1
|
Kim H, Ding YH, Lu S, Zuo MQ, Tan W, Conte D, Dong MQ, Mello CC. PIE-1 SUMOylation promotes germline fates and piRNA-dependent silencing in C. elegans. eLife 2021; 10:e63300. [PMID: 34003111 PMCID: PMC8131105 DOI: 10.7554/elife.63300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Germlines shape and balance heredity, integrating and regulating information from both parental and foreign sources. Insights into how germlines handle information have come from the study of factors that specify or maintain the germline fate. In early Caenorhabditis elegans embryos, the CCCH zinc finger protein PIE-1 localizes to the germline where it prevents somatic differentiation programs. Here, we show that PIE-1 also functions in the meiotic ovary where it becomes SUMOylated and engages the small ubiquitin-like modifier (SUMO)-conjugating machinery. Using whole-SUMO-proteome mass spectrometry, we identify HDAC SUMOylation as a target of PIE-1. Our analyses of genetic interactions between pie-1 and SUMO pathway mutants suggest that PIE-1 engages the SUMO machinery both to preserve the germline fate in the embryo and to promote Argonaute-mediated surveillance in the adult germline.
Collapse
Affiliation(s)
- Heesun Kim
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Yue-He Ding
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Shan Lu
- National Institute of Biological SciencesBeijingChina
| | - Mei-Qing Zuo
- National Institute of Biological SciencesBeijingChina
| | - Wendy Tan
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Meng-Qiu Dong
- National Institute of Biological SciencesBeijingChina
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
2
|
Choi YS, Wu K, Jeong K, Lee D, Jeon YH, Choi BS, Pan ZQ, Ryu KS, Cheong C. The human Cdc34 carboxyl terminus contains a non-covalent ubiquitin binding activity that contributes to SCF-dependent ubiquitination. J Biol Chem 2010; 285:17754-62. [PMID: 20353940 DOI: 10.1074/jbc.m109.090621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc34 is an E2 ubiquitin-conjugating enzyme that functions in conjunction with SCF (Skp1.Cullin 1.F-box) E3 ubiquitin ligase to catalyze covalent attachment of polyubiquitin chains to a target protein. Here we identified direct interactions between the human Cdc34 C terminus and ubiquitin using NMR chemical shift perturbation assays. The ubiquitin binding activity was mapped to two separate Cdc34 C-terminal motifs (UBS1 and UBS2) that comprise residues 206-215 and 216-225, respectively. UBS1 and UBS2 bind to ubiquitin in the proximity of ubiquitin Lys(48) and C-terminal tail, both of which are key sites for conjugation. When bound to ubiquitin in one orientation, the Cdc34 UBS1 aromatic residues (Phe(206), Tyr(207), Tyr(210), and Tyr(211)) are probably positioned in the vicinity of ubiquitin C-terminal residue Val(70). Replacement of UBS1 aromatic residues by glycine or of ubiquitin Val(70) by alanine decreased UBS1-ubiquitin affinity interactions. UBS1 appeared to support the function of Cdc34 in vivo because human Cdc34(1-215) but not Cdc34(1-200) was able to complement the growth defect by yeast Cdc34 mutant strain. Finally, reconstituted IkappaBalpha ubiquitination analysis revealed a role for each adjacent pair of UBS1 aromatic residues (Phe(206)/Tyr(207), Tyr(210)/Tyr(211)) in conjugation, with Tyr(210) exhibiting the most pronounced catalytic function. Intriguingly, Cdc34 Tyr(210) was required for the transfer of the donor ubiquitin to a receptor lysine on either IkappaBalpha or a ubiquitin in a manner that depended on the neddylated RING sub-complex of the SCF. Taken together, our results identified a new ubiquitin binding activity within the human Cdc34 C terminus that contributes to SCF-dependent ubiquitination.
Collapse
Affiliation(s)
- Yun-Seok Choi
- Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sadowski M, Mawson A, Baker R, Sarcevic B. Cdc34 C-terminal tail phosphorylation regulates Skp1/cullin/F-box (SCF)-mediated ubiquitination and cell cycle progression. Biochem J 2007; 405:569-81. [PMID: 17461777 PMCID: PMC2267305 DOI: 10.1042/bj20061812] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ubiquitin-conjugating enzyme Cdc34 (cell division cycle 34) plays an essential role in promoting the G1-S-phase transition of the eukaryotic cell cycle and is phosphorylated in vivo. In the present study, we investigated if phosphorylation regulates Cdc34 function. We mapped the in vivo phosphorylation sites on budding yeast Cdc34 (yCdc34; Ser207 and Ser216) and human Cdc34 (hCdc34 Ser203, Ser222 and Ser231) to serine residues in the acidic tail domain, a region that is critical for Cdc34's cell cycle function. CK2 (protein kinase CK2) phosphorylates both yCdc34 and hCdc34 on these sites in vitro. CK2-mediated phosphorylation increased yCdc34 ubiquitination activity towards the yeast Saccharomyces cerevisiae Sic1 in vitro, when assayed in the presence of its cognate SCFCdc4 E3 ligase [where SCF is Skp1 (S-phase kinase-associated protein 1)/cullin/F-box]. Similarly, mutation of the yCdc34 phosphorylation sites to alanine, aspartate or glutamate residues altered Cdc34-SCFCdc4-mediated Sic1 ubiquitination activity. Similar results were obtained when yCdc34's ubiquitination activity was assayed in the absence of SCFCdc4, indicating that phosphorylation regulates the intrinsic catalytic activity of Cdc34. To evaluate the in vivo consequences of altered Cdc34 activity, wild-type yCdc34 and the phosphosite mutants were introduced into an S. cerevisiae cdc34 deletion strain and, following synchronization in G1-phase, progression through the cell cycle was monitored. Consistent with the increased ubiquitination activity in vitro, cells expressing the phosphosite mutants with higher catalytic activity exhibited accelerated cell cycle progression and Sic1 degradation. These studies demonstrate that CK2-mediated phosphorylation of Cdc34 on the acidic tail domain stimulates Cdc34-SCFCdc4 ubiquitination activity and cell cycle progression.
Collapse
Affiliation(s)
- Martin Sadowski
- *Cell Cycle and Cancer Unit, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC 3065, Australia
| | - Amanda Mawson
- †Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Rohan Baker
- ‡Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Boris Sarcevic
- *Cell Cycle and Cancer Unit, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC 3065, Australia
- §Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
4
|
Flick K, Wittenberg C. Multiple pathways for suppression of mutants affecting G1-specific transcription in Saccharomyces cerevisiae. Genetics 2005; 169:37-49. [PMID: 15677747 PMCID: PMC1448864 DOI: 10.1534/genetics.104.032169] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the budding yeast, Saccharomyces cerevisiae, control of cell proliferation is exerted primarily during G(1) phase. The G(1)-specific transcription of several hundred genes, many with roles in early cell cycle events, requires the transcription factors SBF and MBF, each composed of Swi6 and a DNA-binding protein, Swi4 or Mbp1, respectively. Binding of these factors to promoters is essential but insufficient for robust transcription. Timely transcriptional activation requires Cln3/CDK activity. To identify potential targets for Cln3/CDK, we identified multicopy suppressors of the temperature sensitivity of new conditional alleles of SWI6. A bck2Delta background was used to render SWI6 essential. Seven multicopy suppressors of bck2Delta swi6-ts mutants were identified. Three genes, SWI4, RME1, and CLN2, were identified previously in related screens and shown to activate G(1)-specific expression of genes independent of CLN3 and SWI6. The other four genes, FBA1, RPL40a/UBI1, GIN4, and PAB1, act via apparently unrelated pathways downstream of SBF and MBF. Each depends upon CLN2, but not CLN1, for its suppressing activity. Together with additional characterization these findings indicate that multiple independent pathways are sufficient for proliferation in the absence of G(1)-specific transcriptional activators.
Collapse
Affiliation(s)
- Karin Flick
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
5
|
Friant S, Meier KD, Riezman H. Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock protein induction. EMBO J 2003; 22:3783-91. [PMID: 12881413 PMCID: PMC169048 DOI: 10.1093/emboj/cdg375] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Serine palmitoyltransferase, the first enzyme in ceramide biosynthesis, is required for resistance to heat shock. We show that increased heat shock sensitivity in the absence of serine palmitoyltransferase activity correlates with a lack of induction of the major heat shock proteins (Hsps) at high temperature. Normal heat shock resistance can be restored, without restoration of ceramide synthesis or induction of Hsps, by overexpression of ubiquitin. This function of ubiquitin requires the proteasome. These data imply that the essential function of Hsp induction is the removal of misfolded or aggregated proteins, not their refolding. This suggests that cells stressed by heat shock do not die because of the loss of protein activity due to their denaturation, but because of the inherent toxicity of the denatured and/or aggregated proteins.
Collapse
Affiliation(s)
- Sylvie Friant
- Department of Biochemistry, University of Geneva, Sciences II, 30, quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
6
|
Abstract
Receptor-mediated signal transduction pathways of cells involved in allergy and inflammations are extremely significant. Lyn is a member of the Src family of non-receptor protein tyrosine kinases and is associated with a number of cell surface receptors, including the B-cell antigen receptor and immunoglobulin E receptor (FcepsilonRI). Lyn is necessary for FcepsilonRI-mediated mast cell activation. To investigate how the level of Lyn is maintained in mast cell activation, it was studied whether Lyn binds to ubiquitin and is ubiquitinated for proteasomal degradation in cells. In the yeast two hybrid system, Lyn specifically interacted with ubiquitin in vivo. Furthermore, Lyn bound to ubiquitin-conjugated Sepharose beads in vitro and was efficiently competed by soluble ubiquitin. Pulse-chase experiments indicated intracellular degradation of Lyn was associated with the generation of a high molecular weight complex in the presence of proteasome-specific inhibitor, lactacystin. This high molecular weight complex cross-reacted with anti-Lyn and anti-ubiquitin demonstrating the ubiquitination Lyn. Overexpression of Lyn and ubiquitin in COS 7.2 cells also resulted in the ubiquitination of Lyn in the presence of lactacystin, supporting the ubiquitination of Lyn by a proteasome specific pathway.
Collapse
Affiliation(s)
- S P Bhattacharyya
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, NIH Campus, Building 29, Room 304, 29 Lincoln Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Miura T, Klaus W, Gsell B, Miyamoto C, Senn H. Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution. J Mol Biol 1999; 290:213-28. [PMID: 10388568 DOI: 10.1006/jmbi.1999.2859] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ubiquitin-conjugating enzymes (Ubc) are involved in ubiquitination of proteins in the protein degradation pathway of eukaryotic cells. Ubc transfers the ubiquitin (Ub) molecules to target proteins by forming a thioester bond between their active site cysteine residue and the C-terminal glycine residue of ubiquitin. Here, we report on the NMR assignment and secondary structure of class I human ubiquitin-conjugating enzyme 2b (HsUbc2b). Chemical shift perturbation studies allowed us to map the contact area and binding interface between ubiquitin and HsUbc2b by1H-15N HSQC NMR spectroscopy. The serine mutant of the active site Cys88 of HsUbc2b was employed to obtain a relatively stable covalent ubiquitin complex of HsUbc2b(C88S). Changes in chemical shifts of amide protons and nitrogen atoms induced by the formation of the covalent complex were measured by preparing two segmentally labeled complexes with either ubiquitin or HsUbc2b(C88S)15N-labeled. In ubiquitin, the interaction is primarily sensed by the C-terminal segment Val70 - Gly76, and residues Lys48 and Gln49. The surface area on ubiquitin, as defined by these residues, overlaps partially with the presumed binding site with ubiquitin-activating enzyme (E1). In HsUbc2b, most of the affected residues cluster in the vicinity of the active site, namely, around the active site Cys88 itself, the second alpha-helix, and the flexible loop which connects helices alpha2 and alpha3 and which is adjacent to the active site. An additional site on HsUbc2b for a weak interaction with ubiquitin could be detected in a titration study where the two proteins were not covalently linked. This site is located on the backside of HsUbc2b opposite to the active site and is part of the beta-sheet. The covalent and non-covalent interaction sites are clearly separated on the HsUbc2b surface, while no such clear-cut segregation of the interaction area was observed on ubiquitin.
Collapse
Affiliation(s)
- T Miura
- Pharma Preclinical Research Department, F. Hoffmann-La Roche AG, Basel, CH-4070, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Sandrock TM, Brower SM, Toenjes KA, Adams AE. Suppressor analysis of fimbrin (Sac6p) overexpression in yeast. Genetics 1999; 151:1287-97. [PMID: 10101157 PMCID: PMC1460546 DOI: 10.1093/genetics/151.4.1287] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Yeast fimbrin (Sac6p) is an actin filament-bundling protein that is lethal when overexpressed. To identify the basis for this lethality, we sought mutations that can suppress it. A total of 1326 suppressor mutations were isolated and analyzed. As the vast majority of mutations were expected to simply decrease the expression of Sac6p to tolerable levels, a rapid screen was devised to eliminate these mutations. A total of 1324 mutations were found to suppress by reducing levels of Sac6p in the cell. The remaining 2 mutations were both found to be in the actin gene and to make the novel changes G48V (act1-20) and K50E (act1-21). These mutations suppress the defect in cytoskeletal organization and cell morphology seen in ACT1 cells that overexpress SAC6. These findings indicate that the lethal phenotype caused by Sac6p overexpression is mediated through interaction with actin. Moreover, the altered residues lie in the region of actin previously implicated in the binding of Sac6p, and they result in a reduced affinity of actin for Sac6p. These results indicate that the two mutations most likely suppress by reducing the affinity of actin for Sac6p in vivo. This study suggests it should be possible to use this type of suppressor analysis to identify other pairs of physically interacting proteins and suggests that it may be possible to identify sites where such proteins interact with each other.
Collapse
Affiliation(s)
- T M Sandrock
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
9
|
Abstract
In addition to selecting proteins for degradation by the 26S proteasome, ubiqitination appears to serve other regulatory functions, including for endosomal/lysosomal targeting, protein translocation, and enzyme modification. Currently, little is known how multiubiquitin chains are recognized by these cellular mechanisms. Within the 26S proteasome, one subunit (Mcb1/S5a) has been identified that has affinity for multiubiquitin chains and may function as a ubiquitin receptor. We recently found that a non-proteasomal protein p62 also preferentially binds multiubiquitin chains and forms a novel cytoplasmic structure "sequestosome" which serves as a storage place for ubiquitinated proteins. In the present manuscript, the role and regulation of p62 in relation to the sequestosomal function will be reviewed.
Collapse
Affiliation(s)
- J Shin
- Division of Tumor Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
10
|
Mezquita J, Pau M, Mezquita C. Characterization and expression of two chicken cDNAs encoding ubiquitin fused to ribosomal proteins of 52 and 80 amino acids. Gene X 1997; 195:313-9. [PMID: 9305777 DOI: 10.1016/s0378-1119(97)00189-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have determined the complete nucleotide sequence of two chicken cDNAs, Ub-t52 and Ub-t80, encoding ubiquitin fused to ribosomal proteins of 52 and 80 amino acids. The deduced amino acid sequences of the ribosomal proteins are identical or very similar to the homologous human and rat proteins and to the corresponding proteins of other species. Unexpectedly, the ubiquitin moiety of the Ub-t52 protein showed two amino acid substitutions: serine-20 has been replaced by asparagine and serine-57 by alanine. Ubiquitin is a protein strongly conserved during evolution, with no changes in sequence previously reported in vertebrates. Ub-t52 and Ub-t80 are highly expressed in early embryogenesis and during postmitotic stages of spermatogenesis, in parallel with the expression of the polyubiquitin gene UbII. Whereas the 5' untranslated regions (5'UTRs) of the chicken polyubiquitin mRNAs showed marked differences in mature testes in relation to somatic tissues, no differences were observed in the 5'UTRs of the ubiquitin-ribosomal protein mRNAs. These mRNAs possess a 5'-terminal oligopyrimidine tract that could be used as a mechanism to postpone translation during postmitotic stages of spermatogenesis, as has been proposed in quiescent cells.
Collapse
Affiliation(s)
- J Mezquita
- Molecular Genetics Research Group, Faculty of Medicine, University of Barcelona, Casanova, Spain.
| | | | | |
Collapse
|
11
|
Mezquita J, Pau M, Mezquita C. Heat-shock inducible polyubiquitin gene UbI undergoes alternative initiation and alternative splicing in mature chicken testes. Mol Reprod Dev 1997; 46:471-5. [PMID: 9094093 DOI: 10.1002/(sici)1098-2795(199704)46:4<471::aid-mrd4>3.0.co;2-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ubiquitin, a heat-shock protein highly expressed during spermatogenesis, plays an essential role in the differentiation of the germinal cells, particularly in the structural changes of chromatin taking place at the end of the process. To shed light on the mechanisms that modulate transcriptional activity of the heat-shock inducible polyubiquitin gene UbI during spermatogenesis and stabilize the message when transcription is not longer active, we have compared the characteristics of UbI transcripts in mature and immature testes and somatic cells. In mature chicken testes, transcription starts at a site placed closer to the heat-shock promoters than in somatic tissues. This site is upstream from the TATA box used in somatic cells. In addition, UbI transcript undergoes an alternative splicing that produces a longer 5' untranslated region in mature testis. These findings may provide a basis for the observed increase in expression of UbI in mature chicken testes and for the stability of the message when transcription ceases at the end of spermatogenesis.
Collapse
Affiliation(s)
- J Mezquita
- Molecular Genetics Research Group, Faculty of Medicine, University of Barcelona, Spain
| | | | | |
Collapse
|
12
|
Vadlamudi RK, Joung I, Strominger JL, Shin J. p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem 1996; 271:20235-7. [PMID: 8702753 DOI: 10.1074/jbc.271.34.20235] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p62 is a novel cellular protein which was initially identified as a phosphotyrosine-independent ligand of the SH2 domain of p56(lck). In the yeast two-hybrid system, p62 specifically interacted with ubiquitin in vivo. Furthermore, p62 bound to ubiquitin-conjugated Sepharose beads in vitro and was efficiently competed by soluble ubiquitin. The interaction was independent of ATP hydrolysis, and its dissociation did not require a reducing agent. Thus, p62 binds to ubiquitin noncovalently. Further analysis showed that the C-terminal 80 amino acids of p62 were indispensable for its interaction with ubiquitin. However, p62 has homology neither with ubiquitin C-terminal hydrolases nor with the S5a subunit of the 26 S proteasome complex, the only proteins known to bind to ubiquitin noncovalently. These results suggest that p62 belongs to a new class of ubiquitin-binding proteins and that p62 affects signal transduction at least partly through ubiquitination-mediated protein degradation.
Collapse
Affiliation(s)
- R K Vadlamudi
- Division of Tumor Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
13
|
Kanda T. A ubiquitin-protein ligase (E3) mutation of Saccharomyces cerevisiae suppressed by co-overexpression of two ubiquitin-specific processing proteases. Genes Genet Syst 1996; 71:75-83. [PMID: 8752868 DOI: 10.1266/ggs.71.75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To isolate mutations related to the ubiquitin system, I constructed a plasmid carrying the YUH1 and UBP1 genes (genes of ubiquitin-specific processing proteases) whose expressions were under the control of the galactose-inducible GAL1-GAL10 promoter. Cells of a strain carrying the plasmid were mutagenized with ethyl methanesulfonate. One mutant, which showed galactose-dependent growth at a high temperature (37 degrees C), was isolated from about 380,000 mutagenized colonies. The mutation responsible for galactose-dependent growth at 37 degrees C was a single nuclear recessive mutation designated as uby1-1. UBP1 and YUH1 as well as the GAL1-GAL10 promoter are required to suppress uby1-1. At the restrictive temperature, a uby1-1 mutant did not arrest at a specific phase of the cell cycle, but still lost viability. Even at the permissive temperature (30 degrees C), the uby1-1 mutant grew somewhat slowly and showed pleiotropic phenotypes including hypersensitivity to stresses such as cadmium and canavanine, and sporulation defects. The genomic DNA fragments in a single-copy plasmid which complemented uby1-1 were isolated. Chromosomal mapping, sequencing and subcloning analyses indicated that the gene complementing uby1-1 is RSP5, which encodes a ubiquitin-protein ligase (E3) homologous to E6-AP (E6 associated protein). Deletion, complementation and linkage analyses revealed that UBY1 and RSP5 are the same gene. Therefore, the E3 protein encoded by RSP5 (UBY1) is required for vegetative growth, sporulation and stress response. The present procedure using suppression by co-overexpression of two cloned genes will be useful to isolate mutations of related genes and to analyze biochemical pathways and gene-interactions.
Collapse
Affiliation(s)
- T Kanda
- Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
14
|
Prendergast JA, Ptak C, Kornitzer D, Steussy CN, Hodgins R, Goebl M, Ellison MJ. Identification of a positive regulator of the cell cycle ubiquitin-conjugating enzyme Cdc34 (Ubc3). Mol Cell Biol 1996; 16:677-84. [PMID: 8552096 PMCID: PMC231047 DOI: 10.1128/mcb.16.2.677] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Cdc34 (Ubc3) ubiquitin-conjugating enzyme from Saccharomyces cerevisiae plays an essential role in the progression of cells from the G1 to S phase of the cell division cycle. Using a high-copy suppression strategy, we have identified a yeast gene (UBS1) whose elevated expression suppresses the conditional cell cycle defects associated with cdc34 mutations. The UBS1 gene encodes a 32.2-kDa protein of previously unknown function and is identical in sequence to a genomic open reading frame on chromosome II (GenBank accession number Z36034). Several lines of evidence described here indicate that Ubs1 functions as a general positive regulator of Cdc34 activity. First, overexpression of UBS1 suppresses not only the cell proliferation and morphological defects associated with cdc34 mutants but also the inability of cdc34 mutant cells to degrade the general amino acid biosynthesis transcriptional regulator, Gcn4. Second, deletion of the UBS1 gene profoundly accentuates the cell cycle defect when placed in combination with a cdc34 temperature-sensitive allele. Finally, a comparison of the Ubs1 and Cdc34 polypeptide sequences reveals two noncontiguous regions of similarity, which, when projected onto the three-dimensional structure of a ubiquitin-conjugating enzyme, define a single region situated on its surface. While cdc34 mutations corresponding to substitutions outside this region are suppressed by UBS1 overexpression, Ubs1 fails to suppress amino acid substitutions made within this region. Taken together with other findings, the allele specificity exhibited by UBS1 expression suggests that Ubs1 regulates Cdc34 by interaction or modification.
Collapse
Affiliation(s)
- J A Prendergast
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Rafaeloff R, Qin XF, Barlow SW, Rosenberg L, Vinik AI. Identification of differentially expressed genes induced in pancreatic islet neogenesis. FEBS Lett 1996; 378:219-23. [PMID: 8557104 DOI: 10.1016/0014-5793(95)01457-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cellophane wrapping of the hamster pancreas induces islet neogenesis. We have used the mRNA differential display technique to select for genes expressed during islet neogenesis but not in control pancreata. Ten candidate clones have been identified. Upon sequencing, 6 clones showed a high degree of homology to known genes, 1 showed some, and 3 showed no homology to genes of known sequence. Thus, mRNA differential display is a useful technique to identify genes induced during islet neogenesis, and in combination with screening hamster pancreatic cDNA libraries for full length clones, will enhance the likelihood of capturing the participants in this process.
Collapse
Affiliation(s)
- R Rafaeloff
- Diabetes Institutes, Eastern Virginia Medical School, Norfolk 23510, USA
| | | | | | | | | |
Collapse
|
16
|
Liu Y, Mathias N, Steussy CN, Goebl MG. Intragenic suppression among CDC34 (UBC3) mutations defines a class of ubiquitin-conjugating catalytic domains. Mol Cell Biol 1995; 15:5635-44. [PMID: 7565715 PMCID: PMC230814 DOI: 10.1128/mcb.15.10.5635] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ubiquitin-conjugating (E2) enzymes contain several regions within their catalytic domains that are highly conserved. However, within some of these conserved regions are several residues that may be used to define different classes of catalytic domains for the E2 enzymes. One class can be defined by the Ubc1 protein, which contains K-65, D-90, and D-120, while the corresponding positions within the Cdc34 (Ubc3) protein, which defines a second class of enzymes, contain S-73, S-97, and S-139, respectively. The presence of these differences within otherwise highly conserved regions of this family suggests that these residues may be critical for the specificity of Cdc34 function or regulation. Therefore, we have constructed a series of cdc34 alleles encoding mutant proteins in which these serine residues have been changed to other amino acid residues, including alanine and aspartic acid. In vivo complementation studies showed that S-97, which lies near the active site C-95, is essential for Cdc34 function. The addition of a second mutation in CDC34, which now encoded both the S97D and S73K changes, restored partial function to the Cdc34 enzyme. Moreover, the deletion of residues 103 to 114 within Cdc34, which are not present in the Ubc1-like E2s, allowed the S73K/S97D mutant to function as efficiently as wild-type Cdc34 protein. Finally, the cloning and sequencing of the temperature-sensitive alleles of CDC34 indicated that A-62 is also unique to the Cdc34 class of E2 enzymes and that mutations at this position can be detrimental to Cdc34 function. Our results suggest that several key residues within conserved regions of the E2 enzyme family genetically interact with each other and define a class of E2 catalytic domains.
Collapse
Affiliation(s)
- Y Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | |
Collapse
|