1
|
Weber IT, Wang YF, Harrison RW. HIV Protease: Historical Perspective and Current Research. Viruses 2021; 13:v13050839. [PMID: 34066370 PMCID: PMC8148205 DOI: 10.3390/v13050839] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
The retroviral protease of human immunodeficiency virus (HIV) is an excellent target for antiviral inhibitors for treating HIV/AIDS. Despite the efficacy of therapy, current efforts to control the disease are undermined by the growing threat posed by drug resistance. This review covers the historical background of studies on the structure and function of HIV protease, the subsequent development of antiviral inhibitors, and recent studies on drug-resistant protease variants. We highlight the important contributions of Dr. Stephen Oroszlan to fundamental knowledge about the function of the HIV protease and other retroviral proteases. These studies, along with those of his colleagues, laid the foundations for the design of clinical inhibitors of HIV protease. The drug-resistant protease variants also provide an excellent model for investigating the molecular mechanisms and evolution of resistance.
Collapse
Affiliation(s)
- Irene T. Weber
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA;
- Correspondence:
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA;
| | - Robert W. Harrison
- Department of Computer Science, Georgia State University, Atlanta, GA 30302, USA;
| |
Collapse
|
2
|
Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants. Sci Rep 2015; 5:10323. [PMID: 25988960 PMCID: PMC4437315 DOI: 10.1038/srep10323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/08/2015] [Indexed: 11/24/2022] Open
Abstract
Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates for the enzymatic reaction. In this study, susceptibility of HIV mutations to drugs was evaluated by selective formation of three FL products after the enzymatic HIV-PR reaction. This proof-of-concept study indicates that the present HPLC-FL method could be an alternative to current phenotypic assays for the evaluation of HIV drug resistance.
Collapse
|
3
|
Menéndez-Arias L. Evidence and controversies on the role of XMRV in prostate cancer and chronic fatigue syndrome. Rev Med Virol 2010; 21:3-17. [PMID: 21294212 DOI: 10.1002/rmv.673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 12/11/2022]
Abstract
The recent discovery of xenotropic murine leukaemia virus-related virus (XMRV) in prostate cancer tissues and in the blood of individuals suffering from chronic fatigue syndrome has attracted considerable interest. However, the relevance and significance of XMRV to human disease remain unclear, since the association has not been confirmed in other studies. XMRV is the first gammaretrovirus to be found in humans. XMRV and murine leukaemia viruses share similar structures and genomic organisation. Human restriction factors such as APOBEC3 or tetherin inhibit XMRV replication. Although XMRV induces low rates of transformation in cell culture, it might be able to induce cancer by low-frequency insertional activation of oncogenes or through the generation of highly active transforming viruses. A preference for regulatory regions of transcriptional active genes has been observed after a genomic-wide analysis of XMRV integration sites. Genes related to carcinogenesis and androgen signalling have been identified in the vicinity of integration sites. The XMRV genome contains a glucocorticoid responsive element, and androgens could modulate viral replication in the prostate. Evidence supporting the involvement of XMRV in chronic fatigue syndrome is still very weak, and needs further confirmation and validation. Currently approved anti-retroviral drugs such as zidovudine, tenofovir and raltegravir are efficient inhibitors of XMRV replication in vitro. These drugs might be useful to treat XMRV infection in humans. The identification of XMRV has potentially serious health implications for the implementation of novel techniques including gene therapy or xenotransplantation, while raising concerns on the need for screening donated blood to prevent transmission through transfusion.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Vu HN, Ramsey JD, Pack DW. Engineering of a Stable Retroviral Gene Delivery Vector by Directed Evolution. Mol Ther 2008; 16:308-14. [DOI: 10.1038/sj.mt.6300350] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
5
|
Kumar P, Nachagari D, Fields C, Franks J, Albritton LM. Host cell cathepsins potentiate Moloney murine leukemia virus infection. J Virol 2007; 81:10506-14. [PMID: 17634228 PMCID: PMC2045468 DOI: 10.1128/jvi.02853-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of cellular proteases in Moloney murine leukemia virus (MLV) infection were investigated using MLV particles pseudotyped with vesicular stomatitis virus (VSV) G glycoprotein as a control for effects on core MLV particles versus effects specific to Moloney MLV envelope protein (Env). The broad-spectrum inhibitors cathepsin inhibitor III and E-64d gave comparable dose-dependent inhibition of Moloney MLV Env and VSV G pseudotypes, suggesting that the decrease did not involve the envelope protein. Whereas, CA-074 Me gave a biphasic response that differentiated between Moloney MLV Env and VSV G at low concentrations, at which the drug is highly selective for cathepsin B, but was similar for both glycoproteins at higher concentrations, at which CA-074 Me inhibits other cathepsins. Moloney MLV infection was lower on cathepsin B knockout fibroblasts than wild-type cells, whereas VSV G infection was not reduced on the B-/- cells. Taken together, these results support the notion that cathepsin B acts at an envelope-dependent step while another cathepsin acts at an envelope-independent step, such as uncoating or viral-DNA synthesis. Virus binding was not affected by CA-074 Me, whereas syncytium induction was inhibited in a dose-dependent manner, consistent with cathepsin B involvement in membrane fusion. Western blot analysis revealed specific cathepsin B cleavage of SU in vitro, while TM and CA remained intact. Infection could be enhanced by preincubation of Moloney MLV with cathepsin B, consistent with SU cleavage potentiating infection. These data suggested that during infection of NIH 3T3 cells, endocytosis brings Moloney MLV to early lysosomes, where the virus encounters cellular proteases, including cathepsin B, that cleave SU.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
6
|
Kontijevskis A, Prusis P, Petrovska R, Yahorava S, Mutulis F, Mutule I, Komorowski J, Wikberg JES. A look inside HIV resistance through retroviral protease interaction maps. PLoS Comput Biol 2007; 3:e48. [PMID: 17352531 PMCID: PMC1817660 DOI: 10.1371/journal.pcbi.0030048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 01/24/2007] [Indexed: 11/19/2022] Open
Abstract
Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular-chemical mechanisms involved in substrate cleavage by retroviral proteases.
Collapse
Affiliation(s)
- Aleksejs Kontijevskis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
| | - Peteris Prusis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ramona Petrovska
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sviatlana Yahorava
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Felikss Mutulis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ilze Mutule
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jan Komorowski
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
| | - Jarl E. S Wikberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Fehér A, Boross P, Sperka T, Oroszlan S, Tözsér J. Expression of the murine leukemia virus protease in fusion with maltose-binding protein in Escherichia coli. Protein Expr Purif 2004; 35:62-8. [PMID: 15039067 DOI: 10.1016/j.pep.2004.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 01/12/2004] [Indexed: 01/15/2023]
Abstract
The protease of murine leukemia virus (MLV) was cloned into pMal-c2 vector, expressed in fusion with maltose-binding protein (MBP), and purified to homogeneity after Factor Xa cleavage of the chimeric protein. Substantial degradation of the fusion protein was observed during expression, which severely diminished the yield. The degree of degradation of the fusion protein was even more pronounced when a single-chain form of the MLV protease was cloned after the gene coding for MBP. To increase the yield, a hexahistidine tag with an additional Factor Xa cleavage site was cloned after the protease and nickel chelate affinity chromatography was used as the first purification step. The modified procedure resulted in substantially higher yield as compared to the original procedure. The degradation of hexahistidine-tagged active site mutant MLV protease was very low and comparable to that obtained with hexahistidine-tagged MBP, but purified MLV protease alone was not able to degrade purified MBP, suggesting that during expression the active MLV protease may activate bacterial proteases which appear to be responsible for the degradation of the fusion proteins.
Collapse
Affiliation(s)
- Anita Fehér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
8
|
Kádas J, Weber IT, Bagossi P, Miklóssy G, Boross P, Oroszlan S, Tözsér J. Narrow substrate specificity and sensitivity toward ligand-binding site mutations of human T-cell Leukemia virus type 1 protease. J Biol Chem 2004; 279:27148-57. [PMID: 15102858 DOI: 10.1074/jbc.m401868200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is associated with a number of human diseases; therefore, its protease is a potential target for chemotherapy. To compare the specificity of HTLV-1 protease with that of human immunodeficiency virus type 1 (HIV-1) protease, oligopeptides representing naturally occurring cleavage sites in various retroviruses were tested. The number of hydrolyzed peptides as well as the specificity constants suggested a substantially broader specificity of the HIV protease. Amino acid residues of HTLV-1 protease substrate-binding sites were replaced by equivalent ones of HIV-1 protease. Most of the single and multiple mutants had altered specificity and a dramatically reduced folding and catalytic capability, suggesting that mutations are not well tolerated in HTLV-1 protease. The catalytically most efficient mutant was that with the flap residues of HIV-1 protease. The inhibition profile of the mutants was also determined for five inhibitors used in clinical practice and inhibitor analogs of HTLV-1 cleavage sites. Except for indinavir, the HIV-1 protease inhibitors did not inhibit wild type and most of the mutant HTLV-1 proteases. The wild type HTLV-1 protease was inhibited by the reduced peptide bond-containing substrate analogs, whereas the mutants showed various degrees of weakened binding capability. Most interesting, the enzyme with HIV-1-like residues in the flap region was the most sensitive to the HIV-1 protease inhibitors and least sensitive to the HTLV-1 protease inhibitors, indicating that the flap plays an important role in defining the specificity differences of retroviral proteases.
Collapse
Affiliation(s)
- János Kádas
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, P. O. Box 6, Hungary
| | | | | | | | | | | | | |
Collapse
|
9
|
Cases-González CE, Menéndez-Arias L. Increased G-->A transition frequencies displayed by primer grip mutants of human immunodeficiency virus type 1 reverse transcriptase. J Virol 2004; 78:1012-9. [PMID: 14694133 PMCID: PMC368828 DOI: 10.1128/jvi.78.2.1012-1019.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic screen based on the blue-white beta-galactosidase complementation assay designed to detect G-->A mutations arising during RNA-dependent DNA synthesis was used to compare the fidelity of mutant human immunodeficiency virus type 1 reverse transcriptases (RTs) with the mutations M230L and M230I with the wild-type enzyme, in the presence of biased deoxynucleoside triphosphate (dNTP) pools. The mutant RTs with the M230L and M230I changes were found to be 20 to 70 times less faithful than the wild-type RT in the presence of low [dCTP]/[dTTP] ratios but showed similar fidelity in assays carried out with equimolar concentrations of each nucleotide. Biased dNTP pools led to short tandem repeat deletions in the target sequence, which were also detectable with the assay. However, deletion frequencies were similar for all of the RTs tested. The reported data suggest that RT pausing due to the low dNTP levels available in the RT reaction mixture facilitates strand transfer, in a process that is not necessarily mediated by nucleotide misinsertion.
Collapse
Affiliation(s)
- Clara E Cases-González
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
10
|
Alvarez E, Menéndez-Arias L, Carrasco L. The eukaryotic translation initiation factor 4GI is cleaved by different retroviral proteases. J Virol 2004; 77:12392-400. [PMID: 14610163 PMCID: PMC262572 DOI: 10.1128/jvi.77.23.12392-12400.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initiation factor eIF4G plays a central role in the regulation of translation. In picornaviruses, as well as in human immunodeficiency virus type 1 (HIV-1), cleavage of eIF4G by the viral protease leads to inhibition of protein synthesis directed by capped cellular mRNAs. In the present work, cleavage of both eIF4GI and eIF4GII has been analyzed by employing the proteases encoded within the genomes of several members of the family Retroviridae, e.g., Moloney murine leukemia virus (MoMLV), mouse mammary tumor virus, human T-cell leukemia virus type 1, HIV-2, and simian immunodeficiency virus. All of the retroviral proteases examined were able to cleave the initiation factor eIF4GI both in intact cells and in cell-free systems, albeit with different efficiencies. The eIF4GI hydrolysis patterns obtained with HIV-1 and HIV-2 proteases were very similar to each other but rather different from those obtained with MoMLV protease. Both eIF4GI and eIF4GII were cleaved very efficiently by the MoMLV protease. However, eIF4GII was a poor substrate for HIV proteases. Proteolytic cleavage of eIF4G led to a profound inhibition of cap-dependent translation, while protein synthesis driven by mRNAs containing internal ribosome entry site elements remained unaffected or was even stimulated in transfected cells.
Collapse
Affiliation(s)
- Enrique Alvarez
- Centro de Biología Molecular (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
11
|
Dauber DS, Ziermann R, Parkin N, Maly DJ, Mahrus S, Harris JL, Ellman JA, Petropoulos C, Craik CS. Altered substrate specificity of drug-resistant human immunodeficiency virus type 1 protease. J Virol 2002; 76:1359-68. [PMID: 11773410 PMCID: PMC135855 DOI: 10.1128/jvi.76.3.1359-1368.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 10/29/2001] [Indexed: 11/20/2022] Open
Abstract
Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV.
Collapse
Affiliation(s)
- Deborah S Dauber
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rothenberg SM, Olsen MN, Laurent LC, Crowley RA, Brown PO. Comprehensive mutational analysis of the Moloney murine leukemia virus envelope protein. J Virol 2001; 75:11851-62. [PMID: 11689666 PMCID: PMC114771 DOI: 10.1128/jvi.75.23.11851-11862.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2001] [Accepted: 08/23/2001] [Indexed: 12/11/2022] Open
Abstract
The envelope (Env) protein of Moloney murine leukemia virus is the primary mediator of viral entry. We constructed a large pool of insertion mutations in the env gene and analyzed the fitness of each mutant in completing two critical steps in the virus life cycle: (i) the expression and delivery of the Env protein to the cell surface during virion assembly and (ii) the infectivity of virions displaying the mutant proteins. The majority of the mutants were poorly expressed at the producer cell surface, suggesting folding defects due to the presence of the inserted residues. The mutants with residual infectivity had insertions either in the amino-terminal signal sequence region, two disulfide-bonded loops in the receptor binding domain, discrete regions of the carboxy-terminal region of the surface subunit (SU), or the cytoplasmic tail. Insertions that allowed the mutants to reach the cell surface but not to mediate detectable infection were located within the amino-terminal sequence of the mature Env, within the SU carboxy-terminal region, near putative receptor binding residues, and throughout the fusion peptide. Independent analysis of select mutants in this group allowed more precise identification of the defect in Env function. Mapping of mutant phenotypes to a structural model of the receptor-binding domain provides insights into the protein's functional organization. The high-resolution functional map reported here will be valuable for the engineering of the Env protein for a variety of uses, including gene therapy.
Collapse
Affiliation(s)
- S M Rothenberg
- Program in Cancer Biology, Stanford University Medical Center, Palo Alto, California 94305, USA
| | | | | | | | | |
Collapse
|
13
|
Powell SK, Artlip M, Kaloss M, Brazinski S, Lyons R, McGarrity GJ, Otto E. Efficacy of antiretroviral agents against murine replication-competent retrovirus infection in human cells. J Virol 1999; 73:8813-6. [PMID: 10482636 PMCID: PMC112903 DOI: 10.1128/jvi.73.10.8813-8816.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral vectors for gene therapy are designed to minimize the occurrence of replication-competent retrovirus (RCR); nonetheless, it is possible that a vector-derived RCR could establish an infection in a patient. Since the efficacy of antiretroviral agents can be impacted by interactions between virus, host cell, and drug, five commonly used antiretroviral drugs were evaluated for their abilities to inhibit the replication of a murine leukemia virus (MLV)-derived RCR in human cells. The results obtained indicate that the combination of nucleoside analogs zidovudine and dideoxyinosine with the protease inhibitor indinavir effectively inhibits MLV-derived RCR replication in three human cell lines. In addition, MLV-derived RCR was found to be inherently resistant to the nucleoside analogs lamivudine and stavudine, suggesting that mutations conferring resistance to nucleoside analogs in human immunodeficiency virus type 1 have the same effect even in an alternative viral backbone.
Collapse
Affiliation(s)
- S K Powell
- Genetic Therapy, Inc., a Novartis Company, Gaithersburg, Maryland 20878, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Lavignon M, Richardson J, Evans LH. A small region of the ecotropic murine leukemia virus (MuLV) gag gene profoundly influences the types of polytropic MuLVs generated in mice. J Virol 1997; 71:8923-7. [PMID: 9343260 PMCID: PMC192366 DOI: 10.1128/jvi.71.11.8923-8927.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vast majority of recombinant polytropic murine leukemia viruses (MuLVs) generated in mice after infection by ecotropic MuLVs can be classified into two major antigenic groups based on their reactivities to two monoclonal antibodies (MAbs) termed Hy 7 and 516. These groups very likely correspond to viruses formed by recombination of the ecotropic MuLV with two distinct sets of polytropic env genes present in the genomes of inbred mouse strains. We have found that nearly all polytropic MuLVs identified in mice infected with a substrain of Friend MuLV (F-MuLV57) are reactive with Hy 7, whereas mice infected with Moloney MuLV (Mo-MuLV) generate major populations of both Hy 7- and 516-reactive polytropic MuLVs. We examined polytropic MuLVs generated in NFS/N mice after inoculation with Mo-MuLV-F-MuLV57 chimeras to determine which regions of the viral genome influence this difference between the two ecotropic MuLVs. These studies identified a region of the MuLV genome which encodes the nucleocapsid protein and a portion of the viral protease as the only region that influenced the difference in polytropic-MuLV generation by Mo-MuLV and F-MuLV57.
Collapse
Affiliation(s)
- M Lavignon
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
15
|
Towler EM, Thompson SK, Tomaszek T, Debouck C. Identification of a loop outside the active site cavity of the human immunodeficiency virus proteases which confers inhibitor specificity. Biochemistry 1997; 36:5128-33. [PMID: 9136873 DOI: 10.1021/bi962729j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have investigated the inhibitor specificity for the proteases of the human immunodeficiency viruses, types 1 and 2. Using a series of related inhibitors, the P1' side chain was confirmed to play a significant role in determining both the absolute and relative affinity for the enzymes. To further define the residues in the enzymes responsible for the difference in affinity, chimeric proteins were constructed in which domains of the respective proteases were exchanged at the genetic level. The results of these studies demonstrated that inhibitor affinity is conferred by a combination of the active site residues (32, 47, and 82) along with a loop comprised of residues 31 and 33-37, which lies outside of the active site cavity. These results are discussed in terms of existing structural data.
Collapse
Affiliation(s)
- E M Towler
- Department of Molecular Genetics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | | | | | |
Collapse
|