1
|
Faris S, Xia K, Wagner AG, Xu Z, Smith N, Giner JL, Callahan B, Xie J, Wang C. Conserved C143 forms a branched intermediate in Hedgehog autoprocessing: A cancer drug discovery target against Hedgehog signaling. Proc Natl Acad Sci U S A 2025; 122:e2415144122. [PMID: 40273103 PMCID: PMC12054796 DOI: 10.1073/pnas.2415144122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Hedgehog (Hh) signaling plays fundamental roles in embryonic development while its abnormal activation in adults is associated with cancer. Hh targeting drugs have gained FDA approval but resistance emerged quickly, underlining the need for novel types of Hh inhibitors. Hh signaling is initiated by the Hh ligand, generated from the autoprocessing of Hh precursor. However, the catalytic role of a highly conserved Hedgehog residue C143 is still poorly understood. Here, we confirmed that C143 is required for Hh autoprocessing in mammalian cells. NMR titration showed that C143 has an extremely low pKa of 4.5, befitting a highly reactive catalytic residue. We further established that Hh autoprocessing involves a branched intermediate (BI) with two N-termini, formed as a thioester on the C143 sidechain. BI migrates slower than the linear Hh precursor on SDS-PAGE and disappears with DTT treatment. With trypsin digestion and LC-MS/MS, we detected the N-terminal fragment from BI, which is absent from the linear Hh precursor. Therefore, C143 mediates the formation of a BI thioester in Hh autoprocessing, with a catalytic role equivalent to C + 1 in intein splicing. These findings bring us closer to a full mechanistic understanding of Hh autoprocessing while unifying the first two catalytic steps of Hh autoprocessing with intein splicing, its likely evolutionary predecessor. C143 can also serve as a target for covalent drugs for inhibiting Hh signaling in cancer.
Collapse
Affiliation(s)
- Shannon Faris
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Andrew G. Wagner
- Department of Chemistry, Binghamton University, Binghamton, NY13902
| | - Zihan Xu
- Department of Chemistry, Binghamton University, Binghamton, NY13902
| | - Nathan Smith
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - José-Luis Giner
- Department of Chemistry, State University of New York-Environmental Science and Forestry, Syracuse, NY13210
| | - Brian Callahan
- Department of Chemistry, Binghamton University, Binghamton, NY13902
| | - Jian Xie
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE68198
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
2
|
Daniilidis M, Sperl LE, Müller BS, Babl A, Hagn F. Efficient Segmental Isotope Labeling of Integral Membrane Proteins for High-Resolution NMR Studies. J Am Chem Soc 2024; 146:15403-15410. [PMID: 38787792 PMCID: PMC11157531 DOI: 10.1021/jacs.4c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
High-resolution structural NMR analyses of membrane proteins are challenging due to their large size, resulting in broad resonances and strong signal overlap. Among the isotope labeling methods that can remedy this situation, segmental isotope labeling is a suitable strategy to simplify NMR spectra and retain high-resolution structural information. However, protein ligation within integral membrane proteins is complicated since the hydrophobic protein fragments are insoluble, and the removal of ligation side-products is elaborate. Here, we show that a stabilized split-intein system can be used for rapid and high-yield protein trans-splicing of integral membrane proteins under denaturing conditions. This setup enables segmental isotope labeling experiments within folded protein domains for NMR studies. We show that high-quality NMR spectra of markedly reduced complexity can be obtained in detergent micelles and lipid nanodiscs. Of note, the nanodisc insertion step specifically selects for the ligated and correctly folded membrane protein and simultaneously removes ligation byproducts. Using this tailored workflow, we show that high-resolution NMR structure determination is strongly facilitated with just two segmentally isotope-labeled membrane protein samples. The presented method will be broadly applicable to structural and dynamical investigations of (membrane-) proteins and their complexes by solution and solid-state NMR but also other structural methods where segmental labeling is beneficial.
Collapse
Affiliation(s)
- Melina Daniilidis
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Laura E. Sperl
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Benedikt S. Müller
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Antonia Babl
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
- Institute
of Structural Biology, Helmholtz Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
3
|
Foo GW, Leichthammer CD, Saita IM, Lukas ND, Batko IZ, Heinrichs DE, Edgell DR. Intein-based thermoregulated meganucleases for containment of genetic material. Nucleic Acids Res 2024; 52:2066-2077. [PMID: 38180814 PMCID: PMC10899782 DOI: 10.1093/nar/gkad1247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Limiting the spread of synthetic genetic information outside of the intended use is essential for applications where biocontainment is critical. In particular, biocontainment of engineered probiotics and plasmids that are excreted from the mammalian gastrointestinal tract is needed to prevent escape and acquisition of genetic material that could confer a selective advantage to microbial communities. Here, we built a simple and lightweight biocontainment system that post-translationally activates a site-specific DNA endonuclease to degrade DNA at 18°C and not at higher temperatures. We constructed an orthogonal set of temperature-sensitive meganucleases (TSMs) by inserting the yeast VMA1 L212P temperature-sensitive intein into the coding regions of LAGLIDADG homing endonucleases. We showed that the TSMs eliminated plasmids carrying the cognate TSM target site from laboratory strains of Escherichia coli at the permissive 18°C but not at higher restrictive temperatures. Plasmid elimination is dependent on both TSM endonuclease activity and intein splicing. TSMs eliminated plasmids from E. coli Nissle 1917 after passage through the mouse gut when fecal resuspensions were incubated at 18°C but not at 37°C. Collectively, our data demonstrates the potential of thermoregulated meganucleases as a means of restricting engineered plasmids and probiotics to the mammalian gut.
Collapse
Affiliation(s)
- Gary W Foo
- Department of Biochemistry, Schulich School of Medicine and Dentistry, London, Ontario N6A 5C1, Canada
| | | | - Ibrahim M Saita
- Department of Biochemistry, Schulich School of Medicine and Dentistry, London, Ontario N6A 5C1, Canada
| | - Nicholas D Lukas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, London, Ontario N6A 5C1, Canada
| | - Izabela Z Batko
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, London, Ontario N6A 5C1, Canada
| | - David E Heinrichs
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, London, Ontario N6A 5C1, Canada
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, London, Ontario N6A 5C1, Canada
| |
Collapse
|
4
|
Boyle AL. Approaches to the Full and Partial Chemical Synthesis of Proteins. Methods Mol Biol 2024; 2819:573-582. [PMID: 39028524 DOI: 10.1007/978-1-0716-3930-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Histones are proteins which help to organize DNA. The way in which they function is complex and is partially controlled by post-translational modifications (PTMs). Histone proteins from numerous organisms can be recombinantly produced in bacteria, but many bacterial strains are incapable of installing the variety of PTMs that histones possess. An alternative method of producing histones, which can be used to introduce PTMs, is native chemical ligation (NCL). This chapter provides a general NCL protocol which can be used to produce synthetic, post-translationally modified, histone proteins. The focus is on the NCL procedure itself and not on producing the modified histone protein fragments as there are many different ways in which these can be synthesized, depending on the modification(s) required. The same NCL protocol is also applicable for expressed protein ligation (EPL) with only small modifications to the purification procedure potentially required.
Collapse
Affiliation(s)
- Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
5
|
Wood DW, Belfort M, Lennon CW. Inteins-mechanism of protein splicing, emerging regulatory roles, and applications in protein engineering. Front Microbiol 2023; 14:1305848. [PMID: 38029209 PMCID: PMC10663303 DOI: 10.3389/fmicb.2023.1305848] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Protein splicing is a posttranslational process in which an intein segment excises itself from two flanking peptides, referred to as exteins. In the native context, protein splicing results in two separate protein products coupled to the activation of the intein-containing host protein. Inteins are generally described as either full-length inteins, mini-inteins or split inteins, which are differentiated by their genetic structure and features. Inteins can also be divided into three classes based on their splicing mechanisms, which differ in the location of conserved residues that mediate the splicing pathway. Although inteins were once thought to be selfish genetic elements, recent evidence suggests that inteins may confer a genetic advantage to their host cells through posttranslational regulation of their host proteins. Finally, the ability of modified inteins to splice and cleave their fused exteins has enabled many new applications in protein science and synthetic biology. In this review, we briefly cover the mechanisms of protein splicing, evidence for some inteins as environmental sensors, and intein-based applications in protein engineering.
Collapse
Affiliation(s)
- David W. Wood
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, United States
| | - Christopher W. Lennon
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
6
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
SufB intein splicing in Mycobacterium tuberculosis is influenced by two remote conserved N-extein histidines. Biosci Rep 2022; 42:230724. [PMID: 35234249 PMCID: PMC8891592 DOI: 10.1042/bsr20212207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Inteins are auto-processing domains that implement a multistep biochemical reaction termed protein splicing, marked by cleavage and formation of peptide bonds. They excise from a precursor protein, generating a functional protein via covalent bonding of flanking exteins. We report the kinetic study of splicing and cleavage reaction in [Fe–S] cluster assembly protein SufB from Mycobacterium tuberculosis (Mtu). Although it follows a canonical intein splicing pathway, distinct features are added by extein residues present in the active site. Sequence analysis identified two conserved histidines in the N-extein region; His-5 and His-38. Kinetic analyses of His-5Ala and His-38Ala SufB mutants exhibited significant reductions in splicing and cleavage rates relative to the SufB wildtype (WT) precursor protein. Structural analysis and molecular dynamics (MD) simulations suggested that Mtu SufB displays a unique mechanism where two remote histidines work concurrently to facilitate N-terminal cleavage reaction. His-38 is stabilized by the solvent-exposed His-5, and can impact N–S acyl shift by direct interaction with the catalytic Cys1. Development of inteins as biotechnological tools or as pathogen-specific novel antimicrobial targets requires a more complete understanding of such unexpected roles of conserved extein residues in protein splicing.
Collapse
|
8
|
Butts M, Nam Chu. Utilizing a Baculovirus/Insect Cell Expression System and Expressed Protein Ligation (EPL) for Protein Semisynthesis. Curr Protoc 2022; 2:e348. [PMID: 35044726 PMCID: PMC8855479 DOI: 10.1002/cpz1.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein semisynthesis has been used for the chemoselective linking of synthetic peptides and recombinant protein fragments to generate complete native proteins in good yield. The ability to site-selectively incorporate multiple post-translational chemical modifications (PTMs) into proteins via this approach shows great potential for enhancing understanding of the molecular basis of protein function and regulation. Protein semisynthesis, however, often requires high expression efficiency of the recombinant protein fragments (i.e., high expression yield and ability to preserve protein biological functions), which can be hard to achieve for some human enzymes when using bacterial expression systems. Here, we describe how to use a baculovirus/insect cell expression system and a protein semisynthesis strategy known as expressed protein ligation (EPL) to produce workable levels of proteins of interest containing site-specific chemical modifications. The protocol provides detailed guidance for generating protein C-terminal thioesters for use with the EPL reaction, performing the EPL reaction, and purifying the protein ligation product. We exemplify the protocols by generating protein kinase Akt1 with site-specific phosphorylations installed into its C-terminal tail, for kinetic kinase assays. We hope these methods will help increase the use of protein semisynthesis for elucidating the post-translational regulation of human enzymes involved in cell signaling. © 2022 Wiley Periodicals LLC Basic Protocol 1: Generation of the N-terminal protein of interest (POI) fragment containing a C-terminal thioester moiety Basic Protocol 2: Expressed protein ligation (EPL) of the protein thioester with a synthetic peptide and purification of the protein ligation product Basic Protocol 3: Semisynthesis and biochemical analysis of site-specifically phosphorylated Akt1.
Collapse
Affiliation(s)
- Marie Butts
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University; Columbus, OH 43210, USA
| | - Nam Chu
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University; Columbus, OH 43210, USA,Corresponding author:
| |
Collapse
|
9
|
Carman PJ, Barrie KR, Dominguez R. Novel human cell expression method reveals the role and prevalence of posttranslational modification in nonmuscle tropomyosins. J Biol Chem 2021; 297:101154. [PMID: 34478714 PMCID: PMC8463859 DOI: 10.1016/j.jbc.2021.101154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
Biochemical studies require large quantities of proteins, which are typically obtained using bacterial overexpression. However, the folding machinery in bacteria is inadequate for expressing many mammalian proteins, which additionally undergo posttranslational modifications (PTMs) that bacteria, yeast, or insect cells cannot perform. Many proteins also require native N- and C-termini and cannot tolerate extra tag amino acids for proper function. Tropomyosin (Tpm), a coiled coil protein that decorates most actin filaments in cells, requires both native N- and C-termini and PTMs, specifically N-terminal acetylation (Nt-acetylation), to polymerize along actin filaments. Here, we describe a new method that combines native protein expression in human cells with an intein-based purification tag that can be precisely removed after purification. Using this method, we expressed several nonmuscle Tpm isoforms (Tpm1.6, Tpm1.7, Tpm2.1, Tpm3.1, Tpm3.2, and Tpm4.2) and the muscle isoform Tpm1.1. Proteomics analysis revealed that human-cell-expressed Tpms present various PTMs, including Nt-acetylation, Ser/Thr phosphorylation, Tyr phosphorylation, and Lys acetylation. Depending on the Tpm isoform (humans express up to 40 Tpm isoforms), Nt-acetylation occurs on either the initiator methionine or on the second residue after removal of the initiator methionine. Human-cell-expressed Tpms bind F-actin differently than their Escherichia coli-expressed counterparts, with or without N-terminal extensions intended to mimic Nt-acetylation, and they can form heterodimers in cells and in vitro. The expression method described here reveals previously unknown features of nonmuscle Tpms and can be used in future structural and biochemical studies with Tpms and other proteins, as shown here for α-synuclein.
Collapse
Affiliation(s)
- Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle R Barrie
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
10
|
Palei S, Mootz HD. Semisynthetic head-to-tail cyclized peptides obtained by combining protein trans-splicing and intramolecular expressed protein ligation. Chem Commun (Camb) 2021; 57:4194-4197. [PMID: 33908454 DOI: 10.1039/d1cc00449b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-intein approach for the preparation of head-to-tail macrocyclic peptides is reported, where synthetic and genetically encoded fragments are ligated by two native peptide bonds. A split intein ligates the synthetic and genetically encoded peptides via protein trans-splicing and is followed by intramolecular cyclization through an expressed protein ligation step mediated with a cis-intein. We identified a suitable pair of orthogonal inteins and optimized the conditions for a one-pot cyclization protocol. We report the semisynthesis of model macrocyles with various ring sizes and of the natural product sunflower trypsin inhibitor (SFTI) along with its ornithine analog.
Collapse
Affiliation(s)
- Shubhendu Palei
- Institute of Biochemistry, University of Muenster, Münster 48149, Germany. and International Graduate School of Chemistry (GSC-MS), University of Muenster, Münster 48149, Germany
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Münster 48149, Germany. and International Graduate School of Chemistry (GSC-MS), University of Muenster, Münster 48149, Germany
| |
Collapse
|
11
|
Wang W, Khojasteh SC, Su D. Biosynthetic Strategies for Macrocyclic Peptides. Molecules 2021; 26:3338. [PMID: 34206124 PMCID: PMC8199541 DOI: 10.3390/molecules26113338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022] Open
Abstract
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Dian Su
- Drug Metabolism and Disposition, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (W.W.); (S.C.K.)
| |
Collapse
|
12
|
Panda S, Nanda A, Nasker SS, Sen D, Mehra A, Nayak S. Metal effect on intein splicing: A review. Biochimie 2021; 185:53-67. [PMID: 33727137 DOI: 10.1016/j.biochi.2021.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
Inteins are intervening polypeptides that interrupt the functional domains of several important proteins across the three domains of life. Inteins excise themselves from the precursor protein, ligating concomitant extein residues in a process called protein splicing. Post-translational auto-removal of inteins remain critical for the generation of active proteins. The perspective of inteins in science is a robust field of research, however fundamental studies centralized upon splicing regulatory mechanism are imperative for addressing more intricate issues. Controlled engineering of intein splicing has many applications; intein inhibition can facilitate novel drug design, while activation of intein splicing is exploited in protein purification. This paper provides a comprehensive review of the past and recent advances in the splicing regulation via metal-intein interaction. We compare the behavior of different metal ions on diverse intein systems. Though metals such as Zn, Cu, Pt, Cd, Co, Ni exhibit intein inhibitory effect heterogeneously on different inteins, divalent metal ions such as Ca and Mg fail to do so. The observed diversity in the metal-intein interaction arises mostly due to intein polymorphism and variations in atomic structure of metals. A mechanistic understanding of intein regulation by metals in native as well as synthetically engineered intein systems may yield potent intein inhibitors via direct or indirect approach.
Collapse
Affiliation(s)
- Sunita Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Ananya Nanda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sourya Subhra Nasker
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Debjani Sen
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Ashwaria Mehra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
13
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
14
|
Hosseini ES, Zeinoddini M, Saeedinia AR, Babaeipour V. Optimization and One-Step Purification of Recombinant V Antigen Production from Yersinia pestis. Mol Biotechnol 2020; 62:177-184. [PMID: 31894514 PMCID: PMC7222043 DOI: 10.1007/s12033-019-00234-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The purpose of this study was to develop an efficient and inexpensive method for the useful production of recombinant protein V antigen, an important virulence factor for Yersinia pestis. To this end, the synthetic gene encoding the V antigen was subcloned into the downstream of the intein (INT) and chitin-binding domain (CBD) from the pTXB1 vector using specific primers. In the following, the produced new plasmid, pTX-V, was transformed into E. coli ER2566 strain, and the expression accuracy was confirmed using electrophoresis and Western blotting. In addition, the effects of medium, inducer, and temperature on the enhancement of protein production were studied using the Taguchi method. Finally, the V antigen was purified by a chitin affinity column using INT and CBD tag. The expression was induced by 0.05 mM IPTG at 25 °C under optimal conditions including TB medium. It was observed that the expression of the V-INT–CBD fusion protein was successfully increased to more than 40% of the total protein. The purity of V antigen was as high as 90%. This result indicates that V antigen can be produced at low cost and subjected to one-step purification using a self-cleaving INT tag.
Collapse
Affiliation(s)
- Elahe Seyed Hosseini
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Zeinoddini
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran. .,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Ali Reza Saeedinia
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Valiollah Babaeipour
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Romero-Casañas A, Gordo V, Castro J, Ribó M. Protein Splicing: From the Foundations to the Development of Biotechnological Applications. Methods Mol Biol 2020; 2133:15-29. [PMID: 32144661 DOI: 10.1007/978-1-0716-0434-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Expressed protein ligation is a simple and powerful method in protein engineering to introduce sequences of unnatural amino acids, posttranslational modifications, and biophysical probes into proteins of any size. This methodology has been developed based on the knowledge obtained from protein splicing. Protein splicing is a multistep biochemical reaction that includes the concomitant cleavage and formation of peptide bonds carried out by self-processing domains named inteins. The natural substrates of protein splicing are essential proteins found in intein-containing organisms; inteins are also functional in nonnative frameworks and can be used to alter nearly any protein's primary amino acid sequence. Accordingly, different reactivity features of inteins have been largely exploited to manipulate proteins in countless methods encompassing fields from biochemical research to the development of biotechnological applications including the study of disease progression and validation of potential drug candidates. Here, we review almost three decades of research to uncover the chemical and biochemical enigmas of protein splicing and the development of inteins as potent protein engineering tools.
Collapse
Affiliation(s)
- Alejandro Romero-Casañas
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain
| | - Verónica Gordo
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain
| | - Jessica Castro
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.
| |
Collapse
|
16
|
Sarmiento C, Camarero JA. Biotechnological Applications of Protein Splicing. Curr Protein Pept Sci 2019; 20:408-424. [PMID: 30734675 PMCID: PMC7135711 DOI: 10.2174/1389203720666190208110416] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
Protein splicing domains, also called inteins, have become a powerful biotechnological tool for applications involving molecular biology and protein engineering. Early applications of inteins focused on self-cleaving affinity tags, generation of recombinant polypeptide α-thioesters for the production of semisynthetic proteins and backbone cyclized polypeptides. The discovery of naturallyoccurring split-inteins has allowed the development of novel approaches for the selective modification of proteins both in vitro and in vivo. This review gives a general introduction to protein splicing with a focus on their role in expanding the applications of intein-based technologies in protein engineering and chemical biology.
Collapse
Affiliation(s)
- Corina Sarmiento
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA9033 USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-9121, USA
| |
Collapse
|
17
|
Panahi Chegini P, Nikokar I, Tabarzad M, Faezi S, Mahboubi A. Effect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:157-168. [PMID: 32802096 PMCID: PMC7393060 DOI: 10.22037/ijpr.2019.112397.13734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide range of antimicrobial activities. They have also exhibited other biological activities, including anti-inflammatory, growth stimulating, and anti-cancer activities. In this study, an analog of Magainin II was designed and produced as a recombinant fusion protein. The designed sequence contained 24 amino acid residues (P24), in which Lys, His, Ser residues were substituted with Arg and also, hydrophobic Phe was replaced with Trp. Recombinant production of P24 in Escherichia coli (E. coli) BL21 using pTYB21, containing chitin binding domain and intein sequence at the N-terminus of the peptide gene, resulted in 1 μg mL-1 product from culture. Chitin column chromatography, followed by online peptide cleavage with thiol reducing agent was applied to purify the peptide. Antimicrobial activity was evaluated using five bacteria strains including Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, E. coli, and Pseudomonas aeruginosa. Designed AMP exhibited promising antimicrobial activities with low minimum inhibitory concentration, in the range of 64-256 µg/mL. P24 showed potent antimicrobial activity preferably against Gram-positive bacteria, and more potent than pexiganan as a successful Magainin II analog for topical infections. In general, further modification can be applied to improve its therapeutic index.
Collapse
Affiliation(s)
- Parvaneh Panahi Chegini
- Department of Medicinal Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Iraj Nikokar
- Department of Medicinal Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Jeon H, Lee E, Kim D, Lee M, Ryu J, Kang C, Kim S, Kwon Y. Cell-Based Biosensors Based on Intein-Mediated Protein Engineering for Detection of Biologically Active Signaling Molecules. Anal Chem 2018; 90:9779-9786. [PMID: 30028129 DOI: 10.1021/acs.analchem.8b01481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Live-cell-based biosensors have emerged as a useful tool for biotechnology and chemical biology. Genetically encoded sensor cells often use bimolecular fluorescence complementation or fluorescence resonance energy transfer to build a reporter unit that suffers from nonspecific signal activation at high concentrations. Here, we designed genetically encoded sensor cells that can report the presence of biologically active molecules via fluorescence-translocation based on split intein-mediated conditional protein trans-splicing (PTS) and conditional protein trans-cleavage (PTC) reactions. In this work, the target molecules or the external stimuli activated intein-mediated reactions, which resulted in activation of the fluorophore-conjugated signal peptide. This approach fully valued the bond-making and bond-breaking features of intein-mediated reactions in sensor construction and thus eliminated the interference of false-positive signals resulting from the mere binding of fragmented reporters. We could also avoid the necessity of designing split reporters to refold into active structures upon reconstitution. These live-cell-based sensors were able to detect biologically active signaling molecules, such as Ca2+ and cortisol, as well as relevant biological stimuli, such as histamine-induced Ca2+ stimuli and the glucocorticoid receptor agonist, dexamethasone. These live-cell-based sensing systems hold large potential for applications such as drug screening and toxicology studies, which require functional information about targets.
Collapse
Affiliation(s)
- Hyunjin Jeon
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Euiyeon Lee
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Dahee Kim
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Minhyung Lee
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Jeahee Ryu
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Chungwon Kang
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Soyoun Kim
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering (BK21 plus) , Dongguk University , Seoul 04620 , Korea
| |
Collapse
|
19
|
Lucas C, Ferreira C, Cazzanelli G, Franco-Duarte R, Tulha J, Roelink H, Conway SJ. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. J Dev Biol 2016; 4:E33. [PMID: 29615596 PMCID: PMC5831804 DOI: 10.3390/jdb4040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.
Collapse
Affiliation(s)
- Cândida Lucas
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Célia Ferreira
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Giulia Cazzanelli
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Joana Tulha
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | | | | |
Collapse
|
20
|
Fernandes JAL, Prandini THR, Castro MDCA, Arantes TD, Giacobino J, Bagagli E, Theodoro RC. Evolution and Application of Inteins in Candida species: A Review. Front Microbiol 2016; 7:1585. [PMID: 27777569 PMCID: PMC5056185 DOI: 10.3389/fmicb.2016.01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
Inteins are invasive intervening sequences that perform an autocatalytic splicing from their host proteins. Among eukaryotes, these elements are present in many fungal species, including those considered opportunistic or primary pathogens, such as Candida spp. Here we reviewed and updated the list of Candida species containing inteins in the genes VMA, THRRS and GLT1 and pointed out the importance of these elements as molecular markers for molecular epidemiological researches and species-specific diagnosis, since the presence, as well as the size of these inteins, is polymorphic among the different species. Although absent in Candida albicans, these elements are present in different sizes, in some environmental Candida spp. and also in most of the non-albicans Candida spp. considered emergent opportunistic pathogens. Besides, the possible role of these inteins in yeast physiology was also discussed in the light of the recent findings on the importance of these elements as post-translational modulators of gene expression, reinforcing their relevance as alternative therapeutic targets for the treatment of non-albicans Candida infections, because, once the splicing of an intein is inhibited, its host protein, which is usually a housekeeping protein, becomes non-functional.
Collapse
Affiliation(s)
- José A L Fernandes
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| | - Tâmara H R Prandini
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Maria da Conceiçao A Castro
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| | - Thales D Arantes
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do NorteNatal, Brazil; Post-graduation Program in Biochemistry, Universidade Federal do Rio Grande do NorteNatal, Brazil
| | - Juliana Giacobino
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Eduardo Bagagli
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Raquel C Theodoro
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| |
Collapse
|
21
|
Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A 2016; 113:E2579-88. [PMID: 27118836 DOI: 10.1073/pnas.1519368113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ability to monitor and perturb RNAs in living cells would benefit greatly from a modular protein architecture that targets unmodified RNA sequences in a programmable way. We report that the RNA-binding protein PumHD (Pumilio homology domain), which has been widely used in native and modified form for targeting RNA, can be engineered to yield a set of four canonical protein modules, each of which targets one RNA base. These modules (which we call Pumby, for Pumilio-based assembly) can be concatenated in chains of varying composition and length, to bind desired target RNAs. The specificity of such Pumby-RNA interactions was high, with undetectable binding of a Pumby chain to RNA sequences that bear three or more mismatches from the target sequence. We validate that the Pumby architecture can perform RNA-directed protein assembly and enhancement of translation of RNAs. We further demonstrate a new use of such RNA-binding proteins, measurement of RNA translation in living cells. Pumby may prove useful for many applications in the measurement, manipulation, and biotechnological utilization of unmodified RNAs in intact cells and systems.
Collapse
|
22
|
Jung D, Sato K, Min K, Shigenaga A, Jung J, Otaka A, Kwon Y. Photo-triggered fluorescent labelling of recombinant proteins in live cells. Chem Commun (Camb) 2016; 51:9670-3. [PMID: 25977944 DOI: 10.1039/c5cc01067e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A method to photo-chemically trigger fluorescent labelling of proteins in live cells is developed. The approach is based on photo-caged split-intein mediated conditional protein trans-splicing reaction and enabled background-free fluorescent labelling of target proteins with the necessary spatiotemporal control.
Collapse
Affiliation(s)
- Deokho Jung
- Department of Biomedical Engineering, Dongguk University-Seoul, Pildong 3-ga, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bachmann AL, Mootz HD. An Unprecedented Combination of Serine and Cysteine Nucleophiles in a Split Intein with an Atypical Split Site. J Biol Chem 2015; 290:28792-804. [PMID: 26453311 DOI: 10.1074/jbc.m115.677237] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 11/06/2022] Open
Abstract
Protein splicing mediated by inteins is a self-processive reaction leading to the excision of the internal intein domain from a precursor protein and the concomitant ligation of the flanking sequences, the extein-N and extein-C parts, thereby reconstituting the host protein. Most inteins employ a splicing pathway in which the upstream scissile peptide bond is consecutively rearranged into two thioester or oxoester intermediates before intein excision and rearrangement into the new peptide bond occurs. The catalytically critical amino acids involved at the two splice junctions are cysteine, serine, or threonine. Notably, the only potential combination not observed so far in any of the known or engineered inteins corresponds to the transesterification from an oxoester to a thioester, which suggested that this formal uphill reaction with regard to the thermodynamic stability might be incompatible with intein-mediated catalysis. We show that corresponding mutations also led to inactive gp41-1 and AceL-TerL inteins. We report the novel GOS-TerL split intein identified from metagenomic databases as the first intein harboring the combination of Ser1 and Cys+1 residues. Mutational analysis showed that its efficient splicing reaction indeed follows the shift from oxoester to thioester and thus represents a rare diversion from the canonical pathway. Furthermore, the GOS-TerL intein has an atypical split site close to the N terminus. The Int(N) fragment could be shortened from 37 to 28 amino acids and exchanged with the 25-amino acid Int(N) fragment from the AceL-TerL intein, indicating a high degree of promiscuity of the Int(C) fragment of the GOS-TerL intein.
Collapse
Affiliation(s)
- Anne-Lena Bachmann
- From the Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Muenster, 48149 Münster, Germany
| | - Henning D Mootz
- From the Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Muenster, 48149 Münster, Germany
| |
Collapse
|
24
|
Li Y. Split-inteins and their bioapplications. Biotechnol Lett 2015; 37:2121-37. [DOI: 10.1007/s10529-015-1905-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023]
|
25
|
Mitchell SF, Lorsch JR. Protein Affinity Purification using Intein/Chitin Binding Protein Tags. Methods Enzymol 2015; 559:111-25. [PMID: 26096506 DOI: 10.1016/bs.mie.2014.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Isolation of highly purified recombinant protein is essential for a wide range of biochemical and biophysical assays. Affinity purification in which a tag is fused to the desired protein and then specifically bound to an affinity column is a widely used method for obtaining protein of high purity. Many of these methods have the drawbacks of either leaving the recombinant tag attached to the protein or requiring the addition of a protease which then must be removed by further chromatographic steps. The fusion of a self-cleaving intein sequence followed by a chitin-binding domain (CBD) allows for one-step chromatographic purification of an untagged protein through the thiol-catalyzed cleavage of the intein sequence from the desired protein. The affinity purification is highly specific and can yield pure protein without any undesired N- or C-terminal extensions. This protocol is based on the IMPACT™-System (intein mediated purification with an affinity chitin-binding tag) marketed by New England Biolabs.
Collapse
Affiliation(s)
- Sarah F Mitchell
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Bethesda, MD, USA.
| |
Collapse
|
26
|
Rodríguez V, Lascani J, Asenjo JA, Andrews BA. Production of Cell-Penetrating Peptides in Escherichia coli Using an Intein-Mediated System. Appl Biochem Biotechnol 2015; 175:3025-37. [DOI: 10.1007/s12010-015-1484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
27
|
Zhang X, Wang D, Zhao S, Shen Z. A double built-in containment strategy for production of recombinant proteins in transgenic rice. PLoS One 2014; 9:e115459. [PMID: 25531447 PMCID: PMC4274026 DOI: 10.1371/journal.pone.0115459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 01/19/2023] Open
Abstract
Using transgenic rice as a bioreactor for mass production of pharmaceutical proteins could potentially reduce the cost of production significantly. However, a major concern over the bioreactor transgenic rice is the risk of its unintended spreading into environment and into food or feed supplies. Here we report a mitigating method to prevent unwanted transgenic rice spreading by a double built-in containment strategy, which sets a selectively termination method and a visual tag technology in the T-DNA for transformation. We created transgenic rice with an inserted T-DNA that harbors a human proinsulin gene fused with the far-red fluorescent protein gene mKate_S158A, an RNAi cassette suppressing the expression of the rice bentazon detoxification enzyme CYP81A6, and an EPSPS gene as the selection marker for transformation. Herbicide spray tests indicated that such transgenic rice plants can be killed selectively by a spray of bentazon at regular field application dosage for rice weed control. Moreover, the transgenic rice seeds were bright red in color due to the fused far-red fluorescent protein, and could be easily visualized under daylight by naked eyes. Thus, the transgenic rice plants reported in this study could be selectively killed by a commonly used herbicide during their growth stage, and their seeds may be detected visually during processing and consumption after harvest. This double built-in containment strategy may greatly enhance the confinement of the transgenic rice.
Collapse
Affiliation(s)
- Xianwen Zhang
- State Key Laboratory of Rice Biology, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongfang Wang
- State Key Laboratory of Rice Biology, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sinan Zhao
- State Key Laboratory of Rice Biology, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhicheng Shen
- State Key Laboratory of Rice Biology, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Tarasava K, Freisinger E. An optimized intein-mediated protein ligation approach for the efficient cyclization of cysteine-rich proteins. Protein Eng Des Sel 2014; 27:481-8. [PMID: 25335928 DOI: 10.1093/protein/gzu048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Head-to-tail backbone cyclization of proteins is a widely used approach for the improvement of protein stability. One way to obtain cyclic proteins via recombinant expression makes use of engineered Intein tags, which are self-cleaving protein domains. In this approach, pH-induced self-cleavage of the N-terminal Intein tag generates an N-terminal cysteine residue at the target protein, which then attacks in an intramolecular reaction the C-terminal thioester formed by the second C-terminal Intein tag resulting in the release of the cyclic target protein. In the current work we aimed to produce a cyclic analog of the small γ-Ec-1 domain of the wheat metallothionein, which contains six cysteine residues. During the purification process we faced several challenges, among them premature cleavage of one or the other Intein tag resulting in decreasing yields and contamination with linear species. To improve efficiency of the system we applied a number of optimizations such as the introduction of a Tobacco etch virus cleavage site and an additional poly-histidine tag. Our efforts resulted in the production of a cyclic protein in moderate yields without any contamination with linear protein species.
Collapse
Affiliation(s)
- Katsiaryna Tarasava
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Eva Freisinger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
29
|
Branching out of the intein active site in protein splicing. Proc Natl Acad Sci U S A 2014; 111:8323-4. [PMID: 24872446 DOI: 10.1073/pnas.1407116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Abstract
Inteins are nature's escape artists; they facilitate their excision from flanking polypeptides (exteins) concomitant with extein ligation to produce a mature host protein. Splicing requires sequential nucleophilic displacement reactions catalyzed by strategies similar to proteases and asparagine lyases. Inteins require precise reaction coordination rather than rapid turnover or tight substrate binding because they are single turnover enzymes with covalently linked substrates. This has allowed inteins to explore alternative mechanisms with different steps or to use different methods for activation and coordination of the steps. Pressing issues include understanding the underlying details of catalysis and how the splicing steps are controlled.
Collapse
Affiliation(s)
- Kenneth V Mills
- From the Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Margaret A Johnson
- the Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | | |
Collapse
|
31
|
Morris CA, Owen JR, Thomas MC, El-Hiti GA, Harwood JL, Kille P. Intracellular localization and induction of a dynamic RNA-editing event of macro-algal V-ATPase subunit A (VHA-A) in response to copper. PLANT, CELL & ENVIRONMENT 2014; 37:189-203. [PMID: 23738980 DOI: 10.1111/pce.12145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 06/02/2023]
Abstract
A V-ATPase subunit A protein (VHA-A) transcript together with a variant (C793 to U), which introduces a stop codon truncating the subunit immediately downstream of its ATP binding site, was identified within a Fucus vesiculosus cDNA from a heavy metal contaminated site. This is intriguing because the VHA-A subunit is the crucial catalytic subunit responsible for the hydrolysis of ATP that drives ion transport underlying heavy metal detoxification pathways. We employed a chemiluminescent hybridization protection assay to quantify the proportion of both variants directly from mRNA while performing quantification of total transcript using Q-PCR. Polyclonal antisera raised against recombinant VHA-A facilitated simultaneous detection of parent and truncated VHA-A and revealed its cellular and subcellular localization. By exploiting laboratory exposures and samples from an environmental copper gradient, we showed that total VHA-A transcript and protein, together with levels of the truncated variant, were induced by copper. The absence of a genomic sequence representing the truncated variant suggests a RNA editing event causing the production of the truncated VHA-A. Based on these observations, we propose RNA editing as a novel molecular process underpinning VHA trafficking and intracellular sequestration of heavy metals under stress.
Collapse
Affiliation(s)
- C A Morris
- School of Biosciences, Cardiff University, Cardiff, CF10 3AT, Wales, UK
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Inteins are auto-processing domains found in organisms from all domains of life. These proteins carry out a process known as protein splicing, which is a multi-step biochemical reaction comprised of both the cleavage and formation of peptide bonds. While the endogenous substrates of protein splicing are specific essential proteins found in intein-containing host organisms, inteins are also functional in exogenous contexts and can be used to chemically manipulate virtually any polypeptide backbone. Given this, protein chemists have exploited various facets of intein reactivity to modify proteins in myriad ways for both basic biological research as well as potential therapeutic applications. Here, we review the intein field, first focusing on the biological context and phylogenetic diversity of inteins, followed by a description of intein structure and biochemical function. Finally, we discuss prevalent inteinbased technologies, focusing on their applications in chemical biology, followed by persistent caveats of intein chemistry and approaches to alleviate these shortcomings. The findings summarized herein describe two and a half decades of research, leading from a biochemical curiosity to the development of powerful protein engineering tools.
Collapse
Affiliation(s)
- Neel H Shah
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, NJ 08544, United States
| | - Tom W Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, NJ 08544, United States
| |
Collapse
|
33
|
Wang D, Hong J. Purification of a recombinant protein with cellulose-binding module 3 as the affinity tag. Methods Mol Biol 2014; 1177:35-45. [PMID: 24943312 DOI: 10.1007/978-1-4939-1034-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Easy-to-perform and low-cost protein purification methods are in high demand for the mass production of commonly used enzymes that play an important role in bioeconomy. A low-cost and rapid recombinant protein purification system was developed using CBM3 (family 3 cellulose-binding module) as affinity tag. This protocol describes the purification of CBM3-fusion protein and tag-free protein expressed in Pichia pastoris using CBM3 as an affinity tag.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Life Science, University of Science and Technology of China, Huangshan Road 443, 230026, Hefei, Anhui, People's Republic of China
| | | |
Collapse
|
34
|
Several affinity tags commonly used in chromatographic purification. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2013; 2013:581093. [PMID: 24490106 PMCID: PMC3893739 DOI: 10.1155/2013/581093] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/11/2013] [Accepted: 12/02/2013] [Indexed: 02/05/2023]
Abstract
Affinity tags have become powerful tools from basic biological research to structural and functional proteomics. They were widely used to facilitate the purification and detection of proteins of interest, as well as the separation of protein complexes. Here, we mainly discuss the benefits and drawbacks of several affinity or epitope tags frequently used, including hexahistidine tag, FLAG tag, Strep II tag, streptavidin-binding peptide (SBP) tag, calmodulin-binding peptide (CBP), glutathione S-transferase (GST), maltose-binding protein (MBP), S-tag, HA tag, and c-Myc tag. In some cases, a large-size affinity tag, such as GST or MBP, can significantly impact on the structure and biological activity of the fusion partner protein. So it is usually necessary to excise the tag by protease. The most commonly used endopeptidases are enterokinase, factor Xa, thrombin, tobacco etch virus, and human rhinovirus 3C protease. The proteolysis features of these proteases are described in order to provide a general guidance on the proteolytic removal of the affinity tags.
Collapse
|
35
|
Warren TD, Coolbaugh MJ, Wood DW. Ligation-independent cloning and self-cleaving intein as a tool for high-throughput protein purification. Protein Expr Purif 2013; 91:169-74. [PMID: 23968594 DOI: 10.1016/j.pep.2013.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/26/2013] [Accepted: 08/06/2013] [Indexed: 01/19/2023]
Abstract
The rapid production of purified recombinant proteins has become increasingly important for countless applications. Many purification methods involve expression of target proteins in fusion to purification tags, which often must be removed from the target proteins after purification. Recently, engineered inteins have been used to create convenient self-cleaving tags for tag removal. Although intein methods can greatly simplify protein purification, commercially available expression vectors still rely on conventional restriction/ligation cloning methods for target gene insertion. We have streamlined this process by introducing Ligation-Independent Cloning (LIC) capability to our intein expression plasmids, which provides a simple method for constructing self-cleaving tag-target gene fusions. In this work, we demonstrate efficient gene insertion via this system, as well as target protein expression and purification consistent with previously reported results. Through this newly developed system, arbitrary protein genes can be rapidly incorporated into self-cleaving tag expression vectors, and their products purified using convenient platform methods.
Collapse
Affiliation(s)
- Tiana D Warren
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, 3400 North Charles Street, Baltimore, MD 21218, United States.
| | | | | |
Collapse
|
36
|
Albertsen L, Østergaard S, Paulsson JF, Norrild JC, Strømgaard K. A parallel semisynthetic approach for structure-activity relationship studies of peptide YY. ChemMedChem 2013; 8:1505-13, 1422. [PMID: 23907926 DOI: 10.1002/cmdc.201300290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Indexed: 11/08/2022]
Abstract
The gut hormone peptide YY (PYY) is postprandially secreted from enteroendocrine L cells and is involved in the regulation of energy homeostasis. The N-terminal truncated version PYY(3-36) decreases food intake and has potential as an anti-obesity agent. The anorectic effect of PYY(3-36) is mediated through Y₂ receptors in the hypothalamus, vagus, and brainstem regions, and it is well known that the C-terminal tetrapeptide sequence of PYY(3-36) is crucial for Y2 receptor activation. The aim of this work was to develop a semisynthetic methodology for the generation of a library of C-terminally modified PYY(3-36) analogues. By using an intein-based expression system, PYY(3-29) was generated as a C-terminal peptide α-thioester. Heptapeptides bearing an N-terminal cysteine and modifications at one of the four C-terminal positions were synthesized in a 96-well plate by parallel solid-phase synthesis. In the plate format, an array of [Ala30]PYY(3-36) analogues were generated by ligation, desulfurization, and subsequent solid-phase extraction. The generated analogues, in which either Arg33, Gln34, Arg35, or Tyr36 had been substituted with proteinogenic or non-proteinogenic amino acids, were tested in a functional Y₂ receptor assay. Generally, substitutions of Tyr36 were better tolerated than modifications of Arg33, Gln34, and Arg35. Two analogues showed significantly improved Y₂ receptor selectivity; therefore, these results could be used to design new drug candidates for the treatment of obesity.
Collapse
Affiliation(s)
- Louise Albertsen
- Department of Drug Design & Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
37
|
Analysis of inteins in the Candida parapsilosis complex for simple and accurate species identification. J Clin Microbiol 2013; 51:2830-6. [PMID: 23784117 DOI: 10.1128/jcm.00981-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inteins are coding sequences that are transcribed and translated with flanking sequences and then are excised by an autocatalytic process. There are two types of inteins in fungi, mini-inteins and full-length inteins, both of which present a splicing domain containing well-conserved amino acid sequences. Full-length inteins also present a homing endonuclease domain that makes the intein a mobile genetic element. These parasitic genetic elements are located in highly conserved genes and may allow for the differentiation of closely related species of the Candida parapsilosis (psilosis) complex. The correct identification of the three psilosis complex species C. parapsilosis, Candida metapsilosis, and Candida orthopsilosis is very important in the clinical setting for improving antifungal therapy and patient care. In this work, we analyzed inteins that are present in the vacuolar ATPase gene VMA and in the threonyl-tRNA synthetase gene ThrRS in 85 strains of the Candida psilosis complex (46 C. parapsilosis, 17 C. metapsilosis, and 22 C. orthopsilosis). Here, we describe an accessible and accurate technique based on a single PCR that is able to differentiate the psilosis complex based on the VMA intein. Although the ThrRS intein does not distinguish the three species of the psilosis complex by PCR product size, it can differentiate them by sequencing and phylogenetic analysis. Furthermore, this intein is unusually present as both mini- and full-length forms in C. orthopsilosis. Additional population studies should be performed to address whether this represents a common intraspecific variability or the presence of subspecies within C. orthopsilosis.
Collapse
|
38
|
PRP8 intein in cryptic species of Histoplasma capsulatum: evolution and phylogeny. INFECTION GENETICS AND EVOLUTION 2013; 18:174-82. [PMID: 23665464 DOI: 10.1016/j.meegid.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/12/2013] [Accepted: 05/01/2013] [Indexed: 02/03/2023]
Abstract
The PRP8 intein is the most widespread intein among the Kingdom Fungi. This genetic element occurs within the prp8 gene, and is transcribed and translated simultaneously with the gene. After translation, the intein excises itself from the Prp8 protein by an autocatalytic splicing reaction, subsequently joining the N and C terminals of the host protein, which retains its functional conformation. Besides the splicing domain, some PRP8 inteins also have a homing endonuclease (HE) domain which, if functional, makes the intein a mobile element capable of becoming fixed in a population. This work aimed to study (1) The occurrence of this intein in Histoplasma capsulatum isolates (n=99) belonging to different cryptic species collected in diverse geographical locations, and (2) The functionality of the endonuclease domains of H. capsulatum PRP8 inteins and their phylogenetic relationship among the cryptic species. Our results suggest that the PRP8 intein is fixed in H. capsulatum populations and that an admixture or a probable ancestral polymorphism of the PRP8 intein sequences is responsible for the apparent paraphyletic pattern of the LAmA clade which, in the intein phylogeny, also encompasses sequences from LAmB isolates. The PRP8 intein sequences clearly separate the different cryptic species, and may serve as an additional molecular typing tool, as previously proposed for other fungi genus, such as Cryptococcus and Paracoccidioides.
Collapse
|
39
|
Selgrade DF, Lohmueller JJ, Lienert F, Silver PA. Protein scaffold-activated protein trans-splicing in mammalian cells. J Am Chem Soc 2013; 135:7713-9. [PMID: 23621664 DOI: 10.1021/ja401689b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conditional protein splicing is a powerful biotechnological tool that can be used to rapidly and post-translationally control the activity of a given protein. Here we demonstrate a novel conditional splicing system in which a genetically encoded protein scaffold induces the splicing and activation of an enzyme in mammalian cells. In this system the protein scaffold binds to two inactive split intein/enzyme extein protein fragments leading to intein fragment complementation, splicing, and activation of the firefly luciferase enzyme. We first demonstrate the ability of antiparallel coiled-coils (CCs) to mediate splicing between two intein fragments, effectively creating two new split inteins. We then generate and test two versions of the scaffold-induced splicing system using two pairs of CCs. Finally, we optimize the linker lengths of the proteins in the system and demonstrate 13-fold activation of luciferase by the scaffold compared to the activity of negative controls. Our protein scaffold-triggered conditional splicing system is an effective strategy to control enzyme activity using a protein input, enabling enhanced genetic control over protein splicing and the potential creation of splicing-based protein sensors and autoregulatory systems.
Collapse
Affiliation(s)
- Daniel F Selgrade
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
40
|
Lin Y, Li M, Song H, Xu L, Meng Q, Liu XQ. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins. PLoS One 2013; 8:e59516. [PMID: 23593141 PMCID: PMC3620165 DOI: 10.1371/journal.pone.0059516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/15/2013] [Indexed: 11/30/2022] Open
Abstract
Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11–12 aa) N-intein fragment and S11 split inteins having a very small (6 aa) C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85–100%) of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ∼1.7×10−4 s−1 to ∼3.8×10−4 s−1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.
Collapse
Affiliation(s)
- Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Mengmeng Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Huiling Song
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lingling Xu
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- * E-mail: (QM); (XQL)
| | - Xiang-Qin Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (QM); (XQL)
| |
Collapse
|
41
|
Ramirez M, Valdes N, Guan D, Chen Z. Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification. Protein Eng Des Sel 2012; 26:215-23. [PMID: 23223807 DOI: 10.1093/protein/gzs097] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the engineering of a DnaE intein able to catalyze rapid C-terminal cleavage in the absence of N-terminal cleavage. A single mutation in DnaE intein from Nostoc punctiforme PCC73102 (NpuDnaE), Asp118Gly, was introduced based on sequence alignment with a previously engineered C-terminal cleaving intein mini-MtuRecA. This mutation was able to both suppress N-terminal cleavage and significantly elevate C-terminal cleavage efficiency. Molecular modeling suggests that in NpuDnaE Asp118 forms a hydrogen bond with the penultimate Asn, preventing its spontaneous cyclization prior to N-terminal cleavage. Mutation of Asp118 to Gly essentially abolishes this restriction leading to subsequent C-terminal cleavage in the absence of N-terminal cleavage. The Gly118 NpuDnaE mutant exhibits rapid thio-dependent C-terminal cleavage kinetics with 80% completion within 3 h at room temperature. We used this newly engineered intein to develop both column-free and chromatography-based protein purification methods utilizing the elastin-like-polypeptide and chitin-binding protein as removable purification tags, respectively. We demonstrate rapid target protein purification to electrophoretic purity at yields up to 84 mg per liter of Escherichia coli culture.
Collapse
Affiliation(s)
- Miguel Ramirez
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
42
|
Oeemig JS, Zhou D, Kajander T, Wlodawer A, Iwaï H. NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein. J Mol Biol 2012; 421:85-99. [PMID: 22560994 PMCID: PMC3392434 DOI: 10.1016/j.jmb.2012.04.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 11/16/2022]
Abstract
In protein splicing, an intervening protein sequence (intein) in the host protein excises itself out and ligates two split host protein sequences (exteins) to produce a mature host protein. Inteins require the involvement for the splicing of the first residue of the extein that follows the intein (which is Cys, Ser, or Thr). Other extein residues near the splicing junctions could modulate splicing efficiency even when they are not directly involved in catalysis. Mutual interdependence between this molecular parasite (intein) and its host protein (exteins) is not beneficial for intein spread but could be advantageous for intein survival during evolution. Elucidating extein-intein dependency has increasingly become important since inteins are recognized as useful biotechnological tools for protein ligation. We determined the structures of one of inteins with high splicing efficiency, the RadA intein from Pyrococcus horikoshii (PhoRadA). The solution NMR structure and the crystal structures elucidated the structural basis for its high efficiency and directed our efforts of engineering that led to rational design of a functional minimized RadA intein. The crystal structure of the minimized RadA intein also revealed the precise interactions between N-extein and the intein. We systematically analyzed the effects at the -1 position of N-extein and were able to significantly improve the splicing efficiency of a less robust splicing variant by eliminating the unfavorable extein-intein interactions observed in the structure. This work provides an example of how unveiling structure-function relationships of inteins offer a promising way of improving their properties as better tools for protein engineering.
Collapse
Affiliation(s)
- Jesper S. Oeemig
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki. P.O. Box 65, Helsinki, FIN-00014, Finland
| | - Dongwen Zhou
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Tommi Kajander
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki. P.O. Box 65, Helsinki, FIN-00014, Finland
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki. P.O. Box 65, Helsinki, FIN-00014, Finland
| |
Collapse
|
43
|
Li J, Zheng L, Li P, Wang F. Intein-mediated expression, purification, and characterization of thymosin α1–thymopentin fusion peptide in Escherichia coli. Protein Expr Purif 2012; 84:1-8. [DOI: 10.1016/j.pep.2012.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
|
44
|
Kopera E, Belczyk-Ciesielska A, Bal W. Application of Ni(II)-assisted peptide bond hydrolysis to non-enzymatic affinity tag removal. PLoS One 2012; 7:e36350. [PMID: 22574150 PMCID: PMC3344860 DOI: 10.1371/journal.pone.0036350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/02/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we demonstrate a non-enzymatic method for hydrolytic peptide bond cleavage, applied to the removal of an affinity tag from a recombinant fusion protein, SPI2-SRHWAP-His(6). This method is based on a highly specific Ni(II) reaction with (S/T)XHZ peptide sequences. It can be applied for the protein attached to an affinity column or to the unbound protein in solution. We studied the effect of pH, temperature and Ni(II) concentration on the efficacy of cleavage and developed an analytical protocol, which provides active protein with a 90% yield and ∼100% purity. The method works well in the presence of non-ionic detergents, DTT and GuHCl, therefore providing a viable alternative for currently used techniques.
Collapse
Affiliation(s)
- Edyta Kopera
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
45
|
Dunbar KL, Melby JO, Mitchell DA. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat Chem Biol 2012; 8:569-75. [PMID: 22522320 PMCID: PMC3428213 DOI: 10.1038/nchembio.944] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/15/2012] [Indexed: 11/09/2022]
Abstract
Thiazole/oxazole-modified microcins (TOMMs) encompass a recently defined class of ribosomally synthesized natural products with a diverse set of biological activities. Although TOMM biosynthesis has been investigated for over a decade, the mechanism of heterocycle formation by the synthetase enzymes remains poorly understood. Using substrate analogs and isotopic labeling, we demonstrate that ATP is used to directly phosphorylate the peptide amide backbone during TOMM heterocycle formation. Moreover, we present what is to our knowledge the first experimental evidence that the D-protein component of the heterocycle-forming synthetase (YcaO/domain of unknown function 181 family member), formerly annotated as a docking protein involved in complex formation and regulation, is able to perform the ATP-dependent cyclodehydration reaction in the absence of the other TOMM biosynthetic proteins. Together, these data reveal the role of ATP in the biosynthesis of azole and azoline heterocycles in ribosomal natural products and prompt a reclassification of the enzymes involved in their installation.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | |
Collapse
|
46
|
Butterfield S, Hejjaoui M, Fauvet B, Awad L, Lashuel HA. Chemical strategies for controlling protein folding and elucidating the molecular mechanisms of amyloid formation and toxicity. J Mol Biol 2012; 421:204-36. [PMID: 22342932 DOI: 10.1016/j.jmb.2012.01.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 12/12/2022]
Abstract
It has been more than a century since the first evidence linking the process of amyloid formation to the pathogenesis of Alzheimer's disease. During the last three decades in particular, increasing evidence from various sources (pathology, genetics, cell culture studies, biochemistry, and biophysics) continues to point to a central role for the pathogenesis of several incurable neurodegenerative and systemic diseases. This is in part driven by our improved understanding of the molecular mechanisms of protein misfolding and aggregation and the structural properties of the different aggregates in the amyloid pathway and the emergence of new tools and experimental approaches that permit better characterization of amyloid formation in vivo. Despite these advances, detailed mechanistic understanding of protein aggregation and amyloid formation in vitro and in vivo presents several challenges that remain to be addressed and several fundamental questions about the molecular and structural determinants of amyloid formation and toxicity and the mechanisms of amyloid-induced toxicity remain unanswered. To address this knowledge gap and technical challenges, there is a critical need for developing novel tools and experimental approaches that will not only permit the detection and monitoring of molecular events that underlie this process but also allow for the manipulation of these events in a spatial and temporal fashion both in and out of the cell. This review is primarily dedicated in highlighting recent results that illustrate how advances in chemistry and chemical biology have been and can be used to address some of the questions and technical challenges mentioned above. We believe that combining recent advances in the development of new fluorescent probes, imaging tools that enabled the visualization and tracking of molecular events with advances in organic synthesis, and novel approaches for protein synthesis and engineering provide unique opportunities to gain a molecular-level understanding of the process of amyloid formation. We hope that this review will stimulate further research in this area and catalyze increased collaboration at the interface of chemistry and biology to decipher the mechanisms and roles of protein folding, misfolding, and aggregation in health and disease.
Collapse
Affiliation(s)
- Sara Butterfield
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnol J 2012; 7:620-34. [DOI: 10.1002/biot.201100155] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 12/27/2022]
|
48
|
CAMARERO JULIOA. NEW DEVELOPMENTS FOR THE SITE-SPECIFIC ATTACHMENT OF PROTEIN TO SURFACES. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048006000045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein immobilization on surfaces is of great importance in numerous applications in biology and biophysics. The key for the success of all these applications relies on the immobilization technique employed to attach the protein to the corresponding surface. Protein immobilization can be based on covalent or noncovalent interaction of the molecule with the surface. Noncovalent interactions include hydrophobic interactions, hydrogen bonding, van der Waals forces, electrostatic forces, or physical adsorption. However, since these interactions are weak, the molecules can get denatured or dislodged, thus causing loss of signal. They also result in random attachment of the protein to the surface. Site–specific covalent attachment of proteins onto surfaces, on the other hand, leads to molecules being arranged in a definite, orderly fashion and uses spacers and linkers to help minimize steric hindrances between the protein and the surface. This work reviews in detail some of the methods most commonly used as well as the latest developments for the site-specific covalent attachment of protein to solid surfaces.
Collapse
Affiliation(s)
- JULIO A. CAMARERO
- Chemical Biology and Nuclear Science Division, Lawrence Livermore National Laboratory, University of California, 7000 East Avenue, L-232, Livermore, California 94550, USA
| |
Collapse
|
49
|
Saleh L, Southworth MW, Considine N, O'Neill C, Benner J, Bollinger JM, Perler FB. Branched intermediate formation is the slowest step in the protein splicing reaction of the Ala1 KlbA intein from Methanococcus jannaschii. Biochemistry 2011; 50:10576-89. [PMID: 22026921 PMCID: PMC3231794 DOI: 10.1021/bi200810j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first detailed investigation of the kinetics of protein splicing by the Methanococcus jannaschii KlbA (Mja KlbA) intein. This intein has an N-terminal Ala in place of the nucleophilic Cys or Ser residue that normally initiates splicing but nevertheless splices efficiently in vivo [Southworth, M. W., Benner, J., and Perler, F. B. (2000) EMBO J.19, 5019-5026]. To date, the spontaneous nature of the cis splicing reaction has hindered its examination in vitro. For this reason, we constructed an Mja KlbA intein-mini-extein precursor using intein-mediated protein ligation and engineered a disulfide redox switch that permits initiation of the splicing reaction by the addition of a reducing agent such as dithiothreitol (DTT). A fluorescent tag at the C-terminus of the C-extein permits monitoring of the progress of the reaction. Kinetic analysis of the splicing reaction of the wild-type precursor (with no substitutions in known nucleophiles or assisting groups) at various DTT concentrations shows that formation of the branched intermediate from the precursor is reversible (forward rate constant of 1.5 × 10(-3) s(-1) and reverse rate constant of 1.7 × 10(-5) s(-1) at 42 °C), whereas the productive decay of this intermediate to form the ligated exteins is faster and occurs with a rate constant of 2.2 × 10(-3) s(-1). This finding conflicts with reports about standard inteins, for which Asn cyclization has been assigned as the rate-determining step of the splicing reaction. Despite being the slowest step of the reaction, branched intermediate formation in the Mja KlbA intein is efficient in comparison with those of other intein systems. Interestingly, it also appears that this intermediate is protected against thiolysis by DTT, in contrast to other inteins. Evidence is presented in support of a tight coupling between the N-terminal and C-terminal cleavage steps, despite the fact that the C-terminal single-cleavage reaction occurs in variant Mja KlbA inteins in the absence of N-terminal cleavage. We posit that the splicing events in the Mja KlbA system are tightly coordinated by a network of intra- and interdomain noncovalent interactions, rendering its function particularly sensitive to minor disruptions in the intein or extein environments.
Collapse
Affiliation(s)
- Lana Saleh
- New England Biolabs, Ipswich, Massachusetts 01938, United States.
| | | | | | | | | | | | | |
Collapse
|
50
|
Dhall A, Chatterjee C. Chemical approaches to understand the language of histone modifications. ACS Chem Biol 2011; 6:987-99. [PMID: 21827195 DOI: 10.1021/cb200142c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genomic DNA in the eukaryotic cell nucleus is present in the form of chromatin. Histones are the principal protein component of chromatin, and their post-translational modifications play important roles in regulating the structure and function of chromatin and thereby in determining cell development and disease. An understanding of how histone modifications translate into downstream cellular events is important from both developmental and therapeutic perspectives. However, biochemical studies of histone modifications require access to quantities of homogenously modified histones that cannot be easily isolated from natural sources or generated by enzymatic methods. In the past decade, chemical synthesis has proven to be a powerful tool in translating the language of histone modifications by providing access to uniformly modified histones and by the development of stable analogues of thermodynamically labile modifications. This Review highlights the various synthetic and semisynthetic strategies that have enabled biochemical and biophysical characterization of site-specifically modified histones.
Collapse
Affiliation(s)
- Abhinav Dhall
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|