1
|
Singha K, Pansuwan A, Chewasateanchai M, Fucharoen G, Fucharoen S. Molecular basis of non-deletional HPFH in Thailand and identification of two novel mutations at the binding sites of CCAAT and GATA-1 transcription factors. Sci Rep 2023; 13:11926. [PMID: 37488161 PMCID: PMC10366219 DOI: 10.1038/s41598-023-39173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
High Hb F determinants are genetic defects associated with increased expression of hemoglobin F in adult life, classified as deletional and non-deletional forms. We report the first description of non-deletional hereditary persistence of fetal hemoglobin (HFPH) in Thailand. Study was done on 388 subjects suspected of non-deletional HPFH with elevated Hb F expression. Mutations in the Gγ- and Aγ-globin genes were examined by DNA analysis and rapid diagnosis of HPFH mutations were developed by PCR-based methods. Twenty subjects with five different mutations were identified including three known mutations, - 202 Aγ (C>T) (n = 3), - 196 Aγ (C>T) (n = 3), and - 158 Aγ (C>T) (n = 12), and two novel mutations, - 117 Aγ (G>C) (n = 1) and - 530 Gγ (A>G) (n = 1). Interaction of the - 117 Aγ (G>C) and Hb E (HBB:c.79G>A) resulted in elevation of Hb F to the level of 13.5%. Two plain heterozygous subjects with - 530 Gγ (A>G) had marginally elevated Hb F with 1.9% and 3.0%, whereas the proband with homozygous - 530 Gγ (A>G) had elevated Hb F of 11.5%. Functional prediction indicated that the - 117 Aγ (G>C) and - 530 Gγ (A>G) mutations dramatically alter the binding of transcription factors to respective γ-globin gene promotors, especially the CCAAT and GATA-1 transcription factors. Diverse heterogeneity of non-deletional HFPH with both known and new mutations, and complex interactions of them with other forms of thalassemia are encountered in Thai population.
Collapse
Affiliation(s)
- Kritsada Singha
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Faculty of Medicine, Mahasarakham University, Kantharawichai, Mahasarakham, Thailand
| | - Anupong Pansuwan
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Goonnapa Fucharoen
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supan Fucharoen
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Renfro Z, White BE, Stephens KE. CCAAT enhancer binding protein gamma (C/EBP-γ): An understudied transcription factor. Adv Biol Regul 2022; 84:100861. [PMID: 35121409 PMCID: PMC9376885 DOI: 10.1016/j.jbior.2022.100861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
The CCAAT enhancer binding protein (C/EBP) family of transcription factors are important transcriptional mediators of a wide range of physiologic processes. C/EBP-γ is the shortest C/EBP protein and lacks a canonical activation domain for the recruitment of transcriptional machinery. Despite its ubiquitous expression and ability to dimerize with other C/EBP proteins, C/EBP-γ has been studied far less than other C/EBP proteins, and, to our knowledge, no review of its functions has been written. This review seeks to integrate the current knowledge about C/EBP-γ and its physiologic roles, especially in cell proliferation, the integrated stress response, oncogenesis, hematopoietic and nervous system development, and metabolism, as well as to identify areas for future research.
Collapse
Affiliation(s)
- Zachary Renfro
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| | - Bryan E White
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| | - Kimberly E Stephens
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| |
Collapse
|
3
|
Yan C, Zhang L, Yang L, Zhang Q, Wang X. C/EBPγ is a critical negative regulator of LPS-/IgG immune complex-induced acute lung injury through the downregulation of C/EBPβ-/C/EBPδ-dependent C/EBP transcription activation. FASEB J 2020; 34:13696-13710. [PMID: 32786052 DOI: 10.1096/fj.202001402r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 11/11/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome are life-threatening diseases. Despite recent advances in intensive care medicine, the mortality is still as high as 50%, which stems from our insufficient understanding of the underlying mechanisms of the diseases. The roles of C/EBPβ and C/EBPδ have been extensively investigated in LPS- and IgG immune complexes-stimulated acute lung injury. However, the effect of C/EBPγ, belonging to the same family as C/EBPβ and C/EBPδ, on ALI has not been elucidated. Our previous data have shown that during LPS-/IgG immune complexes-induced ALI, the DNA binding activities of C/EBPγ are obviously reduced. In the present study, we determine whether ALI induced by LPS and IgG immune complexes is affected by C/EBPγ. We find that adenovirus-mediated C/EBPγ expression in the lung tissue alleviates LPS-/IgG immune complexes-stimulated acute pulmonary damage through reducing vascular permeability changes and recruitment of neutrophils into alveolar spaces, which might be linked to a decrease in the production of pro-inflammatory mediators, such as TNF-α and IL-6. Moreover, our data obtained from macrophages in vitro are consistent with the in vivo results. In terms of mechanisms, C/EBPγ might inhibit LPS-/IgG immune complexes-mediated inflammation via alleviating C/EBPβ and C/EBPδ transcription activities as reflected by luciferase assays. However, the NF-κB-dependent production of pro-inflammatory mediators is not affected by C/EBPγ. Taken together, C/EBPγ suppresses LPS- and IgG immune complexes-induced pro-inflammatory mediators' production through the downregulation of C/EBP but not NF-κB activation, leading to the subsequent attenuation of ALI. Collectively, our data provide an insight into the critical role of C/EBPγ in acute lung injury.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China.,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lanqiu Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Lei Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Qi Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Ximo Wang
- Department of Surgery, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Martyn GE, Quinlan KGR, Crossley M. The regulation of human globin promoters by CCAAT box elements and the recruitment of NF-Y. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:525-536. [PMID: 27718361 DOI: 10.1016/j.bbagrm.2016.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023]
Abstract
CCAAT boxes are motifs found within the proximal promoter of many genes, including the human globin genes. The highly conserved nature of CCAAT box motifs within the promoter region of both α-like and β-like globin genes emphasises the functional importance of the CCAAT sequence in globin gene regulation. Mutations within the β-globin CCAAT box result in β-thalassaemia, while mutations within the distal γ-globin CCAAT box cause the Hereditary Persistence of Foetal Haemoglobin, a benign condition which results in continued γ-globin expression during adult life. Understanding the transcriptional regulation of the globin genes is of particular interest, as reactivating the foetal γ-globin gene alleviates the symptoms of β-thalassaemia and sickle cell anaemia. NF-Y is considered to be the primary activating transcription factor which binds to globin CCAAT box motifs. Here we review recruitment of NF-Y to globin CCAAT boxes and the role NF-Y plays in regulating globin gene expression. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Gabriella E Martyn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
5
|
Nakano H, Yanagita A, Takahashi S. The differentiation effect of low-dose cytosine arabinoside is disturbed in PU.1-knockdown K562 cells. Biomed Rep 2014; 2:564-568. [PMID: 24944809 DOI: 10.3892/br.2014.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/25/2014] [Indexed: 11/06/2022] Open
Abstract
We recently demonstrated by using PU.1-knockdown K562 (K562 PU.1KD) cells stably expressing PU.1 short inhibitory RNAs and PU.1-overexpressing K562 (K562 PU.1OE) cells, that therapeutic concentrations of 5-aza-2'-deoxycytidine (5-azadC) induce erythroid differentiation of these cells and that the PU.1 expression level is closely associated with the differentiating and apoptotic effects of 5-azadC on K562 cells. In this study, we investigated whether the effects of low-dose cytosine arabinoside (Ara-C), which is another erythroid differentiation inducer in K562 cells, is associated with the expression level of PU.1 in these cells. As a result, we demonstrated that the effect of Ara-C on cell viability and differentiation, as determined by the WST-8 assay and β-globin mRNA expression analysis, respectively, was suppressed in K562 PU.1KD cells compared to their controls. Collectively, these findings suggest that sufficient expression of PU.1 is indispensable for the erythroid differentiation of K562 cells.
Collapse
Affiliation(s)
- Hiroko Nakano
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa 252-0373, Japan
| | - Akane Yanagita
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa 252-0373, Japan
| | - Shinichiro Takahashi
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa 252-0373, Japan ; Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
6
|
Li M, Wang X, Cao Y, Liu X, Lin Y, Ou Y, Zhang H, Liu J. Strength comparison between cold-inducible promoters of Arabidopsis cor15a and cor15b genes in potato and tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:77-86. [PMID: 23886924 DOI: 10.1016/j.plaphy.2013.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/25/2013] [Indexed: 06/02/2023]
Abstract
The cold-inducible promoter is ideal for regulating ectopic gene expression in plants to cope with the cold stress. The promoters of two cold-regulated genes, cor15a and cor15b, were cloned from Arabidopsis thaliana and their strengths were assayed in potato and tobacco. Although the cis-element composition and cold-inducible property were similar between the two promoters, the cor15b promoter showed significantly higher activity than the cor15a promoter in both potato and tobacco. In order to elucidate the factors determining this discrepancy, cor15a and cor15b promoters were separately truncated from 5'-end to construct short promoters with similar size containing a single C-repeat/dehydration-responsive element (CRT/DRE). Subsequently, two synthetic promoters were constructed by swapping the flanking sequences of CRT/DRE in the truncated promoters. The promoter strength comparison demonstrated that the flanking sequence could affect the promoter strength. These findings provide a potential regulatory mechanism to control the promoter strength without impact on other properties.
Collapse
Affiliation(s)
- Meng Li
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell Signal 2012; 24:1287-96. [DOI: 10.1016/j.cellsig.2012.02.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/14/2012] [Indexed: 01/10/2023]
|
8
|
The differentiating and apoptotic effects of 2-aza-5′-deoxycytidine are dependent on the PU.1 expression level in PU.1-transgenic K562 cells. Biochem Biophys Res Commun 2012; 420:775-81. [DOI: 10.1016/j.bbrc.2012.03.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 01/27/2023]
|
9
|
The haplotype of the growth-differentiation factor 15 gene is associated with left ventricular hypertrophy in human essential hypertension. Clin Sci (Lond) 2009; 118:137-45. [PMID: 19505289 DOI: 10.1042/cs20080637] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GDF15 (growth-differentiation factor 15) is a novel antihypertrophic factor which is induced in the heart in response to pressure overload and plays an important regulatory role in the process of hypertrophy. In the present study, we have investigated the relationship between GDF15 gene variants and left ventricular hypertrophy in human essential hypertension. A community-based hypertensive population sample of 1527 individuals (506 men and 1021 women) was genotyped for three GDF15 genetic variants, including one tag variant -3148C>G (rs4808793) and two exonic variants +157A>T (rs1059369) and +2438C>G (rs1058587). The effects of those variants on gene expression were studied by use of luciferase reporter assays and the determination of plasma GDF15 levels. Only the tag variant -3148G was significantly associated with a lower risk of left ventricular hypertrophy [odds ratio=0.75 (95% confidence interval, 0.63-0.89); P=0.0009]. Multiple regression analyses confirmed that -3148G predicted the decrease in left ventricular end-diastolic diameter (beta=-0.10, P=0.0001), end-systolic diameter (beta=-0.09, P=0.0007), mass (beta=-0.11, P<0.0001) and indexed mass (beta=-0.12, P<0.0001). These effects were independent of conventional factors, including gender, age, body surface area, blood pressure, diabetes, cigarette smoking and alcohol consumption. The transcription activity of the -3148G-containing construct was increased 1.45-fold (P=0.015) at baseline and 1.73-fold (P=0.008) after stimulation with phenylephrine when compared with the -3148C construct. The -3148G allele was also associated with a significant increase in the plasma GDF15 level in hypertensive subjects (P=0.04). In conclusion, the results show that a promoter haplotype containing the -3148G variant increases GDF15 transcription activity and is associated with favourable left ventricular remodelling in human essential hypertension.
Collapse
|
10
|
Pace BS, Zein S. Understanding mechanisms of gamma-globin gene regulation to develop strategies for pharmacological fetal hemoglobin induction. Dev Dyn 2006; 235:1727-37. [PMID: 16607652 DOI: 10.1002/dvdy.20802] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The developmental regulation of gamma-globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease (SCD). Fetal hemoglobin (Hb F) synthesis is high at birth, followed by a decline to adult levels by 10 months of age. The expression of gamma-globin is controlled by a developmentally regulated transcriptional program that is recapitulated during normal erythropoiesis in the adult bone marrow. It is known that naturally occurring mutations in the gamma-gene promoters cause persistent Hb F synthesis after birth, which ameliorates symptoms in SCD by inhibiting hemoglobin S polymerization and vaso-occlusion. Several pharmacological agents have been identified over the past 2 decades that reactivate gamma-gene transcription through different cellular systems. We will review the progress made in our understanding of molecular mechanisms that control gamma-globin expression and insights gained from Hb F-inducing agents that act through signal transduction pathways.
Collapse
Affiliation(s)
- Betty S Pace
- University of Texas at Dallas, Department of Molecular and Cell Biology, Richardson, Texas 75083, USA.
| | | |
Collapse
|
11
|
Gordon CT, Fox VJ, Najdovska S, Perkins AC. C/EBPδ and C/EBPγ bind the CCAAT-box in the human β-globin promoter and modulate the activity of the CACC-box binding protein, EKLF. ACTA ACUST UNITED AC 2005; 1729:74-80. [PMID: 15833715 DOI: 10.1016/j.bbaexp.2005.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 03/09/2005] [Accepted: 03/11/2005] [Indexed: 11/28/2022]
Abstract
Developmental- and tissue-specific expression of globin genes is mediated by a few key elements within the proximal promoter of each gene. DNA-binding assays previously identified NF-Y, GATA-1, C/EBPbeta and C/EBPgamma as candidate regulators of beta-globin transcription via the CCAAT-box, a promoter element situated between CACC- and TATA-boxes. We have identified C/EBPdelta as an additional beta-globin CCAAT-box binding protein. In reporter assays, we show that C/EBPdelta can co-operate with EKLF, a CACC-box binding protein, to activate the beta-globin promoter, whereas C/EBPgamma inhibits the transcriptional activity of EKLF in this assay.
Collapse
Affiliation(s)
- Christopher T Gordon
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | | | | | | |
Collapse
|
12
|
Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 2004; 25:831-66. [PMID: 15466942 DOI: 10.1210/er.2003-0031] [Citation(s) in RCA: 750] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) interconverts inactive cortisone and active cortisol. Although bidirectional, in vivo it is believed to function as a reductase generating active glucocorticoid at a prereceptor level, enhancing glucocorticoid receptor activation. In this review, we discuss both the genetic and enzymatic characterization of 11beta-HSD1, as well as describing its role in physiology and pathology in a tissue-specific manner. The molecular basis of cortisone reductase deficiency, the putative "11beta-HSD1 knockout state" in humans, has been defined and is caused by intronic mutations in HSD11B1 that decrease gene transcription together with mutations in hexose-6-phosphate dehydrogenase, an endoluminal enzyme that provides reduced nicotinamide-adenine dinucleotide phosphate as cofactor to 11beta-HSD1 to permit reductase activity. We speculate that hexose-6-phosphate dehydrogenase activity and therefore reduced nicotinamide-adenine dinucleotide phosphate supply may be crucial in determining the directionality of 11beta-HSD1 activity. Therapeutic inhibition of 11beta-HSD1 reductase activity in patients with obesity and the metabolic syndrome, as well as in glaucoma and osteoporosis, remains an exciting prospect.
Collapse
Affiliation(s)
- Jeremy W Tomlinson
- Endocrinology, Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sourmeli S, Kravariti L, Lecanidou R. In vitro analysis of Bombyx mori early chorion gene regulation: stage specific expression involves interactions with C/EBP-like and GATA factors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:525-540. [PMID: 12706632 DOI: 10.1016/s0965-1748(03)00027-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This is the first attempt to identify regulatory elements that are involved in early choriogenesis of the silkworm Bombyx mori. A new cis element in the promoter region of five early chorion genes was identified. The consensus sequence of this element matches the consensus of the C/EBP DNA binding site. Moreover, this sequence interacts with a 70 kD protein (pX2) present in follicular nuclear extracts and complex formation exhibits early developmental specificity. There is strong evidence that this factor belongs to the C/EBP family. Surprisingly, the same protein binds with the same developmental specificity to a similar sequence of a late chorion gene promoter, which has been previously defined as the binding site for a putative late specific factor, BCFII. The possibility that pX2 and BCFII are isoforms or modifications of the same protein factor, which is presumably able to bind to the highly similar sequence elements of both early and late genes, is discussed. A hypothesis involving protein-protein interactions between C/EBP (pX2/BCFII) and GATA during choriogenesis is presented to explain the temporal specificity of chorion genes.
Collapse
Affiliation(s)
- S Sourmeli
- University of Athens, Department of Biochemistry and Molecular Biology, Panepistimiopolis, Athens 15701, Greece
| | | | | |
Collapse
|
14
|
Coutinho CC, Fonseca RN, Mansure JJC, Borojevic R. Early steps in the evolution of multicellularity: deep structural and functional homologies among homeobox genes in sponges and higher metazoans. Mech Dev 2003; 120:429-40. [PMID: 12676321 DOI: 10.1016/s0925-4773(03)00007-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sponge homeobox gene EmH-3 had not been attributed to any homeobox family. Comparative promoter and homeodomain sequence analyses suggest that it is related to the Hox11 gene, which belongs to the Tlx homeobox family. Hox11 is highly expressed in proliferating progenitor cells, but expression is downregulated during cell differentiation. Using reporter gene methodology, we monitored function of the sponge EmH-3 promoter transfected into human erythroleukemia K562 cells. These cells express the Tlx/Hox11 gene constitutively, and downregulate its expression upon differentiation. The same pattern of expression and downregulation was observed for the sponge reporter construct. We propose that Tlx/Hox11 genes have structural and functional homologies conserved in phylogenetically distant groups, that represent a deep homology in the regulation of cell proliferation, commitment and differentiation.
Collapse
Affiliation(s)
- Cristiano C Coutinho
- Laboratory of Molecular Biology of Embryonic Development, Federal University of Rio de Janeiro, 21941-970 Ilha do Fundão, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
15
|
Gao H, Parkin S, Johnson PF, Schwartz RC. C/EBP gamma has a stimulatory role on the IL-6 and IL-8 promoters. J Biol Chem 2002; 277:38827-37. [PMID: 12177065 DOI: 10.1074/jbc.m206224200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCAAT/enhancer-binding protein gamma (C/EBP gamma) is an ubiquitously expressed member of the C/EBP family of transcription factors that has been shown to be an inhibitor of C/EBP transcriptional activators and has been proposed to act as a buffer against C/EBP-mediated activation. We have now unexpectedly found that C/EBP gamma dramatically augments the activity of C/EBP beta in lipopolysaccharide induction of the interleukin-6 and interleukin-8 promoters in a B lymphoblast cell line. This activating role for C/EBP gamma is promoter-specific, neither being observed in the regulation of a simple C/EBP-dependent promoter nor the TNF alpha promoter. C/EBP gamma activity also shows cell-type specificity with no activity observed in a macrophage cell line. Studies with chimeric C/EBP proteins implicate the formation of a heterodimeric leucine zipper between C/EBP beta and C/EBP gamma as the critical structural feature required for C/EBP gamma stimulatory activity. These findings suggest a unique role for C/EBP gamma in B cell gene regulation and, along with our previous observation of the ability of C/EBP basic region-leucine zipper domains to confer lipopolysaccharide inducibility of interleukin-6, suggest that the C/EBP leucine zipper domain has a role in C/EBP function beyond allowing dimerization between C/EBP family members.
Collapse
Affiliation(s)
- Hongwei Gao
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | | | | | | |
Collapse
|
16
|
Tang S, Zheng ZM. Kaposi's sarcoma-associated herpesvirus K8 exon 3 contains three 5'-splice sites and harbors a K8.1 transcription start site. J Biol Chem 2002; 277:14547-56. [PMID: 11832484 DOI: 10.1074/jbc.m111308200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) K8 and K8.1 open reading frames are juxtaposed and span from nucleotide (nt) 74850 to 76695 of the virus genome. A K8 pre-mRNA overlaps the entire K8.1 coding region, and alternative splicing of KSHV K8 and K8.1 pre-mRNAs each produces three isoforms (alpha, beta, and gamma) of the mRNAs. We have mapped the 5' end of the K8.1 RNA in butyrate-induced KSHV-positive JSC-1 cells to nt 75901 in the KSHV genome and have shown that exon 3 of the K8 pre-mRNA in JSC-1 cells covers most part of the intron 3 defined previously and has three 5'-splice sites (ss), respectively, at nt 75838, 76155, and 76338. Selection of the nt 75838 5'-ss dictates the K8 mRNA production and overwhelms the RNA processing. Alternative selection of other two 5'-ss is feasible and leads to production of two additional bicistronic mRNAs, K8/K8.1alpha and -beta. However, the novel bicistronic K8/K8.1 mRNAs translated a little K8 and no detectable K8.1 proteins in 293 cells. Data suggest that production of the K8/K8.1 mRNAs may be an essential way to control K8 mRNAs, especially K8alpha, to a threshold at RNA processing level.
Collapse
Affiliation(s)
- Shuang Tang
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
17
|
Zafarana G, Rottier R, Grosveld F, Philipsen S. Erythroid overexpression of C/EBPgamma in transgenic mice affects gamma-globin expression and fetal liver erythropoiesis. EMBO J 2000; 19:5856-63. [PMID: 11060036 PMCID: PMC305797 DOI: 10.1093/emboj/19.21.5856] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The CCAAT boxes of the beta-like globin genes interact with three proteins: NF-Y, GATA-1 and NFE-6. We demonstrate that NFE-6 contains C/EBPgamma, and address its role in globin gene regulation by erythroid overexpression of C/EBPgamma, and a dominant-negative form C/EBPgammaDeltaB, in mice. Elevated levels of C/EBPgamma, but not C/EBPgammaDeltaB, increase expression of the (fetal) gamma-globin relative to the (adult) beta-globin gene. Interestingly, fetal liver erythropoiesis is ablated when the C/EBPgamma and C/EBPgammaDeltaB levels are further increased in homozygous transgenics. We suggest that targeted expression of dominant-negative leucine zipper proteins is a generally applicable approach to ablate specific tissues in mice.
Collapse
Affiliation(s)
- G Zafarana
- Erasmus University Rotterdam, MGC-Department of Cell Biology, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | |
Collapse
|