1
|
Lin QT, Colussi DM, Lake T, Stathopulos PB. An AI-informed NMR structure reveals an extraordinary LETM1 F-EF-hand domain that functions as a two-way regulator of mitochondrial calcium. Structure 2024; 32:2063-2082.e5. [PMID: 39317198 DOI: 10.1016/j.str.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
AlphaFold can accurately predict static protein structures but does not account for solvent conditions. Human leucine zipper EF-hand transmembrane protein-1 (LETM1) has one sequence-identifiable EF-hand but how calcium (Ca2+) affects structure and function remains enigmatic. Here, we used highly confident AlphaFold Cα predictions to guide nuclear Overhauser effect (NOE) assignments and structure calculation of the LETM1 EF-hand in the presence of Ca2+. The resultant NMR structure exposes pairing between a partial loop-helix and full helix-loop-helix, forming an unprecedented F-EF-hand with non-canonical Ca2+ coordination but enhanced hydrophobicity for protein interactions compared to calmodulin. The structure also reveals the basis for pH sensing at the link between canonical and partial EF-hands. Functionally, mutations that augmented or weakened Ca2+ binding increased or decreased matrix Ca2+, respectively, establishing F-EF as a two-way mitochondrial Ca2+ regulator. Thus, we show how to synergize AI prediction with NMR data, elucidating a solution-specific and extraordinary LETM1 F-EF-hand.
Collapse
Affiliation(s)
- Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Taylor Lake
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| |
Collapse
|
2
|
Putkey JA, Hoffman L, Berka V, Wang X. Neurogranin modulates the rate of association between calmodulin and target peptides. Biophys J 2024; 123:1676-1689. [PMID: 38751114 PMCID: PMC11213993 DOI: 10.1016/j.bpj.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The best-known mode of action of calmodulin (CaM) is binding of Ca2+ to its N- and C-domains, followed by binding to target proteins. An underappreciated facet of this process is that CaM is typically bound to proteins at basal levels of free Ca2+, including the small, intrinsically disordered, neuronal IQ-motif proteins called PEP-19 and neurogranin (Ng). PEP-19 and Ng would not be effective competitive inhibitors of high-affinity Ca2+-dependent CaM targets at equilibrium because they bind to CaM with relatively low affinity, but they could influence the time course of CaM signaling by affecting the rate of association of CaM with high-affinity Ca2+-dependent targets. This mode of regulation may be domain specific because PEP-19 binds to the C-domain of CaM, whereas Ng binds to both N- and C-domains. In this report, we used a model CaM binding peptide (CKIIp) to characterize the preferred pathway of complex formation with Ca2+-CaM at low levels of free Ca2+ (0.25-1.5 μM), and how PEP-19 and Ng affect this process. We show that the dominant encounter complex involves association of CKIIp with the N-domain of CaM, even though the C-domain has a greater affinity for Ca2+. We also show that Ng greatly decreases the rate of association of Ca2+-CaM with CKIIp due to the relatively slow dissociation of Ng from CaM, and to interactions between the Gly-rich C-terminal region of Ng with the N-domain of CaM, which inhibits formation of the preferred encounter complex with CKIIp. These results provide the general mechanistic paradigms that binding CaM to targets can be driven by its N-domain, and that low-affinity regulators of CaM signaling have the potential to influence the rate of activation of high-affinity CaM targets and potentially affect the distribution of limited CaM among multiple targets during Ca2+ oscillations.
Collapse
Affiliation(s)
- John A Putkey
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, Texas.
| | - Laurel Hoffman
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, Texas
| | - Vladimir Berka
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, Texas
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, Texas
| |
Collapse
|
3
|
Putkey JA, Hoffman L, Berka V, Wang X. Neurogranin modulates the Rate of Association between Calmodulin and Target Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586151. [PMID: 38562851 PMCID: PMC10983935 DOI: 10.1101/2024.03.21.586151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The best-known mode of action of calmodulin (CaM) is binding of Ca 2+ to its N- and C-domains, followed by binding to target proteins. An underappreciated facet of this process is that CaM is typically bound to proteins at basal levels of free Ca 2+ , including the small, intrinsically disordered, neuronal IQ-motif proteins called PEP-19 and neurogranin (Ng). PEP-19 and Ng would not be effective competitive inhibitors of high-affinity Ca 2+ -dependent CaM targets at equilibrium since they bind to CaM with relatively low affinity, but they could influence the time course of CaM signaling by affecting the rate of association of CaM with high-affinity Ca 2+ -dependent targets. This mode of regulation may domain specific since PEP-19 binds to the C-domain of CaM, while Ng binds to both N- and C-domains. In this report, we used a model CaM binding peptide (CKIIp) to characterize the preferred pathway of complex formation with Ca 2+ -CaM at low levels of free Ca 2+ (0.25 to 1.5 µM), and how PEP-19 and Ng affect this process. We show that the dominant encounter complex involves association of CKIIp with the N-domain of CaM, even though the C-domain has a greater affinity for Ca 2+ . We also show that Ng greatly decreases the rate of association of Ca 2+ -CaM with CKIIp due to the relatively slow dissociation of Ng from CaM, and to interactions between the Gly-rich C-terminal region of Ng with the N-domain of CaM, which inhibits formation of the preferred encounter complex with CKIIp. These results provide the general mechanistic paradigms that binding CaM to targets can be driven by its N-domain, and that low-affinity regulators of CaM signaling have the potential to influence the rate of activation of high-affinity CaM targets and potentially affect the distribution of limited CaM among multiple targets during Ca 2+ oscillations. STATEMENT OF SIGNIFICANCE Calmodulin is a small, essential regulator of multiple cellular processes including growth and differentiation. Its best-known mode of action is to first bind calcium and then bind and regulate the activity of target proteins. Each domain of CaM has distinct calcium binding properties and can interact with targets in distinct ways. We show here that the N-domain of calmodulin can drive its association with targets, and that a small, intrinsically disordered regulator of calmodulin signaling called neurogranin can greatly decrease the rate of association of CaM with high-affinity Ca 2+ -dependent targets. These results demonstrate the potential of neurogranin, and potentially other proteins, to modulate the time course of activation of targets by a limited intracellular supply of calmodulin.
Collapse
|
4
|
Jaiswal S, He Y, Lu HP. Probing functional conformation-state fluctuation dynamics in recognition binding between calmodulin and target peptide. J Chem Phys 2022; 156:055102. [DOI: 10.1063/5.0074277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sunidhi Jaiswal
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Yufan He
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - H. Peter Lu
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| |
Collapse
|
5
|
Yao Y, Feng Q, Shen J. Myosin light chain kinase regulates intestinal permeability of mucosal homeostasis in Crohn's disease. Expert Rev Clin Immunol 2020; 16:1127-1141. [PMID: 33183108 DOI: 10.1080/1744666x.2021.1850269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Researchers have investigated the potential role of intestinal permeability in Crohn's disease pathogenesis. Intestinal permeability is usually mediated by cytoskeleton and intercellular junctions. The myosin light chain kinase (MLCK) is an enzyme that activates the myosin light chain to exert its function related to cytoskeleton contraction and tight junction regulation. The correlation between MLCK and Crohn's disease pathogenesis has been consistently proven. Areas covered: This study aims to expand the understanding of the regulation and function of MLCK in Crohn's disease. An extensive literature search in the MEDLINE database (via PubMed) has been performed up to Oct. 2020. The roles of MLCK in tight junction activation, intestinal permeability enhancement, and cell signal regulation are comprehensively discussed. Expert opinion: Targeting the MLCK-related pathways such as TNF-α in CD treatment has been put into clinical use. More accurate targeting such as MLCK and TNFR2 has been proposed to reduce side effects. MLCK may also have the potential to become biomarkers in fields like CD activity. With the application of cutting age research methods and tools, the MLCK research could be accelerated.
Collapse
Affiliation(s)
- Yiran Yao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
6
|
Wan Omar WFN, Giribabu N, Karim K, Salleh N. Marantodes pumilum (Blume) Kuntze (Kacip Fatimah) stimulates uterine contraction in rats in post-partum period. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112175. [PMID: 31442621 DOI: 10.1016/j.jep.2019.112175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marantodes pumilum (Blume) Kuntze has traditionally been used to firm the uterus after delivery, however scientific evidences behind this claim is still lacking. AIMS OF STUDY To demonstrate Marantodes pumilum leaves aqueous extract (MPE) has an effect on uterine contraction after delivery and to elucidate the molecular mechanisms involved. METHODS Day-1 post-delivery female rats were given MPE (100, 250 and 500 mg/kg/day) orally for seven consecutive days. A day after the last treatment (day-8), rats were sacrificed and uteri were harvested and subjected for ex-vivo contraction study using organ bath followed by protein expression and distribution study by Western blotting and immunohistochemistry techniques, respectively. The proteins of interest include calmodulin-CaM, myosin light chain kinase-MLCK, sarcoplasmic reticulum Ca2+-ATPase (SERCA), G-protein α and β (Gα and Gβ), inositol-triphosphate 3-kinase (IP3K), oxytocin receptor-OTR, prostaglandin (PGF)2α receptor-PGFR, muscarinic receptor-MAChR and estrogen receptor (ER) isoforms α and β. Levels of estradiol and progesterone in serum were determined by enzyme-linked immunoassay (ELISA). RESULTS Ex-vivo contraction study revealed the force of uterine contraction increased with increasing doses of MPE. In addition, expression of CaM, MLCK, SERCA, Gα, Gβ, IP3K, OTR, PGF2α, MAChR, Erα and ERβ in the uterus increased with increasing doses of MPE. Serum analysis indicate that estradiol levels decreased while progesterone levels remained low at day-8 post-partum in rats receiving 250 and 500 mg/kg/day MPE. CONCLUSIONS These findings support the claims that MPE help to firm the uterus and pave the way for its use as a uterotonic agent after delivery.
Collapse
Affiliation(s)
- Wan Fatein Nabeila Wan Omar
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Kamarulzaman Karim
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Dexter JP, Biddle JW, Gunawardena J. Model discrimination for Ca 2+ -dependent regulation of myosin light chain kinase in smooth muscle contraction. FEBS Lett 2018; 592:2811-2821. [PMID: 30066333 DOI: 10.1002/1873-3468.13207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 11/11/2022]
Abstract
Excitation-contraction coupling in smooth muscle is mediated by the Ca2+ - and calmodulin-dependent regulation of myosin light chain kinase. The precise mechanism of this regulation remains controversial, and several mathematical models have been proposed for the interaction of the three species. These models have previously been analyzed at steady state primarily by numerical simulation of differential equations, for which parameter values must be estimated from data. Here, we use the linear framework for timescale separation to demonstrate that models of this general kind can be solved analytically for an equilibrium steady state, without having to determine parameter values. This analysis leads to parameter-independent methods for discriminating between the models, for which we propose experiments that could be performed with existing methods.
Collapse
Affiliation(s)
- Joseph P Dexter
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - John W Biddle
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
8
|
Direct visualization of interaction between calmodulin and connexin45. Biochem J 2017; 474:4035-4051. [PMID: 28963343 DOI: 10.1042/bcj20170426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 01/21/2023]
Abstract
Calmodulin (CaM) is an intracellular Ca2+ transducer involved in numerous activities in a broad Ca2+ signaling network. Previous studies have suggested that the Ca2+/CaM complex may participate in gap junction regulation via interaction with putative CaM-binding motifs in connexins; however, evidence of direct interactions between CaM and connexins has remained elusive to date due to challenges related to the study of membrane proteins. Here, we report the first direct interaction of CaM with Cx45 (connexin45) of γ-family in living cells under physiological conditions by monitoring bioluminescence resonance energy transfer. The interaction between CaM and Cx45 in cells is strongly dependent on intracellular Ca2+ concentration and can be blocked by the CaM inhibitor, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7). We further reveal a CaM-binding site at the cytosolic loop (residues 164-186) of Cx45 using a peptide model. The strong binding (Kd ∼ 5 nM) observed between CaM and Cx45 peptide, monitored by fluorescence-labeled CaM, is found to be Ca2+-dependent. Furthermore, high-resolution nuclear magnetic resonance spectroscopy reveals that CaM and Cx45 peptide binding leads to global chemical shift changes of 15N-labeled CaM, but does not alter the size of the structure. Observations involving both N- and C-domains of CaM to interact with the Cx45 peptide differ from the embraced interaction with Cx50 from another connexin family. Such interaction further increases Ca2+ sensitivity of CaM, especially at the N-terminal domain. Results of the present study suggest that both helicity and the interaction mode of the cytosolic loop are likely to contribute to CaM's modulation of connexins.
Collapse
|
9
|
Romano DR, Pharris MC, Patel NM, Kinzer-Ursem TL. Competitive tuning: Competition's role in setting the frequency-dependence of Ca2+-dependent proteins. PLoS Comput Biol 2017; 13:e1005820. [PMID: 29107982 PMCID: PMC5690689 DOI: 10.1371/journal.pcbi.1005820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/16/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023] Open
Abstract
A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse’s molecular composition. In hippocampal neurons, calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression (LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are “tuned” to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. We conclude that competitive tuning could be an important dynamic process underlying synaptic plasticity. Learning and memory formation are likely associated with dynamic fluctuations in the connective strength of neuronal synapses. These fluctuations, called synaptic plasticity, are regulated by calcium ion (Ca2+) influx through ion channels localized to the post-synaptic membrane. Within the post-synapse, the dominant Ca2+ sensor protein, calmodulin (CaM), may activate a variety of downstream binding partners, each contributing to synaptic plasticity outcomes. The conditions at which certain binding partners most strongly activate are increasingly studied using computational models. Nearly all computational studies describe these binding partners in combinations of only one or two CaM binding proteins. In contrast, we combine seven well-studied CaM binding partners into a single model wherein they simultaneously compete for access to CaM. Our dynamic model suggests that competition narrows the window of conditions for optimal activation of some binding partners, mimicking the Ca2+-frequency dependence of some proteins in vivo. Further characterization of CaM-dependent signaling dynamics in neuronal synapses may benefit our understanding of learning and memory formation. Furthermore, we propose that competitive binding may be another framework, alongside feedback and feed-forward loops, signaling motifs, and spatial localization, that can be applied to other signal transduction networks, particularly second messenger cascades, to explain the dynamical behavior of protein activation.
Collapse
Affiliation(s)
- Daniel R. Romano
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Matthew C. Pharris
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Neal M. Patel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
10
|
Fang H, Liu Z, Long Y, Liang Y, Jin Z, Zhang L, Liu D, Li H, Zhai J, Pei Y. The Ca 2+ /calmodulin2-binding transcription factor TGA3 elevates LCD expression and H 2 S production to bolster Cr 6+ tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1038-1050. [PMID: 28670772 DOI: 10.1111/tpj.13627] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/22/2017] [Indexed: 05/04/2023]
Abstract
Heavy metal (HM) contamination on agricultural land not only reduces crop yield but also causes human health concerns. As a plant gasotransmitter, hydrogen sulfide (H2 S) can trigger various defense responses and help reduce accumulation of HMs in plants; however, little is known about the regulatory mechanisms of H2 S signaling. Here, we provide evidence to answer the long-standing question about how H2 S production is elevated in the defense of plants against HM stress. During the response of Arabidopsis to chromium (Cr6+ ) stress, the transcription of L-cysteine desulfhydrase (LCD), the key enzyme for H2 S production, was enhanced through a calcium (Ca2+ )/calmodulin2 (CaM2)-mediated pathway. Biochemistry and molecular biology studies demonstrated that Ca2+ /CaM2 physically interacts with the bZIP transcription factor TGA3, a member of the 'TGACG'-binding factor family, to enhance binding of TGA3 to the LCD promoter and increase LCD transcription, which then promotes the generation of H2 S. Consistent with the roles of TGA3 and CaM2 in activating LCD expression, both cam2 and tga3 loss-of-function mutants have reduced LCD abundance and exhibit increased sensitivity to Cr6+ stress. Accordingly, this study proposes a regulatory pathway for endogenous H2 S generation, indicating that plants respond to Cr6+ stress by adjusting the binding affinity of TGA3 to the LCD promoter, which increases LCD expression and promotes H2 S production. This suggests that manipulation of the endogenous H2 S level through genetic engineering could improve the tolerance of grains to HM stress and increase agricultural production on soil contaminated with HMs.
Collapse
Affiliation(s)
- Huihui Fang
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Zhiqiang Liu
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Yanping Long
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yali Liang
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Zhuping Jin
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Liping Zhang
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Danmei Liu
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Hua Li
- College of Environmental and Resource Science, Shanxi University, Taiyuan, 030006, China
| | - Jixian Zhai
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanxi Pei
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
11
|
Khapchaev AY, Shirinsky VP. Myosin Light Chain Kinase MYLK1: Anatomy, Interactions, Functions, and Regulation. BIOCHEMISTRY (MOSCOW) 2017; 81:1676-1697. [PMID: 28260490 DOI: 10.1134/s000629791613006x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review discusses and summarizes the results of molecular and cellular investigations of myosin light chain kinase (MLCK, MYLK1), the key regulator of cell motility. The structure and regulation of a complex mylk1 gene and the domain organization of its products is presented. The interactions of the mylk1 gene protein products with other proteins and posttranslational modifications of the mylk1 gene protein products are reviewed, which altogether might determine the role and place of MLCK in physiological and pathological reactions of cells and entire organisms. Translational potential of MLCK as a drug target is evaluated.
Collapse
Affiliation(s)
- A Y Khapchaev
- Russian Cardiology Research and Production Center, Moscow, 121552, Russia.
| | | |
Collapse
|
12
|
Walton SD, Chakravarthy H, Shettigar V, O’Neil AJ, Siddiqui JK, Jones BR, Tikunova SB, Davis JP. Divergent Soybean Calmodulins Respond Similarly to Calcium Transients: Insight into Differential Target Regulation. FRONTIERS IN PLANT SCIENCE 2017; 8:208. [PMID: 28261258 PMCID: PMC5309217 DOI: 10.3389/fpls.2017.00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/03/2017] [Indexed: 05/07/2023]
Abstract
Plants commonly respond to stressors by modulating the expression of a large family of calcium binding proteins including isoforms of the ubiquitous signaling protein calmodulin (CaM). The various plant CaM isoforms are thought to differentially regulate the activity of specific target proteins to modulate cellular stress responses. The mechanism(s) behind differential target activation by the plant CaMs is unknown. In this study, we used steady-state and stopped-flow fluorescence spectroscopy to investigate the strategy by which two soybean CaMs (sCaM1 and sCaM4) have evolved to differentially regulate NAD kinase (NADK), which is activated by sCaM1 but inhibited by sCaM4. Although the isolated proteins have different cation binding properties, in the presence of Mg2+ and the CaM binding domains from proteins that are differentially regulated, the two plant CaMs respond nearly identically to rapid and slow Ca2+ transients. Our data suggest that the plant CaMs have evolved to bind certain targets with comparable affinities, respond similarly to a particular Ca2+ signature, but achieve different structural states, only one of which can activate the enzyme. Understanding the basis for differential enzyme regulation by the plant CaMs is the first step to engineering a vertebrate CaM that will selectively alter the CaM signaling network.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jonathan P. Davis
- Department of Physiology and Cell Biology, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
13
|
Samanta K, Parekh AB. Spatial Ca 2+ profiling: decrypting the universal cytosolic Ca 2+ oscillation. J Physiol 2016; 595:3053-3062. [PMID: 27859266 DOI: 10.1113/jp272860] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/04/2016] [Indexed: 01/11/2023] Open
Abstract
Stimulation of cell-surface receptors that couple to phospholipase C to generate the second messenger inositol trisphosphate often evokes repetitive oscillations in cytosolic Ca2+ . Signalling information is encoded in both the amplitude and frequency of the Ca2+ spikes. Recent studies have revealed that the spatial profile of the oscillation also imparts signalling power; Ca2+ microdomains near store-operated CRAC channels in the plasma membrane and inositol trisphosphate-gated channels in the endoplasmic reticulum both signal to distinct downstream targets. Spatial profiling therefore increases the transduction power of the universal oscillatory cytosolic Ca2+ signal.
Collapse
Affiliation(s)
- Krishna Samanta
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
14
|
PEP-19 modulates calcium binding to calmodulin by electrostatic steering. Nat Commun 2016; 7:13583. [PMID: 27876793 PMCID: PMC5122967 DOI: 10.1038/ncomms13583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
PEP-19 is a small protein that increases the rates of Ca2+ binding to the C-domain of calmodulin (CaM) by an unknown mechanism. Although an IQ motif promotes binding to CaM, an acidic sequence in PEP-19 is required to modulate Ca2+ binding and to sensitize HeLa cells to ATP-induced Ca2+ release. Here, we report the NMR solution structure of a complex between PEP-19 and the C-domain of apo CaM. The acidic sequence of PEP-19 associates between helices E and F of CaM via hydrophobic interactions. This allows the acidic side chains in PEP-19 to extend toward the solvent and form a negatively charged surface that resembles a catcher's mitt near Ca2+ binding loop III of CaM. The topology and gradients of negative electrostatic surface potential support a mechanism by which PEP-19 increases the rate of Ca2+ binding to the C-domain of CaM by ‘catching' and electrostatically steering Ca2+ to site III. The protein PEP-19 increases the rates of calcium binding to calmodulin. Here, the authors report the structure of PEP-19 bound to the C-terminal domain of calmodulin, and are able to propose a mechanism for the observed increased calcium association rate.
Collapse
|
15
|
Lai M, Brun D, Edelstein SJ, Le Novère N. Modulation of calmodulin lobes by different targets: an allosteric model with hemiconcerted conformational transitions. PLoS Comput Biol 2015; 11:e1004063. [PMID: 25611683 PMCID: PMC4303274 DOI: 10.1371/journal.pcbi.1004063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/26/2014] [Indexed: 01/30/2023] Open
Abstract
Calmodulin is a calcium-binding protein ubiquitous in eukaryotic cells, involved in numerous calcium-regulated biological phenomena, such as synaptic plasticity, muscle contraction, cell cycle, and circadian rhythms. It exibits a characteristic dumbell shape, with two globular domains (N- and C-terminal lobe) joined by a linker region. Each lobe can take alternative conformations, affected by the binding of calcium and target proteins. Calmodulin displays considerable functional flexibility due to its capability to bind different targets, often in a tissue-specific fashion. In various specific physiological environments (e.g. skeletal muscle, neuron dendritic spines) several targets compete for the same calmodulin pool, regulating its availability and affinity for calcium. In this work, we sought to understand the general principles underlying calmodulin modulation by different target proteins, and to account for simultaneous effects of multiple competing targets, thus enabling a more realistic simulation of calmodulin-dependent pathways. We built a mechanistic allosteric model of calmodulin, based on an hemiconcerted framework: each calmodulin lobe can exist in two conformations in thermodynamic equilibrium, with different affinities for calcium and different affinities for each target. Each lobe was allowed to switch conformation on its own. The model was parameterised and validated against experimental data from the literature. In spite of its simplicity, a two-state allosteric model was able to satisfactorily represent several sets of experiments, in particular the binding of calcium on intact and truncated calmodulin and the effect of different skMLCK peptides on calmodulin's saturation curve. The model can also be readily extended to include multiple targets. We show that some targets stabilise the low calcium affinity T state while others stabilise the high affinity R state. Most of the effects produced by calmodulin targets can be explained as modulation of a pre-existing dynamic equilibrium between different conformations of calmodulin's lobes, in agreement with linkage theory and MWC-type models.
Collapse
Affiliation(s)
- Massimo Lai
- Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| | - Denis Brun
- EMBL-EBI, Hinxton, United Kingdom
- Amadeus IT Group, Sophia Antipolis, France
| | | | - Nicolas Le Novère
- Babraham Institute, Cambridge, United Kingdom
- EMBL-EBI, Hinxton, United Kingdom
| |
Collapse
|
16
|
Ebrahimi S, Okabe S. Structural dynamics of dendritic spines: Molecular composition, geometry and functional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2391-8. [DOI: 10.1016/j.bbamem.2014.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/18/2014] [Accepted: 06/02/2014] [Indexed: 12/16/2022]
|
17
|
Antunes G, Sebastião AM, Simoes de Souza FM. Mechanisms of regulation of olfactory transduction and adaptation in the olfactory cilium. PLoS One 2014; 9:e105531. [PMID: 25144232 PMCID: PMC4140790 DOI: 10.1371/journal.pone.0105531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR cycling and tune the levels of second messengers in OSNs, and not only by CNG channel desensitization as previously thought.
Collapse
Affiliation(s)
- Gabriela Antunes
- Neurosciences Unit, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal; Laboratory of Neural Systems, Psychobiology Sector, Department of Psychology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Maria Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Neurosciences Unit, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Fabio Marques Simoes de Souza
- Neurosciences Unit, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal; Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
18
|
Hoffman L, Chandrasekar A, Wang X, Putkey JA, Waxham MN. Neurogranin alters the structure and calcium binding properties of calmodulin. J Biol Chem 2014; 289:14644-55. [PMID: 24713697 DOI: 10.1074/jbc.m114.560656] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neurogranin (Ng) is a member of the IQ motif class of calmodulin (CaM)-binding proteins, and interactions with CaM are its only known biological function. In this report we demonstrate that the binding affinity of Ng for CaM is weakened by Ca(2+) but to a lesser extent (2-3-fold) than that previously suggested from qualitative observations. We also show that Ng induced a >10-fold decrease in the affinity of Ca(2+) binding to the C-terminal domain of CaM with an associated increase in the Ca(2+) dissociation rate. We also discovered a modest, but potentially important, increase in the cooperativity in Ca(2+) binding to the C-lobe of CaM in the presence of Ng, thus sharpening the threshold for the C-domain to become Ca(2+)-saturated. Domain mapping using synthetic peptides indicated that the IQ motif of Ng is a poor mimetic of the intact protein and that the acidic sequence just N-terminal to the IQ motif plays an important role in reproducing Ng-mediated decreases in the Ca(2+) binding affinity of CaM. Using NMR, full-length Ng was shown to make contacts largely with residues in the C-domain of CaM, although contacts were also detected in residues in the N-terminal domain. Together, our results can be consolidated into a model where Ng contacts residues in the N- and C-lobes of both apo- and Ca(2+)-bound CaM and that although Ca(2+) binding weakens Ng interactions with CaM, the most dramatic biochemical effect is the impact of Ng on Ca(2+) binding to the C-terminal lobe of CaM.
Collapse
Affiliation(s)
| | | | - Xu Wang
- Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas 77030
| | - John A Putkey
- Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas 77030
| | - M Neal Waxham
- From the Departments of Neurobiology and Anatomy and
| |
Collapse
|
19
|
Pehlivanoğlu B, Bayrak S, Doğan M. A close look at the contraction and relaxation of the myometrium; the role of calcium. J Turk Ger Gynecol Assoc 2013; 14:230-4. [PMID: 24592112 DOI: 10.5152/jtgga.2013.67763] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/12/2013] [Indexed: 11/22/2022] Open
Abstract
The function and regulation of the myometrium, especially during pregnancy, labour and birth are important in reproductive physiology. It is crucial to understand the mechanisms that generate and modulate uterine contractility in order to be able to prevent and/or treat the problems related with the myometrium. A limited understanding of the cellular and molecular events underlying these phenomena complicates the situation. Various agonists, hormones, transmitters and/or chemicals are related to the regulation of the functions of the myometrium. Although notable advances regarding the key steps in receptor signalling explaining the actions of these factors have been achieved, a good deal of information is still necessary to understand this vital process. A better comprehension of myometrium physiology and the translation of research findings to clinical settings will help progress in women's health. In this review, we attempt to present a critical overview of myometrial functions and focus specifically on the role of calcium.
Collapse
Affiliation(s)
- Bilge Pehlivanoğlu
- Department of Physiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sibel Bayrak
- Department of Physiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Murat Doğan
- Department of Physiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
20
|
Guo M, Lv T, Liu F, Yan H, Wei T, Cai H, Tian W, Zhang N, Wang Z, Xie G. Dietary selenium influences calcium release and activation of MLCK in uterine smooth muscle of rats. Biol Trace Elem Res 2013; 154:127-33. [PMID: 23728952 PMCID: PMC3683396 DOI: 10.1007/s12011-013-9711-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/16/2013] [Indexed: 11/24/2022]
Abstract
We sought to elucidate the effects of different concentrations of dietary selenium on calcium ion release, MLCK levels, and muscle contraction in the uterine smooth muscle of rats. The selenium (Se) content of blood and of uterine smooth muscle tissues was detected by fluorescence spectrophotometry. Ca(2+) content was measured by atomic absorption spectroscopy. Calmodulin (CaM) and MLCK RNA and protein levels were analyzed by quantitative real-time polymerase chain reaction and Western blot, respectively. Dietary Se intake increased the Se levels in the blood and in uterine smooth muscle tissues and increased the Ca(2+) concentration in uterine smooth muscle tissues. The addition of Se also promoted CaM expression and enhanced MLCK activation in uterine smooth muscle tissues. In conclusion, Ca(2+), CaM, and MLCK were regulated by Se in uterine smooth muscle; Se plays a major role in regulating smooth muscle contraction in the uterus.
Collapse
Affiliation(s)
- Mengyao Guo
- College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062 China
| | - Tingting Lv
- College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062 China
| | - Fangning Liu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062 China
| | - Haiyang Yan
- College of Quartermaster Technology, Jilin University, Changchun, 130062 China
| | - Teng Wei
- College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062 China
| | - Hua Cai
- Jilin Teachers’ Institute of Engineering & Technology, Changchun, 130052 China
| | - Wulin Tian
- College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062 China
| | - Naisheng Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062 China
| | - Zhe Wang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062 China
| | - Guanghong Xie
- College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062 China
| |
Collapse
|
21
|
Wang L, Jia C, Yu Z, Liu X, Kang L, Cong Y, Shan Y, Zhao Z, Ma B, Cong Y. Pennogenin tetraglycoside induces rat myometrial contraction and MLC20 phosphorylation via PLC-IP(3) and RhoA/Rho kinase signaling pathways. PLoS One 2012; 7:e51536. [PMID: 23251567 PMCID: PMC3520837 DOI: 10.1371/journal.pone.0051536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/08/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Total steroidal saponins extracted from the rhizome of Paris polyphylla Sm. var. yunnanensis (TSSPs) have been widely used in China for the treatment of abnormal uterine bleeding. We previously studied the main active constituents of TSSPs and their structure-activity relationships with respect to rat myometrial contractions. Tg (pennogenin tetraglycoside) was identified as one of the active ingredients in TSSPs able to induce rat myometrial contractions. However, the mechanisms underlying the pharmacological actions on uterine activity have not been described clearly. METHODS Here Tg was screened for effects on contractile activity in isolated uterine strips from estrogen-primed rats and on MLC20 phosphorylation and related signaling pathways in cultured rat myometrial cells as determined by Western blot. Intracellular calcium ([Ca(2+)](i)) was monitored under a confocal microscope using Fluo-4 AM-loaded myometrial cells. RESULTS Tg dose-dependently stimulated rat myometrial contractions as well as MLC20 phosphorylation in vitro, which could be completely suppressed by an inhibitor of myosin light chain kinase (MLCK). Use of Ca(2+) channel blockers and kinase inhibitors demonstrated that Tg-induced myometrial contractions are mediated by activation of the phospholipase C (PLC)-inositol triphosphate (IP3) signaling pathway, resulting in increased MLC20 phosphorylation. Furthermore, Y27632, a specific inhibitor of Rho kinase (ROK), notably suppressed Tg-stimulated myometrial contractions and decreased MLC20 phosphorylation. CONCLUSIONS These data provide evidence that rat myometrial contractility induced by Tg results from enhanced MLC20 phosphorylation, while both PLC-IP3 and RhoA/ROK signaling pathways mediate the process. These mechanisms may be responsible for the therapeutic effects of TSSPs on abnormal uterine bleeding.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chao Jia
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zuyin Yu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaolan Liu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Liping Kang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yajun Shan
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhenhu Zhao
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Baiping Ma
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuwen Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Schmitz JPJ, Groenendaal W, Wessels B, Wiseman RW, Hilbers PAJ, Nicolay K, Prompers JJ, Jeneson JAL, van Riel NAW. Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle. Am J Physiol Cell Physiol 2012; 304:C180-93. [PMID: 23114964 DOI: 10.1152/ajpcell.00101.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hypothesis was tested that the variation of in vivo glycolytic flux with contraction frequency in skeletal muscle can be qualitatively and quantitatively explained by calcium-calmodulin activation of phosphofructokinase (PFK-1). Ischemic rat tibialis anterior muscle was electrically stimulated at frequencies between 0 and 80 Hz to covary the ATP turnover rate and calcium concentration in the tissue. Estimates of in vivo glycolytic rates and cellular free energetic states were derived from dynamic changes in intramuscular pH and phosphocreatine content, respectively, determined by phosphorus magnetic resonance spectroscopy ((31)P-MRS). Computational modeling was applied to relate these empirical observations to understanding of the biochemistry of muscle glycolysis. Hereto, the kinetic model of PFK activity in a previously reported mathematical model of the glycolytic pathway (Vinnakota KC, Rusk J, Palmer L, Shankland E, Kushmerick MJ. J Physiol 588: 1961-1983, 2010) was adapted to contain a calcium-calmodulin binding sensitivity. The two main results were introduction of regulation of PFK-1 activity by binding of a calcium-calmodulin complex in combination with activation by increased concentrations of AMP and ADP was essential to qualitatively and quantitatively explain the experimental observations. Secondly, the model predicted that shutdown of glycolytic ATP production flux in muscle postexercise may lag behind deactivation of PFK-1 (timescales: 5-10 s vs. 100-200 ms, respectively) as a result of accumulation of glycolytic intermediates downstream of PFK during contractions.
Collapse
Affiliation(s)
- J P J Schmitz
- Computational Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Masada N, Schaks S, Jackson SE, Sinz A, Cooper DMF. Distinct mechanisms of calmodulin binding and regulation of adenylyl cyclases 1 and 8. Biochemistry 2012; 51:7917-29. [PMID: 22971080 PMCID: PMC3466776 DOI: 10.1021/bi300646y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca(2+) signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca(2+) signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca(2+) ions. These two lobes have differing affinities for Ca(2+), and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca(2+)](i). We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca(2+)-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca(2+) binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca(2+)-CaM activation of AC1 and AC8, which may underpin their different physiological roles.
Collapse
Affiliation(s)
- Nanako Masada
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Price ES, Aleksiejew M, Johnson CK. FRET-FCS detection of intralobe dynamics in calmodulin. J Phys Chem B 2011; 115:9320-6. [PMID: 21688835 DOI: 10.1021/jp203743m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) can be coupled with Förster resonance energy transfer (FRET) to detect intramolecular dynamics of proteins on the microsecond time scale. Here we describe application of FRET-FCS to detect fluctuations within the N-terminal and C-terminal domains of the Ca(2+)-signaling protein calmodulin. Intramolecular fluctuations were resolved by global fitting of the two fluorescence autocorrelation functions (green-green and red-red) together with the two cross-correlation functions (green-red and red-green). To match the Förster radius for FRET to the dimensions of the N-terminal and C-terminal domains, a near-infrared acceptor fluorophore (Atto 740) was coupled with a green-emitting donor (Alexa Fluor 488). Fluctuations were detected in both domains on the time scale of 30 to 40 μs. In the N-terminal domain, the amplitude of the fluctuations was dependent on occupancy of Ca(2+) binding sites. A high amplitude of dynamics in apo-calmodulin (in the absence of Ca(2+)) was nearly abolished at a high Ca(2+) concentration. For the C-terminal domain, the dynamic amplitude changed little with Ca(2+) concentration. The Ca(2+) dependence of dynamics for the N-terminal domain suggests that the fluctuations detected by FCS in the N-terminal domain are coupled to the opening and closing of the EF-hand Ca(2+)-binding loops.
Collapse
Affiliation(s)
- E Shane Price
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | |
Collapse
|
25
|
Mori MX, Imai Y, Itsuki K, Inoue R. Quantitative measurement of Ca(2+)-dependent calmodulin-target binding by Fura-2 and CFP and YFP FRET imaging in living cells. Biochemistry 2011; 50:4685-96. [PMID: 21517110 DOI: 10.1021/bi200287x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium dynamics and its linked molecular interactions cause a variety of biological responses; thus, exploiting techniques for detecting both concurrently is essential. Here we describe a method for measuring the cytosolic Ca(2+) concentration ([Ca(2+)](i)) and protein-protein interactions within the same cell, using Fura-2 and superenhanced cyan and yellow fluorescence protein (seCFP and seYFP, respectively) FRET imaging techniques. Concentration-independent corrections for bleed-through of Fura-2 into FRET cubes across different time points and [Ca(2+)](i) values allowed for an effective separation of Fura-2 cross-talk signals and seCFP and seYFP cross-talk signals, permitting calculation of [Ca(2+)](i) and FRET with high fidelity. This correction approach was particularly effective at lower [Ca(2+)](i) levels, eliminating bleed-through signals that resulted in an artificial enhancement of FRET. By adopting this correction approach combined with stepwise [Ca(2+)](i) increases produced in living cells, we successfully elucidated steady-state relationships between [Ca(2+)](i) and FRET derived from the interaction of seCFP-tagged calmodulin (CaM) and the seYFP-fused CaM binding domain of myosin light chain kinase. The [Ca(2+)](i) versus FRET relationship for voltage-gated sodium, calcium, and TRPC6 channel CaM binding domains (IQ domain or CBD) revealed distinct sensitivities for [Ca(2+)](i). Moreover, the CaM binding strength at basal or subbasal [Ca(2+)](i) levels provided evidence of CaM tethering or apoCaM binding in living cells. Of the ion channel studies, apoCaM binding was weakest for the TRPC6 channel, suggesting that more global Ca(2+) and CaM changes rather than the local CaM-channel interface domain may be involved in Ca(2+)CaM-mediated regulation of this channel. This simultaneous Fura-2 and CFP- and YFP-based FRET imaging system will thus serve as a simple but powerful means of quantitatively elucidating cellular events associated with Ca(2+)-dependent functions.
Collapse
Affiliation(s)
- Masayuki X Mori
- Department of Physiology, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Fukuoka, Japan.
| | | | | | | |
Collapse
|
26
|
Li QH, Wang LH, Lin YN, Chang GQ, Li HW, Jin WN, Hu RH, Pang TX. Nuclear accumulation of calcineurin B homologous protein 2 (CHP2) results in enhanced proliferation of tumor cells. Genes Cells 2011; 16:416-26. [PMID: 21392185 DOI: 10.1111/j.1365-2443.2011.01497.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The interaction between calcineurin B homologous protein 2 (CHP2) and Na(+) /H(+) exchanger 1 (NHE1), two membrane proteins, is essential for protecting cells from serum deprivation-induced death. Although four putative EF-hands in CHP2 had been predicted for years, Ca²(+) -binding activities of these motifs have not been tested yet, their role in this process remain poorly understood. To identify Ca²(+) -binding motifs required for the stable formation of CHP2/NHE1 complexes, we developed a mutagenesis-based assay in PS120 cells. We found that (45) Ca²(+) bond to two EF-hand motifs (EF3 and 4) of CHP2 proteins with high affinity. Complex formation between CHP2 and the CHP2 binding domain of NHE1 resulted in a marked increase in the Ca²(+) -binding affinity of CHP2. Co-immunoprecipitation and distribution of GFP-tagged CHP2-EF3m/4m also indicated that Ca²(+) affected the membrane location of CHP2 to interact with NHE1. The C-terminal region of CHP2 contains a nuclear export sequence (NES). When the six leucines of NES were mutated to alanines, the resulting CHP2 protein was predominantly localized to the nucleus. Furthermore, mutation of the NES resulted in enhanced proliferation and oncogenic potential of HeLa cells. Together, these results show that calcium and NES control the subcellular distribution of CHP2 and then distinctively regulate cell proliferation.
Collapse
Affiliation(s)
- Qing-Hua Li
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lobe specific Ca2+-calmodulin nano-domain in neuronal spines: a single molecule level analysis. PLoS Comput Biol 2010; 6:e1000987. [PMID: 21085618 PMCID: PMC2978734 DOI: 10.1371/journal.pcbi.1000987] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 10/04/2010] [Indexed: 01/07/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca2+ buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca2+-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca2+-CaM-dependent enzymes: Ca2+/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca2+ and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca2+ ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca2+ and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca2+ signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca2+-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca2+ channels, and to the microscopic injection rate of Ca2+ ions. We also demonstrate that Ca2+ saturation takes place via two different pathways depending on the Ca2+ injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca2+ sensors that can differentially transduce Ca2+ influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca2+-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity. Calmodulin is a versatile Ca2+ signal mediator and a buffer in a wide variety of body organs including the heart and brain. In the brain, calmodulin regulates intracellular molecular processes that change the strength of connectivity between neurons, thus contributing to various brain functions including memory formation. The exact molecular mechanism as to how calmodulin regulates these processes is not yet known. Interestingly, in other excitable tissues, including the heart, each of two lobes of calmodulin responds differentially toward Ca2+ influx and toward its target molecules (e.g., ion channels). This way, calmodulin precisely controls the Ca2+ dynamics of the cell. We wish to test if a similar mechanism may be operational in neurons so that two lobes of calmodulin interact differentially with Ca2+ ions to activate different downstream molecules that control the strength of connections between neurons. We constructed a detailed simulation of calmodulin that allows us to keep track of its interactions with Ca2+ ions and target proteins at the single molecule level. The simulation predicts that two lobes of calmodulin respond differentially to Ca2+ influx both in space and in time. This work opens a door to future experimental testing of the lobe-specific control of neural function by calmodulin.
Collapse
|
28
|
Parekh AB. Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 2010; 36:78-87. [PMID: 20810284 DOI: 10.1016/j.tibs.2010.07.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 12/19/2022]
Abstract
A rise in cytosolic Ca(2+) concentration is used as a universal signalling mechanism to control biological processes as diverse as exocytosis, contraction, cell growth and cell death. Ca(2+) signals are often presented to cells in the form of Ca(2+) oscillations, with signalling information encoded in both amplitude and frequency of the Ca(2+) spikes. Recent studies have revealed that the sub-cellular spatial profile of the Ca(2+) oscillation is also important in activating cellular responses, thereby suggesting a new mechanism for extracting information from the ubiquitous Ca(2+) oscillation.
Collapse
Affiliation(s)
- Anant B Parekh
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
29
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
30
|
Fan J, Yu Z. A univariate model of calcium release in the dyadic cleft of cardiac myocytes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:4499-503. [PMID: 19964372 DOI: 10.1109/iembs.2009.5333685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Local calcium sparks in the dyadic cleft of cardiac myocytes are triggered by calcium influxes via L-type calcium channels (LCCs) located on the transverse tubule (TT) membrane, and subsequently controlled by the regeneration of ryanodine receptors (RyRs) on the sarcoplasmic reticulum (SR). Calcium released from SR channels is known to be responsible for the sparks. Therefore, the activities of RyRs provide straightforward indication to the calcium concentration alteration. A method to study calcium signaling by analyzing RyR-gating statistics is described in the present study. Here we propose a univariate model with a simplified geometry of the dyadic cleft, which specifies the spatial localization of LCCs and RyRs to monitor the activity changes of RyRs. This model is used to explore two crucial aspects of local calcium signaling: the first is to disclose the tight control of calcium influxes via LCCs, and the second is to reveal the interactional impact of the self-regenerative RyRs. Patterns of active RyRs are rendered through numerous computational simulation experiments, manipulating the state initialization and the spatial localization of LCCs and RyRs to observe gating transition of RyRs.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | |
Collapse
|
31
|
Wright NT, Cannon BR, Wilder PT, Morgan MT, Varney KM, Zimmer DB, Weber DJ. Solution structure of S100A1 bound to the CapZ peptide (TRTK12). J Mol Biol 2009; 386:1265-77. [PMID: 19452629 DOI: 10.1016/j.jmb.2009.01.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As is typical for S100-target protein interactions, a Ca 2+-dependent conformational change in S100A1 is required to bind to a 12-residue peptide (TRTK12) derived from the actin-capping protein CapZ. In addition, the Ca 2+-binding affinity of S100A1 is found to be tightened (greater than threefold) when TRTK12 is bound. To examine the biophysical basis for these observations, we determined the solution NMR structure of TRTK12 in a complex with Ca 2+-loaded S100A1. When bound to S100A1, TRTK12 forms an amphipathic helix (residues N6 to S12) with several favorable hydrophobic interactions observed between W7, I10, and L11 of the peptide and a well-defined hydrophobic binding pocket in S100A1 that is only present in the Ca 2+-bound state. Next, the structure of S100A1-TRTK12 was compared to that of another S100A1-target complex (i.e., S100A1-RyRP12), which illustrated how the binding pocket in Ca 2+-S100A1 can accommodate peptide targets with varying amino acid sequences. Similarities and differences were observed when the structures of S100A1-TRTK12 and S100B-TRTK12 were compared, providing insights regarding how more than one S100 protein can interact with the same peptide target. Such comparisons, including those with other S100-target and S100-drug complexes, provide the basis for designing novel small-molecule inhibitors that could be specific for blocking one or more S100-target protein interactions.
Collapse
Affiliation(s)
- Nathan T Wright
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Evans TIA, Shea MA. Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII. Proteins 2009; 76:47-61. [PMID: 19089983 DOI: 10.1002/prot.22317] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Calmodulin (CaM) is an essential eukaryotic calcium receptor that regulates many kinases, including CaMKII. Calcium-depleted CaM does not bind to CaMKII under physiological conditions. However, binding of (Ca(2+))(4)-CaM to a basic amphipathic helix in CaMKII releases auto-inhibition of the kinase. The crystal structure of CaM bound to CaMKIIp, a peptide representing the CaM-binding domain (CaMBD) of CaMKII, shows an antiparallel interface: the C-domain of CaM primarily contacts the N-terminal half of the CaMBD. The two domains of calcium-saturated CaM are believed to play distinct roles in releasing auto-inhibition. To investigate the underlying mechanism of activation, calcium-dependent titrations of isolated domains of CaM binding to CaMKIIp were monitored using fluorescence anisotropy. The binding affinity of CaMKIIp for the domains of CaM increased upon saturation with calcium, with the C-domain having a 35-fold greater affinity than the N-domain. Because the interdomain linker of CaM regulates calcium-binding affinity and contribute to conformational change, the role of each CaM domain was explored further by investigating effects of CaMKIIp on site-knockout mutants affecting the calcium-binding sites of a single domain. Investigation of the thermodynamic linkage between saturation of individual calcium-binding sites and CaM-domain binding to CaMKIIp showed that calcium binding to Sites III and IV was sufficient to recapitulate the behavior of (Ca(2+))(4)-CaM. The magnitude of favorable interdomain cooperativity varied depending on which of the four calcium-binding sites were mutated, emphasizing differential regulatory roles for the domains of CaM, despite the high degree of homology among the four EF-hands of CaM.
Collapse
Affiliation(s)
- T Idil Apak Evans
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | |
Collapse
|
33
|
Zhou Y, Yang W, Lurtz MM, Chen Y, Jiang J, Huang Y, Louis CF, Yang JJ. Calmodulin mediates the Ca2+-dependent regulation of Cx44 gap junctions. Biophys J 2009; 96:2832-48. [PMID: 19348766 DOI: 10.1016/j.bpj.2008.12.3941] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 12/07/2008] [Accepted: 12/23/2008] [Indexed: 10/20/2022] Open
Abstract
We have shown previously that the Ca2+-dependent inhibition of lens epithelial cell-to-cell communication is mediated in part by the direct association of calmodulin (CaM) with connexin43 (Cx43), the major connexin in these cells. We now show that elevation of [Ca2+](i) in HeLa cells transfected with the lens fiber cell gap junction protein sheep Cx44 also results in the inhibition of cell-to-cell dye transfer. A peptide comprising the putative CaM binding domain (aa 129-150) of the intracellular loop region of this connexin exhibited a high affinity, stoichiometric interaction with Ca2+-CaM. NMR studies indicate that the binding of Cx44 peptide to CaM reflects a classical embracing mode of interaction. The interaction is an exothermic event that is both enthalpically and entropically driven in which electrostatic interactions play an important role. The binding of the Cx44 peptide to CaM increases the CaM intradomain cooperativity and enhances the Ca2+-binding affinities of the C-domain of CaM more than twofold by slowing the rate of Ca2+ release from the complex. Our data suggest a common mechanism by which the Ca2+-dependent inhibition of the alpha-class of gap junction proteins is mediated by the direct association of an intracellular loop region of these proteins with Ca2+-CaM.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Halling DB, Georgiou DK, Black DJ, Yang G, Fallon JL, Quiocho FA, Pedersen SE, Hamilton SL. Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin. J Biol Chem 2009; 284:20041-51. [PMID: 19473981 DOI: 10.1074/jbc.m109.013326] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin binds to IQ motifs in the alpha(1) subunit of Ca(V)1.1 and Ca(V)1.2, but the affinities of calmodulin for the motif and for Ca(2+) are higher when bound to Ca(V)1.2 IQ. The Ca(V)1.1 IQ and Ca(V)1.2 IQ sequences differ by four amino acids. We determined the structure of calmodulin bound to Ca(V)1.1 IQ and compared it with that of calmodulin bound to Ca(V)1.2 IQ. Four methionines in Ca(2+)-calmodulin form a hydrophobic binding pocket for the peptide, but only one of the four nonconserved amino acids (His-1532 of Ca(V)1.1 and Tyr-1675 of Ca(V)1.2) contacts this calmodulin pocket. However, Tyr-1675 in Ca(V)1.2 contributes only modestly to the higher affinity of this peptide for calmodulin; the other three amino acids in Ca(V)1.2 contribute significantly to the difference in the Ca(2+) affinity of the bound calmodulin despite having no direct contact with calmodulin. Those residues appear to allow an interaction with calmodulin with one lobe Ca(2+)-bound and one lobe Ca(2+)-free. Our data also provide evidence for lobe-lobe interactions in calmodulin bound to Ca(V)1.2.
Collapse
Affiliation(s)
- D Brent Halling
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mazel T, Raymond R, Raymond-Stintz M, Jett S, Wilson BS. Stochastic modeling of calcium in 3D geometry. Biophys J 2009; 96:1691-706. [PMID: 19254531 DOI: 10.1016/j.bpj.2008.10.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 10/15/2008] [Indexed: 01/17/2023] Open
Abstract
Release of inflammatory mediators by mast cells in type 1 immediate-hypersensitivity allergic reactions relies on antigen-dependent increases in cytosolic calcium. Here, we used a series of electron microscopy images to build a 3D reconstruction representing a slice through a rat tumor mast cell, which then served as a basis for stochastic modeling of inositol-trisphosphate-mediated calcium responses. The stochastic approach was verified by reaction-diffusion modeling within the same geometry. Local proximity of the endoplasmic reticulum to either the plasma membrane or mitochondria is predicted to differentially impact local inositol trisphosphate receptor transport. The explicit consideration of organelle spatial relationships represents an important step toward building a comprehensive, realistic model of cellular calcium dynamics.
Collapse
Affiliation(s)
- Tomás Mazel
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | | | | | | |
Collapse
|
36
|
Activation of the SK potassium channel-calmodulin complex by nanomolar concentrations of terbium. Proc Natl Acad Sci U S A 2009; 106:1075-80. [PMID: 19144926 DOI: 10.1073/pnas.0812008106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small conductance Ca(2+)-activated K(+) (SK) channels sense intracellular Ca(2+) concentrations via the associated Ca(2+)-binding protein calmodulin. Structural and functional studies have revealed essential properties of the interaction between calmodulin and SK channels. However, it is not fully understood how the binding of Ca(2+) to calmodulin leads to channel opening. Drawing on previous biochemical studies of free calmodulin using lanthanide ions as Ca(2+) substitutes, we have used the lanthanide ion, Tb(3+), as an alternative ligand to study the activation properties of SK channels. We found that SK channels can be fully activated by nanomolar concentrations of Tb(3+), indicating an apparent affinity >100-fold higher than Ca(2+). Competition experiments show that Tb(3+) binds to the same sites as Ca(2+) to activate the channels. Additionally, SK channels activated by Tb(3+) demonstrate a remarkably slow deactivation process. Comparison of our results with previous biochemical studies suggests that in the intact SK channel complex, the N-lobe of calmodulin provides ligand-binding sites for channel gating, and that its ligand-binding properties are comparable to those of the N-lobe in isolated calmodulin.
Collapse
|
37
|
Masada N, Ciruela A, Macdougall DA, Cooper DMF. Distinct mechanisms of regulation by Ca2+/calmodulin of type 1 and 8 adenylyl cyclases support their different physiological roles. J Biol Chem 2008; 284:4451-63. [PMID: 19029295 DOI: 10.1074/jbc.m807359200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nine membrane-bound mammalian adenylyl cyclases (ACs) have been identified. Type 1 and 8 ACs (AC1 and AC8), which are both expressed in the brain and are stimulated by Ca(2+)/calmodulin (CaM), have discrete neuronal functions. Although the Ca(2+) sensitivity of AC1 is higher than that of AC8, precisely how these two ACs are regulated by Ca(2+)/CaM remains elusive, and the basis for their diverse physiological roles is quite unknown. Distinct localization of the CaM binding domains within the two enzymes may be essential to differential regulation of the ACs by Ca(2+)/CaM. In this study we compare in detail the regulation of AC1 and AC8 by Ca(2+)/CaM both in vivo and in vitro and explore the different role of each Ca(2+)-binding lobe of CaM in regulating the two enzymes. We also assess the relative dependence of AC1 and AC8 on capacitative Ca(2+) entry. Finally, in real-time fluorescence resonance energy transfer-based imaging experiments, we examine the effects of dynamic Ca(2+) events on the production of cAMP in cells expressing AC1 and AC8. Our data demonstrate distinct patterns of regulation and Ca(2+) dependence of AC1 and AC8, which seems to emanate from their mode of regulation by CaM. Such distinctive properties may contribute significantly to the divergent physiological roles in which these ACs have been implicated.
Collapse
Affiliation(s)
- Nanako Masada
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | |
Collapse
|
38
|
Forest A, Swulius MT, Tse JKY, Bradshaw JM, Gaertner T, Waxham MN. Role of the N- and C-lobes of calmodulin in the activation of Ca(2+)/calmodulin-dependent protein kinase II. Biochemistry 2008; 47:10587-99. [PMID: 18795794 DOI: 10.1021/bi8007033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.
Collapse
Affiliation(s)
- Amelie Forest
- The Department of Neurobiology and Anatomy, the University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
39
|
Song Q, Saucerman JJ, Bossuyt J, Bers DM. Differential integration of Ca2+-calmodulin signal in intact ventricular myocytes at low and high affinity Ca2+-calmodulin targets. J Biol Chem 2008; 283:31531-40. [PMID: 18790737 DOI: 10.1074/jbc.m804902200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac myocyte intracellular calcium varies beat-to-beat and calmodulin (CaM) transduces Ca2+ signals to regulate many cellular processes (e.g. via CaM targets such as CaM-dependent kinase and calcineurin). However, little is known about the dynamics of how CaM targets process the Ca2+ signals to generate appropriate biological responses in the heart. We hypothesized that the different affinities of CaM targets for the Ca2+-bound CaM (Ca2+-CaM) shape their actions through dynamic and tonic interactions in response to the repetitive Ca2+ signals in myocytes. To test our hypothesis, we used two fluorescence resonance energy transfer-based biosensors, BsCaM-45 (Kd = approximately 45 nm) and BsCaM-2 (Kd = approximately 2 nm), to monitor the real time Ca2+-CaM dynamics at low and high affinity CaM targets in paced adult ventricular myocytes. Compared with BsCaM-2, BsCaM-45 tracks the beat-to-beat Ca2+-CaM alterations more closely following the Ca2+ oscillations at each myocyte contraction. When pacing frequency is raised from 0.1 to 1.0 Hz, the higher affinity BsCaM-2 demonstrates significant elevation of diastolic Ca2+-CaM binding compared with the lower affinity BsCaM-45. Biochemically detailed computational models of Ca2+-CaM biosensors in beating cardiac myocytes revealed that the different Ca2+-CaM binding affinities of BsCaM-2 and BsCaM-45 are sufficient to predict their differing kinetics and diastolic integration. Thus, data from both experiments and computational modeling suggest that CaM targets with low versus high Ca2+-CaM affinities (like CaM-dependent kinase versus calcineurin) respond differentially to the same Ca2+ signal (phasic versus integrating), presumably tuned appropriately for their respective and distinct Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Qiujing Song
- Department of Physiology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
40
|
Abstract
In this article the calcium/calmodulin-dependent protein kinases are reviewed. The primary focus is on the structure and function of this diverse family of enzymes, and the elegant regulation of their activity. Structures are compared in order to highlight the conserved architecture of their catalytic domains with respect to each other as well as protein kinase A, a prototype for kinase structure. In addition to reviewing structure and function in these enzymes, the variety of biological processes for which they play a mediating role are also examined. Finally, how the enzymes become activated in the intracellular setting is considered by exploring the reciprocal interactions that exist between calcium binding to calmodulin when interacting with the CaM-kinases.
Collapse
Affiliation(s)
- M. T. Swulius
- Department of Neurobiology and Anatomy, The University of Texas Medical School-Houston, Houston, Texas 77030 USA
| | - M. N. Waxham
- Department of Neurobiology and Anatomy, The University of Texas Medical School-Houston, Houston, Texas 77030 USA
| |
Collapse
|
41
|
A simulation study on the activation of cardiac CaMKII delta-isoform and its regulation by phosphatases. Biophys J 2008; 95:2139-49. [PMID: 18502812 DOI: 10.1529/biophysj.107.118505] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the highly conserved Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is known to play an essential role in cardiac myocytes, its involvement in the frequency-dependent acceleration of relaxation is still controversial. To investigate the functional significance of CaMKII autophosphorylation and its regulation by protein phosphatases (PPs) in heart, we developed a new mathematical model for the CaMKIIdelta isoform. Due to better availability of experimental data, the model was first adjusted to the kinetics of the neuronal CaMKIIalpha isoform and then converted to a CaMKIIdelta model by fitting to kinetic data of the delta isoform. Both models satisfactorily reproduced experimental data of the CaMKII-calmodulin interaction, the autophosphorylation rate, and the frequency dependence of activation. The level of autophosphorylated CaMKII cumulatively increased upon starting the Ca(2+) stimulation at 3 Hz in the delta model. Variations in PP concentration remarkably affected the frequency-dependent activation of CaMKIIdelta, suggesting that cellular PP activity plays a key role in adjusting CaMKII activation in heart. The inhibitory effect of PP was stronger for CaMKIIalpha compared to CaMKIIdelta. Simulation results revealed a potential involvement of CaMKIIdelta autophosphorylation in the frequency-dependent acceleration of relaxation at physiological heart rates and PP concentrations.
Collapse
|
42
|
Abstract
Actomyosin-based cortical contractility is a common feature of eukaryotic cells and is involved in cell motility, cell division, and apoptosis. In nonmuscle cells, oscillations in contractility are induced by microtubule depolymerization during cell spreading. We developed an ordinary differential equation model to describe this behavior. The computational model includes 36 parameters. The values for all but two of the model parameters were taken from experimental measurements found in the literature. Using these values, we demonstrate that the model generates oscillatory behavior consistent with current experimental observations. The rhythmic behavior occurs because of the antagonistic effects of calcium-induced contractility and stretch-activated calcium channels. The model makes several experimentally testable predictions: 1), buffering intracellular calcium increases the period and decreases the amplitude of cortical oscillations; 2), increasing the number or activity of stretch activated channels leads to an increase in period and amplitude of cortical oscillations; 3), inhibiting Ca(2+) pump activity increases the period and amplitude of oscillations; and 4), a threshold exists for the calcium concentration below which oscillations cease.
Collapse
|
43
|
Stochastic binding of Ca2+ ions in the dyadic cleft; continuous versus random walk description of diffusion. Biophys J 2008; 94:4184-201. [PMID: 18263662 PMCID: PMC2480677 DOI: 10.1529/biophysj.106.103523] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca(2+) signaling in the dyadic cleft in ventricular myocytes is fundamentally discrete and stochastic. We study the stochastic binding of single Ca(2+) ions to receptors in the cleft using two different models of diffusion: a stochastic and discrete Random Walk (RW) model, and a deterministic continuous model. We investigate whether the latter model, together with a stochastic receptor model, can reproduce binding events registered in fully stochastic RW simulations. By evaluating the continuous model goodness-of-fit for a large range of parameters, we present evidence that it can. Further, we show that the large fluctuations in binding rate observed at the level of single time-steps are integrated and smoothed at the larger timescale of binding events, which explains the continuous model goodness-of-fit. With these results we demonstrate that the stochasticity and discreteness of the Ca(2+) signaling in the dyadic cleft, determined by single binding events, can be described using a deterministic model of Ca(2+) diffusion together with a stochastic model of the binding events, for a specific range of physiological relevant parameters. Time-consuming RW simulations can thus be avoided. We also present a new analytical model of bimolecular binding probabilities, which we use in the RW simulations and the statistical analysis.
Collapse
|
44
|
Putkey JA, Waxham MN, Gaertner TR, Brewer KJ, Goldsmith M, Kubota Y, Kleerekoper QK. Acidic/IQ motif regulator of calmodulin. J Biol Chem 2008; 283:1401-1410. [PMID: 17991744 PMCID: PMC3617039 DOI: 10.1074/jbc.m703831200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca(2+) binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca(2+) binding to sites III and IV, and we present a model showing that this could increase Ca(2+) binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ motif (amino acids 39-62), and an adjacent acidic cluster of amino acids (amino acids 28-40). A synthetic peptide spanning residues 28-62 faithfully mimics intact PEP-19 with respect to increasing the rates of Ca(2+) association and dissociation, as well as binding preferentially to the C-domain of CaM. In contrast, a peptide encoding only the core IQ motif does not modulate Ca(2+) binding, and binds to multiple sites on CaM. A peptide that includes only the acidic region does not bind to CaM. These results show that PEP-19 has a novel acidic/IQ CaM regulatory motif in which the IQ sequence provides a targeting function that allows binding of PEP-19 to CaM, whereas the acidic residues modify the nature of this interaction, and are essential for modulating Ca(2+) binding to the C-domain of CaM.
Collapse
Affiliation(s)
- John A Putkey
- Department of Biochemistry and Molecular Biology, University of Texas, Houston Medical School, Houston, Texas 77030.
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas, Houston Medical School, Houston, Texas 77030
| | - Tara R Gaertner
- Department of Neurobiology and Anatomy, University of Texas, Houston Medical School, Houston, Texas 77030
| | - Kari J Brewer
- Department of Biochemistry and Molecular Biology, University of Texas, Houston Medical School, Houston, Texas 77030
| | - Michael Goldsmith
- Department of Biochemistry and Molecular Biology, University of Texas, Houston Medical School, Houston, Texas 77030
| | - Yoshihisa Kubota
- Department of Neurobiology and Anatomy, University of Texas, Houston Medical School, Houston, Texas 77030
| | - Quinn K Kleerekoper
- Department of Biochemistry and Molecular Biology, University of Texas, Houston Medical School, Houston, Texas 77030
| |
Collapse
|
45
|
Salbreux G, Joanny JF, Prost J, Pullarkat P. Shape oscillations of non-adhering fibroblast cells. Phys Biol 2007; 4:268-84. [DOI: 10.1088/1478-3975/4/4/004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Black DJ, Selfridge JE, Persechini A. The kinetics of Ca(2+)-dependent switching in a calmodulin-IQ domain complex. Biochemistry 2007; 46:13415-24. [PMID: 17958378 PMCID: PMC2577580 DOI: 10.1021/bi700774s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have performed a kinetic analysis of Ca2+-dependent switching in the complex between calmodulin (CaM) and the IQ domain from neuromodulin, and have developed detailed kinetic models for this process. Our results indicate that the affinity of the C-ter Ca2+-binding sites in bound CaM is reduced due to a approximately 10-fold decrease in the Ca2+ association rate, while the affinity of the N-ter Ca2+-binding sites is increased due to a approximately 3-fold decrease in the Ca2+ dissociation rate. Although the Ca2+-free and Ca2+-saturated forms of the CaM-IQ domain complex have identical affinities, CaM dissociates approximately 100 times faster in the presence of Ca2+. Furthermore, under these conditions CaM can be transferred to the CaM-binding domain from CaM kinase II via a ternary complex. These properties are consistent with the hypothesis that CaM bound to neuromodulin comprises a localized store that can be efficiently delivered to neuronal proteins in its Ca2+-bound form in response to a Ca2+ signal.
Collapse
Affiliation(s)
- DJ Black
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499
| | - J. Eva Selfridge
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499
| | - Anthony Persechini
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499
| |
Collapse
|
47
|
Zhou Y, Yang W, Lurtz MM, Ye Y, Huang Y, Lee HW, Chen Y, Louis CF, Yang JJ. Identification of the Calmodulin Binding Domain of Connexin 43. J Biol Chem 2007; 282:35005-17. [PMID: 17901047 DOI: 10.1074/jbc.m707728200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) has been implicated in mediating the Ca(2+)-dependent regulation of gap junctions. This report identifies a CaM-binding motif comprising residues 136-158 in the intracellular loop of Cx43. A 23-mer peptide encompassing this CaM-binding motif was shown to bind Ca(2+)-CaM with 1:1 stoichiometry by using various biophysical approaches, including surface plasmon resonance, circular dichroism, fluorescence spectroscopy, and NMR. Far UV circular dichroism studies indicated that the Cx43-derived peptide increased its alpha-helical contents on CaM binding. Fluorescence and NMR studies revealed conformational changes of both the peptide and CaM following formation of the CaM-peptide complex. The apparent dissociation constant of the peptide binding to CaM in physiologic K(+) is in the range of 0.7-1 microM. Upon binding of the peptide to CaM, the apparent K(d) of Ca(2+) for CaM decreased from 2.9 +/- 0.1 to 1.6 +/- 0.1 microM, and the Hill coefficient n(H) increased from 2.1 +/- 0.1 to 3.3 +/- 0.5. Transient expression in HeLa cells of two different mutant Cx43-EYFP constructs without the putative Cx43 CaM-binding site eliminated the Ca(2+)-dependent inhibition of Cx43 gap junction permeability, confirming that residues 136-158 in the intracellular loop of Cx43 contain the CaM-binding site that mediates the Ca(2+)-dependent regulation of Cx43 gap junctions. Our results provide the first direct evidence that CaM binds to a specific region of the ubiquitous gap junction protein Cx43 in a Ca(2+)-dependent manner, providing a molecular basis for the well characterized Ca(2+)-dependent inhibition of Cx43-containing gap junctions.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gifford JL, Walsh MP, Vogel HJ. Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem J 2007; 405:199-221. [PMID: 17590154 DOI: 10.1042/bj20070255] [Citation(s) in RCA: 655] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ‘EF-hand’ Ca2+-binding motif plays an essential role in eukaryotic cellular signalling, and the proteins containing this motif constitute a large and functionally diverse family. The EF-hand is defined by its helix–loop–helix secondary structure as well as the ligands presented by the loop to bind the Ca2+ ion. The identity of these ligands is semi-conserved in the most common (the ‘canonical’) EF-hand; however, several non-canonical EF-hands exist that bind Ca2+ by a different co-ordination mechanism. EF-hands tend to occur in pairs, which form a discrete domain so that most family members have two, four or six EF-hands. This pairing also enables communication, and many EF-hands display positive co-operativity, thereby minimizing the Ca2+ signal required to reach protein saturation. The conformational effects of Ca2+ binding are varied, function-dependent and, in some cases, minimal, but can lead to the creation of a protein target interaction site or structure formation from a molten-globule apo state. EF-hand proteins exhibit various sensitivities to Ca2+, reflecting the intrinsic binding ability of the EF-hand as well as the degree of co-operativity in Ca2+ binding to paired EF-hands. Two additional factors can influence the ability of an EF-hand to bind Ca2+: selectivity over Mg2+ (a cation with very similar chemical properties to Ca2+ and with a cytoplasmic concentration several orders of magnitude higher) and interaction with a protein target. A structural approach is used in this review to examine the diversity of family members, and a biophysical perspective provides insight into the ability of the EF-hand motif to bind Ca2+ with a wide range of affinities.
Collapse
Affiliation(s)
- Jessica L Gifford
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
49
|
Burgoyne RD. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 2007; 8:182-93. [PMID: 17311005 PMCID: PMC1887812 DOI: 10.1038/nrn2093] [Citation(s) in RCA: 392] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In neurons, intracellular calcium signals have crucial roles in activating neurotransmitter release and in triggering alterations in neuronal function. Calmodulin has been widely studied as a Ca(2+) sensor that has several defined roles in neuronal Ca(2+) signalling, but members of the neuronal calcium sensor protein family have also begun to emerge as key components in a number of regulatory pathways and have increased the diversity of neuronal Ca(2+) signalling pathways. The differing properties of these proteins allow them to have discrete, non-redundant functions.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, UK.
| |
Collapse
|
50
|
Liu R, Hu D, Tan X, Lu HP. Revealing Two-State Protein−Protein Interactions of Calmodulin by Single-Molecule Spectroscopy. J Am Chem Soc 2006; 128:10034-42. [PMID: 16881631 DOI: 10.1021/ja057005m] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a single-molecule fluorescence resonance energy transfer (FRET) and polarization study of conformational dynamics of calmodulin (CaM) interacting with a target peptide, C28W of a 28 amino acid oligomer. The C28W peptide represents the essential binding sequence domain of the Ca-ATPase protein interacting with CaM, which is important in cellular signaling for the regulation of energy in metabolism. However, the mechanism of the CaM/C28W recognition complex formation is still unclear. The amino-terminal (N-terminal) domain of the CaM was labeled with a fluorescein-based arsenical hairpin binder (FlAsH) that enables our unambiguous probing of the CaM N-terminal target-binding domain motions on a millisecond time scale without convolution of the probe-dye random motions. By analyzing the distribution of FRET efficiency between FlAsH labeled CaM and Texas Red labeled C28W and the polarization fluctuation dynamics and distributions of the CaM N-terminal domain, we reveal binding-unbinding motions of the N-terminal domain of the CaM in CaM/C28W complexes, which is strong evidence of a two-state binding interaction of CaM-mediated cell signaling.
Collapse
Affiliation(s)
- Ruchuan Liu
- Fundamental Science Directorate, Chemical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|