1
|
Lehrer SS. The molecular basis for diminished muscle function in acidosis: a proposal. J Muscle Res Cell Motil 2020; 41:259-263. [PMID: 32048111 DOI: 10.1007/s10974-020-09576-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 11/25/2022]
Abstract
A testable molecular proposal for the effects of acidosis on skeletal and cardiac muscle is presented. It is based on fluorescence studies published in 1974, which provided evidence for carboxylates in an EF-hand Ca2+ binding site having an abnormal pKa. This results in an H+-bound Blocked substate in the 3-state model of muscle regulation whose contribution inhibits myosin binding in the pH 7 to 6 range. A schematic cartoon illustrates the substate within the 3-state model.
Collapse
|
2
|
Kawana M, Sarkar SS, Sutton S, Ruppel KM, Spudich JA. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy. SCIENCE ADVANCES 2017; 3:e1601959. [PMID: 28246639 PMCID: PMC5302870 DOI: 10.1126/sciadv.1601959] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) affects 1 in 500 individuals and is an important cause of arrhythmias and heart failure. Clinically, HCM is characterized as causing hypercontractility, and therapies are aimed toward controlling the hyperactive physiology. Mutations in the β-cardiac myosin comprise ~40% of genetic mutations associated with HCM, and the converter domain of myosin is a hotspot for HCM-causing mutations; however, the underlying primary effects of these mutations on myosin's biomechanical function remain elusive. We hypothesize that these mutations affect the biomechanical properties of myosin, such as increasing its intrinsic force and/or its duty ratio and therefore the ensemble force of the sarcomere. Using recombinant human β-cardiac myosin, we characterize the molecular effects of three severe HCM-causing converter domain mutations: R719W, R723G, and G741R. Contrary to our hypothesis, the intrinsic forces of R719W and R723G mutant myosins are decreased compared to wild type and unchanged for G741R. Actin and regulated thin filament gliding velocities are ~15% faster for R719W and R723G myosins, whereas there is no change in velocity for G741R. Adenosine triphosphatase activities and the load-dependent velocity change profiles of all three mutant proteins are very similar to those of wild type. These results indicate that the net biomechanical properties of human β-cardiac myosin carrying these converter domain mutations are very similar to those of wild type or are even slightly hypocontractile, leading us to consider an alternative mechanism for the clinically observed hypercontractility. Future work includes how these mutations affect protein interactions within the sarcomere that increase the availability of myosin heads participating in force production.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saswata S. Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author. (J.A.S.); (K.M.R.)
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author. (J.A.S.); (K.M.R.)
| |
Collapse
|
3
|
Pan S, Sommese RF, Sallam KI, Nag S, Sutton S, Miller SM, Spudich JA, Ruppel KM, Ashley EA. Establishing disease causality for a novel gene variant in familial dilated cardiomyopathy using a functional in-vitro assay of regulated thin filaments and human cardiac myosin. BMC MEDICAL GENETICS 2015; 16:97. [PMID: 26498512 PMCID: PMC4620603 DOI: 10.1186/s12881-015-0243-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 10/16/2015] [Indexed: 11/10/2022]
Abstract
Background As next generation sequencing for the genetic diagnosis of cardiovascular disorders becomes more widely used, establishing causality for putative disease causing variants becomes increasingly relevant. Diseases of the cardiac sarcomere provide a particular challenge in this regard because of the complexity of assaying the effect of genetic variants in human cardiac contractile proteins. Results In this study we identified a novel variant R205Q in the cardiac troponin T gene (TNNT2). Carriers of the variant allele exhibited increased chamber volumes associated with decreased left ventricular ejection fraction. To clarify the causal role of this variant, we generated recombinant variant human protein and examined its calcium kinetics as well as the maximally activated ADP release of human β-cardiac myosin with regulated thin filaments containing the mutant troponin T. We found that the R205Q mutation significantly decreased the calcium sensitivity of the thin filament by altering the effective calcium dissociation kinetics. Conclusions The development of moderate throughput post-genomic assays is an essential step in the realization of the potential of next generation sequencing. Although technically challenging, biochemical and functional assays of human cardiac contractile proteins of the thin filament can be achieved and provide an orthogonal source of information to inform the question of causality for individual variants.
Collapse
Affiliation(s)
- Stephen Pan
- Leon H. Charney Division of Cardiology, NYU Langone Medical Center, New York, NY, USA.
| | - Ruth F Sommese
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.
| | - Karim I Sallam
- Departments of Medicine (Cardiovascular Medicine), Stanford University School of Medicine, Stanford, CA, USA.
| | - Suman Nag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| | - Susan M Miller
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA.
| | - Euan A Ashley
- Departments of Medicine (Cardiovascular Medicine), Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Nag S, Sommese RF, Ujfalusi Z, Combs A, Langer S, Sutton S, Leinwand LA, Geeves MA, Ruppel KM, Spudich JA. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function. SCIENCE ADVANCES 2015; 1:e1500511. [PMID: 26601291 PMCID: PMC4646805 DOI: 10.1126/sciadv.1500511] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/17/2015] [Indexed: 05/20/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human β-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human β-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human β-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca(2+)-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human β-cardiac myosin contractility as a result of the R403Q mutation.
Collapse
Affiliation(s)
- Suman Nag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth F. Sommese
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zoltan Ujfalusi
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Ariana Combs
- Department of Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Stephen Langer
- Department of Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | | | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Ohira T, Kawano F, Ohira T, Goto K, Ohira Y. Responses of skeletal muscles to gravitational unloading and/or reloading. J Physiol Sci 2015; 65:293-310. [PMID: 25850921 PMCID: PMC10717835 DOI: 10.1007/s12576-015-0375-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/17/2015] [Indexed: 02/04/2023]
Abstract
Adaptation of morphological, metabolic, and contractile properties of skeletal muscles to inhibition of antigravity activities by exposure to a microgravity environment or by simulation models, such as chronic bedrest in humans or hindlimb suspension in rodents, has been well reported. Such physiological adaptations are generally detrimental in daily life on earth. Since the development of suitable countermeasure(s) is essential to prevent or inhibit these adaptations, effects of neural, mechanical, and metabolic factors on these properties in both humans and animals were reviewed. Special attention was paid to the roles of the motoneurons (both efferent and afferent neurograms) and electromyogram activities as the neural factors, force development, and/or length of sarcomeres as the mechanical factors and mitochondrial bioenergetics as the metabolic factors.
Collapse
Affiliation(s)
- Takashi Ohira
- Space Biomedical Research Office, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki 305-8505 Japan
| | - Fuminori Kawano
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Tomotaka Ohira
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511 Japan
| | - Katsumasa Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511 Japan
| | - Yoshinobu Ohira
- Graduate School of Health and Sports Science, Doshisha University, Miyakodani 1-3, Tatara, Kyotanabe, Kyoto 610-0394 Japan
| |
Collapse
|
6
|
Gupte TM, Haque F, Gangadharan B, Sunitha MS, Mukherjee S, Anandhan S, Rani DS, Mukundan N, Jambekar A, Thangaraj K, Sowdhamini R, Sommese RF, Nag S, Spudich JA, Mercer JA. Mechanistic heterogeneity in contractile properties of α-tropomyosin (TPM1) mutants associated with inherited cardiomyopathies. J Biol Chem 2014; 290:7003-15. [PMID: 25548289 DOI: 10.1074/jbc.m114.596676] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most frequent known causes of primary cardiomyopathies are mutations in the genes encoding sarcomeric proteins. Among those are 30 single-residue mutations in TPM1, the gene encoding α-tropomyosin. We examined seven mutant tropomyosins, E62Q, D84N, I172T, L185R, S215L, D230N, and M281T, that were chosen based on their clinical severity and locations along the molecule. The goal of our study was to determine how the biochemical characteristics of each of these mutant proteins are altered, which in turn could provide a structural rationale for treatment of the cardiomyopathies they produce. Measurements of Ca(2+) sensitivity of human β-cardiac myosin ATPase activity are consistent with the hypothesis that hypertrophic cardiomyopathies are hypersensitive to Ca(2+) activation, and dilated cardiomyopathies are hyposensitive. We also report correlations between ATPase activity at maximum Ca(2+) concentrations and conformational changes in TnC measured using a fluorescent probe, which provide evidence that different substitutions perturb the structure of the regulatory complex in different ways. Moreover, we observed changes in protein stability and protein-protein interactions in these mutants. Our results suggest multiple mechanistic pathways to hypertrophic and dilated cardiomyopathies. Finally, we examined a computationally designed mutant, E181K, that is hypersensitive, confirming predictions derived from in silico structural analysis.
Collapse
Affiliation(s)
- Tejas M Gupte
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Farah Haque
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Binnu Gangadharan
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the Manipal University, Madhav Nagar, Manipal 576104, India
| | - Margaret S Sunitha
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Souhrid Mukherjee
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Swetha Anandhan
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Deepa Selvi Rani
- the Council for Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Namita Mukundan
- the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Amruta Jambekar
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Kumarasamy Thangaraj
- the Council for Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ramanathan Sowdhamini
- the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Ruth F Sommese
- the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - Suman Nag
- the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - James A Spudich
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - John A Mercer
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the McLaughlin Research Institute, Great Falls, Montana 59405
| |
Collapse
|
7
|
Sommese RF, Nag S, Sutton S, Miller SM, Spudich JA, Ruppel KM. Effects of troponin T cardiomyopathy mutations on the calcium sensitivity of the regulated thin filament and the actomyosin cross-bridge kinetics of human β-cardiac myosin. PLoS One 2013; 8:e83403. [PMID: 24367593 PMCID: PMC3867432 DOI: 10.1371/journal.pone.0083403] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/13/2013] [Indexed: 11/20/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of the troponin complex using human β-cardiac myosin. Unlike earlier reports using various myosin constructs, we found that none of these mutations affect the maximal sliding velocities or maximal Ca2+-activated ADP release rates involving the thin filament human β-cardiac myosin complex. Changes in Ca2+ sensitivity using the human myosin isoform do, however, mimic changes seen previously with non-human myosin isoforms. Transient kinetic measurements show that these mutations alter the kinetics of Ca2+ induced conformational changes in the regulatory thin filament proteins. These changes in calcium sensitivity are independent of active, cycling human β-cardiac myosin.
Collapse
Affiliation(s)
- Ruth F. Sommese
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Suman Nag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan M. Miller
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (KR); (JS)
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (KR); (JS)
| |
Collapse
|
8
|
The green tea polyphenol (-)-epigallocatechin-3-gallate inhibits magnesium binding to the C-domain of cardiac troponin C. J Muscle Res Cell Motil 2013; 34:107-13. [PMID: 23417789 DOI: 10.1007/s10974-013-9338-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/11/2013] [Indexed: 01/26/2023]
Abstract
Cardiac muscle contraction is activated via the single Ca(2+)-binding site (site II) in the N-domain of troponin C (cTnC). The two Ca(2+)/Mg(2+) binding sites in the C-domain of cTnC (sites III and IV) have been considered to play a purely structural role in anchoring cTnC to the thin filament. However, several recent discoveries suggest a possible role of this domain in contractile regulation. The green tea polyphenol (-)-epigallocatechin 3-gallate (EGCg), which binds specifically to the C-domain of cTnC, reduces cardiac myofilament Ca(2+) sensitivity along with maximum force and acto-myosin ATPase activity. We have determined the effect of EGCg on Ca(2+) and Mg(2+) binding to the C-domain of cTnC. In the absence of Mg(2+) there was no significant effect of EGCg on the Ca(2+)-cTnC affinity. Surprisingly, in the presence of Mg(2+) EGCg caused an increase in Ca(2+) affinity for sites III and IV of cTnC. However, in the absence of Ca(2+) the addition of EGCg caused a significant reduction in Mg(2+)-cTnC affinity. This reduction is presumably responsible for the increase in Ca(2+)-cTnC affinity produced by EGCg in the presence of Mg(2+). We propose that the inhibitory effect of EGCg on myofilament Ca(2+) activation may be related to an enhanced Ca(2+)-Mg(2+)exchange at sites III and IV of cTnC, which might reduce the myosin crossbridge dependent component of thin filament activation.
Collapse
|
9
|
Kisiel-Sajewicz K, Davis MP, Siemionow V, Seyidova-Khoshknabi D, Wyant A, Walsh D, Hou J, Yue GH. Lack of muscle contractile property changes at the time of perceived physical exhaustion suggests central mechanisms contributing to early motor task failure in patients with cancer-related fatigue. J Pain Symptom Manage 2012; 44:351-61. [PMID: 22835480 DOI: 10.1016/j.jpainsymman.2011.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/09/2011] [Accepted: 09/09/2011] [Indexed: 11/26/2022]
Abstract
CONTEXT Fatigue is one of the most common symptoms reported by cancer survivors, and fatigue worsens when patients are engaged in muscle exertion, which results in early motor task failure. Central fatigue plays a significant role, more than muscle (peripheral) fatigue, in contributing to early task failure in cancer-related fatigue (CRF). OBJECTIVES The purpose of this study was to determine if muscle contractile property alterations (reflecting muscle fatigue) occurred at the end of a low-intensity muscle contraction to exhaustion and if these properties differed between those with CRF and healthy controls. METHODS Ten patients (aged 59.9±10.6 years, seven women) with advanced solid cancer and CRF and 12 age- and gender-matched healthy controls (aged 46.6±12.8 years, nine women) performed a sustained contraction of the right arm elbow flexion at 30% maximal level until exhaustion. Peak twitch force, time to peak twitch force, rate of peak twitch force development, and half relaxation time derived from electrical stimulation-evoked twitches were analyzed pre- and post-sustained contraction. RESULTS CRF patients reported significantly greater fatigue as measured by the Brief Fatigue Inventory and failed the motor task earlier, 340±140 vs. 503±155 seconds in controls. All contractile property parameters did not change significantly in CRF but did change significantly in controls. CONCLUSION CRF patients perceive physical exhaustion sooner during a motor fatigue task with minimal muscular fatigue. The observation supports that central fatigue is a more significant factor than peripheral fatigue in causing fatigue feelings and limits motor function in cancer survivors with fatigue symptoms.
Collapse
Affiliation(s)
- Katarzyna Kisiel-Sajewicz
- Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Grabarek Z. Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:913-21. [PMID: 21262274 PMCID: PMC3078997 DOI: 10.1016/j.bbamcr.2011.01.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
The Ca(2+)-binding helix-loop-helix structural motif called "EF-hand" is a common building block of a large family of proteins that function as intracellular Ca(2+)-receptors. These proteins respond specifically to micromolar concentrations of Ca(2+) in the presence of ~1000-fold excess of the chemically similar divalent cation Mg(2+). The intracellular free Mg(2+) concentration is tightly controlled in a narrow range of 0.5-1.0mM, which at the resting Ca(2+) levels is sufficient to fully or partially saturate the Ca(2+)-binding sites of many EF-hand proteins. Thus, to convey Ca(2+) signals, EF-hand proteins must respond differently to Ca(2+) than to Mg(2+). In this review the structural aspects of Mg(2+) binding to EF-hand proteins are considered and interpreted in light of the recently proposed two-step Ca(2+)-binding mechanism (Grabarek, Z., J. Mol. Biol., 2005, 346, 1351). It is proposed that, due to stereochemical constraints imposed by the two-EF-hand domain structure, the smaller Mg(2+) ion cannot engage the ligands of an EF-hand in the same way as Ca(2+) and defaults to stabilizing the apo-like conformation of the EF-hand. It is proposed that Mg(2+) plays an active role in the Ca(2+)-dependent regulation of cellular processes by stabilizing the "off state" of some EF-hand proteins, thereby facilitating switching off their respective target enzymes at the resting Ca(2+) levels. Therefore, some pathological conditions attributed to Mg(2+) deficiency might be related to excessive activation of underlying Ca(2+)-regulated cellular processes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Zenon Grabarek
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472-2829, USA.
| |
Collapse
|
11
|
Pineda-Sanabria SE, Robertson IM, Sykes BD. Structure of trans-resveratrol in complex with the cardiac regulatory protein troponin C. Biochemistry 2011; 50:1309-20. [PMID: 21226534 PMCID: PMC3043152 DOI: 10.1021/bi101985j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiac troponin, a heterotrimeric protein complex that regulates heart contraction, represents an attractive target for the development of drugs for treating heart disease. Cardiovascular diseases are one of the chief causes of morbidity and mortality worldwide. In France, however, the death rate from heart disease is remarkably low relative to fat consumption. This so-called "French paradox" has been attributed to the high level of consumption of wine in France, and the antioxidant trans-resveratrol is thought to be the primary basis for wine's cardioprotective nature. It has been demonstrated that trans-resveratrol increases the myofilament Ca(2+) sensitivity of guinea pig myocytes [Liew, R., Stagg, M. A., MacLeod, K. T., and Collins, P. (2005) Eur. J. Pharmacol. 519, 1-8]; however, the specific mode of its action is unknown. In this study, the structure of trans-resveratrol free and bound to the calcium-binding protein, troponin C, was determined by nuclear magnetic resonance spectroscopy. The results indicate that trans-resveratrol undergoes a minor conformational change upon binding to the hydrophobic pocket of the C-domain of troponin C. The location occupied by trans-resveratrol coincides with the binding site of troponin I, troponin C's natural binding partner. This has been seen for other troponin C-targeting inotropes and implicates the modulation of the troponin C-troponin I interaction as a possible mechanism of action for trans-resveratrol.
Collapse
Affiliation(s)
| | | | - Brian D. Sykes
- Department of Biochemistry, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
12
|
Swindle N, Tikunova SB. Hypertrophic cardiomyopathy-linked mutation D145E drastically alters calcium binding by the C-domain of cardiac troponin C. Biochemistry 2010; 49:4813-20. [PMID: 20459070 PMCID: PMC2883812 DOI: 10.1021/bi100400h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of the C-domain sites of cardiac troponin C in the modulation of the calcium signal remains unclear. In this study, we investigated the effects of hypertrophic cardiomyopathy-linked mutations A8V, E134D, and D145E in cardiac troponin C on the properties of the C-domain sites. The A8V mutation had essentially no effect on the calcium or magnesium binding properties of the C-domain sites, while the mutation E134D moderately decreased calcium and magnesium binding affinities. On the other hand, the D145E mutation affected cooperative interactions between sites III and IV, significantly reducing the calcium binding affinity of both sites. Binding of the anchoring region of cardiac troponin I (corresponding to residues 34-71) to cardiac troponin C with the D145E mutation was not able to recover normal calcium binding to the C-domain. Experiments utilizing the fluorescent hydrophobic probe bis-ANS suggest that the D145E mutation dramatically reduced the extent of calcium-induced hydrophobic exposure by the C-domain. At high nonphysiological calcium concentration, A8V, E134D, and D145E mutations minimally affected the affinity of cardiac troponin C for the regulatory region of cardiac troponin I (corresponding to residues 128-180). In contrast, at lower physiological calcium concentration, the D145E mutation led to an approximately 8-fold decrease in the affinity of cardiac troponin C for the regulatory region of cardiac troponin I. Our results suggest that calcium binding properties of the C-domain sites might be important for the proper regulatory function of cardiac troponin C.
Collapse
Affiliation(s)
- Nicholas Swindle
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston
| | - Svetlana B. Tikunova
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston
| |
Collapse
|
13
|
Kawano F, Goto K, Wang XD, Terada M, Ohira T, Nakai N, Yoshioka T, Ohira Y. Role(s) of gravitational loading during developing period on the growth of rat soleus muscle fibers. J Appl Physiol (1985) 2010; 108:676-85. [PMID: 20056853 DOI: 10.1152/japplphysiol.00478.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of gravitational loading or unloading on the gain of the characteristics in soleus muscle fibers were studied in rats. The tail suspension was performed in newborn rats from postnatal day 4 to month 3, and the reloading was allowed for 3 mo in some rats. Single expression of type I myosin heavy chain (MHC) was observed in approximately 82% of fibers in 3-mo-old controls, but the fibers expressing multiple MHC isoforms were noted in the unloaded rats. Although 97% of fibers in 3-mo-old controls had a single neuromuscular junction at the central region of fiber, fibers with multiple nerve endplates were seen in the unloaded group. Faster contraction speed and lower maximal tension development, even after normalization with fiber size, were observed in the unloaded pure type I MHC fibers. These parameters generally returned to the age-matched control levels after reloading. It was suggested that antigravity-related tonic activity plays an important role in the gain of single neural innervation and of slow contractile properties and phenotype in soleus muscle fibers.
Collapse
Affiliation(s)
- Fuminori Kawano
- Graduate School of Medicine, Osaka University, Toyonaka City, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pinto JR, Parvatiyar MS, Jones MA, Liang J, Ackerman MJ, Potter JD. A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem 2009; 284:19090-100. [PMID: 19439414 PMCID: PMC2707221 DOI: 10.1074/jbc.m109.007021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Indexed: 11/06/2022] Open
Abstract
Recently four new hypertrophic cardiomyopathy mutations in cardiac troponin C (cTnC) (A8V, C84Y, E134D, and D145E) were reported, and their effects on the Ca(2+) sensitivity of force development were evaluated (Landstrom, A. P., Parvatiyar, M. S., Pinto, J. R., Marquardt, M. L., Bos, J. M., Tester, D. J., Ommen, S. R., Potter, J. D., and Ackerman, M. J. (2008) J. Mol. Cell. Cardiol. 45, 281-288). We performed actomyosin ATPase and spectroscopic solution studies to investigate the molecular properties of these mutations. Actomyosin ATPase activity was measured as a function of [Ca(2+)] utilizing reconstituted thin filaments (TFs) with 50% mutant and 50% wild type (WT) and 100% mutant cardiac troponin (cTn) complexes: A8V, C84Y, and D145E increased the Ca(2+) sensitivity with only A8V demonstrating lowered Ca(2+) sensitization at the 50% ratio when compared with 100%; E134D was the same as WT at both ratios. Of these four mutants, only D145E showed increased ATPase activation in the presence of Ca(2+). None of the mutants affected ATPase inhibition or the binding of cTn to the TF measured by co-sedimentation. Only D145E increased the Ca(2+) affinity of site II measured by 2-(4'-(2''-iodoacetamido)phenyl)aminonaphthalene-6-sulfonic acid fluorescence in isolated cTnC or the cTn complex. In the presence of the TF, only A8V was further sensitized to Ca(2+). Circular dichroism measurements in different metal-bound states of the isolated cTnCs showed changes in the secondary structure of A8V, C84Y, and D145E, whereas E134D was the same as WT. PyMol modeling of each cTnC mutant within the cTn complex revealed potential for local changes in the tertiary structure of A8V, C84Y, and D145E. Our results indicate that 1) three of the hypertrophic cardiomyopathy cTnC mutants increased the Ca(2+) sensitivity of the myofilament; 2) the effects of the mutations on the Ca(2+) affinity of isolated cTnC, cTn, and TF are not sufficient to explain the large Ca(2+) sensitivity changes seen in reconstituted and fiber assays; and 3) changes in the secondary structure of the cTnC mutants may contribute to modified protein-protein interactions along the sarcomere lattice disrupting the coupling between the cross-bridge and Ca(2+) binding to cTnC.
Collapse
Affiliation(s)
- Jose Renato Pinto
- From the Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136 and
| | - Michelle S. Parvatiyar
- From the Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136 and
| | - Michelle A. Jones
- From the Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136 and
| | - Jingsheng Liang
- From the Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136 and
| | - Michael J. Ackerman
- the Department of Medicine/Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905
| | - James D. Potter
- From the Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136 and
| |
Collapse
|
15
|
Dweck D, Hus N, Potter JD. Challenging current paradigms related to cardiomyopathies. Are changes in the Ca2+ sensitivity of myofilaments containing cardiac troponin C mutations (G159D and L29Q) good predictors of the phenotypic outcomes? J Biol Chem 2008; 283:33119-28. [PMID: 18820258 DOI: 10.1074/jbc.m804070200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two novel mutations (G159D and L29Q) in cardiac troponin C (CTnC) associate their phenotypic outcomes with dilated (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Current paradigms propose that sarcomeric mutations associated with DCM decrease the myofilament Ca2+ sensitivity, whereas those associated with HCM increase it. Therefore, we incorporated the mutant CTnCs into skinned cardiac muscle in order to determine if their effects on the Ca2+ sensitivities of tension and ATPase activity coincide with the current paradigms and phenotypic outcomes. The G159D-CTnC decreases the Ca2+ sensitivity of tension and ATPase activation and reduces the maximal ATPase activity when incorporated into regulated actomyosin filaments. Under the same conditions, the L29Q-CTnC has no effect. Surprisingly, changes in the apparent G159D-CTnC Ca2+ affinity measured by tension in fibers do not occur in the isolated CTnC, and large changes measured in the isolated L29Q-CTnC do not manifest in the fiber. These counterintuitive findings are justified through a transition in Ca2+ affinity occurring at the level of cardiac troponin and higher, implying that the true effects of these mutations become apparent as the hierarchical level of the myofilament increases. Therefore, the contractile apparatus, representing a large cooperative machine, can provide the potential for a change (G159D) or no change (L29Q) in the Ca2+ regulation of contraction. In accordance with the clinical outcomes and current paradigms, the desensitization of myofilaments from G159D-CTnC is expected to weaken the contractile force of the myocardium, whereas the lack of myofilament changes from L29Q-CTnC may preserve diastolic and systolic function.
Collapse
Affiliation(s)
- David Dweck
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
16
|
Landstrom AP, Parvatiyar MS, Pinto JR, Marquardt ML, Bos JM, Tester DJ, Ommen SR, Potter JD, Ackerman MJ. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol 2008; 45:281-8. [PMID: 18572189 PMCID: PMC2627482 DOI: 10.1016/j.yjmcc.2008.05.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 11/30/2022]
Abstract
Hypertrophic Cardiomyopathy (HCM) is a common primary cardiac disorder defined by a hypertrophied left ventricle, is one of the main causes of sudden death in young athletes, and has been associated with mutations in most sarcomeric proteins (tropomyosin, troponin T and I, and actin, etc.). Many of these mutations appear to affect the functional properties of cardiac troponin C (cTnC), i.e., by increasing the Ca(2+)-sensitivity of contraction, a hallmark of HCM, yet surprisingly, prior to this report, cTnC had not been classified as a HCM-susceptibility gene. In this study, we show that mutations occurring in the human cTnC (HcTnC) gene (TNNC1) have the same prevalence (~0.4%) as well established HCM-susceptibility genes that encode other sarcomeric proteins. Comprehensive open reading frame/splice site mutation analysis of TNNC1 performed on 1025 unrelated HCM patients enrolled over the last 10 years revealed novel missense mutations in TNNC1: A8V, C84Y, E134D, and D145E. Functional studies with these recombinant HcTnC HCM mutations showed increased Ca(2+) sensitivity of force development (A8V, C84Y and D145E) and force recovery (A8V and D145E). These results are consistent with the HCM functional phenotypes seen with other sarcomeric-HCM mutations (E134D showed no changes in these parameters). This is the largest cohort analysis of TNNC1 in HCM that details the discovery of at least three novel HCM-associated mutations and more strongly links TNNC1 to HCM along with functional evidence that supports a central role for its involvement in the disease. This study may help to further define TNNC1 as an HCM-susceptibility gene, a classification that has already been established for the other members of the troponin complex.
Collapse
Affiliation(s)
- Andrew P. Landstrom
- Mayo Medical School, Mayo Clinic, Rochester, MN
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | | | - Jose R. Pinto
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
| | | | - J. Martijn Bos
- Department of Medicine/Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - David J. Tester
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
- Department of Medicine/Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Steve R. Ommen
- Department of Medicine/Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - James D. Potter
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
| | - Michael J. Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
- Department of Medicine/Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
- Department of Pediatrics/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Modulation of troponin C affinity for the thin filament by different cross-bridge states in skinned skeletal muscle fibers. Pflugers Arch 2008; 456:1177-87. [PMID: 18386050 DOI: 10.1007/s00424-008-0480-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
Abstract
In vertebrate skeletal muscle, the C-domain of troponin C (TnC) serves as an anchor; the N-domain regulates the position of troponin-tropomyosin on the thin filament after changes in intracellular Ca2+. Another type of thin-filament regulation is provided by cross-bridges. In this study, we use skinned fibers reconstituted with chicken recombinant TnC (rTnC) to examine TnC-thin filament affinity when cross-bridges containing different ligands are formed. Dissociation and equilibrium binding of apo-TnC (i.e., lacking divalent cations) under different conditions were monitored by a standard test for maximum tension (P (o)). After 10 min in low-Mg2+ relaxing solution, rTnC dissociation (i.e., tension loss) was 80% vs only 45% in rigor. In rigor, adding myosin subfragment 1 (S1) reduced dissociation approximately twofold, whereas stretching to reduce filament overlap increased dissociation to nearly the value for relaxed fibers. Dissociation of rTnC after addition of Pi or MgADP to form A.M.Pi or A.M.ADP cross-bridges was significantly greater than with rigor (A.M) bridges. The increase in P (o) during equilibration with different concentrations of rTnC showed that the affinity for rTnC binding to the thin filament increased progressively with stronger cross-bridges: rTnC concentrations for half-maximal reconstitution (K (0.5)) were 8.1, 3.7, 2.9, and 1.1 microM for A + M.ADP.Pi, A.M.Pi, A.M, and A.M + S1. Cross-bridges containing MgADP(-) (A.M.ADP) were also less effective than rigor bridges in promoting rTnC binding. We conclude that cross-bridge state and number both modulate TnC affinity for the thin filament and that the TnC C-domain is a central element in this pathway.
Collapse
|
18
|
Rainaldi M, Yamniuk AP, Murase T, Vogel HJ. Calcium-dependent and -independent binding of soybean calmodulin isoforms to the calmodulin binding domain of tobacco MAPK phosphatase-1. J Biol Chem 2007; 282:6031-42. [PMID: 17202149 DOI: 10.1074/jbc.m608970200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The recent finding of an interaction between calmodulin (CaM) and the tobacco mitogen-activated protein kinase phosphatase-1 (NtMKP1) establishes an important connection between Ca(2+) signaling and the MAPK cascade, two of the most important signaling pathways in plant cells. Here we have used different biophysical techniques, including fluorescence and NMR spectroscopy as well as microcalorimetry, to characterize the binding of soybean CaM isoforms, SCaM-1 and -4, to synthetic peptides derived from the CaM binding domain of NtMKP1. We find that the actual CaM binding region is shorter than what had previously been suggested. Moreover, the peptide binds to the SCaM C-terminal domain even in the absence of free Ca(2+) with the single Trp residue of the NtMKP1 peptides buried in a solvent-inaccessible hydrophobic region. In the presence of Ca(2+), the peptides bind first to the C-terminal lobe of the SCaMs with a nanomolar affinity, and at higher peptide concentrations, a second peptide binds to the N-terminal domain with lower affinity. Thermodynamic analysis demonstrates that the formation of the peptide-bound complex with the Ca(2+)-loaded SCaMs is driven by favorable binding enthalpy due to a combination of hydrophobic and electrostatic interactions. Experiments with CaM proteolytic fragments showed that the two domains bind the peptide in an independent manner. To our knowledge, this is the first report providing direct evidence for sequential binding of two identical peptides of a target protein to CaM. Discussion of the potential biological role of this interaction motif is also provided.
Collapse
Affiliation(s)
- Mario Rainaldi
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
19
|
Hedou J, Cieniewski-Bernard C, Leroy Y, Michalski JC, Mounier Y, Bastide B. O-linked N-acetylglucosaminylation is involved in the Ca2+ activation properties of rat skeletal muscle. J Biol Chem 2007; 282:10360-9. [PMID: 17289664 DOI: 10.1074/jbc.m606787200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked N-acetylglucosaminylation termed O-GlcNAc is a dynamic cytosolic and nuclear glycosylation that is dependent both on glucose flow through the hexosamine biosynthesis pathway and on phosphorylation because of the existence of a balance between phosphorylation and O-GlcNAc. This glycosylation is a ubiquitous post-translational modification, which probably plays an important role in many aspects of protein functions. We have previously reported that, in skeletal muscle, proteins of the glycolytic pathway, energetic metabolism, and contractile proteins were O-GlcNAc-modified and that O-Glc-NAc variations could control the muscle protein homeostasis and be implicated in the regulation of muscular atrophy. In this paper, we report O-N-acetylglucosaminylation of a number of key contractile proteins (i.e. myosin heavy and light chains and actin), which suggests that this glycosylation could be involved in skeletal muscle contraction. Moreover, our results showed that incubation of skeletal muscle skinned fibers in N-acetyl-d-glucosamine, in a concentration solution known to inhibit O-GlcNAc-dependent interactions, induced a decrease in calcium sensitivity and affinity of muscular fibers, whereas the cooperativity of the thin filament proteins was not modified. Thus, our results suggest that O-GlcNAc is involved in contractile protein interactions and could thereby modulate muscle contraction.
Collapse
Affiliation(s)
- Julie Hedou
- Laboratoire de Plasticité Neuromusculaire, Unité de Neurosciences et Physiologie Adaptatives, UPRES EA 4052, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
Spectral study on the interaction of ciliate Euplotes octocarinatus centrin and metal ions. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2006.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Preston LC, Lipscomb S, Robinson P, Mogensen J, McKenna WJ, Watkins H, Ashley CC, Redwood CS. Functional effects of the DCM mutant Gly159Asp Troponin C in skinned muscle fibres. Pflugers Arch 2006; 453:771-6. [PMID: 17021793 DOI: 10.1007/s00424-006-0161-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 07/17/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
We recently reported a dilated cardiomyopathy (DCM) causing mutation in a novel disease gene, TNNC1, which encodes cardiac troponin C (TnC). We have determined how this mutation, Gly159Asp, affects contractile regulation when incorporated into muscle fibres. Endogenous troponin in rabbit skinned psoas fibres was partially replaced by recombinant human cardiac troponin containing either wild-type or Gly159Asp TnC. We measured both the force-pCa relationship of these fibres and the activation rate using the caged-Ca(2+) compound nitrophenyl-EGTA. Gly159Asp TnC had no significant effect on either the Ca(2+) sensitivity or cooperativity of force generation when compared to wild type. However, the mutation caused a highly significant (ca. 50%) decrease in the rate of activation. This study shows that whilst not affecting the force-pCa relationship, the mutation Gly159Asp causes a significant decrease in the rate of force production and a change in the relationship between the rate of force production and generated force. In vivo, this mutation may cause both a slowing of force generation and reduction in total systolic force. This represents a novel mechanism by which a cardiomyopathy-causing mutation can affect contractility.
Collapse
|
22
|
Sousa VP, Pinto JR, Sorenson MM. Ionic interventions that alter the association of troponin C C-domain with the thin filaments of vertebrate striated muscle. Biochim Biophys Acta Gen Subj 2006; 1760:272-82. [PMID: 16300900 DOI: 10.1016/j.bbagen.2005.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/13/2005] [Accepted: 09/27/2005] [Indexed: 11/29/2022]
Abstract
The regulatory complex of vertebrate skeletal muscle integrates information about cross-bridge binding, divalent cations and other intracellular ionic conditions to control activation of muscle contraction. Relatively little is known about the role of the troponin C (TnC) C-domain in the absence of Ca2+. Here, we use a standardized condition for measuring isometric tension in rabbit psoas skinned fibers to track TnC attachment and detachment in the absence of Ca2+ under different conditions of ionic strength, pH and MgATP. In the presence of MgATP and Mg2+, TnC detaches more readily and has a 1.5- to 2-fold lower affinity for the intact thin filament at pH 8 and 250 mM K+ than at pH 6 or in 30 mM K+; changes in affinity are fully reversible. The response to ionic strength is lost when Mg2+ and MgATP are absent, whereas the response to pH persists, suggesting that weaker electrostatic TnC-TnI-TnT interactions can be overridden by strongly bound cross-bridges. In solution, titration of a fluorescent C-domain mutant (F154W TnC) with Mg2+ reveals no significant changes in Mg2+ affinity with pH or ionic strength, suggesting that these parameters influence TnC binding by acting directly on electrostatic forces between TnC and TnI rather than by changing Mg2+ binding to C-domain sites III and IV.
Collapse
Affiliation(s)
- Valeria P Sousa
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | |
Collapse
|
23
|
Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 2005; 90:1790-6. [PMID: 16339891 PMCID: PMC1367327 DOI: 10.1529/biophysj.105.073536] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded calcium biosensors have become valuable tools in cell biology and neuroscience, but some aspects such as signal strength and response kinetics still need improvement. Here we report the generation of a FRET-based calcium biosensor employing troponin C as calcium-binding moiety that is fast, is stable in imaging experiments, and shows a significantly enhanced fluorescence change. These improvements were achieved by engineering magnesium and calcium-binding properties within the C-terminal lobe of troponin C and by the incorporation of circularly permuted variants of the green fluorescent protein. This sensor named TN-XL shows a maximum fractional fluorescence change of 400% in its emission ratio and linear response properties over an expanded calcium regime. When imaged in vivo at presynaptic motoneuron terminals of transgenic fruit flies, TN-XL exhibits highly reproducible fluorescence signals with the fastest rise and decay times of all calcium biosensors known so far.
Collapse
Affiliation(s)
- Marco Mank
- AG Zelluläre Dynamik, Abteilung Neuronale Informationsverarbeitung, Max-Planck-Institut für Neurobiologie 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Ohashi W, Inouye S, Yamazaki T, Hirota H. NMR Analysis of the Mg2+-Binding Properties of Aequorin, a Ca2+-Binding Photoprotein. ACTA ACUST UNITED AC 2005; 138:613-20. [PMID: 16272573 DOI: 10.1093/jb/mvi164] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aequorin, which is a calcium-sensitive photoprotein and a member of the EF-hand superfamily, binds to Mg2+ under physiological conditions, which modulates its light emission. The Mg2+ binding site and its stabilizing influence were examined by NMR spectroscopy. The binding of Mg2+ to aequorin prevented the molecule from aggregating and stabilized it in the monomeric form. To determine the structural differences between Mg2+-bound and free aequorin, we have performed backbone NMR assignments of aequorin in the Mg2+-free state. Mg2+ binding induces conformational changes that are localized in the EF-hand loops. The chemical shift difference data indicated that there are two Mg2+-binding sites, EF-hands I and III. The Mg2+ titration experiment revealed that EF-hand III binds to Mg2+ with higher affinity than EF-hand I, and that only EF-hand III seems to be occupied by Mg2+ under physiological conditions.
Collapse
Affiliation(s)
- Wakana Ohashi
- RIKEN Genomic Sciences Center, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045
| | | | | | | |
Collapse
|
25
|
Dweck D, Reyes-Alfonso A, Potter JD. Expanding the range of free calcium regulation in biological solutions. Anal Biochem 2005; 347:303-15. [PMID: 16289079 DOI: 10.1016/j.ab.2005.09.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 09/21/2005] [Indexed: 11/19/2022]
Abstract
Many biological systems use ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) to regulate the free calcium concentration ([Ca(2+)](free)) in the presence of physiological levels of free Mg(2+) ([Mg(2+)](free)). Frequently, it is necessary to work at [Ca(2+)](free) beyond EGTA's buffering capabilities. Therefore, we have developed methods to extend the buffering range by adding nitrilotriacetic acid (NTA) to solutions containing EGTA. This extension results from NTA having a lower K'(dCa) than EGTA. Such equilibria are solved by pCa Calculator, a computer program designed to aid in the study of Ca(2+)-dependent physiological processes while accounting for the effects of pH, temperature, and ionic strength. With multiple chelators and pH buffers from which to choose, pCa Calculator calculates the total concentration of each species required to achieve specified free concentrations of Ca(2+), ATP, and Mg(2+). The program is intuitive, user-friendly, and flexible enough to fix or vary the [Mg-ATP(2-)] and ionic strength. Moreover, it can account for increases in experimental volume from calcium addition. A comparative analysis is reported for testing solutions in the presence and absence of NTA by measuring the calcium binding affinity of fluorescent cardiac troponin C. These findings demonstrate that EGTA, when used in conjunction with NTA, improves and expands the regulation of free calcium in solution.
Collapse
Affiliation(s)
- David Dweck
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | |
Collapse
|
26
|
Chang AN, Harada K, Ackerman MJ, Potter JD. Functional Consequences of Hypertrophic and Dilated Cardiomyopathy-causing Mutations in α-Tropomyosin. J Biol Chem 2005; 280:34343-9. [PMID: 16043485 DOI: 10.1074/jbc.m505014200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the functional consequences of various cardiomyopathic mutations in human cardiac alpha-tropomyosin (Tm), a method of depletion/reconstitution of native Tm and troponin (Tn) complex (Tm-Tn) in cardiac myofibril preparations has been developed. The endogenous Tm-Tn complex was selectively removed from myofibrils and replaced with recombinant wild-type or mutant proteins. Successful depletion and reconstitution steps were verified by SDS-gel electrophoresis and by the loss and regain of Ca2+-dependent regulation of ATPase activity. Five Tm mutations were chosen for this study: the hypertrophic cardiomyopathy (HCM) mutations E62Q, E180G, and L185R and the dilated cardiomyopathy (DCM) mutations E40K and E54K. Through the use of this new depletion/reconstitution method, the functional consequences of these mutations were determined utilizing myofibrillar ATPase measurements. The results of our studies showed that 1) depletion of >80% of Tm-Tn from myofibrils resulted in a complete loss of the Ca2+-regulated ATPase activity and a significant loss in the maximal ATPase activity, 2) reconstitution of exogenous wild-type Tm-Tn resulted in complete regain in the calcium regulation and in the maximal ATPase activity, and 3) all HCM-associated Tm mutations increased the Ca2+ sensitivity of ATPase activity and all had decreased abilities to inhibit ATPase activity. In contrast, the DCM-associated mutations both decreased the Ca2+ sensitivity of ATPase activity and had no effect on the inhibition of ATPase activity. These findings have demonstrated that the mutations which cause HCM and DCM disrupt discrete mechanisms, which may culminate in the distinct cardiomyopathic phenotypes.
Collapse
Affiliation(s)
- Audrey N Chang
- Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
27
|
Braga CACA, Pinto JR, Valente AP, Silva JL, Sorenson MM, Foguel D, Suarez MC. Ca(2+) and Mg(2+) binding to weak sites of TnC C-domain induces exposure of a large hydrophobic surface that leads to loss of TnC from the thin filament. Int J Biochem Cell Biol 2005; 38:110-22. [PMID: 16183325 DOI: 10.1016/j.biocel.2005.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/29/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
The C-domain of troponin C, the Ca(2+)-binding subunit of the troponin complex, has two high-affinity sites for Ca(2+) that also bind Mg(2+) (Ca(2+)/Mg(2+) sites), whereas the N-domain has two low-affinity sites for Ca(2+). Two more sites that bind Mg(2+) with very low affinity (K(a)<10(3)M(-1)) have been detected by several laboratories but have not been localized or studied in any detail. Here we investigated the effects of Ca(2+) and Mg(2+) binding to isolated C-domain, focusing primarily on low-affinity sites. Since TnC has no Trp residues, we utilized a mutant with Phe 154 replaced by Trp (F154W/C-domain). As expected from previous reports, the changes in Trp fluorescence revealed different conformations induced by the addition of Ca(2+) or Mg(2+) (Ca(2+)/Mg(2+) sites). Exposure of hydrophobic surfaces of F154W/C-domain was monitored using the fluorescence intensity of bis-anilino naphthalene sulfonic acid. Unlike the changes reported by Trp, the increments in bis-ANS fluorescence were much greater (4.2-fold) when Ca(2+)+Mg(2+) were both present or when Ca(2+) was present at high concentration. Bis-ANS fluorescence increased as a function of [Ca(2+)] in two well-defined steps: one at low [Ca(2+)], consistent with the Ca(2+)/Mg(2+) sites (K(a) approximately 1.5 x 10(6)M(-1)), and one of much lower affinity (K(a) approximately 52.3M(-1)). Controls were performed to rule out artifacts due to aggregation, high ionic strength and formation of the bis-ANS-TnC complex itself. With a low concentration of Ca(2+) (0.6mM) to occupy the Ca(2+)/Mg(2+) sites, a large increase in bis-ANS binding also occurred as Mg(2+) occupied a class of low-affinity sites (K(a) approximately 59 M(-1)). In skinned fibers, a high concentration of Mg(2+) (10-44 mM) caused TnC to dissociate from the thin filament. These data provide new evidence for a class of weak binding sites for divalent cations. They are located in the C-domain, lead to exposure of a large hydrophobic surface, and destabilize the binding of TnC to the regulatory complex even when sites III and IV are occupied.
Collapse
Affiliation(s)
- Carolina A C A Braga
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av Bauhinia 400 CCS bloco E sala 42, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Centrin is an EF-hand calcium-binding protein closely related to the prototypical calcium sensor protein calmodulin. It is found in microtubule-organizing centers of organisms ranging from algae and yeast to man. In vitro, the C-terminal domain of centrin binds to the yeast centrosomal protein Kar1p in a calcium-dependent manner, whereas the N-terminal domain does not show any appreciable affinity for Kar1p. To obtain deeper insights into the structural basis for centrin's function, we have characterized the affinities of the C-terminal domain of Chlamydomonas reinhardtii centrin for calcium and for a peptide fragment of Kar1p using CD, fluorescence, and NMR spectroscopy. Calcium binding site IV in C. reinhardtii centrin was found to bind Ca2+ approximately 100-fold more strongly than site III. In the absence of Ca2+, the protein occupies a mixture of closed conformations. Binding of a single ion in site IV is sufficient to radically alter the conformational equilibrium, promoting occupancy of an open conformation. However, an exchange between closed and open conformations remains even at saturating levels of Ca2+. The population of the open conformation is substantially stabilized by the presence of the target peptide Kar1p-(239-257) to a point where a single ion bound in site IV is sufficient to completely shift the conformational equilibrium to the open conformation. This is reflected in the enhancement of the Ca2+ affinity in this site by more than an order of magnitude. These data confirm the direct coupling of the Ca2+ binding-induced shift in the equilibrium between the closed and open conformations to the binding of the peptide. Combined with the common localization of the two proteins in the microtubule organizing center, our results suggest that centrin is constitutively bound to Kar1p through its C-terminal domain and that centrin's calcium sensor activities are mediated by the N-terminal domain.
Collapse
Affiliation(s)
- Haitao Hu
- Departments of Biochemistry and Physics and the Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, USA
| | | | | |
Collapse
|
29
|
Venkatraman G, Harada K, Gomes AV, Kerrick WGL, Potter JD. Different functional properties of troponin T mutants that cause dilated cardiomyopathy. J Biol Chem 2003; 278:41670-6. [PMID: 12923187 DOI: 10.1074/jbc.m302148200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of Troponin T (TnT) mutants R141W and DeltaK210, the only two currently known mutations in TnT that cause dilated cardiomyopathy(DCM) independent of familial hypertrophic cardiomyopathy (FHC), and TnT-K273E, a mutation that leads to a progression from FHC to DCM, were investigated. Studies on the Ca2+ sensitivity of force development in porcine cardiac fibers demonstrated that TnT-DeltaK210 caused a significant decrease in Ca2+ sensitivity, whereas the TnT-R141W did not result in any change in Ca2+ sensitivity when compared with human cardiac wild-type TnT (HCWTnT). TnT-DeltaK210 also caused a decrease in maximal force when compared with HCWTnT and TnT-R141W. In addition, the TnT-DeltaK210 mutant decreased maximal ATPase activity in the presence of Ca2+. However, the TnT-K273E mutation caused a significant increase in Ca2+ sensitivity but behaved similarly to HCWTnT in actomyosin activation assays. Inhibition of ATPase activity in reconstituted actin-activated myosin ATPase assays was similar for all three TnT mutants and HCWTnT. Additionally, circular dichroism studies suggest that the secondary structure of all three TnT mutants was similar to that of the HCWTnT. These results suggest that a rightward shift in Ca2+ sensitivity is not the only determinant for the phenotype of DCM.
Collapse
Affiliation(s)
- Gayathri Venkatraman
- Department of Molecular and Cellular Pharmacology, University of Miami School Of Medicine, 1600 NW 10th Avenue, Miami, FL 33101, USA
| | | | | | | | | |
Collapse
|
30
|
Liang B, Chen Y, Wang CK, Luo Z, Regnier M, Gordon AM, Chase PB. Ca2+ regulation of rabbit skeletal muscle thin filament sliding: role of cross-bridge number. Biophys J 2003; 85:1775-86. [PMID: 12944292 PMCID: PMC1303351 DOI: 10.1016/s0006-3495(03)74607-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Accepted: 05/29/2003] [Indexed: 11/17/2022] Open
Abstract
We investigated how strong cross-bridge number affects sliding speed of regulated Ca(2+)-activated, thin filaments. First, using in vitro motility assays, sliding speed decreased nonlinearly with reduced density of heavy meromyosin (HMM) for regulated (and unregulated) F-actin at maximal Ca(2+). Second, we varied the number of Ca(2+)-activatable troponin complexes at maximal Ca(2+) using mixtures of recombinant rabbit skeletal troponin (WT sTn) and sTn containing sTnC(D27A,D63A), a mutant deficient in Ca(2+) binding at both N-terminal, low affinity Ca(2+)-binding sites (xxsTnC-sTn). Sliding speed decreased nonlinearly as the proportion of WT sTn decreased. Speed of regulated thin filaments varied with pCa when filaments contained WT sTn but filaments containing only xxsTnC-sTn did not move. pCa(50) decreased by 0.12-0.18 when either heavy meromyosin density was reduced to approximately 60% or the fraction of Ca(2+)-activatable regulatory units was reduced to approximately 33%. Third, we exchanged mixtures of sTnC and xxsTnC into single, permeabilized fibers from rabbit psoas. As the proportion of xxsTnC increased, unloaded shortening velocity decreased nonlinearly at maximal Ca(2+). These data are consistent with unloaded filament sliding speed being limited by the number of cycling cross-bridges so that maximal speed is attained with a critical, low level of actomyosin interactions.
Collapse
Affiliation(s)
- Bo Liang
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Tripet B, De Crescenzo G, Grothe S, O'Connor-McCourt M, Hodges RS. Kinetic analysis of the interactions between troponin C (TnC) and troponin I (TnI) binding peptides: evidence for separate binding sites for the 'structural' N-terminus and the 'regulatory' C-terminus of TnI on TnC. J Mol Recognit 2003; 16:37-53. [PMID: 12557238 DOI: 10.1002/jmr.606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Ca(2+)/Mg(2+)-dependent interactions between TnC and TnI play a critical role in regulating the 'on' and 'off' states of muscle contraction as well as maintaining the structural integrity of the troponin complex in the off state. In the present study, we have investigated the binding interactions between the N-terminus of TnI (residues 1-40 of skeletal TnI) and skeletal TnC in the presence of Ca(2+) ions, Mg(2+) ions and in the presence of the C-terminal regulatory region peptides: TnI(96-115), TnI(96-131) and TnI(96-139). Our results show the N-terminus of TnI can bind to TnC with high affinity in the presence of Ca(2+) or Mg(2+) ions with apparent equilibrium dissociation constants of K(d(Ca(2+) ) ) = 48 nM and K(d(Mg(2+) ) ) = 29 nM. The apparent association and dissociation rate constants for the interactions were, k(on) = 4.8 x 10(5) M (-1) s(-1), 3.4 x 10(5) M (-1) s(-1) and k(off) = 2.3 x 10(-2) s(-1), 1.0 x 10(-2) s(-1) for TnC(Ca(2+)) and TnC(Mg(2+)) states, respectively. Competition studies between each of the TnI regions and TnC showed that both TnI regions can bind simultaneously to TnC while native gel electrophoresis and SEC confirmed the formation of stable ternary complexes between TnI(96-139) (or TnI(96-131)) and TnC-TnI(1-40). Further analysis of the binding interactions in the ternary complex showed the binding of the TnI regulatory region to TnC was critically dependent upon the presence of both TnC binding sites (i.e. TnI(96-115) and TnI(116-131)) and the presence of Ca(2+). Furthermore, the presence of TnI(1-40) slightly weakened the affinity of the regulatory peptides for TnC. Taken together, these results support the model for TnI-TnC interaction where the N-terminus of TnI remains bound to the C-domain of TnC in the presence of high and low Ca(2+) levels while the TnI regulatory region (residues 96-139) switches in its binding interactions between the actin-tropomyosin thin filament and its own sites on the N- and C-domain of TnC at high Ca(2+) levels, thus regulating muscle contraction.
Collapse
Affiliation(s)
- Brian Tripet
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
32
|
Szczesna D, Potter JD. The role of troponin in the Ca(2+)-regulation of skeletal muscle contraction. Results Probl Cell Differ 2002; 36:171-90. [PMID: 11892279 DOI: 10.1007/978-3-540-46558-4_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Danuta Szczesna
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, 1600 N.W. 10th Ave., Miami, Florida 33136, USA
| | | |
Collapse
|
33
|
Regnier M, Rivera AJ, Wang CK, Bates MA, Chase PB, Gordon AM. Thin filament near-neighbour regulatory unit interactions affect rabbit skeletal muscle steady-state force-Ca(2+) relations. J Physiol 2002; 540:485-97. [PMID: 11956338 PMCID: PMC2290239 DOI: 10.1113/jphysiol.2001.013179] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of cooperative interactions between individual structural regulatory units (SUs) of thin filaments (7 actin monomers : 1 tropomyosin : 1 troponin complex) on steady-state Ca(2+)-activated force was studied. Native troponin C (TnC) was extracted from single, de-membranated rabbit psoas fibres and replaced by mixtures of purified rabbit skeletal TnC (sTnC) and recombinant rabbit sTnC (D27A, D63A), which contains mutations that disrupt Ca(2+) coordination at N-terminal sites I and II (xxsTnC). Control experiments in fibres indicated that, in the absence of Ca(2+), both sTnC and xxsTnC bind with similar apparent affinity to sTnC-extracted thin filaments. Endogenous sTnC-extracted fibres reconstituted with 100 % xxsTnC did not develop Ca(2+)-activated force. In fibres reconstituted with mixtures of sTnC and xxsTnC, maximal Ca(2+)-activated force increased in a greater than linear manner with the fraction of sTnC. This suggests that Ca(2+) binding to functional Tn can spread activation beyond the seven actins of an SU into neighbouring units, and the data suggest that this functional unit (FU) size is up to 10-12 actins. As the number of FUs was decreased, Ca(2+) sensitivity of force (pCa(50)) decreased proportionally. The slope of the force-pCa relation (the Hill coefficient, n(H)) also decreased when the reconstitution mixture contained < 50 % sTnC. With 15 % sTnC in the reconstitution mixture, n(H) was reduced to 1.7 +/- 0.2, compared with 3.8 +/- 0.1 in fibres reconstituted with 100 % sTnC, indicating that most of the cooperative thin filament activation was eliminated. The results suggest that cooperative activation of skeletal muscle fibres occurs primarily through spread of activation to near-neighbour FUs along the thin filament (via head-to-tail tropomyosin interactions).
Collapse
Affiliation(s)
- Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Yamashita-Goto K, Okuyama R, Honda M, Kawasaki K, Fujita K, Yamada T, Nonaka I, Ohira Y, Yoshioka T. Maximal and submaximal forces of slow fibers in human soleus after bed rest. J Appl Physiol (1985) 2001; 91:417-24. [PMID: 11408459 DOI: 10.1152/jappl.2001.91.1.417] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of 2 and 4 mo of bed rest, with or without exercise countermeasures, on the contractile properties of slow fibers in the human soleus muscle were examined. Mean fiber diameters were 8 and 36% smaller after 2 and 4 mo of bed rest, respectively, than the pre-bed rest level. Maximum tetanic force (P(o)), maximum activated force (F(max)) per cross-sectional area (CSA), and the common-logarithm value of free Ca(2+) concentration required for half-maximal activation (pCa(50)) also decreased after 2 and 4 mo of bed rest. In contrast, maximum unloaded shortening velocity (V(o)) was increased after 2 and 4 mo of bed rest. After 1 mo of recovery, fiber diameters, P(o), F(max) per CSA (P > 0.05), and pCa(50) were increased and V(o) decreased toward pre-bed rest levels. Effects of knee extension/flexion exercise by wearing an anti-G Penguin suit for 10 h daily, and the effects of loading or unloading of the plantar flexors with (Penguin-1) or without (Penguin-2) placing the elastic loading elements of the suit, respectively, were investigated during ~2 mo of bed rest. In the Penguin-1 group, mean fiber diameter, P(o), F(max) per CSA, V(o), and pCa(50) were similar before and after bed rest. However, the responses of fiber size and contractile properties to bed rest were not prevented in the Penguin-2 group, although the degree of the changes was less than those induced by bed rest without any countermeasure. These results indicate that long-term bed rest results in reductions of fiber size, force-generation capacity, and Ca(2+) sensitivity, and enhancement of shortening velocity in slow fibers of the soleus. The data indicate that continuous mechanical loading on muscle, such as stretching of muscle, is an effective countermeasure for the prevention of muscular adaptations to gravitational unloading.
Collapse
Affiliation(s)
- K Yamashita-Goto
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki City, Kanagawa 216-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leblanc L, Bennet A, Borgford T. Calcium Affinity of Regulatory Sites in Skeletal Troponin-C Is Attenuated by N-Cap Mutations of Helix C. Arch Biochem Biophys 2000; 384:296-304. [PMID: 11368316 DOI: 10.1006/abbi.2000.2103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Site-directed mutagenesis was used to make amino acid substitutions at position 54 of skeletal troponin C, testing a relationship between the stability of helix C and calcium ion affinity at regulatory sites in the protein. Normally, threonine at position 54 is the first helical residue, or N-cap, of the C helix; where helices C and D, and the loop between, comprise binding site II. Mutations were made in the context of a previously described phenylalanine 29--> tryptophan (F29W) variant (Trigo-Gonzalez et al., Biochemistry 31, 7009-7015 (1992)), which allows binding events to be monitored through changes in the intrinsic fluorescence of the protein. N-Cap substitutions at position 54 were shown to attenuate the calcium affinity of regulatory sites in the N-terminal domain. Calcium affinities diminished according to the series T54 T54S > T54A > T54V > T54G with dissociation constants of 1.36 x 10(-6), 1.36 x 10(-6), 2.09 x 10(-6), 2.28 x 10(-6), and 4.24 x 10(-6) M, respectively. The steady state binding of calcium to proteins in the mutant series was seen to be monophasic and cooperative. Calcium off-rates were measured by stopped flow fluorescence and in every instance two transitions were observed. The rate constant of the first transition, corresponding to approximately 99% of the change in fluorescence, was between 900+/-20 and 1470+/-100 s(-1), whereas the rate constant of the second transitions was between 94+/-9 and 130+/-23 s(-1). The significance of two transitions remains unclear, though both rate constants occur on a time scale consistent with the regulation of contraction.
Collapse
Affiliation(s)
- L Leblanc
- Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
36
|
Pearlstone JR, Chandra M, Sorenson MM, Smillie LB. Biological function and site II Ca2+-induced opening of the regulatory domain of skeletal troponin C are impaired by invariant site I or II Glu mutations. J Biol Chem 2000; 275:35106-15. [PMID: 10952969 DOI: 10.1074/jbc.m001000200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the roles of site I and II invariant Glu residues 41 and 77 in the functional properties and calcium-induced structural opening of skeletal muscle troponin C (TnC) regulatory domain, we have replaced them by Ala in intact F29W TnC and in wild-type and F29W N domains (TnC residues 1-90). Reconstitution of intact E41A/F29W and E77A/F29W mutants into TnC-depleted muscle skinned fibers showed that Ca(2+)-induced tension is greatly reduced compared with the F29W control. Circular dichroism measurements of wild-type N domain as a function of pCa (= -log[Ca(2+)]) demonstrated that approximately 90% of the total change in molar ellipticity at 222 nm ([theta](222 nm)) could be assigned to site II Ca(2+) binding. With E41A, E77A, and cardiac TnC N domains this [theta](222 nm) change attributable to site II was reduced to < or =40% of that seen with wild type, consistent with their structures remaining closed in +Ca(2+). Furthermore, the Ca(2+)-induced changes in fluorescence, near UV CD, and UV difference spectra observed with intact F29W are largely abolished with E41A/F29W and E77A/F29W TnCs. Taken together, the data indicate that the major structural change in N domain, including the closed to open transition, is triggered by site II Ca(2+) binding, an interpretation relevant to the energetics of the skeletal muscle TnC and cardiac TnC systems.
Collapse
Affiliation(s)
- J R Pearlstone
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
37
|
Abstract
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
38
|
Szczesna D, Zhang R, Zhao J, Jones M, Guzman G, Potter JD. Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. J Biol Chem 2000; 275:624-30. [PMID: 10617660 DOI: 10.1074/jbc.275.1.624] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To study the effect of troponin (Tn) T mutations that cause familial hypertrophic cardiomyopathy (FHC) on cardiac muscle contraction, wild-type, and the following recombinant human cardiac TnT mutants were cloned and expressed: I79N, R92Q, F110I, E163K, R278C, and intron 16(G(1) --> A) (In16). These TnT FHC mutants were reconstituted into skinned cardiac muscle preparations and characterized for their effect on maximal steady state force activation, inhibition, and the Ca(2+) sensitivity of force development. Troponin complexes containing these mutants were tested for their ability to regulate actin-tropomyosin(Tm)-activated myosin-ATPase activity. TnT(R278C) and TnT(F110I) reconstituted preparations demonstrated dramatically increased Ca(2+) sensitivity of force development, while those with TnT(R92Q) and TnT(I79N) showed a moderate increase. The deletion mutant, TnT(In16), significantly decreased both the activation and the inhibition of force, and substantially decreased the activation and the inhibition of actin-Tm-activated myosin-ATPase activity. ATPase activation was also impaired by TnT(F110I), while its inhibition was reduced by TnT(R278C). The TnT(E163K) mutation had the smallest effect on the Ca(2+) sensitivity of force; however, it produced an elevated activation of the ATPase activity in reconstituted thin filaments. These observed changes in the Ca(2+) regulation of force development caused by these mutations would likely cause altered contractility and contribute to the development of FHC.
Collapse
Affiliation(s)
- D Szczesna
- Department of Molecular Pharmacology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|
39
|
Wang F, Li W, Emmett MR, Marshall AG, Corson D, Sykes BD. Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca(2+)-induced conformational changes in the regulatory domain of human cardiac troponin C. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1999; 10:703-710. [PMID: 10439508 DOI: 10.1016/s1044-0305(99)00039-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Troponin C (TnC), a calcium-binding protein of the thin filament of muscle, plays a regulatory role in skeletal and cardiac muscle contraction. NMR reveals a small conformational change in the cardiac regulatory N-terminal domain of TnC (cNTnC) on binding of Ca2+ such that the total exposed hydrophobic surface area increases very slightly from 3090 +/- 86 A2 for apo-cNTnC to 3108 +/- 71 A2 for Ca(2+)-cNTnC. Here, we show that measurement of solvent accessibility for backbone amide protons by means of solution-phase hydrogen/deuterium (H/D) exchange followed by pepsin digestion, high-performance liquid chromatography, and electrospray ionization high-field (9.4 T) Fourier transform Ion cyclotron resonance mass spectrometry is sufficiently sensitive to detect such small ligand binding-induced conformational changes of that protein. The extent of deuterium incorporation increases significantly on binding of Ca2+ for each of four proteolytic segments derived from pepsin digestion of the apo- and Ca(2+)-saturated forms of cNTnC. The present results demonstrate that H/D exchange monitored by mass spectrometry can be sufficiently sensitive to detect and identify even very small conformational changes in proteins, and should therefore be especially informative for proteins too large (or too insoluble or otherwise intractable) for NMR analysis.
Collapse
Affiliation(s)
- F Wang
- Center for Interdisciplinary Magnetic Resonance, Florida State University, Tallahassee 32310, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wang S, George SE, Davis JP, Johnson JD. Structural determinants of Ca2+ exchange and affinity in the C terminal of cardiac troponin C. Biochemistry 1998; 37:14539-44. [PMID: 9772182 DOI: 10.1021/bi9814641] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The C terminal of cardiac troponin C (TnC) has two Ca2+-Mg2+ sites which exhibit approximately 20-fold higher Ca2+ affinity than the two C-terminal Ca2+ specific sites in calmodulin (CaM). Substitution of the third EF-hand of TnC for the corresponding EF-hand of CaM produced a mutant (CaM[3TnC]) with a 10-fold higher C-terminal Ca2+ and Mg2+ affinity. Substitution of loop 3 of TnC for loop 3 of CaM produced a mutant (CaM[loop3TnC]) with a 10-fold faster Ca2+ on rate and a 5-fold faster Ca2+ off rate than CaM. A mutant CaM (CaM[loop3X, Z]) which contained the identical coordinating amino acids and X and Z acid pairs of TnC loop 3 had a 3-fold higher C-terminal Ca2+ affinity without the increased Ca2+ exchange rates exhibited by CaM[loop3TnC]. Thus, loop factors other than the acid pairs must be responsible for the rapid Ca2+ exchange rates of CaM[loop3TnC]. Helix 6 and helix 5 in the third EF-hand of TnC support the rapid Ca2+ on rate of TnC's loop 3 and produce an approximately 4-fold reduction in its Ca2+ off rate, explaining the high Ca2+ affinity of the third EF-hand of TnC. Exchanging loop 3 or helix 5 of TnC into CaM increased the Mg2+ affinity by decreasing the Mg2+ off rate. Our results are consistent with the high Ca2+ and Mg2+ affinity of the third EF-hand of TnC resulting from the two (X and Z) acid pairs in loop 3, coupled with the greater hydrophobicity of helix 6 and helix 5 compared to that of the third EF-hand of CaM.
Collapse
Affiliation(s)
- S Wang
- Department of Medical Biochemistry, The Ohio State University College of Medicine, Columbus 43210-1218, USA
| | | | | | | |
Collapse
|
41
|
Strynadka NC, Cherney M, Sielecki AR, Li MX, Smillie LB, James MN. Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 A resolution. J Mol Biol 1997; 273:238-55. [PMID: 9367759 DOI: 10.1006/jmbi.1997.1257] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have solved and refined the crystal and molecular structures of the calcium-saturated N-terminal domain of troponin C (TnC) to 1.75 A resolution. This has allowed for the first detailed analysis of the calcium binding sites of this molecular switch in the calcium-loaded state. The results provide support for the proposed binding order and qualitatively, for the affinity of calcium in the two regulatory calcium binding sites. Based on a comparison with the high-resolution apo-form of TnC we propose a possible mechanism for the calcium-mediated exposure of a large hydrophobic surface that is central to the initiation of muscle contraction within the cell.
Collapse
Affiliation(s)
- N C Strynadka
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Li MX, Gagné SM, Spyracopoulos L, Kloks CP, Audette G, Chandra M, Solaro RJ, Smillie LB, Sykes BD. NMR studies of Ca2+ binding to the regulatory domains of cardiac and E41A skeletal muscle troponin C reveal the importance of site I to energetics of the induced structural changes. Biochemistry 1997; 36:12519-25. [PMID: 9376356 DOI: 10.1021/bi971222l] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ca2+ binding to the N-domain of skeletal muscle troponin C (sNTnC) induces an "opening" of the structure [Gagné, S. M., et al. (1995) Nat. Struct. Biol. 2, 784-789], which is typical of Ca2+-regulatory proteins. However, the recent structures of the E41A mutant of skeletal troponin C (E41A sNTnC) [Gagné, S. M., et al. (1997) Biochemistry 36, 4386-4392] and of cardiac muscle troponin C (cNTnC) [Sia, S. K., et al. (1997) J. Biol. Chem. 272, 18216-18221] reveal that both of these proteins remain essentially in the "closed" conformation in their Ca2+-saturated states. Both of these proteins are modified in Ca2+-binding site I, albeit differently, suggesting a critical role for this region in the coupling of Ca2+ binding to the induced structural change. To understand the mechanism and the energetics involved in the Ca2+-induced structural transition, Ca2+ binding to E41A sNTnC and to cNTnC have been investigated by using one-dimensional 1H and two-dimensional {1H,15N}-HSQC NMR spectroscopy. Monitoring the chemical shift changes during Ca2+ titration of E41A sNTnC permits us to assign the order of stepwise binding as site II followed by site I and reveals that the mutation reduced the Ca2+ binding affinity of the site I by approximately 100-fold [from KD2 = 16 microM [sNTnC; Li, M. X., et al. (1995) Biochemistry 34, 8330-8340] to 1.3 mM (E41A sNTnC)] and of the site II by approximately 10-fold [from KD1 = 1.7 microM (sNTnC) to 15 microM (E41A sNTnC)]. Ca2+ titration of cNTnC confirms that cNTnC binds only one Ca2+ with a determined dissociation constant KD of 2.6 microM. The Ca2+-induced chemical shift changes occur over the entire sequence in cNTnC, suggesting that the defunct site I is perturbed when site II binds Ca2+. These measurements allow us to dissect the mechanism and energetics of the Ca2+-induced structural changes.
Collapse
Affiliation(s)
- M X Li
- MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Swartz DR, Moss RL, Greaser ML. Characteristics of troponin C binding to the myofibrillar thin filament: extraction of troponin C is not random along the length of the thin filament. Biophys J 1997; 73:293-305. [PMID: 9199794 PMCID: PMC1180931 DOI: 10.1016/s0006-3495(97)78070-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Troponin C (TnC) is the Ca(2+)-sensing subunit of troponin responsible for initiating the cascade of events resulting in contraction of striated muscle. This protein can be readily extracted from myofibrils with low-ionic-strength EDTA-containing buffers. The properties of TnC extraction have not been characterized at the structural level, nor have the interactions of TnC with the native myofibrillar thin filament been studied. To address these issues, fluorescein-labeled TnC, in conjunction with high-resolution digital fluorescence microscopy, was used to characterize TnC binding to myofibrils and to determine the randomness of TnC extraction. Fluorescein-5-maleimide TnC (F5M TnC) retained biological activity, as evidenced by reconstitution of Ca(2+)-dependent ATPase activity in extracted myofibrils and binding to TnI in a Ca(2+)-sensitive manner. The binding of F5M TnC to highly extracted myofibrils at low Ca2+ was restricted to the overlap region under rigor conditions, and the location of binding was not influenced by F5M TnC concentration. The addition of myosin subfragment 1 to occupy all actin sites resulted in F5M TnC being bound in both the overlap and nonoverlap regions. However, very little F5M TnC was bound to myofibrils under relaxing conditions. These results suggest that strong binding of myosin heads enhances TnC binding. At high Ca2+, the pattern of F5M TnC binding was concentration dependent: binding was restricted to the overlap region at low F5M TnC concentration, whereas the binding propagated into the nonoverlap region at higher levels. Analysis of fluorescence intensity showed the greatest binding of F5M TnC at high Ca2+ with S1, and these conditions were used to characterize partially TnC-extracted myofibrils. Comparison of partially extracted myofibrils showed that low levels of extraction were associated with greater F5M TnC being bound in the nonoverlap region than in the overlap region relative to higher levels of extraction. These results show that TnC extraction is not random along the length of the thin filament, but occurs more readily in the nonoverlap region. This observation, in conjunction with the influence of rigor heads on the pattern of F5M TnC binding, suggests that strong myosin binding to actin stabilizes TnC binding at low Ca2+.
Collapse
Affiliation(s)
- D R Swartz
- Indiana University Medical School, Department of Anatomy, Indianapolis 46202, USA.
| | | | | |
Collapse
|