1
|
Boumpas P, Merabet S, Carnesecchi J. Integrating transcription and splicing into cell fate: Transcription factors on the block. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1752. [PMID: 35899407 DOI: 10.1002/wrna.1752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) are present in all life forms and conserved across great evolutionary distances in eukaryotes. From yeast to complex multicellular organisms, they are pivotal players of cell fate decision by orchestrating gene expression at diverse molecular layers. Notably, TFs fine-tune gene expression by coordinating RNA fate at both the expression and splicing levels. They regulate alternative splicing, an essential mechanism for cell plasticity, allowing the production of many mRNA and protein isoforms in precise cell and tissue contexts. Despite this apparent role in splicing, how TFs integrate transcription and splicing to ultimately orchestrate diverse cell functions and cell fate decisions remains puzzling. We depict substantial studies in various model organisms underlining the key role of TFs in alternative splicing for promoting tissue-specific functions and cell fate. Furthermore, we emphasize recent advances describing the molecular link between the transcriptional and splicing activities of TFs. As TFs can bind both DNA and/or RNA to regulate transcription and splicing, we further discuss their flexibility and compatibility for DNA and RNA substrates. Finally, we propose several models integrating transcription and splicing activities of TFs in the coordination and diversification of cell and tissue identities. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Mechanisms.
Collapse
Affiliation(s)
- Panagiotis Boumpas
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| |
Collapse
|
2
|
Hou L, Wei Y, Lin Y, Wang X, Lai Y, Yin M, Chen Y, Guo X, Wu S, Zhu Y, Yuan J, Tariq M, Li N, Sun H, Wang H, Zhang X, Chen J, Bao X, Jauch R. Concurrent binding to DNA and RNA facilitates the pluripotency reprogramming activity of Sox2. Nucleic Acids Res 2020; 48:3869-3887. [PMID: 32016422 PMCID: PMC7144947 DOI: 10.1093/nar/gkaa067] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/03/2023] Open
Abstract
Some transcription factors that specifically bind double-stranded DNA appear to also function as RNA-binding proteins. Here, we demonstrate that the transcription factor Sox2 is able to directly bind RNA in vitro as well as in mouse and human cells. Sox2 targets RNA via a 60-amino-acid RNA binding motif (RBM) positioned C-terminally of the DNA binding high mobility group (HMG) box. Sox2 can associate with RNA and DNA simultaneously to form ternary RNA/Sox2/DNA complexes. Deletion of the RBM does not affect selection of target genes but mitigates binding to pluripotency related transcripts, switches exon usage and impairs the reprogramming of somatic cells to a pluripotent state. Our findings designate Sox2 as a multi-functional factor that associates with RNA whilst binding to cognate DNA sequences, suggesting that it may co-transcriptionally regulate RNA metabolism during somatic cell reprogramming.
Collapse
Affiliation(s)
- Linlin Hou
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou/Shenzhen, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuanjie Wei
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou/Shenzhen, China.,Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiwei Wang
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yiwei Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Menghui Yin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China
| | - Yanpu Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Xiangpeng Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Senbin Wu
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Muqddas Tariq
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Na Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaofei Zhang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,CAS Key Laboratory of Regenerative Biology, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xichen Bao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Zheng AX, Wang HF, Lü CN, Ren ZG, Li HX, Lang JP. Reactions of cadmium(ii) nitrate with 4-(trimethylammonio)benzenethiolate in the presence of N-donor ligands. Dalton Trans 2012; 41:558-66. [DOI: 10.1039/c1dt11663k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Scripture JB, Huber PW. Binding site for Xenopus ribosomal protein L5 and accompanying structural changes in 5S rRNA. Biochemistry 2011; 50:3827-39. [PMID: 21446704 DOI: 10.1021/bi200286e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of the eukaryotic L5-5S rRNA complex was investigated in protection and interference experiments and is compared with the corresponding structure (L18-5S rRNA) in the Haloarcula marismortui 50S subunit. In close correspondence with the archaeal structure, the contact sites for the eukaryotic ribosomal protein are located primarily in helix III and loop C and secondarily in loop A and helix V. While the former is unique to L5, the latter is also a critical contact site for transcription factor IIIA (TFIIIA), accounting for the mutually exclusive binding of these two proteins to 5S RNA. The binding of L5 causes structural changes in loops B and C that expose nucleotides that contact the Xenopus L11 ortholog in H. marismortui. This induced change in the structure of the RNA reveals the origins of the cooperative binding to 5S rRNA that has been observed for the bacterial counterparts of these proteins. The native structure of helix IV and loop D antagonizes binding of L5, indicating that this region of the RNA is dynamic and also influenced by the protein. Examination of the crystal structures of Thermus thermophilus ribosomes in the pre- and post-translocation states identified changes in loop D and in the surrounding region of 23S rRNA that support the proposal that 5S rRNA acts to transmit information between different functional domains of the large subunit.
Collapse
Affiliation(s)
- J Benjamin Scripture
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
5
|
Smirnov AV, Entelis NS, Krasheninnikov IA, Martin R, Tarassov IA. Specific features of 5S rRNA structure - its interactions with macromolecules and possible functions. BIOCHEMISTRY (MOSCOW) 2009; 73:1418-37. [PMID: 19216709 DOI: 10.1134/s000629790813004x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Small non-coding RNAs are today a topic of great interest for molecular biologists because they can be regarded as relicts of a hypothetical "RNA world" which, apparently, preceded the modern stage of organic evolution on Earth. The small molecule of 5S rRNA (approximately 120 nucleotides) is a component of large ribosomal subunits of all living beings (5S rRNAs are not found only in mitoribosomes of fungi and metazoans). This molecule interacts with various protein factors and 23S (28S) rRNA. This review contains the accumulated data to date concerning 5S rRNA structure, interactions with other biological macromolecules, intracellular traffic, and functions in the cell.
Collapse
Affiliation(s)
- A V Smirnov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
6
|
Higgins PJ, Gellett AM. Enhancement of DNA cleavage activity of an unnatural ferrocene-amino acid conjugate. Bioorg Med Chem Lett 2009; 19:1614-7. [DOI: 10.1016/j.bmcl.2009.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 01/30/2009] [Accepted: 02/03/2009] [Indexed: 11/27/2022]
|
7
|
Brady KL, Setzer DR. Is There a Dynamic DNA-Protein Interface in the Transcription Factor IIIA-5 S rRNA Gene Complex? J Biol Chem 2005; 280:16115-24. [PMID: 15713659 DOI: 10.1074/jbc.m414660200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Others have proposed that several amino acid side chains exhibit considerable conformational mobility at the DNA-protein interface in the transcription factor IIIA.5 S rRNA gene complex and that the rapid movements of these side chains permit them to make fluctuating contacts with adjacent bp in the DNA target site. This "dynamic interface" model makes biochemical predictions concerning the consequences of truncating specific amino acid side chains and the effects of these truncations on sequence selectivity in DNA binding. The model also makes predictions concerning the effects of DNA sequence context on the apparent energetic contributions to binding made by individual bp. We have tested these predictions, and our results are inconsistent with any significant energetic role being played by the contact of multiple bp by conformationally mobile amino acid side chains. They do, however, show that some individual amino acids affect the recognition of multiple bp through mechanisms other than direct interaction.
Collapse
Affiliation(s)
- Kristina L Brady
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
8
|
Ghose R, Malik M, Huber PW. Restricted specificity of Xenopus TFIIIA for transcription of somatic 5S rRNA genes. Mol Cell Biol 2004; 24:2467-77. [PMID: 14993284 PMCID: PMC355861 DOI: 10.1128/mcb.24.6.2467-2477.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus transcription factor IIIA (TFIIIA) is phosphorylated on serine-16 by CK2. Replacements with alanine or glutamic acid were made at this position in order to address the question of whether phosphorylation possibly influences the function of this factor. Neither substitution has an effect on the DNA or RNA binding activity of TFIIIA. The wild-type factor and the alanine variant activate transcription of somatic- and oocyte-type 5S rRNA genes in nuclear extract immunodepleted of endogenous TFIIIA. The glutamic acid variant (S16E) supports the transcription of somatic-type genes at levels comparable to those of wild-type TFIIIA; however, there is no transcription of the oocyte-type genes. This differential behavior of the phosphomimetic mutant protein is also observed in vivo when using early-stage embryos, where this mutant failed to activate transcription of the endogenous oocyte-type genes. Template exclusion assays establish that the S16E mutant binds to the oocyte-type 5S rRNA genes and recruits at least one other polymerase III transcription factor into an inactive complex. Phosphorylation of TFIIIA by CK2 may allow the factor to continue to act as a positive activator of the somatic-type genes and simultaneously as a repressor of the oocyte-type 5S rRNA genes, indicating that there is a mechanism that actively promotes repression of the oocyte-type genes at the end of oogenesis.
Collapse
Affiliation(s)
- Romi Ghose
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
9
|
Abstract
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.
Collapse
Affiliation(s)
- Jonathan P DiNitto
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
10
|
Cassiday LA, Maher LJ. Having it both ways: transcription factors that bind DNA and RNA. Nucleic Acids Res 2002; 30:4118-26. [PMID: 12364590 PMCID: PMC140532 DOI: 10.1093/nar/gkf512] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multifunctional proteins challenge the conventional 'one protein-one function' paradigm. Here we note apparent multifunctional proteins with nucleic acid partners, tabulating eight examples. We then focus on eight additional cases of transcription factors that bind double-stranded DNA with sequence specificity, but that also appear to lead alternative lives as RNA-binding proteins. Exemplified by the prototypic Xenopus TFIIIA protein, and more recently by mammalian p53, this list of transcription factors includes WT-1, TRA-1, bicoid, the bacterial sigma(70) subunit, STAT1 and TLS/FUS. The existence of transcription factors that bind both DNA and RNA provides an interesting puzzle. Little is known concerning the biological roles of these alternative protein-nucleic acid interactions, and even less is known concerning the structural basis for dual nucleic acid specificity. We discuss how these natural examples have motivated us to identify artificial RNA sequences that competitively inhibit a DNA-binding transcription factor not known to have a natural RNA partner. The identification of such RNAs raises the possibility that RNA binding by DNA-binding proteins is more common than currently appreciated.
Collapse
Affiliation(s)
- Laura A Cassiday
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
11
|
Westmark CJ, Ghose R, Huber PW. Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2. Biochem J 2002; 362:375-82. [PMID: 11853545 PMCID: PMC1222397 DOI: 10.1042/0264-6021:3620375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transcription factor IIIA (TFIIIA), isolated from the cytoplasmic 7 S ribonucleoprotein complex of Xenopus oocytes, is phosphorylated when incubated with [gamma-(32)P]ATP. This modification is due to a trace kinase activity that remains associated with the factor through several steps of purification. The kinase can use either ATP or GTP, and will phosphorylate casein and phosvitin to the exclusion of TFIIIA. The kinase is reactive with a ten-amino-acid peptide that is a specific substrate for protein kinase CK2 (CK2; formerly casein kinase II). In addition, inhibition of phosphorylation by heparin and stimulation by spermidine indicate that the activity can be ascribed to CK2. Phospho amino acid analysis established that serine is the sole phosphoryl acceptor in TFIIIA. There are four consensus sites for CK2 in TFIIIA; all contain serine residues at the putative site of phosphorylation. TFIIIA immunoprecipitated from oocytes, which were incubated with [(32)P]orthophosphate, is also phosphorylated exclusively on serine residues. Only the cyanogen bromide fragment, which was derived from the N-terminal end of TFIIIA, is labelled in vivo. A recognition sequence for CK2, located at Ser(16) in the beta-turn of the first zinc-finger domain, is the only protein kinase consensus sequence present in this peptide. Assays in vitro with site-specific mutants of TFIIIA established that Ser(16) is the preferred site of phosphorylation, with some secondary modification at Ser(314).
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
12
|
Röser M, Winterfeld G, Grebenstein B, Hemleben V. Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). Mol Phylogenet Evol 2001; 21:198-217. [PMID: 11697916 DOI: 10.1006/mpev.2001.1003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5S rDNA repeats studied in five genera of Aveneae have lengths between 285 and 329 bp (Avena sativa, Avena macrostachya, 26 species of Helictotrichon, Pseudarrhenatherum longifolium, Lagurus ovatus, and Trisetum spicatum). In only a single species (Helictotrichon aetolicum) an additional repeat of 456 bp occurs infrequently. Variation is largely due to insertions or deletions in the nontranscribed spacer as determined from sequences of 163 independent clones. The 5S gene of the Aveneae studied is conserved in length and sequence except for Helictotrichon bromoides and Helictotrichon marginatum in which duplications occur at two different sites. This new type of duplication and all duplications reported to date in 5S genes of angiosperms are shown to center on defined palindromic sequences. The "uncommon" 5S gene sequences detected in some Aveneae are not necessarily nonfunctional as pseudogenes because the essential features of the internal control region are maintained even after such duplication events. In each instance such gene sequences have spacers with unmodified structure, indicating that change in gene sequence is not necessarily coupled with change in adjacent spacers. The value of 5S spacer sequences for genomic identifications in Aveneae is exemplified in A. macrostachya (perennial), A. sativa (annual), and several diploid taxa of the genus Helictotrichon.
Collapse
MESH Headings
- Avena/classification
- Avena/genetics
- Base Composition
- Base Sequence
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/genetics
- Genes, Plant/genetics
- Genetic Variation
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Phylogeny
- Physical Chromosome Mapping
- RNA, Ribosomal, 5S/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- M Röser
- Institute of Geobotany, University of Halle-Wittenberg, Neuwerk 21, D-06099 Halle, Germany
| | | | | | | |
Collapse
|
13
|
Huber PW, Rife JP, Moore PB. The structure of helix III in Xenopus oocyte 5 S rRNA: an RNA stem containing a two-nucleotide bulge. J Mol Biol 2001; 312:823-32. [PMID: 11575935 DOI: 10.1006/jmbi.2001.4966] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of an oligonucleotide containing the helix III sequence from Xenopus oocyte 5 S rRNA has been determined by NMR spectroscopy. Helix III includes two unpaired adenosine residues, flanked on either side by G:C base-pairs, that are required for binding of ribosomal protein L5. The consensus conformation of helix III in the context provided by this oligonucleotide has the two adenosine residues located in the minor groove and stacked upon the 3' flanking guanosine residue, consistent with biochemical studies of free 5 S rRNA in solution. A distinct break in stacking that occurs between the first adenosine residue of the bulge and the flanking 5' guanosine residue exposes the base of the adenosine residue in the minor groove and the base of the guanosine residue in the major groove. The major groove of the helix is widened at the site of the unpaired nucleotides and the helix is substantially bent; nonetheless, the G:C base-pairs flanking the bulge are intact. The data indicate that there may be conformational heterogeneity centered in the bulge region. The corresponding adenosine residues in the Haloarcula marismortui 50 S ribosomal subunit form a dinucleotide platform, which is quite different from the motif seen in solution. Thus, the conformation of helix III probably changes when 5 S rRNA is incorporated into the ribosome.
Collapse
Affiliation(s)
- P W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
14
|
Searles MA, Lu D, Klug A. The role of the central zinc fingers of transcription factor IIIA in binding to 5 S RNA. J Mol Biol 2000; 301:47-60. [PMID: 10926492 DOI: 10.1006/jmbi.2000.3946] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the nine-zinc finger Xenopus transcription factor TFIIIA the central group of fingers, fingers 4 to 7, have been shown to bind to 5 S RNA. In this study, we have attempted to assess the role of this region of the TFIIIA molecule in more detail than hitherto. High-resolution footprinting by RNases A and CV1 has been used to probe the binding to 5 S RNA of three TFIIIA peptides Tf(1-6), Tf(4-6) and Tf(4-7), consisting of fingers 1 to 6, 4 to 6, and 4 to 7, respectively, and of full-length TFIIIA. The results pinpoint the outer margins of binding of the central fingers within helices IV and II of TFIIIA. A comparison of the footprints reveals that the presence of finger 7 affords protection at positions C19 and U55, the distal portion of helix II and the proximal portion of loop B. In addition, our footprints suggest that the central fingers bind in the same manner, whether in an isolated group or in the intact TFIIIA molecule. In a companion study, we have determined the binding affinities of Tf(4-6) and Tf(4-7) for full-length and three truncated 5 S RNA molecules, the latter selected on the basis of the regions of the 5 S RNA molecule known to be important in the binding of TFIIIA. The analysis uses only fully active protein involved in the binding and the results are consistent with the corresponding footprinting results. This is the first time that a detailed study of the binding site of one particular zinc finger to RNA has been reported; the results should be of use in the design of 5 S RNA molecules and TFIIIA peptides for structural studies of the interaction between zinc fingers and RNA.
Collapse
Affiliation(s)
- M A Searles
- Laboratory of Molecular Biology, M.R.C., Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|
15
|
Szymański M, Barciszewska MZ, Erdmann VA, Barciszewski J. An analysis of G-U base pair occurrence in eukaryotic 5S rRNAs. Mol Biol Evol 2000; 17:1194-8. [PMID: 10908639 DOI: 10.1093/oxfordjournals.molbev.a026402] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The structure-function relationship in RNA molecules is a key to understanding of the expression of genetic information. Various types of RNA play crucial roles at almost every step of protein biosynthesis. In recent years, it has been shown that one of the most important structural elements in RNA is a wobble pair G-U. In this paper, we present for the first time an analysis of the distribution of G-U pairs in eukaryotic 5S ribosomal RNAs. Interestingly, the G-U pair in 5S rRNA species is predominantly found in two intrahelical regions of the stems I and V and at the junction of helix IV and loop A. The distribution of G-U pairs and the nature of adjacent bases suggests their possible role as a recognition site in interactions with other components of protein biosynthesis machinery.
Collapse
Affiliation(s)
- M Szymański
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poland
| | | | | | | |
Collapse
|
16
|
Pittman RH, Andrews MT, Setzer DR. A feedback loop coupling 5 S rRNA synthesis to accumulation of a ribosomal protein. J Biol Chem 1999; 274:33198-201. [PMID: 10559190 DOI: 10.1074/jbc.274.47.33198] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that elevated expression of ribosomal protein L5 in Xenopus embryos results in the ectopic activation of 5 S rRNA genes that are normally inactive. This transcriptional stimulation mimics the effect of overexpressing transcription factor IIIA (TFIIIA), the 5 S rRNA gene-specific transcription factor. The results support a model in which a network of nucleic acid-protein interactions involving 5 S rRNA, the 5 S rRNA gene, TFIIIA, and L5 mediates both feedback inhibition of 5 S rRNA synthesis and coupling of 5 S rRNA synthesis to accumulation of a ribosomal protein, L5. We propose that these mechanisms contribute to the homeostatic control of ribosome assembly.
Collapse
Affiliation(s)
- R H Pittman
- Department of Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
17
|
Neely LS, Lee BM, Xu J, Wright PE, Gottesfeld JM. Identification of a minimal domain of 5 S ribosomal RNA sufficient for high affinity interactions with the RNA-specific zinc fingers of transcription factor IIIA. J Mol Biol 1999; 291:549-60. [PMID: 10448036 DOI: 10.1006/jmbi.1999.2985] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription factor IIIA of Xenopuslaevis serves a dual function during oogenesis and early development: this zinc finger protein binds to the internal promoter element of the 5 S ribosomal RNA genes and acts as a positive transcription factor; additionally, the protein functions in 5 S RNA storage. The central four zinc fingers (zf4-7) of the nine-finger protein have been shown to bind 5 S rRNA with comparable or higher affinity than the full-length protein. The role of finger seven in binding affinity has been examined by deletion analysis. A zf4-6 protein binds 5 S RNA with about a sevenfold reduction in binding affinity, compared to zf4-7. The effect of non-specific competitor DNA on binding affinities of the zinc finger peptides was examined and found to have a significant effect on the measured affinities of these peptides for full-length and truncated versions of 5 S RNA. The interaction of zf4-6 with full-length 5 S RNA was far more sensitive to non-specific competitor concentration than was the zf4-7:5 S RNA interaction, suggesting that finger seven contributes to both affinity and specificity in this protein:RNA interaction. In order to map zinc finger binding sites on the 5 S RNA molecule, we generated truncated versions of the RNA and tested these molecules for their binding affinities with zf4-7 and zf4-6. Previous studies showed that a 75 nucleotide long RNA, comprising loop A, helix II, helix V, region E and helix IV, bound zf4-7 with high affinity. Selection and amplification binding assays (selex) have now been used to generate smaller high-affinity binding RNAs. We find that a 55 nucleotide long RNA, comprising loop A, helix V, region E and helix IV, but lacking helix II, retains high affinity for zf4-6. These data are consistent with the proposal that fingers 4-6 bind this central core of 5 S RNA and that finger seven binds the helix II region.
Collapse
Affiliation(s)
- L S Neely
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
18
|
Otto J, Jolk I, Viland T, Wonnemann R, Krebs B. Metal(II) complexes with monodentate S and N ligands as structural models for zinc–sulfur DNA-binding proteins. Inorganica Chim Acta 1999. [DOI: 10.1016/s0020-1693(98)00351-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Nolte RT, Conlin RM, Harrison SC, Brown RS. Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. Proc Natl Acad Sci U S A 1998; 95:2938-43. [PMID: 9501194 PMCID: PMC19673 DOI: 10.1073/pnas.95.6.2938] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The crystal structure of the six NH2-terminal zinc fingers of Xenopus laevis transcription factor IIIA (TFIIIA) bound with 31 bp of the 5S rRNA gene promoter has been determined at 3.1 A resolution. Individual zinc fingers are positioned differently in the major groove and across the minor groove of DNA to span the entire length of the duplex. These results show how TFIIIA can recognize several separated DNA sequences by using fewer fingers than necessary for continuous winding in the major groove.
Collapse
Affiliation(s)
- R T Nolte
- Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|