as well as distance measurements based on time-resolved fluorescence resonance energy transfer, we find that J1/2 is most important for conferring structural properties similar to those of the cis-acting ribozyme. Our results are consistent with a model in which removal of either a helical crossover or surprisingly a capping loop induces greater dynamics and expansion of the catalytic core at long range, impacting local and global folding, as well as catalytic function.
Collapse
Affiliation(s)
- Rebecca A Tinsley
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
39
|
Tang CL, Alexov E, Pyle AM, Honig B. Calculation of pKas in RNA: on the structural origins and functional roles of protonated nucleotides. J Mol Biol 2006; 366:1475-96. [PMID: 17223134 DOI: 10.1016/j.jmb.2006.12.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/29/2006] [Accepted: 12/01/2006] [Indexed: 12/01/2022]
Abstract
pK(a) calculations based on the Poisson-Boltzmann equation have been widely used to study proteins and, more recently, DNA. However, much less attention has been paid to the calculation of pK(a) shifts in RNA. There is accumulating evidence that protonated nucleotides can stabilize RNA structure and participate in enzyme catalysis within ribozymes. Here, we calculate the pK(a) shifts of nucleotides in RNA structures using numerical solutions to the Poisson-Boltzmann equation. We find that significant shifts are predicted for several nucleotides in two catalytic RNAs, the hairpin ribozyme and the hepatitis delta virus ribozyme, and that the shifts are likely to be related to their functions. We explore how different structural environments shift the pK(a)s of nucleotides from their solution values. RNA structures appear to use two basic strategies to shift pK(a)s: (a) the formation of compact structural motifs with structurally-conserved, electrostatic interactions; and (b) the arrangement of the phosphodiester backbone to focus negative electrostatic potential in specific regions.
Collapse
Affiliation(s)
- Christopher L Tang
- Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
40
|
Perrotta AT, Wadkins TS, Been MD. Chemical rescue, multiple ionizable groups, and general acid-base catalysis in the HDV genomic ribozyme. RNA (NEW YORK, N.Y.) 2006; 12:1282-91. [PMID: 16690998 PMCID: PMC1484427 DOI: 10.1261/rna.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the ribozyme from the hepatitis delta virus (HDV) genomic strand RNA, a cytosine side chain is proposed to facilitate proton transfer in the transition state of the reaction and, thus, act as a general acid-base catalyst. Mutation of this active-site cytosine (C75) reduced RNA cleavage rates by as much as one million-fold, but addition of exogenous cytosine and certain nucleobase or imidazole analogs can partially rescue activity in these mutants. However, pH-rate profiles for the rescued reactions were bell shaped, and only one leg of the pH-rate curve could be attributed to ionization of the exogenous nucleobase or buffer. When a second potential ionizable nucleobase (C41) was removed, one leg of the bell-shaped curve was eliminated in the chemical-rescue reaction. With this construct, the apparent pK(a) determined from the pH-rate profile correlated with the solution pK(a) of the buffer, and the contribution of the buffer to the rate enhancement could be directly evaluated in a free-energy or Brønsted plot. The free-energy relationship between the acid dissociation constant of the buffer and the rate constant for cleavage (Brønsted value, beta, = approximately 0.5) was consistent with a mechanism in which the buffer acted as a general acid-base catalyst. These data support the hypothesis that cytosine 75, in the intact ribozyme, acts as a general acid-base catalyst.
Collapse
Affiliation(s)
- Anne T Perrotta
- Department of Biochemistry, Duke University Medical School, Durham, NC 27710, USA
| | | | | |
Collapse
|
41
|
McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, Soukup GA. Ligand requirements for glmS ribozyme self-cleavage. ACTA ACUST UNITED AC 2006; 12:1221-6. [PMID: 16298301 DOI: 10.1016/j.chembiol.2005.09.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/08/2005] [Accepted: 09/09/2005] [Indexed: 01/23/2023]
Abstract
Natural RNA catalysts (ribozymes) perform essential reactions in biological RNA processing and protein synthesis, whereby catalysis is intrinsic to RNA structure alone or in combination with metal ion cofactors. The recently discovered glmS ribozyme is unique in that it functions as a glucosamine-6-phosphate (GlcN6P)-dependent catalyst believed to enable "riboswitch" regulation of amino-sugar biosynthesis in certain prokaryotes. However, it is unclear whether GlcN6P functions as an effector or coenzyme to promote ribozyme self-cleavage. Herein, we demonstrate that ligand is absolutely requisite for glmS ribozyme self-cleavage activity. Furthermore, catalysis both requires and is dependent upon the acid dissociation constant (pKa) of the amine functionality of GlcN6P and related compounds. The data demonstrate that ligand is integral to catalysis, consistent with a coenzyme role for GlcN6P and illustrating an expanded capacity for biological RNA catalysis.
Collapse
Affiliation(s)
- Tom J McCarthy
- Department of Chemistry, Creighton University, Omaha, Nebraska, 68178, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Chemical insight into biological function is the holy grail of structural biology. Small molecules are central players as building blocks, effectors and probes of macromolecular structure and function.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94705, USA.
| |
Collapse
|
43
|
Barman J, Acharya S, Zhou C, Chatterjee S, Engström A, Chattopadhyaya J. Non-identical electronic characters of the internucleotidic phosphates in RNA modulate the chemical reactivity of the phosphodiester bonds. Org Biomol Chem 2006; 4:928-41. [PMID: 16493477 DOI: 10.1039/b516733g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We here show that the electronic properties and the chemical reactivities of the internucleotidic phosphates in the heptameric ssRNAs are dissimilar in a sequence-specific manner because of their non-identical microenvironments, in contrast with the corresponding isosequential ssDNAs. This has been evidenced by monitoring the delta H8(G) shifts upon pH-dependent ionization (pK(a1)) of the central 9-guaninyl (G) to the 9-guanylate ion (G-), and its electrostatic effect on each of the internucleotidic phosphate anions, as measured from the resultant delta 31P shifts (pKa2) in the isosequential heptameric ssRNAs vis-à-vis ssDNAs: [d/r(5'-Cp1Ap2Q1p3Gp4Q2p5Ap6C-3'): Q1 = Q2 = A (5a/5b) or C (8a/8b), Q(1) = A, Q(2) = C (6a/6b), Q1 = C, Q2 = A (7a/7b)]. These oligos with single ionizable G in the centre are chosen because of the fact that the pseudoaromatic character of G can be easily modulated in a pH-dependent manner by its transformation to G- (the 2'-OH to 2-O- ionization effect is not detectable below pH 11.6 as evident from the N(1-Me)-G analog), thereby modulating/titrating the nature of the electrostatic interactions of G to G- with the phosphates, which therefore constitute simple models to interrogate how the variable pseudoaromatic characters of nucleobases under different sequence context (J. Am. Chem. Soc., 2004, 126, 8674-8681) can actually influence the reactivity of the internucleotide phosphates as a result of modulation of sequence context-specific electrostatic interactions. In order to better understand the impact of the electrostatic effect of the G to G- on the tunability of the electronic character of internucleotidic phosphates in the heptameric ssRNAs 5b, 6b, 7b and 8b, we have also performed their alkaline hydrolysis at pH 12.5 at 20 degrees C, and have identified the preferences of the cleavage sites at various phosphates, which are p2, p3 and p4 (Fig.3). The results of these alkaline hydrolysis studies have been compared with the hydrolysis of analogous N(1-Me)-G heptameric ssRNA sequences 5c, 7c and 8c under identical conditions in order to establish the role of the electrostatic effect of the 9-guanylate ion (and the 2'-OH to 2-O- ionization) on the internucleotidic phosphate. It turned out that the relative alkaline hydrolysis rate at those particular phosphates (p2, p3 and p4) in the N(1-Me)-G heptamers was reduced from 16-78% compared to those in the native counterparts [Fig. 4, and ESI 2 (Fig. S11)]. Thus, these physico-chemical studies have shown that those p2, p3 and p4 phosphates in the native heptameric RNAs, which show pKa2 as well as more deshielding (owing to weaker 31P screening) in the alkaline pH compared to those at the neutral pH, are more prone to the alkaline hydrolysis because of their relatively enhanced electrophilic character resulting from weaker 31P screening. This screening effect originates as a result of the systematic charge repulsion effect between the electron cloud in the outermost orbitals of phosphorus and the central guanylate ion, leading to delocalization of the phosphorus p(pi) charge into its dpi orbitals. It is thus likely that, just as in the non-enzymatic hydrolysis, the enzymatic hydrolysis of a specific phosphate in RNA by general base-catalysis in RNA-cleaving proteins (RNase A, RNA phosphodiesterase or nuclease) can potentially be electrostatically influenced by tuning the transient charge on the nucleobase in the steric proximity or as a result of specific sequence context owing to nearest-neighbor interactions.
Collapse
Affiliation(s)
- Jharna Barman
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
Feldman AR, Leung EKY, Bennet AJ, Sen D. The RNA-Cleaving Bipartite DNAzyme Is a Distinctive Metalloenzyme. Chembiochem 2005; 7:98-105. [PMID: 16345112 DOI: 10.1002/cbic.200500264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much interest has focused on the mechanisms of the five naturally occurring self-cleaving ribozymes, which, in spite of catalyzing the same reaction, adopt divergent strategies. These ribozymes, with the exception of the recently described glmS ribozyme, do not absolutely require divalent metal ions for their catalytic chemistries in vitro. A mechanistic investigation of an in vitro-selected, RNA-cleaving DNA enzyme, the bipartite, which catalyzes the same chemistry as the five natural self-cleaving ribozymes, found a mechanism of significant complexity. The DNAzyme showed a bell-shaped pH profile. A dissection of metal usage indicated the involvement of two catalytically relevant magnesium ions for optimal activity. The DNAzyme was able to utilize manganese(II) as well as magnesium; however, with manganese it appeared to function complexed to either one or two of those cations. Titration with hexaamminecobalt(III) chloride inhibited the activity of the bipartite; this suggests that it is a metalloenzyme that utilizes metal hydroxide as a general base for activation of its nucleophile. Overall, the bipartite DNAzyme appeared to be kinetically distinct not only from the self-cleaving ribozymes but also from other in vitro-selected, RNA-cleaving deoxyribozymes, such as the 8-17, 10-23, and 614.
Collapse
Affiliation(s)
- Anat R Feldman
- Department of Molecular Biology and Biochemistry 1 and Department of Chemistry 2 Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | |
Collapse
|
45
|
Krasovska MV, Sefcikova J, Spacková N, Sponer J, Walter NG. Structural dynamics of precursor and product of the RNA enzyme from the hepatitis delta virus as revealed by molecular dynamics simulations. J Mol Biol 2005; 351:731-48. [PMID: 16045932 DOI: 10.1016/j.jmb.2005.06.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 05/31/2005] [Accepted: 06/07/2005] [Indexed: 11/22/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme involved in the replication of a human pathogen, the hepatitis delta virus. Recent crystal structures of the precursor and product of self-cleavage, together with detailed kinetic analyses, have led to hypotheses on the catalytic strategies employed by the HDV ribozyme. We report molecular dynamics (MD) simulations (approximately 120 ns total simulation time) to test the plausibility that specific conformational rearrangements are involved in catalysis. Site-specific self-cleavage requires cytidine in position 75 (C75). A precursor simulation with unprotonated C75 reveals a rather weak dynamic binding of C75 in the catalytic pocket with spontaneous, transient formation of a H-bond between U-1(O2') and C75(N3). This H-bond would be required for C75 to act as the general base. Upon protonation in the precursor, C75H+ has a tendency to move towards its product location and establish a firm H-bonding network within the catalytic pocket. However, a C75H+(N3)-G1(O5') H-bond, which would be expected if C75 acted as a general acid catalyst, is not observed on the present simulation timescale. The adjacent loop L3 is relatively dynamic and may serve as a flexible structural element, possibly gated by the closing U20.G25 base-pair, to facilitate a conformational switch induced by a protonated C75H+. L3 also controls the electrostatic environment of the catalytic core, which in turn may modulate C75 base strength and metal ion binding. We find that a distant RNA tertiary interaction involving a protonated cytidine (C41) becomes unstable when left unprotonated, leading to disruptive conformational rearrangements adjacent to the catalytic core. A Na ion temporarily compensates for the loss of the protonated hydrogen bond, which is strikingly consistent with the experimentally observed synergy between low pH and high Na+ concentrations in mediating residual self-cleavage of the HDV ribozyme in the absence of divalents.
Collapse
Affiliation(s)
- Maryna V Krasovska
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
46
|
Abstract
The natural RNA enzymes catalyse phosphate-group transfer and peptide-bond formation. Initially, metal ions were proposed to supply the chemical versatility that nucleotides lack. In the ensuing decades, structural and mechanistic studies have substantially altered this initial viewpoint. Whereas self-splicing ribozymes clearly rely on essential metal-ion cofactors, self-cleaving ribozymes seem to use nucleotide bases for their catalytic chemistry. Despite the overall differences in chemical features, both RNA and protein enzymes use similar catalytic strategies.
Collapse
Affiliation(s)
- Martha J Fedor
- Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
47
|
Doudna JA, Lorsch JR. Ribozyme catalysis: not different, just worse. Nat Struct Mol Biol 2005; 12:395-402. [PMID: 15870731 DOI: 10.1038/nsmb932] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 04/05/2005] [Indexed: 01/24/2023]
Abstract
Evolution has resoundingly favored protein enzymes over RNA-based catalysts, yet ribozymes occupy important niches in modern cell biology that include the starring role in catalysis of protein synthesis on the ribosome. Recent results from structural and biochemical studies show that natural ribozymes use an impressive range of catalytic mechanisms, beyond metalloenzyme chemistry and analogous to more chemically diverse protein enzymes. These findings make it increasingly possible to compare details of RNA- and protein-based catalysis.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA.
| | | |
Collapse
|
48
|
Bevilacqua PC, Brown TS, Chadalavada D, Lecomte J, Moody E, Nakano SI. Linkage between proton binding and folding in RNA: implications for RNA catalysis. Biochem Soc Trans 2005; 33:466-70. [PMID: 15916542 DOI: 10.1042/bst0330466] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Small ribozymes use their nucleobases to catalyse phosphodiester bond cleavage. The hepatitis delta virus ribozyme employs C75 as a general acid to protonate the 5′-bridging oxygen leaving group, and to accomplish this task efficiently, it shifts its pKa towards neutrality. Simulations and thermodynamic experiments implicate linkage between folding and protonation in nucleobase pKa shifting. Even small oligonucleotides are shown to fold in a highly co-operative manner, although they do so in a context-specific fashion. Linkage between protonation and co-operativity of folding may drive pKa shifting and provide for enhanced function in RNA.
Collapse
Affiliation(s)
- P C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Das SR, Piccirilli JA. General acid catalysis by the hepatitis delta virus ribozyme. Nat Chem Biol 2005; 1:45-52. [PMID: 16407993 DOI: 10.1038/nchembio703] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 03/16/2005] [Indexed: 11/08/2022]
Abstract
Recent crystallographic and functional analyses of RNA enzymes have raised the possibility that the purine and pyrimidine nucleobases may function as general acid-base catalysts. However, this mode of nucleobase-mediated catalysis has been difficult to establish unambiguously. Here, we used a hyperactivated RNA substrate bearing a 5'-phosphorothiolate to investigate the role of a critical cytosine residue in the hepatitis delta virus ribozyme. The hyperactivated substrate specifically suppressed the deleterious effects of cytosine mutations and pH changes, thereby linking the protonation of the nucleobase to leaving-group stabilization. We conclude that the active-site cytosine provides general acid catalysis, mediating proton transfer to the leaving group through a protonated N3-imino nitrogen. These results establish a specific role for a nucleobase in a ribozyme reaction and support the proposal that RNA nucleobases may function in a manner analogous to that of catalytic histidine residues in protein enzymes.
Collapse
Affiliation(s)
- Subha R Das
- Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biology, University of Chicago, 5841 S. Maryland Avenue, MC1028, Chicago, Illinois 60637, USA
| | | |
Collapse
|
50
|
Kuzmin YI, Da Costa CP, Cottrell JW, Fedor MJ. Role of an active site adenine in hairpin ribozyme catalysis. J Mol Biol 2005; 349:989-1010. [PMID: 15907933 DOI: 10.1016/j.jmb.2005.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/25/2005] [Accepted: 04/05/2005] [Indexed: 11/23/2022]
Abstract
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.
Collapse
Affiliation(s)
- Yaroslav I Kuzmin
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|