1
|
Sun R, Zheng R, Zhu W, Zhou X, Liu L, Cao H. Directed Self-Assembly of Heterologously Expressed Hagfish EsTKα and EsTKγ for Functional Hydrogel. Front Bioeng Biotechnol 2022; 10:960586. [PMID: 35935505 PMCID: PMC9354048 DOI: 10.3389/fbioe.2022.960586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hagfish slime proteins have long been considered useful due to their potential applications in novel green, environmental, and functional bionic materials. The two main component proteins in the slime thread of hagfish, (opt)EsTKα and (opt)EsTKγ, were used as raw materials. However, the methods available to assemble these two proteins are time- and labor-intensive. The conditions affecting protein self-assembly, such as the pH of the assembly buffer, protein concentration, and the protein addition ratio, were the subject of the present research. Through a series of tests, the self-assembly results of a variety of assembly conditions were explored. Finally, a simplified protein self-assembly method was identified that allows for simple, direct assembly of the two proteins directly. This method does not require protein purification. Under the optimal assembly conditions obtained by exploration, a new gel material was synthesized from the hagfish protein through self-assembly of the (opt)EsTKα and (opt)EsTKγ. This assembly method has the benefits of being a simple, time-saving, and efficient. The self-assembled protein gel products were verified by SDS polyacrylamide gel electrophoresis (SDS-PAGE) and contained (opt)EsTKα and (opt)EsTKγ proteins. Scanning electron microscopy (SEM) was used to investigate the self-assembled protein gel after freeze-drying, and it was observed that the self-assembled protein formed a dense, three-dimensional porous network structure, meaning that it had good water retention. Evaluation of the gel with atomic force microscopy (AFM) indicated that the surface of the protein fiber skeleton show the network-like structure and relatively smooth. Characterization by circular dichroism (CD) and Fourier transform infrared spectroscopy (FT-IR) demonstrated that the two proteins were successfully assembled, and that the assembled protein had a secondary structure dominated by α-helices. The rheological properties of the self-assembled products were tested to confirm that they were indeed hydrogel property.
Collapse
|
2
|
Elton TS, Hernandez VA, Carvajal-Moreno J, Wang X, Ipinmoroti D, Yalowich JC. Intronic Polyadenylation in Acquired Cancer Drug Resistance Circumvented by Utilizing CRISPR/Cas9 with Homology-Directed Repair: The Tale of Human DNA Topoisomerase IIα. Cancers (Basel) 2022; 14:cancers14133148. [PMID: 35804920 PMCID: PMC9265003 DOI: 10.3390/cancers14133148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary DNA topoisomerase IIα (170 kDa, TOP2α/170) resolves nucleic acid topological entanglements by generating transient double-strand DNA breaks. TOP2α inhibitors/poisons stabilize TOP2α-DNA covalent complexes resulting in persistent DNA damage and are frequently utilized to treat a variety of cancers. Acquired resistance to these chemotherapeutic agents is often associated with decreased TOP2α/170 expression levels. Studies have demonstrated that a reduction in TOP2α/170 results from a type of alternative polyadenylation designated intronic polyadenylation (IPA). As a consequence of IPA, variant TOP2α mRNA transcripts have been characterized that have resulted in the translation of C-terminal truncated TOP2α isoforms with altered biological activities. In this paper, an example is discussed where circumvention of acquired TOP2α-mediated drug resistance was achieved by utilizing CRISPR/Cas9 specific gene editing of an exon/intron boundary through homology directed repair (HDR) to reduce TOP2α IPA. These results illustrate the therapeutic potential of CRISPR/Cas9/HDR to impact drug resistance associated with aberrant IPA. Abstract Intronic polyadenylation (IPA) plays a critical role in malignant transformation, development, progression, and cancer chemoresistance by contributing to transcriptome/proteome alterations. DNA topoisomerase IIα (170 kDa, TOP2α/170) is an established clinical target for anticancer agents whose efficacy is compromised by drug resistance often associated with a reduction of nuclear TOP2α/170 levels. In leukemia cell lines with acquired resistance to TOP2α-targeted drugs and reduced TOP2α/170 expression, variant TOP2α mRNA transcripts have been reported due to IPA that resulted in the translation of C-terminal truncated isoforms with altered nuclear-cytoplasmic distribution or heterodimerization with wild-type TOP2α/170. This review provides an overview of the various mechanisms regulating pre-mRNA processing and alternative polyadenylation, as well as the utilization of CRISPR/Cas9 specific gene editing through homology directed repair (HDR) to decrease IPA when splice sites are intrinsically weak or potentially mutated. The specific case of TOP2α exon 19/intron 19 splice site editing is discussed in etoposide-resistant human leukemia K562 cells as a tractable strategy to circumvent acquired TOP2α-mediated drug resistance. This example supports the importance of aberrant IPA in acquired drug resistance to TOP2α-targeted drugs. In addition, these results demonstrate the therapeutic potential of CRISPR/Cas9/HDR to impact drug resistance associated with aberrant splicing/polyadenylation.
Collapse
|
3
|
How stable are the collagen and ferritin proteins for application in bioelectronics? PLoS One 2021; 16:e0246180. [PMID: 33513177 PMCID: PMC7845979 DOI: 10.1371/journal.pone.0246180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
One major obstacle in development of biomolecular electronics is the loss of function of biomolecules upon their surface-integration and storage. Although a number of reports on solid-state electron transport capacity of proteins have been made, no study on whether their functional integrity is preserved upon surface-confinement and storage over a long period of time (few months) has been reported. We have investigated two specific cases—collagen and ferritin proteins, since these proteins exhibit considerable potential as bioelectronic materials as we reported earlier. Since one of the major factors for protein degradation is the proteolytic action of protease, such studies were made under the action of protease, which was either added deliberately or perceived to have entered in the reaction vial from ambient environment. Since no significant change in the structural characteristics of these proteins took place, as observed in the circular dichroism and UV-visible spectrophotometry experiments, and the electron transport capacity was largely retained even upon direct protease exposure as revealed from the current sensing atomic force spectroscopy experiments, we propose that stable films can be formed using the collagen and ferritin proteins. The observed protease-resistance and robust nature of these two proteins support their potential application in bioelectronics.
Collapse
|
4
|
Elton TS, Ozer HG, Yalowich JC. Effects of DNA topoisomerase IIα splice variants on acquired drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:161-170. [PMID: 32566920 PMCID: PMC7304410 DOI: 10.20517/cdr.2019.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA topoisomerase IIα (170 kDa, TOP2α/170) induces transient DNA double-strand breaks in proliferating cells to resolve DNA topological entanglements during chromosome condensation, replication, and segregation. Therefore, TOP2α/170 is a prominent target for anticancer drugs whose clinical efficacy is often compromised due to chemoresistance. Although many resistance mechanisms have been defined, acquired resistance of human cancer cell lines to TOP2α interfacial inhibitors/poisons is frequently associated with a reduction of Top2α/170 expression levels. Recent studies by our laboratory, in conjunction with earlier findings by other investigators, support the hypothesis that a major mechanism of acquired resistance to TOP2α-targeted drugs is due to alternative RNA processing/splicing. Specifically, several TOP2α mRNA splice variants have been reported which retain introns and are translated into truncated TOP2α isoforms lacking nuclear localization sequences and subsequent dysregulated nuclear-cytoplasmic disposition. In addition, intron retention can lead to truncated isoforms that lack both nuclear localization sequences and the active site tyrosine (Tyr805) necessary for forming enzyme-DNA covalent complexes and inducing DNA damage in the presence of TOP2α-targeted drugs. Ultimately, these truncated TOP2α isoforms result in decreased drug activity against TOP2α in the nucleus and manifest drug resistance. Therefore, the complete characterization of the mechanism(s) regulating the alternative RNA processing of TOP2α pre-mRNA may result in new strategies to circumvent acquired drug resistance. Additionally, novel TOP2α splice variants and truncated TOP2α isoforms may be useful as biomarkers for drug resistance, prognosis, and/or direct future TOP2α-targeted therapies.
Collapse
Affiliation(s)
- Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Zhang M, Liang C, Chen Q, Yan H, Xu J, Zhao H, Yuan X, Liu J, Lin S, Lu W, Wang F. Histone H2A phosphorylation recruits topoisomerase IIα to centromeres to safeguard genomic stability. EMBO J 2020; 39:e101863. [PMID: 31769059 PMCID: PMC6996575 DOI: 10.15252/embj.2019101863] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023] Open
Abstract
Chromosome segregation in mitosis requires the removal of catenation between sister chromatids. Timely decatenation of sister DNAs at mitotic centromeres by topoisomerase IIα (TOP2A) is crucial to maintain genomic stability. The chromatin factors that recruit TOP2A to centromeres during mitosis remain unknown. Here, we show that histone H2A Thr-120 phosphorylation (H2ApT120), a modification generated by the mitotic kinase Bub1, is necessary and sufficient for the centromeric localization of TOP2A. Phosphorylation at residue-120 enhances histone H2A binding to TOP2A in vitro. The C-gate and the extreme C-terminal region are important for H2ApT120-dependent localization of TOP2A at centromeres. Preventing H2ApT120-mediated accumulation of TOP2A at mitotic centromeres interferes with sister chromatid disjunction, as evidenced by increased frequency of anaphase ultra-fine bridges (UFBs) that contain catenated DNA. Tethering TOP2A to centromeres bypasses the requirement for H2ApT120 in suppressing anaphase UFBs. These results demonstrate that H2ApT120 acts as a landmark that recruits TOP2A to mitotic centromeres to decatenate sister DNAs. Our study reveals a fundamental role for histone phosphorylation in resolving centromere DNA entanglements and safeguarding genomic stability during mitosis.
Collapse
Affiliation(s)
- Miao Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Cai Liang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Qinfu Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Haiyan Yan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Junfen Xu
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Hongxia Zhao
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xueying Yuan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jingbo Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Shixian Lin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Weiguo Lu
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Women's Reproductive Health Key Research Laboratory of Zhejiang ProvinceWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
6
|
Kanagasabai R, Karmahapatra S, Kientz CA, Yu Y, Hernandez VA, Kania EE, Yalowich JC, Elton TS. The Novel C-terminal Truncated 90-kDa Isoform of Topoisomerase II α (TOP2 α/90) Is a Determinant of Etoposide Resistance in K562 Leukemia Cells via Heterodimerization with the TOP2 α/170 Isoform. Mol Pharmacol 2018; 93:515-525. [PMID: 29514855 PMCID: PMC11033944 DOI: 10.1124/mol.117.111567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
DNA topoisomerase IIα (170 kDa, TOP2α/170) is essential in proliferating cells by resolving DNA topological entanglements during chromosome condensation, replication, and segregation. We previously characterized a C-terminally truncated isoform (TOP2α/90), detectable in human leukemia K562 cells but more abundantly expressed in a clonal subline, K/VP.5, with acquired resistance to the anticancer agent etoposide. TOP2α/90 (786 aa) is the translation product of a TOP2α mRNA that retains a processed intron 19. TOP2α/90 lacks the active-site tyrosine-805 required to generate double-strand DNA breaks as well as nuclear localization signals present in the TOP2α/170 isoform (1531 aa). Here, we found that TOP2α/90, like TOP2α/170, was detectable in the nucleus and cytoplasm of K562 and K/VP.5 cells. Coimmunoprecipitation of endogenous TOP2α/90 and TOP2α/170 demonstrated heterodimerization of these isoforms. Forced expression of TOP2α/90 in K562 cells suppressed, whereas siRNA-mediated knockdown of TOP2α/90 in K/VP.5 cells enhanced, etoposide-mediated DNA strand breaks compared with similarly treated cells transfected with empty vector or control siRNAs, respectively. In addition, forced expression of TOP2α/90 in K562 cells inhibited etoposide cytotoxicity assessed by clonogenic assays. qPCR and immunoassays demonstrated TOP2α/90 mRNA and protein expression in normal human tissues/cells and in leukemia cells from patients. Together, results strongly suggest that TOP2α/90 expression decreases drug-induced TOP2α-DNA covalent complexes and is a determinant of chemoresistance through a dominant-negative effect related to heterodimerization with TOP2α/170. Alternative processing of TOP2α pre-mRNA, and subsequent synthesis of TOP2α/90, may be an important mechanism regulating the formation and/or stability of cytotoxic TOP2α/170-DNA covalent complexes in response to TOP2α-targeting agents.
Collapse
MESH Headings
- Antineoplastic Agents, Alkylating/pharmacology
- Antineoplastic Agents, Alkylating/therapeutic use
- Cell Line
- Cell Nucleus/enzymology
- DNA Breaks, Double-Stranded/drug effects
- DNA Topoisomerases, Type II/chemistry
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- Dimerization
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Etoposide/therapeutic use
- Humans
- Isoenzymes/chemistry
- Isoenzymes/genetics
- Isoenzymes/metabolism
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- RNA Processing, Post-Transcriptional
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | | | - Corey A Kientz
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yang Yu
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Evan E Kania
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Kanagasabai R, Serdar L, Karmahapatra S, Kientz CA, Ellis J, Ritke MK, Elton TS, Yalowich JC. Alternative RNA Processing of Topoisomerase IIα in Etoposide-Resistant Human Leukemia K562 Cells: Intron Retention Results in a Novel C-Terminal Truncated 90-kDa Isoform. J Pharmacol Exp Ther 2017; 360:152-163. [PMID: 27974648 DOI: 10.1124/jpet.116.237107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/04/2016] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerase IIα (TOP2α) is a prominent target for anticancer drugs whose clinical efficacy is often limited by chemoresistance. Using antibody specific for the N-terminal of TOP2α, immunoassays indicated the existence of two TOP2α isoforms, 170 and 90 kDa, present in K562 leukemia cells and in an acquired etoposide (VP-16)-resistant clone (K/VP.5). TOP2α/90 expression was dramatically increased in etoposide-resistant K/VP.5 compared with parental K562 cells. We hypothesized that TOP2α/90 was the translation product of novel alternatively processed pre-mRNA, confirmed by 3'-rapid amplification of cDNA ends, polymerase chain reaction, and sequencing. TOP2α/90 mRNA includes retained intron 19, which harbors an in-frame stop codon, and two consensus poly(A) sites. The processed transcript is polyadenylated. TOP2α/90 mRNA encodes a 90,076-Da translation product missing the C-terminal 770 amino acids of TOP2α/170, replaced by 25 unique amino acids through translation of the exon 19/intron 19 read-through. Immunoassays, utilizing antisera raised against these unique amino acids, confirmed that TOP2α/90 is expressed in both cell types, with overexpression in K/VP.5 cells. Immunodetection of complex of enzyme-to-DNA and single-cell gel electrophoresis (Comet) assays demonstrated that K562 cells transfected with a TOP2α/90 expression plasmid exhibited reduced etoposide-mediated TOP2α-DNA covalent complexes and decreased etoposide-induced DNA damage, respectively, compared with similarly treated K562 cells transfected with empty vector. Because TOP2α/90 lacks the active site tyrosine (Tyr805) of full-length TOP2α, these results strongly suggest that TOP2α/90 exhibits dominant-negative properties. Further studies are underway to characterize the mechanism(s) by which TOP2α/90 plays a role in acquired resistance to etoposide and other TOP2α targeting agents.
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Lucas Serdar
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Soumendrakrishna Karmahapatra
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Corey A Kientz
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Justin Ellis
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Mary K Ritke
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Terry S Elton
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| |
Collapse
|
8
|
Bagheri M, Arasteh S, Haney EF, Hancock REW. Tryptic Stability of Synthetic Bactenecin Derivatives Is Determined by the Side Chain Length of Cationic Residues and the Peptide Conformation. J Med Chem 2016; 59:3079-86. [PMID: 26958984 DOI: 10.1021/acs.jmedchem.5b01740] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthetic bactenecins 1 (HHC-10) and 10 (HHC-36), with excellent activities against bacterial superbugs, display low tryptic stability. To investigate factors influencing this stability, a series of 1/10 derived peptides bearing arginine and lysine analogues with varied methylene chains as well as all-d-isomers were synthesized. Whereas incorporation of d-/l-nonproteinogenic amino acids into the turn-forming peptides did not dramatically affect the antimicrobial activities, the degree of peptide cleavage decreased significantly in peptides with the shortest length of cationic side chain and was influenced by the relative conformational stabilities of the turn structure and the stereoselectivity of tryptic digestion. The site of enzymatic cleavage was located at the less conformationally hindered position distant from the turn motif. Isothermal titration calorimetry showed strong and weak constant increments in the generated heat of enzymatic reaction of unstable and slowly degradable peptides with trypsin, respectively, and suggested a one-site binding model for the enthalpy-driven all-d-peptide-trypsin interactions.
Collapse
Affiliation(s)
- Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran , 16 Azar Street, 14176-14335 Tehran, Iran
| | - Shima Arasteh
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran , 16 Azar Street, 14176-14335 Tehran, Iran
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia , 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia , 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Fu J, Guerette PA, Miserez A. Self-Assembly of Recombinant Hagfish Thread Keratins Amenable to a Strain-Induced α-Helix to β-Sheet Transition. Biomacromolecules 2015; 16:2327-39. [PMID: 26102237 DOI: 10.1021/acs.biomac.5b00552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hagfish slime threads are assembled from protein-based bundles of intermediate filaments (IFs) that undergo a strain-induced α-helical coiled-coil to β-sheet transition. Draw processing of native fibers enables the creation of mechanically tuned materials, and under optimized conditions this process results in mechanical properties similar to spider dragline silk. In this study, we develop the foundation for the engineering of biomimetic recombinant hagfish thread keratin (TK)-based materials. The two protein constituents from the hagfish Eptatretus stoutii thread, named EsTKα and EsTKγ, were expressed in Escherichia coli and purified. Individual (rec)EsTKs and mixtures thereof were subjected to stepwise dialysis to evaluate their protein solubility, folding, and self-assembly propensities. Conditions were identified that resulted in the self-assembly of coiled-coil rich IF-like filaments, as determined by circular dichroism (CD) and transmission electron microscopy (TEM). Rheology experiments indicated that the concentrated filaments assembled into gel-like networks exhibiting a rheological response reminiscent to that of IFs. Notably, the self-assembled filaments underwent an α-helical coiled-coil to β-sheet transition when subjected to oscillatory shear, thus mimicking the critical characteristic responsible for mechanical strengthening of native hagfish threads. We propose that our data establish the foundation to create robust and tunable recombinant TK-based materials whose mechanical properties are controlled by a strain-induced α-helical coiled-coil to β-sheet transition.
Collapse
Affiliation(s)
- Jing Fu
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Paul A Guerette
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,‡Energy Research Institute at Nanyang Technological University (ERI@N), 50 Nanyang Drive, Singapore, 637553
| | - Ali Miserez
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,§School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive Singapore 637551
| |
Collapse
|
10
|
Fu T, Guerette PA, Tan RYT, Zhao H, Schefer L, Mezzenga R, Miserez A. Biomimetic self-assembly of recombinant marine snail egg capsule proteins into structural coiled-coil units. J Mater Chem B 2015; 3:2671-2684. [DOI: 10.1039/c4tb01434k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report on the biomimetic production of shock-absorbing proteins from marine snail egg capsules and their self-assembly into coiled-coil filaments.
Collapse
Affiliation(s)
- Tianpei Fu
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
- Center for Biomimetic Sensor Science
- NTU
| | - Paul A. Guerette
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
- Center for Biomimetic Sensor Science
- NTU
| | - Raymond Y. T. Tan
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
| | - Hua Zhao
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology, and Research (A*Star)
- Singapore
| | - Larissa Schefer
- Department of Health Sciences and Technology
- Swiss Federal Institute of Technology in Zurich (ETHZ)
- 8092 Zürich
- Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology
- Swiss Federal Institute of Technology in Zurich (ETHZ)
- 8092 Zürich
- Switzerland
| | - Ali Miserez
- School of Material Science and Engineering
- Nanyang Technological University (NTU)
- Singapore
- Center for Biomimetic Sensor Science
- NTU
| |
Collapse
|
11
|
Walton TA, Rees DC. Structure and stability of the C-terminal helical bundle of the E. coli mechanosensitive channel of large conductance. Protein Sci 2013; 22:1592-601. [PMID: 24038743 DOI: 10.1002/pro.2360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/19/2022]
Abstract
The crystal structure of the cytoplasmic domain (CTD) from the mechanosensitive channel of large conductance (MscL) in E. coli has been determined at 1.45 Å resolution. This domain forms a pentameric coiled coil similar to that observed in the structure of MscL from M. tuberculosis and also found in the cartilage oligomeric matrix protein (COMPcc). It contains canonical hydrophobic and atypical ionic interactions compared to previously characterized coiled coil structures. Thermodynamic analysis indicates that while the free EcMscL-CTD is less stable than other coiled coils, it is likely to remain folded in context of the full-length channel.
Collapse
Affiliation(s)
- Troy A Walton
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, 91125
| | | |
Collapse
|
12
|
Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL. Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes. J Biol Chem 2010; 285:28353-62. [PMID: 20601428 DOI: 10.1074/jbc.m110.148262] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans the mitochondrial inner membrane protein Oxa1L is involved in the biogenesis of membrane proteins and facilitates the insertion of both mitochondrial- and nuclear-encoded proteins from the mitochondrial matrix into the inner membrane. The C-terminal approximately 100-amino acid tail of Oxa1L (Oxa1L-CTT) binds to mitochondrial ribosomes and plays a role in the co-translational insertion of mitochondria-synthesized proteins into the inner membrane. Contrary to suggestions made for yeast Oxa1p, our results indicate that the C-terminal tail of human Oxa1L does not form a coiled-coil helical structure in solution. The Oxa1L-CTT exists primarily as a monomer in solution but forms dimers and tetramers at high salt concentrations. The binding of Oxa1L-CTT to mitochondrial ribosomes is an enthalpy-driven process with a K(d) of 0.3-0.8 microM and a stoichiometry of 2. Oxa1L-CTT cross-links to mammalian mitochondrial homologs of the bacterial ribosomal proteins L13, L20, and L28 and to mammalian mitochondrial specific ribosomal proteins MRPL48, MRPL49, and MRPL51. Oxa1L-CTT does not cross-link to proteins decorating the conventional exit tunnel of the bacterial large ribosomal subunit (L22, L23, L24, and L29).
Collapse
Affiliation(s)
- Md Emdadul Haque
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | | | |
Collapse
|
13
|
Patel AB, Khumsupan P, Narayanaswami V. Pyrene fluorescence analysis offers new insights into the conformation of the lipoprotein-binding domain of human apolipoprotein E. Biochemistry 2010; 49:1766-75. [PMID: 20073510 DOI: 10.1021/bi901902e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C-terminal domain (CT) of apolipoprotein E (apoE), a critical protein involved in cholesterol transport in the plasma and brain, plays an important role in high-affinity lipoprotein binding. Although high-resolution structural information is available for the N-terminal domain of apoE, the structural organization of the CT (residues 201-299) is largely unknown. In this study, we employ site-specific fluorescence labeling with pyrene maleimide to gain insight into the structure and conformation of apoE CT in its naturally self-associated state in buffer at physiologically relevant concentrations (5-50 microg/mL). Pyrene is a highly sensitive fluorophore that reports on spatial proximity between desired sites by displaying unique spectral features. Pyrene was covalently attached to single cysteine-containing recombinant human apoE CT at position 223 or 255 to probe the first predicted helical segment and at position 277 to monitor the terminal predicted helical segment. Regardless of the location of the probe, all three pyrene-labeled apoE CT variants display an intense and dramatic fluorescence excimer band at 460 nm, a signature feature of pyrene, which indicates that two pyrene moieties are within 10 A of each other. In addition, an intense peak at 387 nm (indicative of a highly hydrophobic environment) was noted in all cases. Fluorescence emission quenching by potassium iodide indicates that the accessibility to the probes was restricted at these locations. The possibility that the hydrophobicity of the pyrene moiety was the driving force for helix-helix interaction was excluded because pyrene located at position 209, which is predicted to be located in a nonhelical segment, did not display the above intense unique features. Lastly, denaturation studies suggest that the terminal helix unfolds prior to the first predicted helix in apoE CT. Our studies indicate that there are extensive intermolecular helix-helix contacts throughout the entire CT in the lipid-free state with two apoE CT molecules oriented parallel to each other to form a dimer, which dimerizes further to yield a tetramer. Such an organization allows helix-helix interactions to be replaced by helix-lipid interactions upon encountering a lipoprotein surface, with the terminal helix likely initiating the binding interaction. This study presents the possibility of employing pyrene fluorophores as powerful new alternatives to obtain conformational information of proteins at physiologically relevant concentrations.
Collapse
Affiliation(s)
- Arti B Patel
- Department of Chemistry and Biochemistry, 1250 Bellflower Boulevard, California State University Long Beach, Long Beach, California 90840, USA
| | | | | |
Collapse
|
14
|
Turner JG, Engel R, Derderian JA, Jove R, Sullivan DM. Human topoisomerase IIalpha nuclear export is mediated by two CRM-1-dependent nuclear export signals. J Cell Sci 2004; 117:3061-71. [PMID: 15173319 DOI: 10.1242/jcs.01147] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Resistance to chemotherapeutic drugs is a major obstacle in the treatment of leukemia and multiple myeloma. We have previously found that myeloma and leukemic cells in transition from low-density log phase conditions to high-density plateau phase conditions export substantial amounts of endogenous topoisomerase II alpha from the nucleus to the cytoplasm. In order for topoisomerase-targeted chemotherapy to function, the topoisomerase target must have access to the nuclear DNA. Therefore, the nuclear export of topoisomerase II alpha may contribute to drug resistance, and defining this mechanism may lead to methods to preclude this avenue of resistance. We have identified nuclear export signals for topoisomerase II alpha at amino acids 1017-1028 and 1054-1066, using FITC-labeled BSA-export signal peptide conjugates microinjected into the nuclei of HeLa cells. Functional confirmation of both signals (1017-1028 and 1054-1066) was provided by transfection of human myeloma cells with plasmids containing the gene for a full-length human FLAG-topoisomerase fusion protein, mutated at hydrophobic amino acid residues in the export signals. Of the six putative export signals tested, the two sites above were found to induce export into the cytoplasm. Export by both signals was blocked by treatment of the cells with leptomycin B, indicating that a CRM-1-dependent pathway mediates export. Site-directed mutagenesis of two central hydrophobic residues in either export signal in full-length human topoisomerase blocked export of recombinant FLAG-topoisomerase II alpha, indicating that both signals may be required for export. Interestingly, this pair of nuclear export signals (1017-1028 and 1054-1066) also defines a dimerization domain of the topoisomerase II alpha molecule.
Collapse
Affiliation(s)
- Joel G Turner
- Experimental Therapeutics, Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
15
|
Narayanaswami V, Maiorano JN, Dhanasekaran P, Ryan RO, Phillips MC, Lund-Katz S, Davidson WS. Helix orientation of the functional domains in apolipoprotein e in discoidal high density lipoprotein particles. J Biol Chem 2004; 279:14273-9. [PMID: 14739281 DOI: 10.1074/jbc.m313318200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human apolipoprotein E (apoE) mediates high affinity binding to the low density lipoprotein receptor when present on a lipidated complex. In the absence of lipid, however, apoE does not bind the receptor. Whereas the x-ray structure of lipid-free apoE3 N-terminal (NT) domain is known, the structural organization of its lipid-associated, receptor-active conformation is poorly understood. To study the organization of apoE amphipathic alpha-helices in a lipid-associated state, single tryptophan-containing apoE3 variants were employed in fluorescence quenching studies. The relative positions of the Trp residues with respect to the phospholipid component of apoE/lipid particles were established from the degree of quenching by phospholipids bearing nitroxide groups at various positions along their fatty acyl chains. Four apoE3-NT variants bearing Trp reporter groups at positions 141, 148, 155, or 162 within helix 4 and two apoE3 variants containing single Trp at positions 257 or 264 in the C-terminal (CT) domain, were reconstituted into phospholipid-containing discoidal complexes. Parallax analysis revealed that each engineered Trp residue in helix 4 of apoE3-NT, as well as those in the CT domain of apoE, localized approximately 5 A from the center of the bilayer. Circular dichroism studies revealed that lipid association induces additional helix formation in apoE. Protease protection assays suggest the flexible loop segment between the NT and CT domains may transition from unstructured to helix upon lipid association. Taken together, these data support a model wherein the alpha-helices in the receptor-binding region and the CT domain of apoE align perpendicular to the fatty acyl chains of the phospholipid bilayer. In this alignment, the residues of helix 4 are arrayed in a positively charged, curved helical segment for optimal receptor interaction.
Collapse
Affiliation(s)
- Vasanthy Narayanaswami
- Lipid Biology in Health and Disease Research Group, Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Choy N, Raussens V, Narayanaswami V. Inter-molecular coiled-coil formation in human apolipoprotein E C-terminal domain. J Mol Biol 2003; 334:527-39. [PMID: 14623192 DOI: 10.1016/j.jmb.2003.09.059] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human apolipoprotein E (apoE) is composed of an N-terminal (NT) domain (residues 1-191) that bears low-density lipoprotein receptor-binding sites, and a C-terminal (CT) domain (residues 210-299), which houses lipoprotein binding and apoE self-association sites. The NT domain is comprised of a four-helix bundle, while the structural organization of the CT domain is not known. Secondary structural algorithms predict that the apoE CT domain adopts an amphipathic alpha-helical conformation. On the basis of further sequence predictions, we identified a segment (residues 218-266) in the apoE CT domain that bears a high propensity to form a coiled-coil helix, which coincides with the putative lipoprotein-binding surface. An apoE construct bearing residues 201-299 that encompasses the entire CT domain was designed, expressed in Escherichia coli and purified by affinity chromatography. Circular dichroism (CD) spectroscopy of the apoE CT domain reveals spectra characteristic of coiled-coil helices, with the ratio of molar ellipticities at 222 nm and 208 nm ([theta](222)/[theta](208)) of 1.03. Trifluoroethanol (TFE) stabilized the secondary structure of the apoE CT domain and disrupted coiled-coil helix formation as determined by CD and tryptophan fluorescence analysis. Analytical ultracentrifugation and lysine-specific cross-linking analysis of the apoE CT domain revealed predominant formation of dimeric and tetrameric species in aqueous buffers, and monomeric forms in 50% TFE. Guanidine hydrochloride-induced denaturation studies reveal that, at low concentrations of denaturant, the apoE CT domain maintains the [theta](222)/[theta](208) ratio at approximately 1.0 and elicits an altered tertiary environment with a shift in oligomeric state towards a dimer, indicative of the role of coiled-coil helix formation in inter molecular interactions. Further, coiled-coil formation is disrupted by protonation below pH 6.0, with a corresponding decrease in Trp fluorescence emission intensity, demonstrating that salt-bridge interactions play a critical role in maintaining the structural integrity of the apoE CT domain. The data support the concept that inter molecular coiled-coil helix formation is an essential structural feature of the apoE CT domain, which likely plays a role in clustering heparin-binding sites and/or sequestering the lipid-binding surface in lipid-free states.
Collapse
Affiliation(s)
- Nicole Choy
- Lipid Biology in Health and Disease Research Group, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609-1673, USA
| | | | | |
Collapse
|
17
|
Liu X, Jin W, Theil EC. Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral. Proc Natl Acad Sci U S A 2003; 100:3653-8. [PMID: 12634425 PMCID: PMC152977 DOI: 10.1073/pnas.0636928100] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Indexed: 11/18/2022] Open
Abstract
Iron is concentrated in ferritin, a spherical protein with a capacious cavity for ferric nanominerals of <4,500 Fe atoms. Global ferritin structure is very stable, resisting 6 M urea and heat (85 degrees C) at neutral pH. Eight pores, each formed by six helices from 3 of the 24 polypeptide subunits, restrict mineral access to reductant, protons, or chelators. Protein-directed transport of Fe and aqueous Fe(3+) chemistry (solubility approximately 10(-18) M) drive mineralization. Ferritin pores are "gated" based on protein crystals and Fe chelation rates of wild-type (WT) and engineered proteins. Pore structure and gate residues, which are highly conserved, thus should be sensitive to environmental changes such as low concentrations of chaotropes. We now demonstrate that urea or guanidine (1-10 mM), far below concentrations for global unfolding, induced multiphasic rate increases in Fe(2+)-bipyridyl formation similar to conservative substitutions of pore residues. Urea (1 M) or the nonconservative LeuPro substitution that fully unfolded pores without urea both induced monophasic rate increases in Fe(2+) chelation rates, indicating unrestricted access between mineral and reductantchelator. The observation of low-melting ferritin subdomains by CD spectroscopy (melting midpoint 53 degrees C), accounting for 10% of ferritin alpha-helices, is unprecedented. The low-melting ferritin subdomains are pores, based on percentage helix and destabilization by either very dilute urea solutions (1 mM) or LeuPro substitution, which both increased Fe(2+) chelation. Biological molecules may have evolved to control gating of ferritin pores in response to cell iron need and, if mimicked by designer drugs, could impact chelation therapies in iron-overload diseases.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Children's Hospital of Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609, USA
| | | | | |
Collapse
|
18
|
Maroun RG, Krebs D, El Antri S, Deroussent A, Lescot E, Troalen F, Porumb H, Goldberg ME, Fermandjian S. Self-association and domains of interactions of an amphipathic helix peptide inhibitor of HIV-1 integrase assessed by analytical ultracentrifugation and NMR experiments in trifluoroethanol/H(2)O mixtures. J Biol Chem 1999; 274:34174-85. [PMID: 10567389 DOI: 10.1074/jbc.274.48.34174] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EAA26 (VESMNEELKKIIAQVRAQAEHLKTAY) is a better inhibitor of human immunodeficiency virus, type 1, integrase than its parent Lys-159, reproducing the enzyme segment 147-175 with a nonpolar-polar/charged residue periodicity defined by four helical heptads (abcdefg) prone to collapse into a coiled-coil. Circular dichroism, nuclear magnetic resonance, sedimentation equilibrium, and chemical cross-linking were used to analyze EAA26 in various trifluoroethanol/H(2)O mixtures. In pure water the helix content is weak but increases regularly up to 50-60% trifluoroethanol. In contrast the multimerization follows a bell-shaped curve with monomers in pure water, tetramers at 10% trifluoroethanol, and dimers at 40% trifluoroethanol. All suggest that interhelical interactions between apolar side chains are required for the coiled-coil formation of EAA26 and subsist at medium trifluoroethanol concentration. The N(H) temperature coefficients measured by nuclear magnetic resonance show that at low trifluoroethanol concentration the amide groups buried in the hydrophobic interior of four alpha-helix bundles are weakly accessible to trifluoroethanol and are only weakly subject to its hydrogen bond strengthening effect. The increased accessibility of trifluoroethanol to buried amide groups at higher trifluoroethanol concentration entails the reduction of the hydrophobic interactions and the conversion of helix tetramers into helix dimers, the latter displaying a smaller hydrophobic interface. The better inhibitory activity of EAA26 compared with Lys-159 could arise from its better propensity to form a helix bundle structure with the biologically important helical part of the 147-175 segment in integrase.
Collapse
Affiliation(s)
- R G Maroun
- Département de Biologie et Pharmacologie Structurales, UMR 8532 CNRS, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bjergbaek L, Jensen S, Westergaard O, Andersen AH. Using a biochemical approach to identify the primary dimerization regions in human DNA topoisomerase IIalpha. J Biol Chem 1999; 274:26529-36. [PMID: 10473615 DOI: 10.1074/jbc.274.37.26529] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic topoisomerase II is a nuclear enzyme essential for DNA metabolism and chromosome dynamics. The enzyme has a dimeric structure, and subunit dimerization is vital to the cellular functions and activities of the enzyme. Two biochemical approaches based on metal ion affinity chromatography and immunoprecipitation have been carried out to map the dimerization region(s) in human topoisomerase IIalpha. The results demonstrate that two regions spanning amino acids 1053-1069 and 1124-1143 are both essential for dimerization. The regions correspond to the interaction domains revealed in yeast topoisomerase II after crystallization of a central fragment of this enzyme, indicating that the overall C-terminal dimerization structure of eukaryotic topoisomerase II is conserved from yeast to human. Furthermore, linker insertion analysis has demonstrated that the two dimerization regions are located in a highly flexible part of the enzyme. Topoisomerase IIalpha mutant enzymes unable to dimerize via the C-terminal primary dimerization regions due to lack of one of the defined dimerization regions can still be forced to dimerize if DNA and an ATP analog are added to the reaction mixture. The result indicates that secondary interactions occur by ATP analog-mediated clamp closing when the subunits are brought together on DNA.
Collapse
Affiliation(s)
- L Bjergbaek
- Department of Molecular and Structural Biology, University of Aarhus, C. F. Mollers Allé, Building 130, 8000 Arhus C, Denmark
| | | | | | | |
Collapse
|
20
|
Wittmann T, Boleti H, Antony C, Karsenti E, Vernos I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J Cell Biol 1998; 143:673-85. [PMID: 9813089 PMCID: PMC2148133 DOI: 10.1083/jcb.143.3.673] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Revised: 09/09/1998] [Indexed: 11/22/2022] Open
Abstract
Xklp2 is a plus end-directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49-59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein-dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.
Collapse
Affiliation(s)
- T Wittmann
- European Molecular Biology Laboratory, Cell Biology and Cell Biophysics Programs, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
21
|
Johnson MS, Svensson PA, Helou K, Billig H, Levan G, Carlsson LM, Carlsson B. Characterization and chromosomal localization of rat scavenger receptor class B type I, a high density lipoprotein receptor with a putative leucine zipper domain and peroxisomal targeting sequence. Endocrinology 1998; 139:72-80. [PMID: 9421400 DOI: 10.1210/endo.139.1.5666] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High density lipoprotein (HDL) participates in reverse cholesterol transport and in the delivery of cholesterol to steroid-producing tissues. Scavenger receptor class B type I (SR-BI) was recently shown to bind HDL and mediate internalization of its cholesterol content. We have cloned the rat homolog of this receptor, determined its chromosomal location, and examined its expression in rat tissues and in a model of follicular development, ovulation, and luteinization. The predicted protein contained two transmembrane domains, a leucine zipper motif, and a peroxisomal targeting sequence. The rat and human SR-BI genes were mapped to a region previously linked between rat and human chromosomes 12. SR-BI gene expression was detected in several rat tissues, with high levels in ovarian tissue, liver, and adrenal cortex, as determined by ribonuclease protection assay and in situ hybridization. A significant increase in SR-BI gene expression was detected in the late phase of corpus luteum formation, and transcripts were abundant in corpus luteum and in thecal cells at all stages of follicular development. In conclusion, the rat SR-BI complementary DNA predicted a protein with several conserved motifs, including a putative leucine zipper and a peroxisomal targeting sequence. The chromosomal locations of the rat and human SR-BI homologs suggest that this gene is a new member of a previously reported, conserved synteny group. SR-BI gene expression was high in steroid-producing tissues and in the liver, consistent with a role of this receptor in the uptake of HDL cholesterol.
Collapse
Affiliation(s)
- M S Johnson
- Research Center for Endocrinology and Metabolism, Department of Internal Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Frère-Gallois V, Krebs D, Scala D, Troalen F, Fermandjian S. Peptide fragments of DNA topoisomerase II with helix-forming and coiled-coil-forming properties act as inhibitors of the enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:142-8. [PMID: 9363765 DOI: 10.1111/j.1432-1033.1997.t01-1-00142.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously shown that a synthetic peptide (dL) consisting of amino acids 1013-1056 of human alpha topoisomerase II adopted an alpha-helix structure and formed a stable dimer coiled-coil in solution [Frère, V., Sourgen. F., Monnot, M., Troalen, F. & Fermandjian, S. (1995) J. Biol. Chem. 270, 17502-17507]. Here we studied two peptides, dP and dLshort, which are related to dL but which have a double substitution Leu1026-->Pro, Leu1037-->Pro and a deletion of the 15 C-terminal residues, respectively. The peptides were studied for their ability to form alpha-helix structures, coiled coils, and to inhibit topoisomerase II activity. In combining circular dichroism spectra with AGADIR prediction for helix structures, we demonstrated that the dLshort peptide, like its parent dL peptide, adopts an alpha-helix structure and can autoassociate into coiled-coils, while dP is completely devoid of such properties. Remarkably, only the dL and dLshort peptides act as good inhibitors of topoisomerase II in various in vitro assays. However, the dLshort peptide has a stronger helix potential and behaves as a much more potent inhibitor (5 microM versus 200 microM) compared to the dL peptide. All these data strongly suggest that the greater inhibitory effect demonstrated by the dLshort peptide is related to its higher ability to form a stable amphiphilic helix, which in turn better recognizes its homologous helical segment in topoisomerase II. Finally, we propose that the dL and the dLshort peptides could interfere with the enzymatic activity of topoisomersase II in modifying its autoassociation or translocation properties. Such peptides may serve as useful models for developing simpler and more specific inhibitors of topoisomerase II.
Collapse
Affiliation(s)
- V Frère-Gallois
- Département de Biologie et Pharmacologie Structurales, URA 147 CNRS, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | |
Collapse
|
23
|
Kroll DJ. Homologous and heterologous protein-protein interactions of human DNA topoisomerase IIalpha. Arch Biochem Biophys 1997; 345:175-84. [PMID: 9308887 DOI: 10.1006/abbi.1997.0267] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA topoisomerase II (topo II; EC 5.99.1.3) is a nuclear enzyme whose DNA decatenating activity on newly replicated DNA is essential to successful cell division. Topo II catalytic activity proceeds by a concerted DNA breakage-reunion reaction coordinated between two interacting, homologous subunits. Human and yeast topo II have recently been shown to enter into heterologous protein-protein interactions and some of these interactions appear necessary for successful chromosomal segregation. In the present study, the sequences mediating homologous and heterologous protein-protein interactions have been investigated biochemically using various truncated peptides from the major alpha form of human topo II. From nonreducing gel electrophoresis and solid-phase protein-protein binding (Far Western) assays, topo II homodimerization appeared to be minimally governed by the region between amino acids 951 and 1042. However, maximal homodimerization and multimerization required sequences C-terminal to position 1042. Topo II peptides were also able to interact with 10-12 nuclear proteins from HeLa cells, termed topo II-interactive proteins or TIPs. Interestingly, small topo II peptides between residues 808 and 951 that did not homodimerize with topo II (857-1447) were nonetheless capable of binding to HeLa TIPs. These interactions were confirmed by use of topo II affinity chromatography for isolation of specific TIPs from HeLa nuclear extracts. Taken together, these data confirm that human topo II is also capable of heterologous interactions with nuclear proteins and that the region governing these interactions is distinct from, but has some overlap with, sequences directing topo II homodimerization.
Collapse
Affiliation(s)
- D J Kroll
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center and University of Colorado Cancer Center, Denver 80262, USA.
| |
Collapse
|
24
|
Abstract
The past several years have seen significant advances in our ability to recognize coiled coils from protein sequences and model their structures. New methods include a detection program based on pairwise residue correlations, a program that distinguishes two-stranded from three-stranded coiled coils and a routine for modelling the coordinates of the core residues in coiled coils. Several widely noted predictions, among them those for heterotrimeric G proteins and for cartilage oligomeric matrix protein, have been confirmed by crystal structures, and several new predictions have been made, including a model for the still hypothetical right-handed coiled coil.
Collapse
Affiliation(s)
- A Lupas
- Max-Planck-Institut für Biochemie, Martinsried, Germany.
| |
Collapse
|
25
|
Sourgen F, Maroun RG, Frère V, Bouziane M, Auclair C, Troalen F, Fermandjian S. A synthetic peptide from the human immunodeficiency virus type-1 integrase exhibits coiled-coil properties and interferes with the in vitro integration activity of the enzyme. Correlated biochemical and spectroscopic results. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:765-73. [PMID: 8856082 DOI: 10.1111/j.1432-1033.1996.0765h.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Integration of the human immunodeficiency virus (HIV-1) DNA into the host genome is catalysed by a virus-encoded protein integrase. Here, we report some of the structural and functional properties of two synthetic peptides: integrase-(147-175)-peptide reproducing the residues 147-175 (SQGVVESMNKELK159KIIGQVRDQAEHLKTAY) of the HIV-1 integrase, and [Pro159] integrase-(147-175)-peptide where the lysine 159 is substituted for a proline. Circular dichroism revealed that both peptides are mostly under unordered conformation in aqueous solution, contrasting with the alpha-helix exhibited by residues 147-175 in the protein crystal structure. In a weak alpha-helix-promoting environment, integrase-(147-175)-peptide self-associated into stable coiled-coil oligomers, while [Pro159] integrase-(147-175)-peptide did not. This property was further confirmed by cross-linking experiments. In our in vitro experiments, only integrase-(147-175)-peptide was able to reduce the integration activity of the enzyme. We propose that the inhibitory activity shown by integrase-(147-175)-peptide is dependent on its ability to bind to its counterpart in integrase through a peptide-protein coiled-coil structure disturbing the catalytic properties of the enzyme.
Collapse
Affiliation(s)
- F Sourgen
- Département de Biologie et Pharmacologie Structurales, CNRS URA 147, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Kimura K, Saijo M, Tanaka M, Enomoto T. Phosphorylation-independent stimulation of DNA topoisomerase II alpha activity. J Biol Chem 1996; 271:10990-5. [PMID: 8631919 DOI: 10.1074/jbc.271.18.10990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It has been suggested that casein kinase II phosphorylates DNA topoisomerase II alpha (topo II alpha) in mouse FM3A cells, by comparison of phosphopeptide maps of topo II alpha labeled in intact cells and of topo II alpha phosphorylated by various kinases in vitro. The phosphorylation of purified topo II alpha by casein kinase II, which attached a maximum of two phosphate groups per topo II alpha molecule, had no effect on the activity of topo II alpha. Dephosphorylation of purified topo II alpha by potato acid phosphatase, which almost completely dephosphorylated the topo II alpha, did not reduce the activity of topo II alpha. The incubation itself, regardless of phosphorylation or dephosphorylation status, stimulated the enzyme activity in both reactions. Topo II alpha activity was stimulated by incubation in a medium containing low concentrations of glycerol but not in that containing high concentrations of glycerol, such as the 50% in which purified topo II alpha is stored. The stimulation of topo II alpha activity by incubation was dependent on the concentration of topo II alpha, requiring a relatively high concentration of topo II alpha.
Collapse
Affiliation(s)
- K Kimura
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
Type II DNA topoisomerases are enzymes that are capable of transporting one duplex DNA through another. Recent experimental results, including the structure of a fragment of yeast topoisomerase II, have provided new insights into the mechanism of the strand passage reaction. Other results have begun to define the role of ATP in the catalytic cycle and illuminate how DNA breaks mediated by topoisomerase II can occur.
Collapse
Affiliation(s)
- J M Berger
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|