1
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Huang KW, Hsu KC, Chu LY, Yang JM, Yuan HS, Hsiao YY. Identification of Inhibitors for the DEDDh Family of Exonucleases and a Unique Inhibition Mechanism by Crystal Structure Analysis of CRN-4 Bound with 2-Morpholin-4-ylethanesulfonate (MES). J Med Chem 2016; 59:8019-29. [PMID: 27529560 DOI: 10.1021/acs.jmedchem.6b00794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DEDDh family of exonucleases plays essential roles in DNA and RNA metabolism in all kingdoms of life. Several viral and human DEDDh exonucleases can serve as antiviral drug targets due to their critical roles in virus replication. Here using RNase T and CRN-4 as the model systems, we identify potential inhibitors for DEDDh exonucleases. We further show that two of the inhibitors, ATA and PV6R, indeed inhibit the exonuclease activity of the viral protein NP exonuclease of Lassa fever virus in vitro. Moreover, we determine the crystal structure of CRN-4 in complex with MES that reveals a unique inhibition mechanism by inducing the general base His179 to shift out of the active site. Our results not only provide the structural basis for the inhibition mechanism but also suggest potential lead inhibitors for the DEDDh exonucleases that may pave the way for designing nuclease inhibitors for biochemical and biomedical applications.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , Taipei 11031, Taiwan
| | - Lee-Ya Chu
- Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Nankang, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University , 101 Kuang-Fu Road Section 2, Hsinchu 30013, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University , Hsinchu, 30050, Taiwan.,Center for Bioinformatics Research, National Chiao Tung University , Hsinchu 30068, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC
| | - Yu-Yuan Hsiao
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University , Hsinchu, 30050, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University , Hsinchu 30068, Taiwan
| |
Collapse
|
3
|
Abstract
This review provides a description of the known Escherichia coli ribonucleases (RNases), focusing on their structures, catalytic properties, genes, physiological roles, and possible regulation. Currently, eight E. coli exoribonucleases are known. These are RNases II, R, D, T, PH, BN, polynucleotide phosphorylase (PNPase), and oligoribonuclease (ORNase). Based on sequence analysis and catalytic properties, the eight exoribonucleases have been grouped into four families. These are the RNR family, including RNase II and RNase R; the DEDD family, including RNase D, RNase T, and ORNase; the RBN family, consisting of RNase BN; and the PDX family, including PNPase and RNase PH. Seven well-characterized endoribonucleases are known in E. coli. These are RNases I, III, P, E, G, HI, and HII. Homologues to most of these enzymes are also present in Salmonella. Most of the endoribonucleases cleave RNA in the presence of divalent cations, producing fragments with 3'-hydroxyl and 5'-phosphate termini. RNase H selectively hydrolyzes the RNA strand of RNA?DNA hybrids. Members of the RNase H family are widely distributed among prokaryotic and eukaryotic organisms in three distinct lineages, RNases HI, HII, and HIII. It is likely that E. coli contains additional endoribonucleases that have not yet been characterized. First of all, endonucleolytic activities are needed for certain known processes that cannot be attributed to any of the known enzymes. Second, homologues of known endoribonucleases are present in E. coli. Third, endonucleolytic activities have been observed in cell extracts that have different properties from known enzymes.
Collapse
|
4
|
Kiritsi MN, Fragoulis EG, Sideris DC. Essential cysteine residues for human RNase κ catalytic activity. FEBS J 2012; 279:1318-26. [DOI: 10.1111/j.1742-4658.2012.08526.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Zuo Y, Zheng H, Wang Y, Chruszcz M, Cymborowski M, Skarina T, Savchenko A, Malhotra A, Minor W. Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover. Structure 2007; 15:417-28. [PMID: 17437714 PMCID: PMC1907377 DOI: 10.1016/j.str.2007.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/12/2007] [Accepted: 02/16/2007] [Indexed: 11/25/2022]
Abstract
The 3' processing of most bacterial precursor tRNAs involves exonucleolytic trimming to yield a mature CCA end. This step is carried out by RNase T, a member of the large DEDD family of exonucleases. We report the crystal structures of RNase T from Escherichia coli and Pseudomonas aeruginosa, which show that this enzyme adopts an opposing dimeric arrangement, with the catalytic DEDD residues from one monomer closely juxtaposed with a large basic patch on the other monomer. This arrangement suggests that RNase T has to be dimeric for substrate specificity, and agrees very well with prior site-directed mutagenesis studies. The dimeric architecture of RNase T is very similar to the arrangement seen in oligoribonuclease, another bacterial DEDD family exoribonuclease. The catalytic residues in these two enzymes are organized very similarly to the catalytic domain of the third DEDD family exoribonuclease in E. coli, RNase D, which is monomeric.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL, 33101–6129, USA
| | - Heping Zheng
- Department of Molecular Physiology & Biological Physics, University of Virginia, PO Box 800736, Charlottesville, VA 22908–0736, USA
- Midwest Center for Structural Genomics
| | - Yong Wang
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL, 33101–6129, USA
| | - Maksymilian Chruszcz
- Department of Molecular Physiology & Biological Physics, University of Virginia, PO Box 800736, Charlottesville, VA 22908–0736, USA
- Midwest Center for Structural Genomics
| | - Marcin Cymborowski
- Department of Molecular Physiology & Biological Physics, University of Virginia, PO Box 800736, Charlottesville, VA 22908–0736, USA
- Midwest Center for Structural Genomics
| | - Tatiana Skarina
- Department of Medicinal Biophysics, University of Toronto, and Ontario Center for Structural Proteomics, Ontario Cancer Institute, Toronto, Ontario M5G 2C4, Canada
- Midwest Center for Structural Genomics
| | - Alexei Savchenko
- Department of Medicinal Biophysics, University of Toronto, and Ontario Center for Structural Proteomics, Ontario Cancer Institute, Toronto, Ontario M5G 2C4, Canada
- Midwest Center for Structural Genomics
| | - Arun Malhotra
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL, 33101–6129, USA
- * Corresponding Authors: Arun Malhotra: Ph: (305) 243–2826; Fax: (305) 243–3955; , Wladek Minor: Ph: (434) 243–6865; Fax: (434) 982–1616;
| | - Wladek Minor
- Department of Molecular Physiology & Biological Physics, University of Virginia, PO Box 800736, Charlottesville, VA 22908–0736, USA
- Midwest Center for Structural Genomics
- * Corresponding Authors: Arun Malhotra: Ph: (305) 243–2826; Fax: (305) 243–3955; , Wladek Minor: Ph: (434) 243–6865; Fax: (434) 982–1616;
| |
Collapse
|
6
|
Zuo Y, Deutscher MP. Mechanism of action of RNase T. II. A structural and functional model of the enzyme. J Biol Chem 2002; 277:50160-4. [PMID: 12364333 DOI: 10.1074/jbc.m207707200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A detailed structural and functional model of E. coli RNase T was generated based on sequence analysis, homology modeling, and experimental observation. In the accompanying article, three short sequence segments (nucleic acid binding sequences (NBS)) important for RNase T substrate binding were identified. In the model, these segments cluster to form a positively charged surface patch. However, this patch is on the face of the RNase T monomer opposite the DEDD catalytic center. We propose that by dimerization, the NBS patch from one subunit is brought to the vicinity of the DEDD center of the second monomer to form a fully functional RNase T active site. In support of this model, mutagenetic studies show that one NBS1 residue, Arg(13), sits at the catalytic center despite being on the opposite side of the monomer. Second, the complementarity of the RNase T subunits through the formation of homodimers was demonstrated by reconstitution of partial RNase T activity from monomers derived from two inactive mutant proteins, one defective in catalysis and one in substrate binding. These data explain why RNase T must dimerize to function. The model provides a detailed framework on which to explain the mechanism of action of RNase T.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101-6129, USA
| | | |
Collapse
|
7
|
Zuo Y, Deutscher MP. Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization. J Biol Chem 2002; 277:50155-9. [PMID: 12364334 DOI: 10.1074/jbc.m207706200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli RNase T, an RNA-processing enzyme and a member of the DEDD exonuclease superfamily, was examined using sequence analysis and site-directed mutagenesis. Like other DEDD exonucleases, RNase T was found to contain three conserved Exo motifs that included four invariant acidic residues. Mutagenesis of these motifs revealed that they are essential for RNase T activity, indicating that they probably form the RNase T catalytic center in a manner similar to that found in other DEDD exonucleases. We also identified by sequence analysis three short, but highly conserved, sequence segments rich in positively charged residues. Site-directed mutagenesis of these regions indicated that they are involved in substrate binding. Additional analysis revealed that residues within the C-terminal region of RNase T are essential for RNase T dimerization and, consequently, for RNase T activity. These data define the domains necessary for RNase T action, and together with information in the accompanying article, have led to the formulation of a detailed model for the structure and mechanism of action of RNase T.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101-6129, USA
| | | |
Collapse
|
8
|
Zuo Y, Deutscher MP. The physiological role of RNase T can be explained by its unusual substrate specificity. J Biol Chem 2002; 277:29654-61. [PMID: 12050169 DOI: 10.1074/jbc.m204252200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli RNase T, the enzyme responsible for the end-turnover of tRNA and for the 3' maturation of 5 S and 23 S rRNAs and many other small, stable RNAs, was examined in detail with respect to its substrate specificity. The enzyme was found to be a single-strand-specific exoribonuclease that acts in the 3' to 5' direction in a non-processive manner. However, although other Escherichia coli exoribonucleases stop several nucleotides downstream of an RNA duplex, RNase T can digest RNA up to the first base pair. The presence of a free 3'-hydroxyl group is required for the enzyme to initiate digestion. Studies with RNA homopolymers and a variety of oligoribonucleotides revealed that RNase T displays an unusual base specificity, discriminating against pyrimidine and, particularly, C residues. Although RNase T appears to bind up to 10 nucleotides in its active site, its specificity is defined largely by the last 4 residues. A single 3'-terminal C residue can reduce RNase T action by >100-fold, and 2-terminal C residues essentially stop the enzyme. In vivo, the substrates of RNase T are similar in that they all contain a double-stranded stem followed by a single-stranded 3' overhang; yet, the action of RNase T on these substrates differs. The substrate specificity described here helps to explain why the different substrates yield different products, and why certain RNA molecules are not substrates at all.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | |
Collapse
|
9
|
Deutscher MP, Li Z. Exoribonucleases and their multiple roles in RNA metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:67-105. [PMID: 11051762 DOI: 10.1016/s0079-6603(00)66027-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In recent years there has been a dramatic shift in our thinking about ribonucleases (RNases). Although they were once considered to be nonspecific, degradative enzymes, it is now clear that RNases play a central role in every aspect of cellular RNA metabolism, including decay of mRNA, conversion of RNA precursors to their mature forms, and end-turnover of certain RNAs. Recognition of the importance of this class of enzymes has led to an explosion of work and the establishment of significant new concepts. Thus, we now realize that RNases, both endoribonucleases and exoribonucleases, can be highly specific for particular sequences or structures. It has also become apparent that a single cell can contain a large number of distinct RNases, approaching as many as 20 members, often with overlapping specificities. Some RNases also have been found to be components of supramolecular complexes and to function in concert with other enzymes to carry out their role in RNA metabolism. This review focuses on the exoribonucleases, both prokaryotic and eukaryotic, and details their structure, catalytic properties, and physiological function.
Collapse
Affiliation(s)
- M P Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | |
Collapse
|
10
|
Croteau W, Bodwell JE, Richardson JM, St Germain DL. Conserved cysteines in the type 1 deiodinase selenoprotein are not essential for catalytic activity. J Biol Chem 1998; 273:25230-6. [PMID: 9737986 DOI: 10.1074/jbc.273.39.25230] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The iodothyronine deiodinases are a family of oxidoreductases that catalyze the removal of iodide from thyroid hormones. Each of the three isoforms contain selenocysteine at its active site and several cysteine residues that may be important for catalytic activity. Of particular interest in the type I deiodinase (D1) is Cys124, which is vicinal to the selenocysteine at position 126, and Cys194, which has been conserved in all deiodinases identified to date. In the present studies, we have characterized the functional properties of C124A, C194A, and C124A/C194A D1 mutants, which were prepared by site-directed mutagenesis and expressed in COS-7 cells. In broken cell preparations, the sensitivity of the mutants to the selective D1 inhibitors propylthiouracil and aurothioglucose were unaltered. Mutagenesis at the Cys124 position was associated with a 7-11-fold increase in the Km of dithiothreitol, whereas Vmax values remained largely unchanged. However, both mutations resulted in marked decreases in Vmax values when glutathione or a reconstituted thioredoxin cofactor system were used in the assay. In contrast to the results of these in vitro studies, no impairment in deiodinating capability was noted in intact cells expressing equivalent levels of the mutant constructs. These studies demonstrate that Cys124 and Cys194 influence the reactivity of the D1 with thiol cofactors in in vitro assay systems but are not determinants of the sensitivity of the enzyme to propylthiouracil and aurothioglucose. Furthermore, the observation that the cysteine mutants are fully active in intact cells demonstrates that the results of commonly used broken cell assays do not accurately predict the activity of the D1 in intact cells and suggests that glutathione and thioredoxin are not the major thiols utilized in vivo to support D1 activity.
Collapse
Affiliation(s)
- W Croteau
- Departments of Medicine and Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | |
Collapse
|
11
|
Moser MJ, Holley WR, Chatterjee A, Mian IS. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res 1997; 25:5110-8. [PMID: 9396823 PMCID: PMC147149 DOI: 10.1093/nar/25.24.5110] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prior sequence analysis studies have suggested that bacterial ribonuclease (RNase) Ds comprise a complete domain that is found also in Homo sapiens polymyositis-scleroderma overlap syndrome 100 kDa autoantigen and Werner syndrome protein. This RNase D 3'-->5' exoribonuclease domain was predicted to have a structure and mechanism of action similar to the 3'-->5' exodeoxyibonuclease (proofreading) domain of DNA polymerases. Here, hidden Markov model (HMM) and phylogenetic studies have been used to identify and characterise other sequences that may possess this exonuclease domain. Results indicate that it is also present in the RNase T family; Borrelia burgdorferi P93 protein, an immunodominant antigen in Lyme disease; bacteriophage T4 dexA and Escherichia coli exonuclease I, processive 3'-->5' exodeoxyribonucleases that degrade single-stranded DNA; Bacillus subtilis dinG, a probable helicase involved in DNA repair and possibly replication, and peptide synthase 1; Saccharomyces cerevisiae Pab1p-dependent poly(A) nuclease PAN2 subunit, required for shortening mRNA poly(A) tails; Caenorhabditis elegans and Mus musculus CAF1, transcription factor CCR4-associated factor 1; Xenopus laevis XPMC2, prevention of mitotic catastrophe in fission yeast; Drosophila melanogaster egalitarian, oocyte specification and axis determination, and exuperantia, establishment of oocyte polarity; H.sapiens HEM45, expressed in tumour cell lines and uterus and regulated by oestrogen; and 31 open reading frames including one in Methanococcus jannaschii . Examination of a multiple sequence alignment and two three-dimensional structures of proofreading domains has allowed definition of the core sequence, structural and functional elements of this exonuclease domain.
Collapse
Affiliation(s)
- M J Moser
- Life Sciences Division (Mail Stop 29-100), Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
12
|
Li Z, Zhan L, Deutscher MP. Escherichia coli RNase T functions in vivo as a dimer dependent on cysteine 168. J Biol Chem 1996; 271:1133-7. [PMID: 8557641 DOI: 10.1074/jbc.271.2.1133] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It was shown that Cys-168 is required for RNase T function and thermostability and that its hydrophobic properties are important for this role (Li, Z., Zhan, L., and Deutscher, M. P. (1996) J. Biol Chem. 271, 1127-1132). To understand the molecular basis for these findings, further studies of Cys-168 and RNase T structure were carried out. Treatment of RNase T with the sulfhydryl-modifying agent 5,5'-dithiobis-(2-nitrobenzoic acid) leads not only to inactivation, but also to monomerization of the protein. Similarly, specifically converting Cys-168 to either serine or asparagine leads to loss of activity and to monomer formation at 37 degrees C. However, at 10 degrees C the serine mutant remains as a dimer and retains full RNase T activity, whereas the asparagine derivative shows only a low level of activity and of dimer formation. These data show a strong correlation between activity and the dimer form of RNase T. The importance of dimer formation was also shown in vivo using genetic studies. An inactive mutant of RNase T, termed HA2, which exists as a dimer at 37 degrees C in vitro, completely suppresses endogenous RNase T activity in vivo and in vitro when introduced into a RNase T+ cell on a multicopy phagemid, most likely as a consequence of inactive heterodimer formation. Introduction of the HA2 gene on a single-copy plasmid, as expected, leads to a proportionally smaller effect on endogenous activity. The dominant negative effect displayed by the HA2 protein can be relieved by an additional mutation in HA2 RNase T that abolishes its ability to dimerize. An inactive mutant asparagine derivative of Cys-168, which also does not dimerize, also shows little of the dominant negative phenotype. Thus, these data demonstrate that RNase T dimerizes in vivo, that the dimer form is required for RNase T activity, and that Cys-168 is needed for dimerization of the enzyme.
Collapse
Affiliation(s)
- Z Li
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030-3305, USA
| | | | | |
Collapse
|