1
|
Cominelli E, Galimberti M, Pongrac P, Landoni M, Losa A, Paolo D, Daminati MG, Bollini R, Cichy KA, Vogel-Mikuš K, Sparvoli F. Calcium redistribution contributes to the hard-to-cook phenotype and increases PHA-L lectin thermal stability in common bean low phytic acid 1 mutant seeds. Food Chem 2020; 321:126680. [PMID: 32247181 DOI: 10.1016/j.foodchem.2020.126680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 11/27/2022]
Abstract
Seed phytic acid reduces mineral bioavailability by chelating minerals. Consumption of common bean seeds with the low phytic acid 1 (lpa1) mutation improved iron status in human trials but caused adverse gastrointestinal effects, presumably due to increased stability of lectin phytohemagglutinin L (PHA-L) compared to the wild type (wt). A hard-to-cook (HTC) defect observed in lpa1 seeds intensified this problem. We quantified the HTC phenotype of lpa1 common beans with three genetic backgrounds. The HTC phenotype in the lpa1 black bean line correlated with the redistribution of calcium particularly in the cell walls, providing support for the "phytase-phytate-pectin" theory of the HTC mechanism. Furthermore, the excess of free cations in the lpa1 mutation in combination with different PHA alleles affected the stability of PHA-L lectin.
Collapse
Affiliation(s)
- Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Michela Galimberti
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy
| | - Paula Pongrac
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Michela Landoni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Alessia Losa
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Dario Paolo
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Maria Gloria Daminati
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Roberto Bollini
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Karen A Cichy
- Sugarbeet and Bean Research Unit, Agricultural Research Service, US Department of Agriculture, 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, United States.
| | - Katarina Vogel-Mikuš
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| |
Collapse
|
2
|
Dias RDO, Machado LDS, Migliolo L, Franco OL. Insights into animal and plant lectins with antimicrobial activities. Molecules 2015; 20:519-41. [PMID: 25569512 PMCID: PMC6272381 DOI: 10.3390/molecules20010519] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022] Open
Abstract
Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.
Collapse
Affiliation(s)
- Renata de Oliveira Dias
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Leandro Dos Santos Machado
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Ludovico Migliolo
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Octavio Luiz Franco
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| |
Collapse
|
3
|
Pattern Recognition in Legume Lectins to Extrapolate Amino Acid Variability to Sugar Specificity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014. [DOI: 10.1007/978-3-319-11280-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
4
|
Kouzuma Y, Irie S, Yamazaki R, Yonekura M. Purification and cDNA cloning of a lectin and a lectin-like protein from Apios americana Medikus tubers. Biosci Biotechnol Biochem 2014; 78:574-81. [PMID: 25036952 DOI: 10.1080/09168451.2014.885822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An Apios americana lectin (AAL) and a lectin-like protein (AALP) were purified from tubers by chromatography on Butyl-Cellulofine, ovomucoid-Cellulofine, and DEAE-Cellulofine columns. AAL showed strong hemagglutinating activity toward chicken and goose erythrocytes, but AALP showed no such activity toward any of the erythrocytes tested. The hemagglutinating activity of AAL was not inhibited by mono- or disaccharides, but was inhibited by glycoproteins, such as asialofetuin and ovomucoid, suggesting that AAL is an oligosaccharide-specific lectin. The cDNAs of AAL and AALP consist of 1,093 and 1,104 nucleotides and encode proteins of 302 and 274 amino acid residues, respectively. Both amino acid sequences showed high similarity to known legume lectins, and those of their amino acids involved in carbohydrate and metal binding were conserved.
Collapse
Affiliation(s)
- Yoshiaki Kouzuma
- a Laboratory of Food Molecular Functionality , College of Agriculture, Ibaraki University , Ibaraki , Japan
| | | | | | | |
Collapse
|
5
|
Thorn A, Sheldrick GM. Extending molecular-replacement solutions with SHELXE. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2251-6. [PMID: 24189237 PMCID: PMC3817699 DOI: 10.1107/s0907444913027534] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 10/08/2013] [Indexed: 12/03/2022]
Abstract
Under favourable circumstances, density modification and polyalanine tracing with SHELXE can be used to improve and validate potential solutions from molecular replacement. Although the program SHELXE was originally intended for the experimental phasing of macromolecules, it can also prove useful for expanding a small protein fragment to an almost complete polyalanine trace of the structure, given a favourable combination of native data resolution (better than about 2.1 Å) and solvent content. A correlation coefficient (CC) of more than 25% between the native structure factors and those calculated from the polyalanine trace appears to be a reliable indicator of success and has already been exploited in a number of pipelines. Here, a more detailed account of this usage of SHELXE for molecular-replacement solutions is given.
Collapse
Affiliation(s)
- Andrea Thorn
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | | |
Collapse
|
6
|
Dawkar VV, Chikate YR, Gupta VS, Slade SE, Giri AP. Assimilatory Potential of Helicoverpa armigera Reared on Host (Chickpea) and Nonhost (Cassia tora) Diets. J Proteome Res 2011; 10:5128-38. [DOI: 10.1021/pr200591m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vishal V. Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Yojana R. Chikate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Vidya S. Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Susan E. Slade
- Warwick/Waters Centre for BioMedical Mass Spectrometry and Proteomics, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| |
Collapse
|
7
|
Frenzel A, Tiller N, Hause B, Krajinski F. The conserved arbuscular mycorrhiza-specific transcription of the secretory lectin MtLec5 is mediated by a short upstream sequence containing specific protein binding sites. PLANTA 2006; 224:792-800. [PMID: 16596411 DOI: 10.1007/s00425-006-0262-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/06/2006] [Indexed: 05/08/2023]
Abstract
In Medicago truncatula a family of mycorrhiza-specific expressed lectins has been identified recently, but the function and regulation of these lectins during the arbuscular mycorrhiza symbiosis are still unknown. In order to characterize a first member of this protein family, MtLec5 was analyzed concerning its localization and regulation. Confocal laser scanning microscopy showed that MtLec5 is a secretory protein indicating a role as a vegetative storage protein, which is specifically expressed in mycorrhizal root systems. To study the molecular mechanisms leading to the mycorrhiza-specific transcription, deletion studies of pMtLec5 were done using reporter gene fusions. Potential cis-acting elements could be narrowed down to a 150 bp fragment that was located approximately at -300/-150 according to the transcription start, suggesting the binding of positive regulators to this area. Similar expression pattern of the reporter gene was found after transforming roots of the non-legume Nicotiana tabacum with the heterologous promoter-reporter fusions. This indicated that the observed mycorrhiza-specific transcriptional induction is not legume-specific. Electrophoretic mobility shift assays showed that several factors which were exclusively present in mycorrhizal roots bind within the 150 bp promoter area. This strengthens the hypothesis of positive regulators mediating the AM-specific gene expression.
Collapse
Affiliation(s)
- André Frenzel
- Lehrgebiet Molekulargenetik, Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | | | | | | |
Collapse
|
8
|
Garcia-Pino A, Buts L, Wyns L, Loris R. Interplay between metal binding and cis/trans isomerization in legume lectins: structural and thermodynamic study of P. angolensis lectin. J Mol Biol 2006; 361:153-67. [PMID: 16824540 DOI: 10.1016/j.jmb.2006.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 05/30/2006] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
The interplay between metal binding, carbohydrate binding activity, stability and structure of the lectin from Pterocarpus angolensis was investigated. Removal of the metals leads to a more flexible form of the protein with significantly less conformational stability. Crystal structures of this metal-free form show significant structural rearrangements, although some structural features that allow the binding of sugars are retained. We propose that substitution of an asparagine residue at the start of the C-terminal beta-strand of the legume lectin monomer hinders the trans-isomerization of the cis-peptide bond upon demetallization and constitutes an intramolecular switch governing the isomer state of the non-proline bond and ultimately the lectin phenotype.
Collapse
Affiliation(s)
- Abel Garcia-Pino
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Brussel, Belgium.
| | | | | | | |
Collapse
|
9
|
Brinda KV, Mitra N, Surolia A, Vishveshwara S. Determinants of quaternary association in legume lectins. Protein Sci 2005; 13:1735-49. [PMID: 15215518 PMCID: PMC2279936 DOI: 10.1110/ps.04651004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It is well known that the sequence of amino acids in proteins code for its tertiary structure. It is also known that there exists a relationship between sequence and the quaternary structure of proteins. The question addressed here is whether the nature of quaternary association can be predicted from the sequence, similar to the three-dimensional structure prediction from the sequence. The class of proteins called legume lectins is an interesting model system to investigate this problem, because they have very high sequence and tertiary structure homology, with diverse forms of quaternary association. Hence, we have used legume lectins as a probe in this paper to (1) gain novel insights about the relationship between sequence and quaternary structure; (2) identify the sequence motifs that are characteristic of a given type of quaternary association; and (3) predict the quaternary association from the sequence motif.
Collapse
Affiliation(s)
- K V Brinda
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
10
|
Santimone M, Koukiekolo R, Moreau Y, Le Berre V, Rougé P, Marchis-Mouren G, Desseaux V. Porcine pancreatic α-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (α-AI1) and structural changes in the α-amylase inhibitor complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:181-90. [PMID: 14871659 DOI: 10.1016/j.bbapap.2003.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
Porcine pancreatic alpha-amylase (PPA) is inhibited by the red kidney bean (Phaseolus vulgaris) inhibitor alpha-AI1 [Eur. J. Biochem. 265 (1999) 20]. Inhibition kinetics were carried out using DP 4900-amylose and maltopentaose as substrate. As shown by graphical and statistical analysis of the kinetic data, the inhibitory mode is of the mixed noncompetitive type whatever the substrate thus involving the EI, EI2, ESI and ESI2 complexes. This contrast with the E2I complex obtained in the crystal and with biophysical studies. Such difference very likely depends on the [I]/[E] ratio. At low ratio, the E2I complex is favoured; at high ratio the EI, ESI and EI2 complexes are formed. The inhibition model also differs from those previously proposed for acarbose [Eur. J. Biochem. 241 (1996) 787 and Eur. J. Biochem. 252 (1998) 100]. In particular, with alpha-AI1, the inhibition takes place only when PPA and alpha-AI are preincubated together before adding the substrate. This indicates that the abortive PPA-alphaAI1 complex is formed during the preincubation period. One additional carbohydrate binding site is also demonstrated yielding the ESI complex. Also, a second protein binding site is found in EI2 and ESI2 abortive complexes. Conformational changes undergone by PPA upon alpha-AI1 binding are shown by higher sensitivity to subtilisin attack. From X-ray analysis of the alpha-AI1-PPA complex (E2I), the major interaction occurs with two hairpin loops L1 (residues 29-46) and L2 (residues 171-189) of alpha-AI1 protruding into the V-shaped active site of PPA. The hydrolysis of alpha-AI1 that accounts for the inhibitory activity is reported.
Collapse
Affiliation(s)
- Marius Santimone
- Institut Méditerranéen de Recherche en Nutrition (IMRN case 342), UMR INRA 1111, Faculté des Sciences et Techniques de St Jérôme, Université d'Aix-Marseille, Av Esc Normandie-Niemen, 13397 Marseilles cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang W, Peumans WJ, Rougé P, Rossi C, Proost P, Chen J, Van Damme EJM. Leaves of the Lamiaceae species Glechoma hederacea (ground ivy) contain a lectin that is structurally and evolutionary related to the legume lectins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:293-304. [PMID: 12535343 DOI: 10.1046/j.1365-313x.2003.01623.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel lectin has been isolated and cloned from leaves of Glechoma hederacea (ground ivy), a typical representative of the plant family Lamiaceae. Biochemical analyses indicated that the G. hederacea agglutinin (Gleheda) is a tetrameric protein consisting of four subunits pairwise linked through an interchain disulphide bridge and exhibits a preferential specificity towards N-acetylgalactosamine. Cloning of the corresponding gene and molecular modeling of the deduced sequence demonstrated that Gleheda shares high sequence similarity with the legume lectins and exhibits the same overall fold and three-dimensional structure as the classical legume lectins. The identification of a soluble and active legume lectin ortholog in G. hederacea not only indicates that the yet unclassified Lamiaceae lectins belong to the same lectin family as the legume lectins, but also sheds a new light on the specificity, physiological role and evolution of the classical legume lectins.
Collapse
Affiliation(s)
- Weifang Wang
- Laboratory for Phytopathology and Plant Protection, Katholieke Universiteit Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
12
|
Carlini CR, Grossi-de-Sá MF. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 2002; 40:1515-39. [PMID: 12419503 DOI: 10.1016/s0041-0101(02)00240-4] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To meet the demands for food of the expanding world population, there is need of new ways for protecting plant crops against predators and pathogens while avoiding the use of environmentally aggressive chemicals. A milestone in this field was the introduction into crop plants of genes expressing Bacillus thuringiensis entomotoxic proteins. In spite of the success of this new technology, however, there are difficulties for acceptance of these 'anti-natural' products by the consumers and some concerns about its biosafety in mammals. An alternative could be exploring the plant's own defense mechanisms, by manipulating the expression of their endogenous defense proteins, or introducing an insect control gene derived from another plant. This review deals with the biochemical features and mechanisms of actions of plant proteins supposedly involved in defense mechanisms against insects, including lectins, ribosome-inactivating proteins, enzymes inhibitors, arcelins, chitinases, ureases, and modified storage proteins. The potentialities of genetic engineering of plants with increased resistance to insect predation relying on the repertoire of genes found in plants are also discussed. Several different genes encoding plant entomotoxic proteins have been introduced into crop genomes and many of these insect resistant plants are now being tested in field conditions or awaiting commercialization.
Collapse
Affiliation(s)
- Célia R Carlini
- Department of Biophysics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, 91.501-970 Porto Alegre, RS, Brazil.
| | | |
Collapse
|
13
|
Kaneda Y, Whittier RF, Yamanaka H, Carredano E, Gotoh M, Sota H, Hasegawa Y, Shinohara Y. The high specificities of Phaseolus vulgaris erythro- and leukoagglutinating lectins for bisecting GlcNAc or beta 1-6-linked branch structures, respectively, are attributable to loop B. J Biol Chem 2002; 277:16928-35. [PMID: 11864980 DOI: 10.1074/jbc.m112382200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite very similar tertiary structures based upon a common framework, legume lectins exhibit an amazing variety of sugar binding specificities. While most of these lectins recognize rather discrete sugar linkages, Phaseolus vulgaris erythroagglutinating and leukoagglutinating lectins (E(4)- and L(4)-PHA) are unique in recognizing larger structures. E(4)- and L(4)-PHA are known to recognize complex type N-glycans containing bisecting GlcNAc or a beta1,6-linked branch, respectively. However, the detailed mechanisms of molecular recognition are poorly understood. In order to dissect the contributions of different portions of each lectin, we carried out region-swapping mutagenesis between E(4)- and L(4)-PHA. We prepared six chimeric lectins by exchanging different combinations of loop B and the central portion of loop C, two of four loops thought to be important for the recognition of monosaccharides (Sharma, V., and Surolia, A. (1997) J. Mol. Biol. 267, 433-445). The chimeric lectins' sugar binding activities were evaluated quantitatively by surface plasmon resonance. These comparisons indicate that the high specificities of E(4)- and L(4)-PHA toward bisecting GlcNAc and beta1,6-linked branch structures are almost solely attributable to loop B. The contribution of the central portion of loop C to the recognition of those structural motifs was found to be negligible. Instead, it modulates affinity toward LacNAc residues present at the nonreducing terminus. Moreover, some of the chimeric lectins prepared in this study showed even higher specificities/affinities than native E(4)- and L(4)-PHA toward complex sugar chains containing either a bisecting GlcNAc residue or a beta1,6-linked branch.
Collapse
Affiliation(s)
- Yuko Kaneda
- Tokyo Research and Development, Amersham Biosciences, 3-25-1, Hyakunincho, Shinjuku-ku, Tokyo, 169-0073 Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chandra NR, Prabu MM, Suguna K, Vijayan M. Structural similarity and functional diversity in proteins containing the legume lectin fold. PROTEIN ENGINEERING 2001; 14:857-66. [PMID: 11742104 DOI: 10.1093/protein/14.11.857] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Knowledge of structural relationships in proteins is increasingly proving very useful for in silico characterizations and is also being exploited as a prelude to almost every investigation in functional and structural genomics. A thorough understanding of the crucial features of a fold becomes necessary to realize the full potential of such relationships. To illustrate this, structures containing the legume lectin-like fold were chosen for a detailed analysis since they exhibit a total lack of sequence similarity among themselves and also belong to diverse functional families. A comparative analysis of 15 different families containing this fold was therefore carried out, which led to the determination of the minimal structural principles or the determining region of the fold. A critical evaluation of the structural features, such as the curvature of the front sheet, the presence of the hydrophobic cores and the binding site loops, suggests that none of them are crucial for either the formation or the stability of the fold, but are required to generate diversity and specificity to particular carbohydrates. In contrast, the presence of the three sheets in a particular geometry and also their topological connectivities seem to be important. The fold has been shown to tolerate different types of protein-protein associations, most of them exhibiting different types of quaternary associations and some even existing as complexes with other folds. The function of every family in this study is discussed with respect to its fold, leading to the suggestion that this fold can be linked to carbohydrate recognition in general.
Collapse
Affiliation(s)
- N R Chandra
- Bioinformatics Centre, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
15
|
Sales MP, Gerhardt IR, Grossi-De-Sá MF, Xavier-Filho J. Do legume storage proteins play a role in defending seeds against bruchids? PLANT PHYSIOLOGY 2000; 124:515-22. [PMID: 11027702 PMCID: PMC1539283 DOI: 10.1104/pp.124.2.515] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- M P Sales
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Rio Grande do Norte, Brazil
| | | | | | | |
Collapse
|
16
|
Goossens A, Quintero C, Dillen W, De Rycke R, Valor JF, De Clercq J, Van Montagu M, Cardona C, Angenon G. Analysis of bruchid resistance in the wild common bean accession G02771: no evidence for insecticidal activity of arcelin 5. JOURNAL OF EXPERIMENTAL BOTANY 2000. [PMID: 10937698 DOI: 10.1093/jexbot/51.348.1229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Arcelins are abundant seed storage proteins thought to be implicated in the resistance of wild Phaseolus vulgaris (L.) genotypes against Zabrotes subfasciatus (Boheman), an important storage insect pest of common bean. Here, the insecticidal activity of the arcelin-5 variant that is present in the highly resistant P. vulgaris accession G02771 was investigated. No correlation could be established between the presence of arcelin 5 and the insecticidal effects observed in G02771 seeds. Insect feeding assays with artificial seeds into which purified arcelin-5 protein was incorporated and with transgenic P. acutifolius (A. Gray) seeds in which the arcelin-5 genes were expressed, showed that the presence of arcelin-5 proteins, even at elevated levels, was not sufficient to achieve adequate resistance against Z. subfasciatus. The same might apply to other arcelin variants. Nevertheless, as resistance is clearly closely linked to the presence of the arcelin-1 or arcelin-5 locus, arcelins remain useful markers in breeding programmes aimed at introgressing high levels of resistance to Z. subfasciatus in P. vulgaris cultivars.
Collapse
Affiliation(s)
- A Goossens
- Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gerhardt IR, Paes NS, Bloch C, Mendes PA, Leite A, Chrispeels MJ, Grossi de Sa MF. Molecular characterization of a new arcelin-5 gene. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:87-98. [PMID: 10786620 DOI: 10.1016/s0167-4781(99)00219-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arcelins are insecticidal proteins found in some wild accessions of the common bean, Phaseolus vulgaris. They are grouped in six allelic variants and arcelin-5 is the variant with the highest inhibitory effect on the development of Zabrotes subfasciatus larvae. Characterization of the protein and its genes resulted in the identification of three polypeptides and the isolation of two genes that encode the Arc5a and Arc5b polypeptides. Here we describe a new gene, Arc5-III. The protein it encodes has 81% amino acid identity with the derived amino acid sequences of Arc5-I and Arc5-II. The Arc5-III gene is highly expressed in developing seeds and at a much lower level in roots. Data obtained by a combination of two-dimensional gel electrophoresis, protein sequencing and MALDI-TOF mass spectrometry analysis support the conclusion that Arc5-III encodes a polypeptide present in Arc5c band. Using ion-exchange chromatography, three fractions containing arcelin-5 polypeptides were eluted by increasing the salt concentration. The three fractions contain various amounts of the three arc-5 polypeptides and inhibit the growth of Zabrotes subfasciatus larvae differentially, suggesting differences in insecticidal activity among the arcelin-5 isoforms.
Collapse
|
18
|
Young NM, Thibault P, Watson DC, Chrispeels MJ. Post-translational processing of two alpha-amylase inhibitors and an arcelin from the common bean, Phaseolus vulgaris. FEBS Lett 1999; 446:203-6. [PMID: 10100643 DOI: 10.1016/s0014-5793(99)00212-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mass spectrometric methods were used to investigate the proteolytic processing and glycopeptide structures of three seed defensive proteins from Phaseolus vulgaris. The proteins were the alpha-amylase inhibitors alphaAI-1 and alphaAI-2 and arcelin-5, all of which are related to the seed lectins, PHA-E and PHA-L. The mass data showed that the proteolytic cleavage required for activation of the amylase inhibitors is followed by loss of the terminal Asn residue in alphaAI-1, and in all three proteins, seven or more residues were clipped from the C-termini, in the manner of the seed lectins. In most instances, individual glycoforms could be assigned at each Asn site, due to the unique masses of the plant glycopeptides. It was found that alphaAI-1 and alphaAI-2 differed significantly in their glycosylation patterns, despite their high sequence homology. These data complement the previous X-ray studies of the alpha1-amylase inhibitor and arcelin, where many of the C-terminal residues and glycopeptide residues could not be observed.
Collapse
Affiliation(s)
- N M Young
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ont.
| | | | | | | |
Collapse
|
19
|
Mourey L, Pédelacq JD, Birck C, Fabre C, Rougé P, Samama JP. Crystal structure of the arcelin-1 dimer from Phaseolus vulgaris at 1.9-A resolution. J Biol Chem 1998; 273:12914-22. [PMID: 9582323 DOI: 10.1074/jbc.273.21.12914] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arcelin-1 is a glycoprotein from kidney beans (Phaseolus vulgaris) which displays insecticidal properties and protects the seeds from predation by larvae of various bruchids. This lectin-like protein is devoid of monosaccharide binding properties and belongs to the phytohemagglutinin protein family. The x-ray structure determination at 1.9-A resolution of native arcelin-1 dimers, which correspond to the functional state of the protein in solution, was solved using multiple isomorphous replacement and refined to a crystallographic R factor of 0.208. The three glycosylation sites on each monomer are all covalently modified. One of these oligosaccharide chains provides interactions with protein atoms at the dimer interface, and another one may act by preventing the formation of higher oligomeric species in the arcelin variants. The dimeric structure and the severe alteration of the monosaccharide binding site in arcelin-1 correlate with the hemagglutinating properties of the protein, which are unaffected by simple sugars and sugar derivatives. Sequence analysis and structure comparisons of arcelin-1 with the other insecticidal proteins from kidney beans, arcelin-5, and alpha-amylase inhibitor and with legume lectins, yield insights into the molecular basis of the different biological functions of these proteins.
Collapse
Affiliation(s)
- L Mourey
- Groupe de Cristallographie Biologique, Institut de Pharmacologie et de Biologie Structurale, UPR 9062 CNRS, 205 route de Narbonne, F-31077 Toulouse CEDEX, France
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The legume lectins are a large family of homologous carbohydrate binding proteins that are found mainly in the seeds of most legume plants. Despite their strong similarity on the level of their amino acid sequences and tertiary structures, their carbohydrate specificities and quaternary structures vary widely. In this review we will focus on the structural features of legume lectins and their complexes with carbohydrates. These will be discussed in the light of recent mutagenesis results when appropriate. Monosaccharide specificity seems to be achieved by the use of a conserved core of residues that hydrogen bond to the sugar, and a variable loop that determines the exact shape of the monosaccharide binding site. The higher affinity for particular oligosaccharides and monosaccharides containing a hydrophobic aglycon results mainly from a few distinct subsites next to the monosaccharide binding site. These subsites consist of a small number of variable residues and are found in both the mannose and galactose specificity groups. The quaternary structures of these proteins form the basis of a higher level of specificity, where the spacing between individual epitopes of multivalent carbohydrates becomes important. This results in homogeneous cross-linked lattices even in mixed precipitation systems, and is of relevance for their effects on the biological activities of cells such as mitogenic responses. Quaternary structure is also thought to play an important role in the high affinity interaction between some legume lectins and adenine and a series of adenine-derived plant hormones. The molecular basis of the variation in quaternary structure in this group of proteins is poorly understood.
Collapse
Affiliation(s)
- R Loris
- Laboratorium voor Ultrastruktuur, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Sint-Genesius-Rode, Belgium.
| | | | | | | |
Collapse
|
21
|
Fabre C, Causse H, Mourey L, Koninkx J, Rivière M, Hendriks H, Puzo G, Samama JP, Rougé P. Characterization and sugar-binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. cv. RAZ-2) seeds. Biochem J 1998; 329 ( Pt 3):551-60. [PMID: 9445382 PMCID: PMC1219076 DOI: 10.1042/bj3290551] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Arcelin-1 is a lectin-like protein found in the seeds of wild varieties of the kidney bean (Phaseolus vulgaris). This protein displays insecticidal properties, but the mechanism of action is as yet unknown. In the present study we investigated the biochemical and biophysical properties of arcelin-1 from Phaseolus vulgaris cv. RAZ-2. Native arcelin-1 is a dimeric glycoprotein of 60 kDa, built from the non-covalent association of two identical monomers. This dimer resists dissociation by chaotropic agents and is highly resistant to proteolytic enzymes. Each subunit contains 10% (w/w) neutral sugars which belong to the high-mannose and complex-type glycans attached to three glycosylation sites. No interaction of the protein with simple sugars could be detected, but arcelin-1 displays an intrinsic specificity in binding complex glycans. Arcelin-1 therefore differs from the closely related phytohaemagglutinin lectins and alpha-amylase inhibitor in several respects: oligomerization states, sugar-binding affinities and the type and number of glycan chains. These features may be related to the toxicity of arcelin-1.
Collapse
Affiliation(s)
- C Fabre
- Institut de Pharmacologie et Biologie Structurale, UPR CNRS no. 9062, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mourey L, Pédelacq JD, Fabre C, Causse H, Rougé P, Samama JP. Small-angle X-ray scattering and crystallographic studies of arcelin-1: an insecticidal lectin-like glycoprotein from Phaseolus vulgaris L. Proteins 1997; 29:433-42. [PMID: 9408941 DOI: 10.1002/(sici)1097-0134(199712)29:4<433::aid-prot4>3.0.co;2-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Arcelin-1 and alpha-amylase inhibitor are two lectin-like glycoproteins expressed in the seeds of the kidney bean (Phaseolus vulgaris). They display insecticidal activities and protect the seeds from predation by larvae of various bruchids through different biological actions. Solution-state investigations by small-angle X-ray scattering (SAXS) show the dimeric structure of arcelin-1, a requirement for its hemagglutinating properties. Anions were found to have specific properties in their effectiveness to disrupt protein aggregates, affect solubility, and improve crystallizability. The SAXS results were used to improve crystallization conditions, and single crystals diffracting beyond 1.9 A resolution were obtained. X-ray diffraction data analysis shows that noncrystallographic symmetry-related arcelin-1 molecules form a lectin-like dimer and reveals the presence of a solvent-exposed anion binding site on the protein, at a crystal-packing interface. The solution state properties of arcelin-1 and crystal twinning may be explained by the anion specificity of this binding site.
Collapse
Affiliation(s)
- L Mourey
- Groupe de Cristallographie Biologique, Institut de Pharmacologie et de Biologie Structurale, UPR 9062 CNRS, Toulouse, France
| | | | | | | | | | | |
Collapse
|