1
|
Newton CL, Anderson RC, Katz AA, Millar RP. Loss-of-Function Mutations in the Human Luteinizing Hormone Receptor Predominantly Cause Intracellular Retention. Endocrinology 2016; 157:4364-4377. [PMID: 27533885 DOI: 10.1210/en.2016-1104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations in G protein-coupled receptors (GPCRs) have been identified for many endocrine hormone signaling deficiencies. Inactivating mutations can impair ligand binding, receptor activation/coupling to signaling pathways, or can cause receptor misfolding and consequent impaired expression at the cell membrane. Here we examine the cell surface expression, ligand binding, and signaling of a range of mutant human luteinizing hormone receptors (LHRs) identified as causing reproductive dysfunction in human patients. The data obtained reveal how mutations in GPCRs can have diverse and severely deleterious effects on receptor function. Furthermore, it was found that impaired functionality of the majority of the mutant LHRs was due to reduced expression at the cell surface (14/20) while only two mutations caused impaired binding affinity and two impaired in signaling. An additional two mutations were found to cause no impairment of receptor function. These data demonstrate that the majority of LHR mutations lead to intracellular retention and highlight the potential for novel pharmacological chaperone therapeutics that can "rescue" expression/function of retained mutant GPCRs.
Collapse
Affiliation(s)
- Claire Louise Newton
- Centre for Neuroendocrinology (C.L.N., R.C.A., R.P.M.), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; Department of Immunology (C.L.N), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; UCT/MRC Receptor Biology Research Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine (C.L.N., R.C.A., A.A.K., R.P.M.), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; Department of Zoology and Entomology (R.C.A), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa; SAMRC Gynaecology Cancer Research Centre (A.A.K), Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa; and Department of Physiology (R.P.M), Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa
| | - Ross Calley Anderson
- Centre for Neuroendocrinology (C.L.N., R.C.A., R.P.M.), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; Department of Immunology (C.L.N), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; UCT/MRC Receptor Biology Research Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine (C.L.N., R.C.A., A.A.K., R.P.M.), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; Department of Zoology and Entomology (R.C.A), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa; SAMRC Gynaecology Cancer Research Centre (A.A.K), Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa; and Department of Physiology (R.P.M), Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa
| | - Arieh Anthony Katz
- Centre for Neuroendocrinology (C.L.N., R.C.A., R.P.M.), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; Department of Immunology (C.L.N), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; UCT/MRC Receptor Biology Research Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine (C.L.N., R.C.A., A.A.K., R.P.M.), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; Department of Zoology and Entomology (R.C.A), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa; SAMRC Gynaecology Cancer Research Centre (A.A.K), Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa; and Department of Physiology (R.P.M), Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa
| | - Robert Peter Millar
- Centre for Neuroendocrinology (C.L.N., R.C.A., R.P.M.), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; Department of Immunology (C.L.N), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; UCT/MRC Receptor Biology Research Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine (C.L.N., R.C.A., A.A.K., R.P.M.), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; Department of Zoology and Entomology (R.C.A), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa; SAMRC Gynaecology Cancer Research Centre (A.A.K), Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa; and Department of Physiology (R.P.M), Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa
| |
Collapse
|
2
|
Shenker A. Activating Mutations of the Lutropin Choriogonadotropin Receptor in Precocious Puberty. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820212138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Angelova K, de Jonge H, Granneman JCM, Puett D, Bogerd J. Functional differences of invariant and highly conserved residues in the extracellular domain of the glycoprotein hormone receptors. J Biol Chem 2010; 285:34813-27. [PMID: 20736161 DOI: 10.1074/jbc.m110.148221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple interactions exist between human follicle-stimulating hormone (FSH) and the N-terminal hormone-binding fragment of the human FSH receptor (FSHR) extracellular domain (ECD). Binding of the other human glycoprotein hormones to their cognate human receptors (luteinizing hormone receptor (LHR) and thyroid-stimulating hormone receptor (TSHR)) was expected to be similar. This study focuses on amino acid residues in β-strands 2 (Lys(74)), 4 (Tyr(124), Asn(129), and Thr(130)), and 5 (Asp(150) and Asp(153)) of the FSHR ECD identified in the human FSH·FSHR ECD crystal structure as contact sites with the common glycoprotein hormone α-subunit, and on noncontact residues in β-strands 2 (Ser(78)) and 8 (Asp(224) and Ser(226)) as controls. These nine residues are either invariant or highly conserved in LHR and TSHR. Mutagenesis and functional characterization of these residues in all three human receptors allowed an assessment of their contribution to binding and receptor activation. Surprisingly, the six reported α-subunit contact residues of the FSHR ECD could be replaced without significant loss of FSH binding, while cAMP signaling potency was diminished significantly with several replacements. Comparative studies of the homologous residues in LHR and TSHR revealed both similarities and differences. The results for FSH/FSHR were analyzed on the basis of the crystal structure of the FSH·FSHR ECD complex, and comparative modeling was used to generate structures for domains, proteins, and complexes for which no structures were available. Although structural information of hormone-receptor interaction allowed the identification of hormone-receptor contact sites, functional analysis of each contact site was necessary to assess its contribution to hormone binding and receptor activation.
Collapse
Affiliation(s)
- Krassimira Angelova
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
4
|
Mueller S, Jaeschke H, Günther R, Paschke R. The hinge region: an important receptor component for GPHR function. Trends Endocrinol Metab 2010; 21:111-22. [PMID: 19819720 DOI: 10.1016/j.tem.2009.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 11/24/2022]
Abstract
Glycoprotein hormone receptors (GPHRs) are members of the seven-transmembrane-spanning receptor family characterized by a large ectodomain. The hinge region belongs to a part of the GPHR ectodomain for which the three-dimensional structure has not yet been deciphered, leaving important questions unanswered concerning ligand binding and GPHR activation. Recent publications indicate that specific residues of the hinge region mediate hormone binding, receptor activation and/or intramolecular signaling for the three GPHRs, emphasizing the importance of this region. Based on these findings, the hinge region is involved at least in part in hormone binding and receptor activation. This review summarizes functional data regarding the hinge region, demonstrating that this receptor portion represents a link between ligand binding and subsequent GPHR activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Humans
- Models, Biological
- Molecular Sequence Data
- Protein Folding
- Protein Structure, Tertiary/physiology
- Receptors, FSH/chemistry
- Receptors, FSH/physiology
- Receptors, LH/chemistry
- Receptors, LH/physiology
- Receptors, Pituitary Hormone/chemistry
- Receptors, Pituitary Hormone/immunology
- Receptors, Pituitary Hormone/physiology
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/immunology
- Receptors, Thyrotropin/physiology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Sandra Mueller
- Third Medical Department, University of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
5
|
Kleinau G, Krause G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev 2009; 30:133-51. [PMID: 19176466 DOI: 10.1210/er.2008-0044] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TSH receptor (TSHR) together with the homologous lutropin/choriogonadotropin receptor and the follitropin receptor are glycoprotein hormone receptors (GPHRs). They constitute a subfamily of the rhodopsin-like G protein-coupled receptors with seven transmembrane helices. GPHRs and their corresponding hormones are pivotal proteins with respect to a variety of physiological functions. The identification and characterization of intra- and intermolecular signaling determinants as well as signaling mechanisms are prerequisites to gaining molecular insights into functions and (pathogenic) dysfunctions of GPHRs. Knowledge about activation mechanisms is fragmentary, and the specific aspects have still not been understood in their entirety. Therefore, here we critically review the data available for these receptors and bring together structural and functional findings with a focus on the important large extracellular portion of the TSHR. One main focus is the particular function of structural determinants in the initial steps of the activation such as: 1) hormone binding at the extracellular site; 2) hormone interaction at a second binding site in the hinge region; 3) signal regulation via sequence motifs in the hinge region; and 4) synergistic signal amplification by cooperative effects of the extracellular loops toward the transmembrane region. Comparison and consolidation of data from the homologous glycoprotein hormone receptors TSHR, follitropin receptor, and lutropin/choriogonadotropin receptor provide an overview of extracellular mechanisms of signal initiation, conduction, and regulation at the TSHR and homologous receptors. Finally, we address the issue of structural implications and suggest a refined scenario for the initial signaling process on GPHRs.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | |
Collapse
|
6
|
Tao YX. Inactivating mutations of G protein-coupled receptors and diseases: Structure-function insights and therapeutic implications. Pharmacol Ther 2006; 111:949-73. [PMID: 16616374 DOI: 10.1016/j.pharmthera.2006.02.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/21/2006] [Indexed: 12/20/2022]
Abstract
Since the discovery of the first rhodopsin mutation that causes retinitis pigmentosa in 1990, significant progresses have been made in elucidating the pathophysiology of diseases caused by inactivating mutations of G protein-coupled receptors (GPCRs). This review aims to compile the compelling evidence accumulated during the past 15 years demonstrating the etiologies of more than a dozen diseases caused by inactivating GPCR mutations. A generalized classification scheme, based on the life cycle of GPCRs, is proposed. Insights gained through detailed studies of these naturally occurring mutations into the structure-function relationship of these receptors are reviewed. Therapeutic approaches directed against the different classes of mutants are being developed. Since intracellular retention emerges as the most common defect, recent progresses aimed at correcting this defect through membrane permeable pharmacological chaperones are highlighted.
Collapse
MESH Headings
- Animals
- Diabetes Insipidus, Nephrogenic/etiology
- Dwarfism/etiology
- Humans
- Hypogonadism/etiology
- Mutation
- Obesity/etiology
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptors, CCR5/genetics
- Receptors, Calcium-Sensing/genetics
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, LHRH/genetics
- Receptors, Vasopressin/genetics
- Retinitis Pigmentosa/etiology
- Rhodopsin/genetics
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, 213 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
7
|
Angelova K, Narayan P, Puett D. The luteinizing hormone receptor: influence of buffer composition on ligand binding and signaling of wild type and mutant receptors. Mol Cell Endocrinol 2003; 204:1-9. [PMID: 12850276 DOI: 10.1016/s0303-7207(03)00155-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is evidence that ligand binding to and ligand-mediated signaling by the luteinizing hormone receptor (LHR) are influenced by buffer conditions, including ionic type and strength, an issue that becomes important in comparing functional parameters obtained on receptor mutants under different conditions. In order to study this phenomenon, we performed binding (kinetic and saturation) and signaling studies of human chorionic gonadotropin (hCG) with wild type (wt) LHR and several mutants expressed in COS-7 cells using two common buffer systems. One buffer was of low ionic strength and contained a low concentration of Na+, while the other had a near-physiological concentration of Na+. Emphasis was placed on mutations of two amino acid residues in the hinge region of the ectodomain (E332 and D333). It was found that the buffer of higher ionic strength, primarily from Na+, led to an increase of about 4-fold in the Kd of hCG binding to wt and mutant LHRs. The reduced binding affinities were attributable to a comparable reduction in the rate constants of association, with no significant differences in the calculated rate constants of dissociation in the two buffers. Analysis of the signaling properties of these mutants showed that, when corrected for the amount of hCG bound under the conditions of the signaling assay, the maximal ligand-mediated cAMP produced in cells maintained in the buffer of low ionic strength was comparable for wt LHR and the mutants, only the D333A mutant being somewhat elevated. In the buffer of higher ionic strength, however, the response by wt LHR was significantly greater than that of the mutants. These results show that E332 and D333 are important in hormone-mediated signaling, but only in the buffer of higher Na+ concentration. In addition to mutants of these two residues, the buffer of higher ionic strength also led to reduced binding to a number of mutants throughout the receptor. Since these mutants included additional replacements in the ectodomain and transmembrane helices 6 and 7, the general nature of the buffer effect on wt and mutant LHRs suggests that electrostatic effects are contributing to ligand binding and/or that the LHR ectodomain may exist in two conformations, one being more accessible to ligand at reduced ionic strength.
Collapse
Affiliation(s)
- Krassimira Angelova
- Department of Biochemistry and Molecular Biology, University of Georgia, Life Sciences Building, Green Street, Athens, GA 30602-7229, USA
| | | | | |
Collapse
|
8
|
Schubert RL, Narayan P, Puett D. Specificity of cognate ligand-receptor interactions: fusion proteins of human chorionic gonadotropin and the heptahelical receptors for human luteinizing hormone, thyroid-stimulating hormone, and follicle-stimulating hormone. Endocrinology 2003; 144:129-37. [PMID: 12488338 DOI: 10.1210/en.2002-220829] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The family of glycoprotein hormones and their homologous heptahelical receptors represent an excellent system for comparative structure-function studies. We have engineered single chain molecules of human chorionic gonadotropin (hCG) fused to its cognate receptor, LH receptor (LHR), and to the noncognate receptors, TSH receptor (TSHR) and FSH receptor (FSHR; N-beta-alpha-receptor-C), to create the yoked (Y) complexes YCG/LHR, YCG/TSHR, and YCG/FSHR. The expression and bioactivity of these fusion proteins were examined in transiently transfected HEK 293 cells. Western blot analysis and antibody binding assays demonstrated that each of the proteins was expressed. In the case of YCG/LHR, minimal binding of exogenous hormone was observed due to the continued occupation of receptor by the fused ligand. The presence of hCG in the YCG/TSHR and YCG/FSHR, however, did not prevent binding of exogenous cognate ligand, presumably due to the lower affinity of hCG. The basal cAMP levels in cells expressing the YCG/LHR complex was approximately 20-fold higher than that in cells expressing LHR. Increases in basal cAMP production were also observed with YCG/TSHR and YCG/FSHR, e.g. 13- and 4-fold increases, respectively. Whereas the affinity and specificity of hCG for LHR are extraordinarily high, the hormone is capable of binding to and activating both TSHR and FSHR under these conditions that mimic high ligand concentrations. These findings were confirmed by adding high concentrations of hCG to cells expressing TSHR and FSHR. Although the functional interaction of hCG and TSHR has been recognized in gestational hyperthyroidism, there are no reports linking hCG to FSHR activation. This study, however, suggests that such a functional interaction is capable of occurring under conditions of high circulating levels of hCG, e.g. the first trimester of pregnancy and in patients with hCG-secreting tumors.
Collapse
Affiliation(s)
- Rebecca L Schubert
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | |
Collapse
|
9
|
Angelova K, Puett D. Differential responses of an invariant region in the ectodomain of three glycoprotein hormone receptors to mutagenesis and assay conditions. Endocrine 2002; 19:147-54. [PMID: 12588044 DOI: 10.1385/endo:19:2:147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Revised: 08/23/2002] [Accepted: 08/23/2002] [Indexed: 11/11/2022]
Abstract
The glycoprotein hormone receptors-luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), and thyroid-stimulating hormone receptor (TSHR)--are G-protein-coupled receptors with an invariant 10-amino acid residue sequence in the ectodomain proximal to transmembrane helix 1. A Glu-Asp, located at the midpoint of this conserved sequence, has been suggested to be important in ligand-mediated signaling of LHR and/or receptor expression or stability, but not binding. One goal of this study was to expand the studies on LHR and determine whether the invariant Glu and Asp residues were functional in FSHR and TSHR as well. Another goal was to investigate systematically the role of ionic strength, particularly Na+, which appears to have enigmatic functions in the three receptors regarding ligand binding and receptor activation, and to ascertain whether any of the purported effects of Na+ could involve the conserved pair of acidic side chains in the ectodomain. COS-7 cells were transiently transfected with cDNAs to the wild-type (WT) receptor (rat) and identical single and double mutants of each (Glu --> Ala, Asp; Asp --> Ala, Glu; and Glu-Asp--> Asp-Glu), followed by characterization of cognate ligand binding and signaling (basal and hormone mediated) in two commonly used buffer systems: Waymouth's medium, containing a near-physiologic concentration of Na+ (132 mM); a low ionic strength buffer with a 1 mM concentration of Na+. The three receptors exhibited differential responses to mutagenesis and the two buffers. Notably, a comparison of basal cyclic adenosine monophosphate (cAMP) production showed that the buffer of lower ionic strength resulted in increased basal cAMP production in WT TSHR but not LHR and FSHR; that the maximal ligand-mediated cAMP production was greatest in the buffer of higher ionic strength for the three WT receptors; that functionality of the conserved Glu and Asp residues in ligand-mediated signaling was buffer dependent in LHR, whereas it did not appear to be particularly important in FSHR and TSHR signaling; and that apparent ligand binding in WT and mutant TSHRs seemed to be particularly diminished in the buffer of higher ionic strength. These results demonstrate that identical amino acid residues in homologous receptors can exhibit distinct functions; moreover, the role of ionic strength (Na+) on signaling differs in the three receptors.
Collapse
Affiliation(s)
- Krassimira Angelova
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| | | |
Collapse
|
10
|
Mahale SD, Cavanagh J, Schmidt A, MacColl R, Dias JA. Autologous biological response modification of the gonadotropin receptor. J Biol Chem 2001; 276:12410-9. [PMID: 11279009 DOI: 10.1074/jbc.m100115200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is generally held with respect to heterotrimeric guanine nucleotide binding protein-coupled receptors that binding of ligand stabilizes a conformation of receptor that activates adenylyl cyclase. It is not formally appreciated if, in the case of G-protein-coupled receptors with large extracellular domains (ECDs), ECDs directly participate in the activation process. The large ECD of the glycoprotein hormone receptors (GPHRs) is 350 amino acids in length, composed of seven leucine-rich repeat domains, and necessary and sufficient for high affinity binding of the glycoprotein hormones. Peptide challenge experiments to identify regions in the follicle-stimulating hormone (FSH) receptor (FSHR) ECD that could bind its cognate ligand identified only a single synthetic peptide corresponding to residues 221-252, which replicated a leucine-rich repeat domain of the FSHR ECD and which had intrinsic activity. This peptide inhibited human FSH binding to the human FSHR (hFSHR) and also inhibited human FSH-induced signal transduction in Y-1 cells expressing recombinant hFSHR. The hFSHR-(221-252) domain was not accessible to anti-peptide antibody probes, suggesting that this domain resides at an interface between the hFSHR ECD and transmembrane domains. CD spectroscopy of the peptide in dodecyl phosphocholine micelles showed an increase in the ordered structure of the peptide. CD and NMR spectroscopies of the peptide in trifluoroethanol confirmed that hFSHR-(221-252) has the propensity to form ordered secondary structure. Importantly and consistent with the foregoing results, dodecyl phosphocholine induced a significant increase in the ordered secondary structure of the purified hFSHR ECD as well. These data provide biophysical evidence of the influence of environment on GPHR ECD subdomain secondary structure and identify a specific activation domain that can autologously modify GPHR activity.
Collapse
Affiliation(s)
- S D Mahale
- Wadsworth Center, David Axelrod Institute for Public Health, New York State Department of Health, Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
11
|
Song YS, Ji I, Beauchamp J, Isaacs NW, Ji TH. Hormone interactions to Leu-rich repeats in the gonadotropin receptors. I. Analysis of Leu-rich repeats of human luteinizing hormone/chorionic gonadotropin receptor and follicle-stimulating hormone receptor. J Biol Chem 2001; 276:3426-35. [PMID: 10880516 DOI: 10.1074/jbc.m003772200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR) have an approximately 350-amino acid-long, N-terminal extracellular exodomain. This exodomain binds hormone with high affinity and specificity and contains eight to nine putative Leu-rich repeat (LRR) sequences. LRRs are known to assume the horseshoe structure in ribonuclease inhibitors, and the inner lining of the horseshoe consists of the beta-stranded Leu/Ile-X-Leu/Ile motif. In the case of ribonuclease inhibitors, these beta strands interact with ribonuclease. However, it is unclear whether the putative LRRs of LHR and FSHR play any role in the structure and function. In this work, the beta-stranded Leu/Ile residues in all LRRs of the human LHR and FSHR were Ala-scanned and characterized. In addition, the 23 residues around LRR2 of LHR were Ala-scanned. The results show that beta-stranded Leu and Ile residues in all LRRs are important but not equally. These Leu/Ile-X-Leu/Ile motifs appear to form the hydrophobic core of the LRR loop, crucial for the LRR structure. Interestingly, the hot spots are primarily in the upstream and downstream LRRs of the LHR exodomain, whereas important LRRs spread throughout the FSHR exodomain. This may explain the distinct hormone specificity despite the structural similarity of the two receptors.
Collapse
Affiliation(s)
- Y S Song
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | | | | | |
Collapse
|
12
|
Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev 2000; 21:551-83. [PMID: 11041448 DOI: 10.1210/edrv.21.5.0409] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recent unraveling of structures of genes for the gonadotropin subunits and gonadotropin receptors has provided reproductive endocrinologists with new tools to study normal and pathological functions of the hypothalamic-pituitary-gonadal axis. Rare inactivating mutations that produce distinctive phenotypes of isolated LH or FSH deficiency have been discovered in gonadotropin subunit genes. In addition, there is a common polymorphism in the LHbeta subunit gene with possible clinical significance as a contributing factor to pathologies of LH-dependent gonadal functions. Both activating and inactivating mutations have been detected in the gonadotropin receptor genes, a larger number in the LH receptor gene, but so far only a few in the gene for the FSH receptor. These mutations corroborate and extend our knowledge of clinical consequences of gonadotropin resistance and inappropriate gonadotropin action. The information obtained from human mutations has been complemented by animal models with disrupted or inappropriately activated gonadotropin ligand or receptor genes. These clinical and experimental genetic disease models form a powerful tool for exploring the physiology and pathophysiology of gonadotropin function and provide an excellent example of the power of molecular biological approaches in the study of pathogenesis of diseases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Female
- Gonadotropins, Pituitary/chemistry
- Gonadotropins, Pituitary/genetics
- Gonadotropins, Pituitary/physiology
- Humans
- Mice
- Mice, Knockout
- Mutation
- Ovary/physiology
- Pituitary Gland/physiology
- Receptors, FSH/chemistry
- Receptors, FSH/genetics
- Receptors, FSH/physiology
- Receptors, Gonadotropin/chemistry
- Receptors, Gonadotropin/genetics
- Receptors, Gonadotropin/physiology
- Receptors, LH/chemistry
- Receptors, LH/genetics
- Receptors, LH/physiology
- Structure-Activity Relationship
Collapse
|
13
|
Narayan P, Wu C, Puett D. Genetic engineering of single-chain gonadotropins and hormone-receptor fusion proteins. Methods 2000; 21:59-66. [PMID: 10764607 DOI: 10.1006/meth.2000.0975] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gonadotropin hormone family is distinguished by its heterodimeric structure in which the members share a common alpha subunit and a hormone-specific beta subunit. Since assembly of the heterodimer is often the rate-limiting step in production of functional hormone, single-chain hormones have been engineered by genetically linking the two subunits. The single-chain hormone can in turn be fused to its receptor to produce a functional single-chain hormone-receptor complex. These fusion constructs offer a valuable new approach in structure-function studies and in the generation of hormone analogs. In this article we describe the experimental design for the generation of single-chain human chorionic gonadotropin and single-chain hormone-receptor fusion complex and strategies for the expression of these fusion proteins.
Collapse
Affiliation(s)
- P Narayan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
14
|
Bhowmick N, Narayan P, Puett D. Identification of ionizable amino acid residues on the extracellular domain of the lutropin receptor involved in ligand binding. Endocrinology 1999; 140:4558-63. [PMID: 10499511 DOI: 10.1210/endo.140.10.7077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The LH receptor (LHR) is a G protein-coupled receptor characterized by a relatively large N-terminal extracellular domain responsible for high affinity ligand binding. Based on a model proposed for a major portion of the extracellular domain that contains a number of leucine-rich repeats, nine ionizable amino acid residues (Glu57, Glu80, Lys158, Glu181, Lys183, Glu184, Glu188, Lys190, and Asp206) were selected for charge reversal mutagenesis based on their locations in the proposed model and their potential to serve as ligand contact sites. Mutant LHR complementary DNAs were transiently transfected into COS-7 cells, and the expressed receptors were characterized by Western blot analysis, competitive ligand (hCG) binding, and ligand-mediated cAMP production. The most interesting mutants were K158E, K183E, E184K, and D206K, which were present on the plasma membrane fraction, as judged by Western blots, but were incapable of binding hCG and, of course, were deficient in hCG-mediated cAMP production. Other replacements at these positions, K158R,Q,G; K183R,Q,G; E184N; and D206E,Q, led to cell surface binding and signaling. The mutants E57K, E189K, and K190E behaved similarly to wild-type LHR; E80K was trapped intracellularly, but bound ligand in solubilized cells; and E181K was not expressed or was rapidly degraded. These results, based on 18 point mutants of LHR, indicate that Lys158, Lys183, Glu184, and Asp206 are involved, either directly or indirectly, in gonadotropin binding and support the general nature of the proposed model.
Collapse
Affiliation(s)
- N Bhowmick
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602-7229, USA
| | | | | |
Collapse
|
15
|
Alvarez CA, Narayan P, Huang J, Puett D. Characterization of a region of the lutropin receptor extracellular domain near transmembrane helix 1 that is important in ligand-mediated signaling. Endocrinology 1999; 140:1775-82. [PMID: 10098515 DOI: 10.1210/endo.140.4.6624] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lutropin receptor (LHR), a member of the G protein-coupled receptor family, contains a relatively large N-terminal extracellular domain, accounting for about half of the receptor and responsible for high affinity ligand binding, and a standard heptahelical portion with connecting loops and a C-terminal tail. LHR and the other two glycoprotein hormone receptors, i.e. the follitropin and TSH receptors, contain an invariant 10-amino acid residue sequence, FNPCEDIMGY (residues 328-337 in rat LHR), in the extracellular domain separated by only a few amino acid residues from the beginning of transmembrane helix 1. In view of the invariant nature of this region in the three glycoprotein hormone receptors and preliminary data in the literature on the importance of Glu332 and Asp333 in signal transduction, we undertook a systematic investigation of all 10 amino acid residues because this region may function as a switch or trigger for communicating ligand binding to the extracellular domain with a conformational change of the membrane-embedded C-terminal half of the receptor to activate G proteins, particularly Gs. A total of 36 single, double, and multiple replacements, as well as two deletions, of LHR were prepared and characterized in transiently transfected COS-7 cells. Of these mutants LHRs, 26 expressed on the cell surface in sufficient numbers that quantitative assessments could be made of human choriogonadotropin binding and ligand-mediated cAMP production. Replacements of Cys331 abolished ligand binding to intact cells, although binding could be detected after solubilization of the cells. Replacements of the other nine amino acid residues that did not interfere with receptor folding or trafficking had no significant effect on ligand binding affinity; however, replacements of Pro330, Glu332, and Asp333 resulted in diminished signaling, especially for the two acidic residues. An interesting observation was made in which replacement of Tyr337 with Ala or Asp, while having no profound change on receptor function, could overcome to some extent limited expression of replacements at positions 332 and/or 333, thus permitting a more definitive analysis of signaling. Replacement of the decapeptide sequence with Gly10 prevents expression, whereas deletion of all 10 residues and deletion of Glu332-Asp333 prevents functional expression at the cell surface. Thus, this invariant sequence in the glycoprotein hormones is required for proper folding, trafficking, and ligand-mediated signaling, but not ligand binding, in LHR. Amino acid residues, Glu332, Asp333, and to a limited extent, Pro330, are important in ligand-mediated signaling but not ligand binding.
Collapse
Affiliation(s)
- C A Alvarez
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602-7229, USA
| | | | | | | |
Collapse
|
16
|
Hsu SY, Liang SG, Hsueh AJ. Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. Mol Endocrinol 1998; 12:1830-45. [PMID: 9849958 DOI: 10.1210/mend.12.12.0211] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The receptors for LH, FSH, and TSH belong to the large G protein-coupled, seven-transmembrane (TM) protein family and are unique in having a large N-terminal extracellular (ecto-) domain containing leucine-rich repeats important for interaction with the glycoprotein ligands. We have identified two new leucine-rich repeat-containing, G protein-coupled receptors and named them as LGR4 and LGR5, respectively. The ectodomains of both receptors contain 17 leucine-rich repeats together with N- and C-terminal flanking cysteine-rich sequences, compared with 9 repeats found in known glycoprotein hormone receptors. The leucine-rich repeats in LGR4 and LGR5 are arrays of 24 amino acids showing similarity to repeats found in the acid labile subunit of the insulin-like growth factor (IGF)/IGF binding protein complexes as well as slit, decorin, and Toll proteins. The TM region and the junction between ectodomain and TM 1 are highly conserved in LGR4, LGR5, and seven other LGRs from sea anemone, fly, nematode, mollusk, and mammal, suggesting their common evolutionary origin. In contrast to the restricted tissue expression of gonadotropin and TSH receptors in gonads and thyroid, respectively, LGR4 is expressed in diverse tissues including ovary, testis, adrenal, placenta, thymus, spinal cord, and thyroid, whereas LGR5 is found in muscle, placenta, spinal cord, and brain. Hybridization analysis of genomic DNA indicated that LGR4 and LGR5 genes are conserved in mammals. Comparison of overall amino acid sequences indicated that LGR4 and LGR5 are closely related to each other but diverge, during evolution, from the homologous receptor found in snail and the mammalian glycoprotein hormone receptors. The identification and characterization of new members of the LGR subfamily of receptor genes not only allow future isolation of their ligands and understanding of their physiological roles but also reveal the evolutionary relationship of G protein-coupled receptors with leucine-rich repeats.
Collapse
Affiliation(s)
- S Y Hsu
- Department of Gynecology and Obstetrics, Stanford University Medical School, California 94305-5317, USA
| | | | | |
Collapse
|
17
|
Zhang FP, Kero J, Huhtaniemi I. The unique exon 10 of the human luteinizing hormone receptor is necessary for expression of the receptor protein at the plasma membrane in the human luteinizing hormone receptor, but deleterious when inserted into the human follicle-stimulating hormone receptor. Mol Cell Endocrinol 1998; 142:165-74. [PMID: 9783912 DOI: 10.1016/s0303-7207(98)00108-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The LH receptor (LHR) is a member of the family of G protein-coupled seven-times plasma membrane transversing receptors. Its gene consists of 11 exons, the last one encoding the transmembrane and intracellular domains of the receptor. The FSHR, and its gene, resemble structurally those of the LHR, with the exception that the sequences corresponding to exon 10 in LHR are missing in FSHR, which is thus encoded by a total of ten exons. Our recent studies on the marmoset monkey testis LHR cDNA indicated that an 81 bp nucleotide sequence, encoding the complete exon 10 of the LHR gene in other mammalian species, is absent in this species without affecting the LHR function. To study further the role of the exon 10 encoded sequences of the LHR in the gonadotropin receptor function, a deletion of exon 10 from the human LHR (hLHdeltaexon10R), and a chimeric hFSHR with exon 10 from hLHR inserted (hFSHLHexon10R), were constructed in expression vectors. The results presented here demonstrate that 293 cells transfected with the hLHdeltaexon10R display a decrease in the proportion of the receptor binding at the cell surface, compared with cells transfected with wild-type hLHR. However, the cells expressing hLHdeltaexon10R showed similar high affinity binding of [125I]iodo-hCG as those transfected with wild-type hLHR, in either intact cells or their detergent extracts. In addition, cells expressing the hLHdeltaexon10R and wild-type hLHR displayed similar dose-response of cAMP production to hCG stimulation. Cells transfected with chimeric hFSHLHexon10R showed barely detectable [125I]iodo-FSH binding in intact cells compared with those transfected with wild-type hFSHR. The FSH binding detected in cellular detergent extracts displayed 10-fold lower binding activity than wild-type receptors, in spite of similar level of immunoreactive FSHR protein expression in the transfected cells. The hFSHLHexon10R had a modest 5-fold lower binding affinity for FSH as compared with wild-type hFSHR. In conclusion, the present study indicates that the sequences encoding exon 10 of the hLHR are essential for the LHR expression at the plasma membrane, but deleterious for function if inserted into the hFSHR.
Collapse
Affiliation(s)
- F P Zhang
- Department of Physiology, University of Turku, Finland
| | | | | |
Collapse
|
18
|
Ryu K, Lee H, Kim S, Beauchamp J, Tung CS, Isaacs NW, Ji I, Ji TH. Modulation of high affinity hormone binding. Human choriogonadotropin binding to the exodomain of the receptor is influenced by exoloop 2 of the receptor. J Biol Chem 1998; 273:6285-91. [PMID: 9497355 DOI: 10.1074/jbc.273.11.6285] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lutropin/choriogonadotropin receptor is a seven-transmembrane receptor and consists of two major domains of similar size, an extracellular exodomain and a membrane-associated endodomain which includes 3 exoloops. The uniquely large exodomain is responsible for high affinity hormone binding whereas receptor activation occurs at the endodomain. However, little is known about the relationship between the exodomain and endodomain. It was reported that hormone binding to the exodomain was improved when the endodomain was truncated. This result suggests that hormone binding to the exodomain was influenced by the endodomain. To test this hypothesis, amino acids of exoloop 2 were examined by Ala substitutions. The binding affinity was enhanced by some Ala substitutions but attenuated by others. These results indicate that exoloop 2 influences the hormone binding to the exodomain. Particularly, the high affinity hormone binding at the exodomain is constrained by a group of amino acids, Ser484, Asn485, Lys488, Ser490, and Ser499. Computer modeling suggests these residues may be positioned on one side of exoloop 2. It also influences the affinity for cAMP induction and the maximal cAMP production in distinct ways, in addition to its influence on the hormone binding affinity. The distinct ways of influencing these functions are sometimes in conflict and compromised to attain the maximal affinity for cAMP induction. As a result, the exodomain attains the maximal affinity for hormone binding when the endodomain is truncated and cAMP induction is disengaged.
Collapse
Affiliation(s)
- K Ryu
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071-3944, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Human reproductive function is regulated mainly by luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Mutations of the human LH/ chorionic gonadotropin receptor (LHR) and the FSH receptor (FSHR) leading to either constitutive activation or inactivation of the receptors have been identified. All activating mutations of the LHR and the FSHR are located within the exon encoding the transmembrane domain while the inactivating mutations are scattered throughout the coding sequence. A number of activating and inactivating mutations of the LHR have been found while only one activating and three inactivating mutations of the FSHR are known. Activating mutations of the LHR cause familial male-limited precocious puberty (FMPP) while that of the FSHR has been shown to restore the reproductive capability of a hypophysectomized male. Inactivating mutations of the LHR cause Leydig cell hypoplasia (LCH) in males while that of the FSHR causes hereditary hypergonadotropic ovarian dysgenesis (ODG) in females. Activating mutations of both receptors are dominant while inactivating mutations are recessive. Genotype-phenotype correlation is best established for the inactivating mutations of LHR. Severity of clinical phenotype in LCH correlates with the amount of residual activity of the mutated LHR. Comparison of the clinical impact of the activating and the inactivating mutations of the receptors indicates that male reproductive capacity depends primarily on LH while female reproductive capacity depends primarily on FSH.
Collapse
Affiliation(s)
- W Y Chan
- Department of Pediatrics, Georgetown University Children's Medical Center, Washington, DC 20007, USA
| |
Collapse
|
20
|
Zhang FP, Rannikko AS, Manna PR, Fraser HM, Huhtaniemi IT. Cloning and functional expression of the luteinizing hormone receptor complementary deoxyribonucleic acid from the marmoset monkey testis: absence of sequences encoding exon 10 in other species. Endocrinology 1997; 138:2481-90. [PMID: 9165039 DOI: 10.1210/endo.138.6.5196] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Based on sequence homologies among the human, porcine, rat, and mouse genes for the LH receptor (LHR), overlapping partial fragments of LHR complementary DNAs (cDNAs) were multiplied from marmoset monkey testicular RNA using reverse transcription-PCR. Ligations of the individual cDNA fragments generated a full-length monkey LHR cDNA (2031 bp) containing the complete amino acid-coding sequence (676 amino acids). Northern hybridization analysis of monkey testicular RNA, using a complementary RNA probe corresponding to the full-length cDNA, demonstrated major transcripts of 5.5 and 1.4 kilobases and minor ones of 4.0, 2.7, and 1.9 kilobases. Sequence analysis of the monkey LHR cDNA revealed a striking feature, i.e. the absence of an 81-bp nucleotide sequence corresponding to exon 10, present in the LHR cDNAs of all other species studied to date. The monkey LHR cDNA displayed 83-94% overall sequence homology with the other mammalian LHR cDNAs. Reverse transcription-PCR with human exon 10-specific primers demonstrated the total absence of this sequence from the monkey LHR messenger RNA. Southern hybridization of monkey genomic DNA using a human exon 10 probe demonstrated its presence in the monkey gene and that it is totally spliced out from the primary transcript. COS cells transfected with the monkey LHR cDNA showed similar high affinity (Kd = 0.25 nmol/liter) of [125I]iodo-hCG binding as those transfected with human LHR cDNA (Kd = 0.20 nmol/liter). The cells expressing the recombinant monkey and human LHR displayed similar responses of extracellular cAMP and inositol trisphosphate to hCG. In conclusion, marmoset monkey LHR seems to lack the sequence corresponding to exon 10 of the LHR gene in other mammalian species. The truncation does not alter LHR function, as the monkey receptor protein bound hCG and evoked cAMP and inositol trisphosphate responses comparable to those of the human LHR containing the exon 10-encoded structure. As the sequence homologous to exon 10 is missing in the other two glycoprotein receptors, i.e. those of FSH and TSH, this extra exon is apparently inserted into the LHR messenger RNA of some species during evolution from intronic sequences by a change in alternative splicing.
Collapse
Affiliation(s)
- F P Zhang
- Department of Physiology, University of Turku, Finland
| | | | | | | | | |
Collapse
|
21
|
Fernandez LM, Puett D. Evidence for an important functional role of intracellular loop II of the lutropin receptor. Mol Cell Endocrinol 1997; 128:161-9. [PMID: 9140087 DOI: 10.1016/s0303-7207(97)04035-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lutropin receptor (LHR) is a G protein-coupled receptor in which high affinity ligand binding occurs to the relatively large extracellular N-terminal domain. Various portions of the receptor have been mapped for their relative importance in localization and in hormone-mediated signaling. There is, however, a paucity of information available on the intracellular loops (ICL), where, along with the C-terminal cytoplasmic tail, G protein coupling is expected to occur. Site-directed mutagenesis was used to investigate the role of several conserved ionizable groups and one tyrosyl residue in ICLs I-III of the rat LHR. The pSVL expression vector, containing the LHR cDNA (wild-type and mutants), was transiently transfected into COS-7 cells, and human choriogonadotropin (hCG) binding and hCG-mediated cAMP production were determined. Several point mutants of amino acid residues in ICL II were prepared and characterized with the following results: replacements of Lys-455 and of His-460 with Glu gave mutant LHRs that failed to localize or fold properly at the cell surface as evidenced by the lack of significant binding to intact cells, although hCG binding could be detected in broken cell preparations, and a neighboring Arg-459 --> Glu replacement had no apparent effect on receptor trafficking, hCG binding or hCG-mediated cAMP-production. A reversal mutant in ICL II in which Glu-441, at the boundary of transmembrane helix III and ICL II, and His-460, at the interface between ICL II and transmembrane helix IV, were interchanged, exhibited hCG binding to intact cells, but the maximal cAMP level at high concentrations of ligand was less than that obtained with COS-7 cells transfected with wild-type LHR. The total number of cell surface receptors determined with the reversal mutant was less than that found with wild-type LHR. This difference, however, is not believed to be responsible for the reduced signaling, since maximal cAMP responses to hCG were obtained with comparable receptor densities of wild-type and various mutant LHRs. Other single replacements in ICL I, Lys-368 --> Glu and to Gln, and in ICL III, Arg-526 --> Glu and Tyr-528 --> Ser, resulted in mutant LHRs with characteristics of wild-type LHR in trafficking, hCG binding and hCG-mediated cAMP production. These findings suggest an important functional role of several amino acid residues in ICL II of LHR.
Collapse
Affiliation(s)
- L M Fernandez
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
22
|
Hong S, Ryu KS, Oh MS, Ji I, Ji TH. Roles of transmembrane prolines and proline-induced kinks of the lutropin/choriogonadotropin receptor. J Biol Chem 1997; 272:4166-71. [PMID: 9020129 DOI: 10.1074/jbc.272.7.4166] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The lutropin/choriogonadotropin receptor is a seven-helix transmembrane (TM) receptor. A unique feature of TM helices is the content of Pro, which generally is absent in alpha helices of globular proteins. Because Pro disrupts helices and introduces a approximately 26 degrees kink, it has been speculated that Pro plays a crucial role in the structure of TM helices, exoloops, and cytoloops of TM receptors. To examine the roles of the five TM Pros of the lutropin/choriogonadotropin receptor, these residues were individually substituted. Mutant receptors were examined for surface expression, hormone binding, and cAMP induction. Surface expression was monitored after introducing the flag epitope into the receptors. Flag epitopes slightly affected cAMP induction but not hormone binding or surface expression of receptors as monitored by immunofluorescence microscopy and 125I-anti-flag antibody. The results indicate that Pro479 in TM 4 and Pro598 in TM 7 play important yet contrasting roles. Pro479 is crucial for hormone binding at the cell surface but not after solubilization of the receptor. This is more likely due to the Pro side chain than the Pro-induced kink. Pro598 is important for surface expression. The kinks of Pro463 of TM 4, Pro562 of TM 6, or Pro591 of TM 7 are not important because the substitution of Phe for these residues did not significantly impact surface expression, hormone binding, and cAMP induction.
Collapse
Affiliation(s)
- S Hong
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071-3944, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
The technique of site-directed mutagenesis has proven to be quite powerful in elucidating contact sites involved in the interaction of the heterodimeric glycoprotein hormones and their respective seven transmembrane (TM) G protein-coupled receptors. Our laboratory has focused on identification of the minimum core sequences of the alpha and beta subunits required for bioactivity, the minimum length of a conjoined (yoked) single-chain hCG, the amino acid residues on hCG and the LH/CG-receptor (LH/CG-R) responsible for high-affinity binding, and the regions of the receptor that are involved in TM signaling. A number of amino acid residues have been mapped on the alpha and beta subunits of hCG that appear important in receptor binding. When projected onto the crystal structure of HF-treated hCG, these residues, by and large, cluster on one side of the molecule and cover a sizeable surface area, indicating that the hormone-receptor binding interface is rather extensive. Based on mutagenesis studies of several conserved ionizable amino acid residues in the extracellular domain (ECD) of LH/CG-R and a model that we, in collaboration with Drs Lapthorn and Isaacs, have developed for this region based on the crystal structure of porcine ribonuclease inhibitor, a charged region that appears to play an important role in hormone-receptor recognition has been identified. We have also delineated several regions of LH/CG-R that do not appear to participate in hCG binding but are involved in hCG-mediated signaling. These regions are located in the ECD and extracellular loop III just prior to entry into the membrane via TM helices I and VII, respectively, and in TM helices VI and VII. Similarly, a homologous region in the ECD of the FSH receptor, located with ten residues of TM helix I, is important in signaling but not hormone binding. These results suggest that ligand binding and ligand-mediated receptor activation are quasi-distinct, albeit sequential phenomena. Collectively, our mutagenesis and modeling studies, coupled with results from other laboratories, argue for a ligand-induced conformational change of the receptor that may involve a relative reorientation of the TM helices.
Collapse
Affiliation(s)
- D Puett
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Wu C, Narayan P, Puett D. Protein engineering of a novel constitutively active hormone-receptor complex. J Biol Chem 1996; 271:31638-42. [PMID: 8940183 DOI: 10.1074/jbc.271.49.31638] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein hormone consisting of an alpha and a beta subunit that stimulates intracellular levels of cAMP via a G protein-coupled receptor. Herein we report the engineering and characterization of a novel molecule in which the receptor and its heterodimeric ligand were covalently linked in a single polypeptide chain. The hormone-receptor complex was expressed in cells transfected with this construct, but the cells were unable to bind significant amounts of exogenous hCG. However, cleavage of the hormone with a site-specific protease rendered the receptor accessible to exogenously added hormone. Cells transfected with the hCG-receptor construct contained elevated basal levels of cAMP; moreover, addition of hormone had no significant effect. These results are consistent with a strong and stable interaction between the single-chain hormone and its covalently linked receptor that results in a constitutively active complex.
Collapse
Affiliation(s)
- C Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | |
Collapse
|
25
|
Gilchrist RL, Ryu KS, Ji I, Ji TH. The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. J Biol Chem 1996; 271:19283-7. [PMID: 8702611 DOI: 10.1074/jbc.271.32.19283] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The luteinizing hormone/chorionic gonadotropin receptor is a member of the seven-transmembrane receptor family. It is coupled, presumably via Gs and Gq, to two signal pathways involving adenylyl cyclase/cAMP and phospholipase C/inositol phosphate (IP). Little is known about the events prior to G-protein coupling: for example, whether these signals are generated from a single or multiple independent origins and mechanisms, when and where they diverge, and how they are transduced. We report novel observations that the cAMP signal and the IP signal originate and diverge upstream of G-protein coupling. The generation of these two signals independently involves Lys583 in exoloop 3 of the rat receptor. For this study, Lys583 of the receptor was substituted with a panel of amino acids, and mutant receptors were assayed for hormone binding and induction of cAMP, inositol monophosphate, inositol bisphosphate, and inositol trisphosphate. No substitutions for Lys583 were permissible for cAMP induction, despite successful surface expression and hormone binding. In contrast, several substitutions were permissible for IP induction. Our results suggest two distinct transmembrane signal conductors for cAMP and inositol phosphate signals and imply particular models of receptor activation not previously suggested.
Collapse
Affiliation(s)
- R L Gilchrist
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071-3944, USA
| | | | | | | |
Collapse
|
26
|
Fernandez LM, Puett D. Lys583 in the third extracellular loop of the lutropin/choriogonadotropin receptor is critical for signaling. J Biol Chem 1996; 271:925-30. [PMID: 8557706 DOI: 10.1074/jbc.271.2.925] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The lutropin/choriogonadotropin receptor (LH/CG-R) contains a relatively large extracellular domain, in addition to the seven transmembrane helices (TMH), three extracellular loops (ECL), and three intracellular loops typical of G protein-coupled receptors. While high affinity ligand binding has been attributed to the N-terminal extracellular domain, there is evidence that portions of the three ECLs may function in ligand binding and transmembrane signaling. We have investigated the role of several ionizable amino acid residues of rat LH/CG-R in human choriogonadotropin (hCG) binding and hCG-mediated cAMP production. COS-7 cells were transfected with the pSVL expression vector containing cDNAs of either wild-type or mutant rat LH/CG-R. Several point mutants of Lys583, located at the interface of ECL III and TMH VII, bound hCG like wild-type receptor but exhibited greatly diminished ligand-mediated signaling. Neither the point mutant, Lys401-->Asp (ECL I), nor the double mutant, Asp397-->Lys/Lys583-->Asp (ECLs I and III, respectively, showed significant hCG binding to intact cells; in detergent-solubilized cells, only the double mutant bound hCG. The mutants Arg341-->Glu (interface of the extracellular domain and TMH I) and Lys488-->Glu (ECL II) proved to be similar to wild-type receptor in binding and signaling. Our results establish that Lys583 is important in signaling but not ligand binding. Its location on the opposite side of the membrane from GS precludes a direct interaction, thus emphasizing the importance of a conformational change in the receptor and suggesting that ligand binding to receptor and ligand-mediated receptor activation are dissociable phenomena.
Collapse
Affiliation(s)
- L M Fernandez
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|