1
|
Aktar MS, Madhuresh NKD, Ghiladi RA, Franzen S. The role of proton-coupled electron transfer from protein to heme in dehaloperoxidase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141053. [PMID: 39424090 DOI: 10.1016/j.bbapap.2024.141053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
At least two of the six methionine (Met) residues in dehaloperoxidase (DHP) are shown to act as electron donors in both autoreduction and protein-heme crosslinking. Autoreduction observed in the two isozymes, DHP-A and DHP-B, is explained by the high heme reduction potential and an endogenous source of electrons from methionine (Met) or cysteine (Cys). This study provides evidence of a connection to protein-heme crosslinking that occurs when DHP is activated by H2O2 in competition with substrate oxidation and autoreduction. The autoreduction yields of DHP-A and DHP-B are comparable and both are inversely proportional to DHP concentration. Both isoenzymes show an anti-cooperative effect on autoreduction kinetics associated with protein dimerization. Despite the presence of five tyrosine (Tyr) amino acids in DHP-A and four Tyr in DHP-B, the mass spectral evidence does not support a Tyr-heme or interprotein Tyr-Tyr crosslinking event as observed in some mammalian myoglobins. LC-MS and tandem MS/MS studies revealed three amino acids that were involved in the heme-protein crosslink, Cys73, Met63 and Met64. Cys73 facilitates dimer formation in DHP-A which also appears to slow the rate of autoreduction, but is not involved in covalent protein-heme crosslinking. Based on mutational studies, Met63 and 64 are involved in both covalent heme crosslinking and autoreduction. Proton-coupled electron transfer and crosslinking by Met to the heme may serve to regulate DHP function and protect it from uncontrolled oxidative damage.
Collapse
Affiliation(s)
- Mst Sharmin Aktar
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | | | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
2
|
Husted AL, Sutton VR, Presnar LA, Blackburn RK, Staton JL, Borgianini SA, D'Antonio EL. The Multifunctional Catalytic Hemoglobin from Amphitrite ornata: Protocols on Isolation, Taxonomic Identification, Protein Extraction, Purification, and Characterization. Methods Protoc 2024; 7:100. [PMID: 39728620 DOI: 10.3390/mps7060100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
The multifunctional catalytic hemoglobin from the terebellid polychaete Amphitrite ornata, also named dehaloperoxidase (AoDHP), utilizes the typical oxygen transport function in addition to four observed activities involved in substrate oxidation. The multifunctional ability of AoDHP is presently a rare observation, and there exists a limitation for how novel dehaloperoxidases can be identified from macrobenthic infauna. In order to discover more infaunal DHP-bearing candidates, we have devised a facilitated method for an accurate taxonomic identification that places visual and molecular taxonomic approaches in parallel. Traditional visual taxonomic species identification by the non-specialist, at least for A. ornata or even for other marine worms, is a very difficult and time-consuming task since a large diversity is present and the method is restricted to adult worm specimens. The work herein aimed to describe a method that simplifies the taxonomic identification of A. ornata in particular through the assessment of its mitochondrial cytochrome c oxidase subunit I gene by employing the DNA barcoding technique. Furthermore, whole-worm specimens of A. ornata were used to extract and purify AoDHP followed by an H2O2-dependent peroxidase activity assay evaluation against substrate 2,4,6-trichlorophenol. AoDHP isoenzyme A was also overexpressed as the recombinant protein in Escherichia coli, and its peroxidase activity parameters were compared to AoDHP from the natural source. The activity assay assessment indicated a tight correlation for all Michaelis-Menten parameters evaluated. We conclude that the method described herein exhibits a streamlined approach to identify the polychaete A. ornata, which can be adopted by the non-specialist, and the full procedure is predicted to facilitate the discovery of novel dehaloperoxidases from other marine invertebrates.
Collapse
Affiliation(s)
- Anna L Husted
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Victoria R Sutton
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Lauren A Presnar
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - R Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, 120 W Broughton Drive, Raleigh, NC 27607, USA
| | - Joseph L Staton
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Stephen A Borgianini
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Edward L D'Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| |
Collapse
|
3
|
Aktar MS, de Serrano V, Ghiladi RA, Franzen S. Structural Comparison of Substrate Binding Sites in Dehaloperoxidase A and B. Biochemistry 2024; 63:1761-1773. [PMID: 38959050 DOI: 10.1021/acs.biochem.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Dehalperoxidase (DHP) has diverse catalytic activities depending on the substrate binding conformation, pH, and dynamics in the distal pocket above the heme. According to our hypothesis, the molecular structure of the substrate and binding orientation in DHP guide enzymatic function. Enzyme kinetic studies have shown that the catalytic activity of DHP B is significantly higher than that of DHP A despite 96% sequence homology. There are more than 30 substrate-bound structures with DHP B, each providing insight into the nature of enzymatic binding at the active site. By contrast, the only X-ray crystallographic structures of small molecules in a complex with DHP A are phenols. This study is focused on investigating substrate binding in DHP A to compare with DHP B structures. Fifteen substrates were selected that were known to bind to DHP B in the crystal to test whether soaking substrates into DHP A would yield similar structures. Five of these substrates yielded X-ray crystal structures of substrate-bound DHP A, namely, 2,4-dichlorophenol (1.48 Å, PDB: 8EJN), 2,4-dibromophenol (1.52 Å, PDB: 8VSK), 4-nitrophenol (2.03 Å, PDB: 8VKC), 4-nitrocatechol (1.40 Å, PDB: 8VKD), and 4-bromo-o-cresol (1.64 Å, PDB: 8VZR). For the remaining substrates that bind to DHP B, such as cresols, 5-bromoindole, benzimidazole, 4,4-biphenol, 4.4-ethylidenebisphenol, 2,4-dimethoxyphenol, and guaiacol, the electron density maps in DHP A are not sufficient to determine the presence of the substrates, much less their orientation. In our hands, only phenols, 4-Br-o-cresol, and 4-nitrocatechol can be soaked into crystalline DHP A. None of the larger substrates were observed to bind. A minimum of seven hanging drops were selected for soaking with more than 50 crystals screened for each substrate. The five high-quality examples of direct comparison of modes of binding in DHP A and B for the same substrate provide further support for the hypothesis that the substrate-binding conformation determines the enzyme function of DHP.
Collapse
Affiliation(s)
- Mst Sharmin Aktar
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
González-Delgado JM, Thompson PM, Andrałojć W, Gdaniec Z, Ghiladi RA, Franzen S. Comparison of the Backbone Dynamics of Dehaloperoxidase-Hemoglobin Isoenzymes. J Phys Chem B 2024; 128:3383-3397. [PMID: 38563384 DOI: 10.1021/acs.jpcb.3c07176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Dehaloperoxidase (DHP) is a multifunctional hemeprotein with a functional switch generally regulated by the chemical class of the substrate. Its two isoforms, DHP-A and DHP-B, differ by only five amino acids and have an almost identical protein fold. However, the catalytic efficiency of DHP-B for oxidation by a peroxidase mechanism ranges from 2- to 6-fold greater than that of DHP-A depending on the conditions. X-ray crystallography has shown that many substrates and ligands have nearly identical binding in the two isoenzymes, suggesting that the difference in catalytic efficiency could be due to differences in the conformational dynamics. We compared the backbone dynamics of the DHP isoenzymes at pH 7 through heteronuclear relaxation dynamics at 11.75, 16.45, and 19.97 T in combination with four 300 ns MD simulations. While the overall dynamics of the isoenzymes are similar, there are specific local differences in functional regions of each protein. In DHP-A, Phe35 undergoes a slow chemical exchange between two conformational states likely coupled to a swinging motion of Tyr34. Moreover, Asn37 undergoes fast chemical exchange in DHP-A. Given that Phe35 and Asn37 are adjacent to Tyr34 and Tyr38, it is possible that their dynamics modulate the formation and migration of the active tyrosyl radicals in DHP-A at pH 7. Another significant difference is that both distal and proximal histidines have a 15-18% smaller S2 value in DHP-B, thus their greater flexibility could account for the higher catalytic activity. The distal histidine grants substrate access to the distal pocket. The greater flexibility of the proximal histidine could also accelerate H2O2 activation at the heme Fe by increased coupling of an amino acid charge relay to stabilize the ferryl Fe(IV) oxidation state in a Poulos-Kraut "push-pull"-type peroxidase mechanism.
Collapse
Affiliation(s)
| | - Peter M Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Aktar MS, Hill R, Holbert W, Franzen S. Decomposition of 2,4-dihalophenols by dehaloperoxidase activity and spontaneous reaction with hydrogen peroxide. J Inorg Biochem 2024; 252:112473. [PMID: 38199051 DOI: 10.1016/j.jinorgbio.2023.112473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The enzyme dehaloperoxidase (DHP) found in the marine worm Amphitrite ornata is capable of enzymatic peroxidation of 2,4-dichlorophenol (DCP) and 2,4-dibromophenol (DBP). There is also at least one parallel oxidative pathway and the major products 2-chloro-1,4-benzoquinone (2-ClQ) and 2-bromo-1,4-benzoquinone (2-BrQ) undergo aspontaneous secondary hydroxylation reaction. The oxidation and hydroxylation reactions have been monitored by UV-visible spectroscopy, High Performance Liquid Chromatography (HPLC), and mass spectrometry. Evidence from time-resolved UV-visible spectroscopy suggests that the hydroxylations of 2-ClQ and 2-BrQ in the presence of hydrogen peroxide (H2O2) are non-enzymatic spontaneous processes approximately ∼10 and ∼ 5 times slower, respectively, than the enzymatic oxidation of DCP or DBP by DHP in identical solvent conditions. The products 2-ClQ and 2-BrQ have λmaxat 255 nm and 260 nm, respectively. Both substrates, DCP and DBP, react to form a parallel product peaked at 240 nm on the same time scale as the formation of 2-ClQ and 2-BrQ. The 240 nm band is not associated with the hydroxylation process, nor is it attributable to the catechol 3,5-dihalobenzene-1,3-diol observed by mass spectrometry. One possible explanation is that muconic acid is formed as a decomposition product, which could follow decomposition either the catechol or hydroxyquinone. These reactions give a more complete understanding of the biodegradation of xenobiotics by the multi-functional hemoglobin, DHP, in Amphitrite ornata. SYNOPSIS: The decomposition of 2,4-dihalophenols catalyzed by dehaloperoxidase was studied by UV-visible spectroscopy, High Performance Liquid Chromatography and Liquid Chromatography-Mass Spectrometry. Spectroscopic evidence suggests two major products, which we propose are 2-halo-1,4-benzoquinone and 2-halomuconic acid. These complementary techniques give a high-level view of the degradation of xenobiotics in marine ecosystems.
Collapse
Affiliation(s)
- Mst Sharmin Aktar
- Dept. of Chemistry, North Carolina State Univ., Raleigh, NC 27695-8204, United States of America
| | - Ransom Hill
- Dept. of Chemistry, North Carolina State Univ., Raleigh, NC 27695-8204, United States of America
| | - Wyatt Holbert
- Dept. of Chemistry, North Carolina State Univ., Raleigh, NC 27695-8204, United States of America
| | - Stefan Franzen
- Dept. of Chemistry, North Carolina State Univ., Raleigh, NC 27695-8204, United States of America.
| |
Collapse
|
6
|
Aktar MS, de Serrano V, Ghiladi R, Franzen S. Comparative study of the binding and activation of 2,4-dichlorophenol by dehaloperoxidase A and B. J Inorg Biochem 2023; 247:112332. [PMID: 37480762 DOI: 10.1016/j.jinorgbio.2023.112332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
The dehaloperoxidase-hemoglobin (DHP), first isolated from the coelom of a marine terebellid polychaete, Amphitrite ornata, is an example of a multi-functional heme enzyme. Long known for its reversible oxygen (O2) binding, further studies have established DHP activity as a peroxidase, oxidase, oxygenase, and peroxygenase. The specific reactivity depends on substrate binding at various internal and external binding sites. This study focuses on comparison of the binding and reactivity of the substrate 2,4-dichlorophenol (DCP) in the isoforms DHPA and B. There is strong interest in the degradation of DCP because of its wide use in the chemical industry, presence in waste streams, and particular reactivity to form dioxins, some of the most toxic compounds known. The catalytic efficiency is 3.5 times higher for DCP oxidation in DHPB than DHPA by a peroxidase mechanism. However, DHPA and B both show self-inhibition even at modest concentrations of DCP. This phenomenon is analogous to the self-inhibition of 2,4,6-trichlorophenol (TCP) at higher concentration. The activation energies of the electron transfer steps in DCP in DHPA and DHPB are 19.3 ± 2.5 and 24.3 ± 3.2 kJ/mol, respectively, compared to 37.2 ± 6.5 kJ/mol in horseradish peroxidase (HRP), which may be a result of the more facile electron transfer of an internally bound substrate in DHPA. The x-ray crystal structure of DHPA bound with DCP determined at 1.48 Å resolution, shows tight substrate binding inside the heme pocket of DHPA (PDB 8EJN). This research contributes to the studies of DHP as a naturally occurring bioremediation enzyme capable of oxidizing a wide range of environmental pollutants.
Collapse
Affiliation(s)
- Mst Sharmin Aktar
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Reza Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
7
|
Zhang X, Liu Y. Direct Electrophilic Attack of Compound I on the Indole Ring in the Peroxygenase Mechanism of Dehaloperoxidase DHP B in Degrading Haloindole: Electron Transfer Promotes the Reaction. Inorg Chem 2023; 62:13230-13240. [PMID: 37561650 DOI: 10.1021/acs.inorgchem.3c01425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The H2O2-dependent degradation of haloindole catalyzed by the dehaloperoxidase (DHP) from Amphitrite ornate has been reported to employ the peroxygenase mechanism, and the two oxidized products 5-halo-2-oxindole and 5-halo-3-oxindole have a similar amount. According to a previous experimental study, compound I (Cpd I) was suggested to be responsible for triggering the reaction, and the reaction may undergo three possible intermediates; however, the reaction details are still unclear. To clarify the reaction mechanism of DHP, the computational model was constructed on the basis of the high-resolution crystal structure, and a series of the quantum mechanical/molecular mechanical calculations were performed. Based on our calculation results, it is confirmed that the reaction starts from the direct electrophilic attack of Cpd I on the indole ring of the substrate, and the resulted intermediate contains both a carbocation and an oxygen anion, whereas the common hydrogen abstraction by Cpd I was calculated to correspond to a relatively higher barrier. In addition, a net electron transfer from the substrate to the iron center is observed during the attack of Cpd I on the indole ring; therefore, the carbocation/oxygen anion intermediate can easily undergo an intramolecular hydride transfer to form the product 5-halo-2-oxindole or isomerize to the epoxide intermediate which finally generates another product 5-halo-3-oxindole. It is the zwitterionic characteristic of the intermediate that makes the intermolecular hydride transfer quite easy, and it is the high electron affinity of the iron center that promotes the single-electron oxidation of the reaction intermediate. Our calculations well explain the formation of two oxidized products 5-halo-2-oxindole and 5-halo-3-oxindole.
Collapse
Affiliation(s)
- Xianghui Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
8
|
D'Alonzo D, De Fenza M, Pavone V, Lombardi A, Nastri F. Selective Oxidation of Halophenols Catalyzed by an Artificial Miniaturized Peroxidase. Int J Mol Sci 2023; 24:ijms24098058. [PMID: 37175773 PMCID: PMC10178546 DOI: 10.3390/ijms24098058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The development of artificial enzymes for application in sustainable technologies, such as the transformation of environmental pollutants or biomass, is one of the most challenging goals in metalloenzyme design. In this work, we describe the oxidation of mono-, di-, tri- and penta-halogenated phenols catalyzed by the artificial metalloenzyme Fe-MC6*a. It promoted the dehalogenation of 4-fluorophenol into the corresponding 1,4-benzoquinone, while under the same experimental conditions, 4-chloro, 4-bromo and 4-iodophenol were selectively converted into higher molecular weight compounds. Analysis of the 4-chlorophenol oxidation products clarified that oligomers based on C-O bonds were exclusively formed in this case. All results show that Fe-MC6*a holds intriguing enzymatic properties, as it catalyzes halophenol oxidation with substrate-dependent chemoselectivity.
Collapse
Affiliation(s)
- Daniele D'Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
9
|
Madhuresh NKD, Nguyen H, Franzen S. The divergent pH dependence of substrate turnover in dehaloperoxidases A and B. J Inorg Biochem 2023; 238:112029. [PMID: 36371913 DOI: 10.1016/j.jinorgbio.2022.112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
The pH-dependent peroxidase activity in both dehaloperoxidases A and B was studied by a kinetic assay, stopped flow spectroscopy, resonance Raman spectroscopy, and high-performance liquid chromatography at pH 5.0, 6.0, and 7.0. At pH 7.0, both isozymes follow the peroxidase ping-pong kinetic model derived from the three-step reaction scheme using the steady-state approximation. However, deviation from standard saturation behavior is observed at pH < 6.0 and [TCP] > 0.7 mM, owing to multiple processes: a) self-inhibition of TCP by internal binding; b) oxidation of the product by a pH- and concentration-dependent secondary reaction; and c) formation of an inactive species known as compound RH in the absence of oxidizable substrate. Although DHP-A and DHP-B differ by only 5 amino acids, they show a complete trend reversal in their observed peroxidase kinetics and product yields. Although at pH 7.0 DHP-B had higher TCP oxidation activity than DHP-A as reported previously, as pH was lowered, DHP-A appeared to have a higher peroxidase activity than DHP-B. This is an unprecedented result. However, the fact that there are multiple processes contributing to both kinetics and yield of TCP oxidation complicates interpretation of these data. Deactivation via compound RH and self-inhibition are pH dependent reactions that compete with substrate oxidation. Compound RH formation was observed to be rapid at low pH. A complete set of control experiments were conducted to differentiate the various contributions to the observed enzyme kinetics.
Collapse
Affiliation(s)
| | - Hilbert Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
10
|
Yun D, de Serrano V, Ghiladi RA. Oxidation of bisphenol A (BPA) and related compounds by the multifunctional catalytic globin dehaloperoxidase. J Inorg Biochem 2023; 238:112020. [PMID: 36272837 DOI: 10.1016/j.jinorgbio.2022.112020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Dehaloperoxidase (DHP) from the marine polychaete Amphitrite ornata is a multifunctional enzyme that possesses peroxidase, peroxygenase, oxidase and oxygenase activities. Herein, we investigated the reactivity of DHP B with bisphenol A (BPA) and related compounds (bisphenol E, bisphenol F, tetrachlorobisphenol A, 2,2'-biphenol, 3,3'-biphenol, 4,4'-biphenol, and 3,3'-dibromo-4,4'-biphenol). As a previously unknown substrate for DHP B, BPA (as a representative substrate) is an endocrine disruptor widely used in polycarbonate and epoxy resins, thus resulting in human exposure. Reactivity studies with these substrates were investigated using high performance liquid chromatography (HPLC), and their corresponding oxidation products were determined by mass spectrometry (GC-MS/ LC-MS). BPA undergoes oxidation in the presence of DHP B and hydrogen peroxide yielding two cleavage products (4-isopropenylphenol and 4-(2-hydroxypropan-2-yl)phenol), and oligomers with varying degrees of oxidation. 18O-labeling studies confirmed that the O-atom incorporated into the products was derived exclusively from water, consistent with substrate oxidation via a peroxidase-based mechanism. The X-ray crystal structures of DHP bound with bisphenol E (1.48 Å), bisphenol F (1.75 Å), 2,2'-biphenol (1.90 Å) and 3,3'-biphenol (1.30 Å) showed substrate binding sites are in the distal pocket of the heme cofactor, similar to other previously studied DHP substrates. Stopped-flow UV-visible spectroscopy was utilized to investigate the mechanistic details and enzyme oxidation states during substrate turnover, and a reaction mechanism is proposed. The data presented here strongly suggest that DHP B can catalyze the oxidation of bisphenols and biphenols, thus providing evidence of how infaunal invertebrates can contribute to the biotransformation of these marine pollutants.
Collapse
Affiliation(s)
- Dongju Yun
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
11
|
Siriboe MG, Vargas DA, Fasan R. Dehaloperoxidase Catalyzed Stereoselective Synthesis of Cyclopropanol Esters. J Org Chem 2022. [PMID: 36542602 DOI: 10.1021/acs.joc.2c02030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chiral cyclopropanols are highly desirable building blocks for medicinal chemistry, but the stereoselective synthesis of these molecules remains challenging. Here, a novel strategy is reported for the diastereo- and enantioselective synthesis of cyclopropanol derivatives via the biocatalytic asymmetric cyclopropanation of vinyl esters with ethyl diazoacetate (EDA). A dehaloperoxidase enzyme from Amphitrite ornata was repurposed to catalyze this challenging cyclopropanation reaction, and its activity and stereoselectivity were optimized via protein engineering. Using this system, a broad range of electron-deficient vinyl esters were efficiently converted to the desired cyclopropanation products with up to 99.5:0.5 diastereomeric and enantiomeric ratios. In addition, the engineered dehaloperoxidase-based biocatalyst is able to catalyze a variety of other abiological carbene transfer reactions, including N-H/S-H carbene insertion with EDA as well as cyclopropanation with diazoacetonitrile, thus adding to the multifunctionality of this enzyme and defining it as a valuable new scaffold for the development of novel carbene transferases.
Collapse
Affiliation(s)
- Mary G Siriboe
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| | - David A Vargas
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| |
Collapse
|
12
|
Malewschik T, Carey LM, de Serrano V, Ghiladi RA. Bridging the functional gap between reactivity and inhibition in dehaloperoxidase B from Amphitrite ornata: Mechanistic and structural studies with 2,4- and 2,6-dihalophenols. J Inorg Biochem 2022; 236:111944. [PMID: 35969974 DOI: 10.1016/j.jinorgbio.2022.111944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
The multifunctional catalytic globin dehaloperoxidase (DHP) from the marine worm Amphitrite ornata was shown to catalyze the H2O2-dependent oxidation of 2,4- and 2,6-dihalophenols (DXP; X = F, Cl, Br). Product identification by LC-MS revealed multiple monomeric products with varying degrees of oxidation and/or dehalogenation, as well as oligomers with n up to 6. Mechanistic and 18O-labeling studies demonstrated sequential dihalophenol oxidation via peroxidase and peroxygenase activities. Binding studies established that 2,4-DXP (X = Cl, Br) have the highest affinities of any known DHP substrate. X-ray crystallography identified different binding positions for 2,4- and 2,6-DXP substrates in the hydrophobic distal pocket of DHP. Correlation between the number of halogens and the substrate binding orientation revealed a halogen-dependent binding motif for mono- (4-halophenol), di- (2,4- and 2,6-dihalophenol) and trihalophenols (2,4,6-trihalopenol). Taken together, the findings here on dihalophenol reactivity with DHP advance our understanding of how these compounds bridge the inhibitory and oxidative functions of their mono- and trihalophenol counterparts, respectively, and provide further insight into the protein structure-function paradigm relevant to multifunctional catalytic globins in comparison to their monofunctional analogs.
Collapse
Affiliation(s)
- Talita Malewschik
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Leiah M Carey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
13
|
Moreno-Chicano T, Carey LM, Axford D, Beale JH, Doak RB, Duyvesteyn HME, Ebrahim A, Henning RW, Monteiro DCF, Myles DA, Owada S, Sherrell DA, Straw ML, Šrajer V, Sugimoto H, Tono K, Tosha T, Tews I, Trebbin M, Strange RW, Weiss KL, Worrall JAR, Meilleur F, Owen RL, Ghiladi RA, Hough MA. Complementarity of neutron, XFEL and synchrotron crystallography for defining the structures of metalloenzymes at room temperature. IUCRJ 2022; 9:610-624. [PMID: 36071813 PMCID: PMC9438502 DOI: 10.1107/s2052252522006418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources. In this study, structures of a multifunctional globin, dehaloperoxidase B (DHP-B), obtained using several methods of room-temperature crystallographic structure determination are described and compared. Here, data were measured from large single crystals and multiple microcrystals using neutrons, X-ray free-electron laser pulses, monochromatic synchrotron radiation and polychromatic (Laue) radiation light sources. These approaches span a range of 18 orders of magnitude in measurement time per diffraction pattern and four orders of magnitude in crystal volume. The first room-temperature neutron structures of DHP-B are also presented, allowing the explicit identification of the hydrogen positions. The neutron data proved to be complementary to the serial femtosecond crystallography data, with both methods providing structures free of the effects of X-ray radiation damage when compared with standard cryo-crystallography. Comparison of these room-temperature methods demonstrated the large differences in sample requirements, data-collection time and the potential for radiation damage between them. With regard to the structure and function of DHP-B, despite the results being partly limited by differences in the underlying structures, new information was gained on the protonation states of active-site residues which may guide future studies of DHP-B.
Collapse
Affiliation(s)
- Tadeo Moreno-Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Leiah M. Carey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - R. Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology (STRUBI), University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Ali Ebrahim
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Robert W. Henning
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
| | - Dean A. Myles
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Darren A. Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Megan L. Straw
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vukica Šrajer
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ivo Tews
- Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Martin Trebbin
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Kevin L. Weiss
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Flora Meilleur
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
14
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Affiliation(s)
- Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) Universitat de Girona C/Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC) Universitat de Girona C/Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
16
|
|
17
|
Lin YW. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Wang Y, Davis I, Shin I, Xu H, Liu A. Molecular Rationale for Partitioning between C-H and C-F Bond Activation in Heme-Dependent Tyrosine Hydroxylase. J Am Chem Soc 2021; 143:4680-4693. [PMID: 33734681 DOI: 10.1021/jacs.1c00175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The heme-dependent l-tyrosine hydroxylases (TyrHs) in natural product biosynthesis constitute a new enzyme family in contrast to the nonheme iron enzymes for DOPA production. A representative TyrH exhibits dual reactivity of C-H and C-F bond cleavage when challenged with 3-fluoro-l-tyrosine (3-F-Tyr) as a substrate. However, little is known about how the enzyme mediates two distinct reactions. Herein, a new TyrH from the thermophilic bacterium Streptomyces sclerotialus (SsTyrH) was functionally and structurally characterized. A de novo crystal structure of the enzyme-substrate complex at 1.89-Å resolution provides the first comprehensive structural study of this hydroxylase. The binding conformation of l-tyrosine indicates that C-H bond hydroxylation is initiated by electron transfer. Mutagenesis studies confirmed that an active site histidine, His88, participates in catalysis. We also obtained a 1.68-Å resolution crystal structure in complex with the monofluorinated substrate, 3-F-Tyr, which shows one binding conformation but two orientations of the fluorine atom with a ratio of 7:3, revealing that the primary factor of product distribution is the substrate orientation. During in crystallo reaction, a ferric-hydroperoxo intermediate (compound 0, Fe3+-OOH) was observed with 3-F-Tyr as a substrate based on characteristic spectroscopic features. We determined the crystal structure of this compound 0-type intermediate and refined it to 1.58-Å resolution. Collectively, this study provided the first molecular details of the heme-dependent TyrH and determined the primary factor that dictates the partitioning between the dual reactivities of C-H and C-F bond activation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Hui Xu
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| |
Collapse
|
19
|
Chen SF, Liu XC, Xu JK, Li L, Lang JJ, Wen GB, Lin YW. Conversion of Human Neuroglobin into a Multifunctional Peroxidase by Rational Design. Inorg Chem 2021; 60:2839-2845. [PMID: 33539081 DOI: 10.1021/acs.inorgchem.0c03777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein design has received much attention in the last decades. With an additional disulfide bond to enhance the protein stability, human A15C neuroglobin (Ngb) is an ideal protein scaffold for heme enzyme design. In this study, we rationally converted A15C Ngb into a multifunctional peroxidase by replacing the heme axial His64 with an Asp residue, where Asp64 and the native Lys67 at the heme distal site were proposed to act as an acid-base catalytic couple for H2O2 activation. Kinetic studies showed that the catalytic efficiency of A15C/H64D Ngb was much higher (∼50-80-fold) than that of native dehaloperoxidase, which even exceeds (∼3-fold) that of the most efficient native horseradish peroxidase. Moreover, the dye-decolorizing peroxidase activity was also comparable to that of some native enzymes. Electron paramagnetic resonance, molecular docking, and isothermal titration calorimetry studies provided valuable information for the substrate-protein interactions. Therefore, this study presents the rational design of an efficient multifunctional peroxidase based on Ngb with potential applications such as in bioremediation for environmental sustainability.
Collapse
Affiliation(s)
- Shun-Fa Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jia-Jia Lang
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| |
Collapse
|
20
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
21
|
Malewschik T, de Serrano V, McGuire AH, Ghiladi RA. The multifunctional globin dehaloperoxidase strikes again: Simultaneous peroxidase and peroxygenase mechanisms in the oxidation of EPA pollutants. Arch Biochem Biophys 2019; 673:108079. [PMID: 31445024 DOI: 10.1016/j.abb.2019.108079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/25/2023]
Abstract
The multifunctional catalytic hemoglobin dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata was found to catalyze the H2O2-dependent oxidation of EPA Priority Pollutants (4-Me-o-cresol, 4-Cl-m-cresol and pentachlorophenol) and EPA Toxic Substances Control Act compounds (o-, m-, p-cresol and 4-Cl-o-cresol). Biochemical assays (HPLC/LC-MS) indicated formation of multiple oxidation products, including the corresponding catechol, 2-methylbenzoquinone (2-MeBq), and oligomers with varying degrees of oxidation and/or dehalogenation. Using 4-Br-o-cresol as a representative substrate, labeling studies with 18O confirmed that the O-atom incorporated into the catechol was derived exclusively from H2O2, whereas the O-atom incorporated into 2-MeBq was from H2O, consistent with this single substrate being oxidized by both peroxygenase and peroxidase mechanisms, respectively. Stopped-flow UV-visible spectroscopic studies strongly implicate a role for Compound I in the peroxygenase mechanism leading to catechol formation, and for Compounds I and ES in the peroxidase mechanism that yields the 2-MeBq product. The X-ray crystal structures of DHP bound with 4-F-o-cresol (1.42 Å; PDB 6ONG), 4-Cl-o-cresol (1.50 Å; PDB 6ONK), 4-Br-o-cresol (1.70 Å; PDB 6ONX), 4-NO2-o-cresol (1.80 Å; PDB 6ONZ), o-cresol (1.60 Å; PDB 6OO1), p-cresol (2.10 Å; PDB 6OO6), 4-Me-o-cresol (1.35 Å; PDB 6ONR) and pentachlorophenol (1.80 Å; PDB 6OO8) revealed substrate binding sites in the distal pocket in close proximity to the heme cofactor, consistent with both oxidation mechanisms. The findings establish cresols as a new class of substrate for DHP, demonstrate that multiple oxidation mechanisms may exist for a given substrate, and provide further evidence that different substituents can serve as functional switches between the different activities performed by dehaloperoxidase. More broadly, the results demonstrate the complexities of marine pollution where both microbial and non-microbial systems may play significant roles in the biotransformations of EPA-classified pollutants, and further reinforces that heterocyclic compounds of anthropogenic origin should be considered as environmental stressors of infaunal organisms.
Collapse
Affiliation(s)
- Talita Malewschik
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Ashlyn H McGuire
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA.
| |
Collapse
|
22
|
Lin Y. Rational design of heme enzymes for biodegradation of pollutants toward a green future. Biotechnol Appl Biochem 2019; 67:484-494. [DOI: 10.1002/bab.1788] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ying‐Wu Lin
- School of Chemistry and Chemical Engineering University of South China Hengyang People's Republic of China
- Laboratory of Protein Structure and Function University of South China Hengyang People's Republic of China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes University of South China Hengyang People's Republic of China
| |
Collapse
|
23
|
Rodrigo AP, Costa PM. The hidden biotechnological potential of marine invertebrates: The Polychaeta case study. ENVIRONMENTAL RESEARCH 2019; 173:270-280. [PMID: 30928858 DOI: 10.1016/j.envres.2019.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Marine biotechnology is under the spotlight, as researchers and industrialists become aware that bioprospecting through the oceans' vast biodiversity can replace the painstaking process of designing synthetic compounds. Millions of years of Natural Selection provided an almost inexhaustible source of marine products that can interfere with specific bioprocesses while being cost-effective, safer and more environmentally friendly. Still, the number of commercial applications of marine compounds, especially from eumetazoans, can seem disappointing. In most part, this results from the challenges of dealing with an immense biodiversity and with poorly known organisms with uncanny physiology. Consequently, shifting the current perspective from descriptive science to actually proposing applications can be a major incentive to industry. With this in mind, the present review focuses on one of the least studied but most representative group of marine animals: the Polychaeta annelids. Occupying nearly every marine habitat, from the deep sea to the intertidal, they can offer a wide array of natural products that are just beginning to be understood, showing properties compatible with anaesthetics, fluorescent probes, and even antibiotics and pesticides, for instance. Altogether, they are a showcase for the ocean's real biotechnological deterrent, albeit our still wispy knowledge on this vast and ancient environment.
Collapse
Affiliation(s)
- Ana P Rodrigo
- UCIBIO - Research Unit on Applied Molecular Biosciences, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Pedro M Costa
- UCIBIO - Research Unit on Applied Molecular Biosciences, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
24
|
Yin L, Yuan H, Liu C, He B, Gao SQ, Wen GB, Tan X, Lin YW. A Rationally Designed Myoglobin Exhibits a Catalytic Dehalogenation Efficiency More than 1000-Fold That of a Native Dehaloperoxidase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02979] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lu−Lu Yin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Can Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
25
|
McGuire AH, Carey LM, de Serrano V, Dali S, Ghiladi RA. Peroxidase versus Peroxygenase Activity: Substrate Substituent Effects as Modulators of Enzyme Function in the Multifunctional Catalytic Globin Dehaloperoxidase. Biochemistry 2018; 57:4455-4468. [DOI: 10.1021/acs.biochem.8b00540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ashlyn H. McGuire
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Leiah M. Carey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Safaa Dali
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
26
|
Dynamics of dehaloperoxidase-hemoglobin A derived from NMR relaxation spectroscopy and molecular dynamics simulation. J Inorg Biochem 2018; 181:65-73. [DOI: 10.1016/j.jinorgbio.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022]
|
27
|
Carey LM, Gavenko R, Svistunenko DA, Ghiladi RA. How nature tunes isoenzyme activity in the multifunctional catalytic globin dehaloperoxidase from Amphitrite ornata. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:230-241. [DOI: 10.1016/j.bbapap.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 01/29/2023]
|
28
|
Coutinho MCL, Teixeira VL, Santos CSG. A Review of “Polychaeta” Chemicals and their Possible Ecological Role. J Chem Ecol 2017; 44:72-94. [DOI: 10.1007/s10886-017-0915-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/20/2023]
|
29
|
Selective tuning of activity in a multifunctional enzyme as revealed in the F21W mutant of dehaloperoxidase B from Amphitrite ornata. J Biol Inorg Chem 2017; 23:209-219. [DOI: 10.1007/s00775-017-1520-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022]
|
30
|
Bindings of NO, CO, and O 2 to multifunctional globin type dehaloperoxidase follow the 'sliding scale rule'. Biochem J 2017; 474:3485-3498. [PMID: 28899945 DOI: 10.1042/bcj20170515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 01/09/2023]
Abstract
Dehaloperoxidase-hemoglobin (DHP), a multifunctional globin protein, not only functions as an oxygen carrier as typical globins such as myoglobin and hemoglobin, but also as a peroxidase, a mono- and dioxygenase, peroxygenase, and an oxidase. Kinetics of DHP binding to NO, CO, and O2 were characterized for wild-type DHP A and B and the H55D and H55V DHP A mutants using stopped-flow methods. All three gaseous ligands bind to DHP significantly more weakly than sperm whale myoglobin (SWMb). Both CO and NO bind to DHP in a one-step process to form a stable six-coordinate complex. Multiple-step NO binding is not observed in DHP, which is similar to observations in SWMb, but in contrast with many heme sensor proteins. The weak affinity of DHP for O2 is mainly due to a fast O2 dissociation rate, in accordance with a longer εN-Fe distance between the heme iron and distal histidine in DHP than that in Mb, and an open-distal pocket that permits ligand escape. Binding affinities in DHP show the same 3-4 orders separation between the pairs NO/CO and CO/O2, consistent with the 'sliding scale rule' hypothesis. Strong gaseous ligand discrimination by DHP is very different from that observed in typical peroxidases, which show poor gaseous ligand selectivity, correlating with a neutral proximal imidazole ligand rather than an imidazolate. The present study provides useful insights into the rationale for DHP to function both as mono-oxygenase and oxidase, and is the first example of a globin peroxidase shown to follow the 'sliding scale rule' hypothesis in gaseous ligand discrimination.
Collapse
|
31
|
Abstract
Approaches to determine chlorine kinetic isotope effects (Cl-KIEs) on enzymatic dehalogenations are discussed and illustrated by representative examples. Three aspects are considered. First methodology for experimental measurement of Cl-KIEs, with stress being on FAB-IRMS technique developed in our laboratory, is described. Subsequently, we concentrate our discussion on the consequences of reaction complexity in the interpretation of experimental values, a problem especially important in cases of polychlorinated reactants. The most fruitful studies of enzymatic dehalogenations by Cl-KIEs require their theoretical evaluation, hence the computational focus of the second part of this chapter.
Collapse
|
32
|
Liao F, He B, Du KJ, Gao SQ, Wen GB, Lin YW. Enhanced Dehaloperoxidase Activity of F43Y Myoglobin with a Novel Thyrosine–Heme Crosslink. CHEM LETT 2016. [DOI: 10.1246/cl.160461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Zhao J, Lu C, Franzen S. Distinct Enzyme–Substrate Interactions Revealed by Two Dimensional Kinetic Comparison between Dehaloperoxidase-Hemoglobin and Horseradish Peroxidase. J Phys Chem B 2015; 119:12828-37. [DOI: 10.1021/acs.jpcb.5b07126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Zhao
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chang Lu
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Stefan Franzen
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
34
|
Zhao J, Moretto J, Le P, Franzen S. Measurement of Internal Substrate Binding in Dehaloperoxidase–Hemoglobin by Competition with the Heme–Fluoride Binding Equilibrium. J Phys Chem B 2015; 119:2827-38. [DOI: 10.1021/jp512996v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Justin Moretto
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Peter Le
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
35
|
Le P, Zhao J, Franzen S. Correlation of Heme Binding Affinity and Enzyme Kinetics of Dehaloperoxidase. Biochemistry 2014; 53:6863-77. [DOI: 10.1021/bi5005975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Le
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
36
|
Wang C, Lovelace LL, Sun S, Dawson JH, Lebioda L. Structures of K42N and K42Y sperm whale myoglobins point to an inhibitory role of distal water in peroxidase activity. ACTA ACUST UNITED AC 2014; 70:2833-9. [DOI: 10.1107/s1399004714017787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/01/2014] [Indexed: 11/10/2022]
Abstract
Sperm whale myoglobin (Mb) functions as an oxygen-storage protein, but in the ferric state it possesses a weak peroxidase activity which enables it to carry out H2O2-dependent dehalogenation reactions. Hemoglobin/dehaloperoxidase fromAmphitrite ornata(DHP) is a dual-function protein represented by two isoproteins DHP A and DHP B; its peroxidase activity is at least ten times stronger than that of Mb and plays a physiological role. The `DHP A-like' K42Y Mb mutant (K42Y) and the `DHP B-like' K42N mutant (K42N) were engineered in sperm whale Mb to mimic the extended heme environments of DHP A and DHP B, respectively. The peroxidase reaction rates increased ∼3.5-fold and ∼5.5-fold in K42Y and K42NversusMb, respectively. The crystal structures of the K42Y and K42N mutants revealed that the substitutions at position 42 slightly elongate not only the distances between the distal His55 and the heme iron but also the hydrogen-bonding distances between His55 and the Fe-coordinated water. The enhanced peroxidase activity of K42Y and K42N thus might be attributed in part to the weaker binding of the axial water molecule that competes with hydrogen peroxide for the binding site at the heme in the ferric state. This is likely to be the mechanism by which the relationship `longer distal histidine to Fe distance – better peroxidase activity', which was previously proposed for heme proteins by Matsuiet al.(1999) (J. Biol. Chem.274, 2838–2844), works. Furthermore, positive cooperativity in K42N was observed when its dehaloperoxidase activity was measured as a function of the concentration of the substrate trichlorophenol. This serendipitously engineered cooperativity was rationalized by K42N dimerization through the formation of a dityrosine bond induced by excess H2O2.
Collapse
|
37
|
Sun S, Sono M, Du J, Dawson JH. Evidence of the Direct Involvement of the Substrate TCP Radical in Functional Switching from Oxyferrous O2 Carrier to Ferric Peroxidase in the Dual-Function Hemoglobin/Dehaloperoxidase from Amphitrite ornata. Biochemistry 2014; 53:4956-69. [DOI: 10.1021/bi5002757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengfang Sun
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Masanori Sono
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jing Du
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - John H. Dawson
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- School
of Medicine, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
38
|
Barrios DA, D'Antonio J, McCombs NL, Zhao J, Franzen S, Schmidt AC, Sombers LA, Ghiladi RA. Peroxygenase and oxidase activities of dehaloperoxidase-hemoglobin from Amphitrite ornata. J Am Chem Soc 2014; 136:7914-25. [PMID: 24791647 PMCID: PMC4063182 DOI: 10.1021/ja500293c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
The marine globin dehaloperoxidase-hemoglobin
(DHP) from Amphitrite ornata was found to catalyze
the H2O2-dependent oxidation of monohaloindoles,
a previously
unknown class of substrate for DHP. Using 5-Br-indole as a representative
substrate, the major monooxygenated products were found to be 5-Br-2-oxindole
and 5-Br-3-oxindolenine. Isotope labeling studies confirmed that the
oxygen atom incorporated was derived exclusively from H2O2, indicative of a previously unreported peroxygenase
activity for DHP. Peroxygenase activity could be initiated from either
the ferric or oxyferrous states with equivalent substrate conversion
and product distribution. It was found that 5-Br-3-oxindole, a precursor
of the product 5-Br-3-oxindolenine, readily reduced the ferric enzyme
to the oxyferrous state, demonstrating an unusual product-driven reduction
of the enzyme. As such, DHP returns to the globin-active oxyferrous
form after peroxygenase activity ceases. Reactivity with 5-Br-3-oxindole
in the absence of H2O2 also yielded 5,5′-Br2-indigo above the expected reaction stoichiometry under aerobic
conditions, and O2-concentration studies demonstrated dioxygen
consumption. Nonenzymatic and anaerobic controls both confirmed the
requirements for DHP and molecular oxygen in the catalytic generation
of 5,5′-Br2-indigo, and together suggest a newly
identified oxidase activity for DHP.
Collapse
Affiliation(s)
- David A Barrios
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhao J, de Serrano V, Franzen S. A model for the flexibility of the distal histidine in dehaloperoxidase-hemoglobin A based on X-ray crystal structures of the carbon monoxide adduct. Biochemistry 2014; 53:2474-82. [PMID: 24670063 PMCID: PMC4203366 DOI: 10.1021/bi5001905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Dehaloperoxidase
hemoglobin A (DHP A) is a multifunctional hemoglobin
that appears to have evolved oxidative pathways for the degradation
of xenobiotics as a protective function that complements the oxygen
transport function. DHP A possesses at least two internal binding
sites, one for substrates and one for inhibitors, which include various
halogenated phenols and indoles. Herein, we report the X-ray crystallographic
structure of the carbonmonoxy complex (DHPCO). Unlike other DHP structures
with 6-coordinated heme, the conformation of the distal histidine
(H55) in DHPCO is primarily external or solvent exposed, despite the
fact that the heme Fe is 6-coordinated. As observed generally in globins,
DHP exhibits two distal histidine conformations (one internal and
one external). In previous structural studies, we have shown that
the distribution of H55 conformations is weighted strongly toward
the external position when the DHP heme Fe is 5-coordinated. The large
population of the external conformation of the distal histidine observed
in DHPCO crystals at pH 6.0 indicates that some structural factor
in DHP must account for the difference from other globins, which exhibit
a significant external conformation only when pH < 4.5. While the
original hypothesis suggested that interaction with a heme-Fe-bound
ligand was the determinant of H55 conformation, the current study
forces a refinement of that hypothesis. The external or open conformation
of H55 is observed to have interactions with two propionate groups
in heme, at distances of 3.82 and 2.73 Å, respectively. A relatively
weak hydrogen bonding interaction between H55 and CO, combined with
strong interactions with heme propionate (position 6), is hypothesized
to strengthen the external conformation of H55. Density function theory
(DFT) calculations were conducted to test whether there is a weaker
hydrogen bond interaction between H55 and heme bonded CO or O2. Molecular dynamics simulations were conducted to examine
how the tautomeric forms of H55 affect the dynamic motions of the
distal histidine that govern the switching between open and closed
conformations. The calculations support the modified hypothesis suggesting
a competition between the strength of interactions with heme ligand
and the heme propionates as the factors that determine the conformation
of the distal histidine.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
40
|
Zhao J, Zhao J, Franzen S. The Regulatory Implications of Hydroquinone for the Multifunctional Enzyme Dehaloperoxidase-Hemoglobin from Amphitrite ornata. J Phys Chem B 2013; 117:14615-24. [DOI: 10.1021/jp407663n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Junjie Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
41
|
Zhao J, Srajer V, Franzen S. Functional consequences of the open distal pocket of dehaloperoxidase-hemoglobin observed by time-resolved X-ray crystallography. Biochemistry 2013; 52:7943-50. [PMID: 24116924 DOI: 10.1021/bi401118q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using time-resolved X-ray crystallography, we contrast a bifunctional dehaloperoxidase-hemoglobin (DHP) with previously studied examples of myoglobin and hemoglobin to understand the functional role of the distal pocket of globins. One key functional difference between DHP and other globins is the requirement that H2O2 enter the distal pocket of oxyferrous DHP to displace O2 from the heme Fe atom and thereby activate the heme for the peroxidase function. The open architecture of DHP permits more than one molecule to simultaneously enter the distal pocket of the protein above the heme to facilitate the unique peroxidase cycle starting from the oxyferrous state. The time-resolved X-ray data show that the distal pocket of DHP lacks a protein valve found in the two other globins that have been studied previously. The photolyzed CO ligand trajectory in DHP does not have a docking site; rather, the CO moves immediately to the Xe-binding site. From there, CO can escape but can also recombine an order of magnitude more rapidly than in other globins. The contrast with DHP dynamics and function more precisely defines the functional role of the multiple conformational states of myoglobin. Taken together with the high reduction potential of DHP, the open distal site helps to explain how a globin can also function as a peroxidase.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
42
|
Dumarieh R, D'Antonio J, Deliz-Liang A, Smirnova T, Svistunenko DA, Ghiladi RA. Tyrosyl radicals in dehaloperoxidase: how nature deals with evolving an oxygen-binding globin to a biologically relevant peroxidase. J Biol Chem 2013; 288:33470-82. [PMID: 24100039 DOI: 10.1074/jbc.m113.496497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dehaloperoxidase (DHP) from Amphitrite ornata, having been shown to catalyze the hydrogen peroxide-dependent oxidation of trihalophenols to dihaloquinones, is the first oxygen binding globin that possesses a biologically relevant peroxidase activity. The catalytically competent species in DHP appears to be Compound ES, a reactive intermediate that contains both a ferryl heme and a tyrosyl radical. By simulating the EPR spectra of DHP activated by H2O2, Thompson et al. (Thompson, M. K., Franzen, S., Ghiladi, R. A., Reeder, B. J., and Svistunenko, D. A. (2010) J. Am. Chem. Soc. 132, 17501-17510) proposed that two different radicals, depending on the pH, are formed, one located on either Tyr-34 or Tyr-28 and the other on Tyr-38. To provide additional support for these simulation-based assignments and to deduce the role(s) that tyrosyl radicals play in DHP, stopped-flow UV-visible and rapid-freeze-quench EPR spectroscopic methods were employed to study radical formation in DHP when three tyrosine residues, Tyr-28, Tyr-34, and Tyr-38, were replaced either individually or in combination with phenylalanines. The results indicate that radicals form on all three tyrosines in DHP. Evidence for the formation of DHP Compound I in several tyrosine mutants was obtained. Variants that formed Compound I showed an increase in the catalytic rate for substrate oxidation but also an increase in heme bleaching, suggesting that the tyrosines are necessary for protecting the enzyme from oxidizing itself. This protective role of tyrosines is likely an evolutionary adaptation allowing DHP to avoid self-inflicted damage in the oxidative environment.
Collapse
Affiliation(s)
- Rania Dumarieh
- From the Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204 and
| | | | | | | | | | | |
Collapse
|
43
|
The role of T56 in controlling the flexibility of the distal histidine in dehaloperoxidase-hemoglobin from Amphitrite ornata. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2020-9. [DOI: 10.1016/j.bbapap.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022]
|
44
|
Wang C, Lovelace LL, Sun S, Dawson JH, Lebioda L. Complexes of Dual-Function Hemoglobin/Dehaloperoxidase with Substrate 2,4,6-Trichlorophenol Are Inhibitory and Indicate Binding of Halophenol to Compound I. Biochemistry 2013; 52:6203-10. [DOI: 10.1021/bi400627w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunxue Wang
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Leslie L. Lovelace
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shengfang Sun
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - John H. Dawson
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- School
of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Lukasz Lebioda
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Center
for Colon Cancer Research, University of South Carolina, Columbia, South Carolina 29209, United States
| |
Collapse
|
45
|
Electrochemical characterization of dehaloperoxidase adsorbates on COOH/OH mixed self-assembled monolayers. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Zhao J, Franzen S. Kinetic Study of the Inhibition Mechanism of Dehaloperoxidase-Hemoglobin A by 4-Bromophenol. J Phys Chem B 2013; 117:8301-9. [DOI: 10.1021/jp3116353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| |
Collapse
|
47
|
Watt WB. Specific-gene studies of evolutionary mechanisms in an age of genome-wide surveying. Ann N Y Acad Sci 2013; 1289:1-17. [PMID: 23679204 DOI: 10.1111/nyas.12139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular tools of genomics have great power to reveal patterns of genetic difference within or among species, but must be complemented by the mechanistic study of the genetic variants found if these variants' evolutionary meaning is to be well understood. Central to this purpose is knowledge of the organisms' genotype-phenotype-environment interactions, which embody biological adaptation and constraint and thus drive natural selection. The history of this approach is briefly reviewed. Strategies embracing the complementarity of genomics and specific-gene studies in evolution are considered. Implementation of these strategies, and examples showing their feasibility and power, are discussed. Initial generalizations emphasize: (1) reproducibility of adaptive mechanisms; (2) evolutionary co-importance of variation in protein sequences and expression; (3) refinement of rudimentary molecular functions as an origin of evolutionary innovations; (4) identification of specific-gene mechanisms as underpinnings of genomic or quantitative genetic variation; and (5) multiple forms of adaptive or constraining epistasis among genes. Progress along these lines will advance understanding of evolution and support its use in addressing urgent medical and environmental applications.
Collapse
Affiliation(s)
- Ward B Watt
- Department of Biology, Stanford University, Stanford, California and Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.
| |
Collapse
|
48
|
Zhao J, de Serrano V, Zhao J, Le P, Franzen S. Structural and Kinetic Study of an Internal Substrate Binding Site in Dehaloperoxidase-Hemoglobin A from Amphitrite ornata. Biochemistry 2013; 52:2427-39. [DOI: 10.1021/bi301307f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Junjie Zhao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Peter Le
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| |
Collapse
|
49
|
Plummer A, Thompson MK, Franzen S. Role of Polarity of the Distal Pocket in the Control of Inhibitor Binding in Dehaloperoxidase-Hemoglobin. Biochemistry 2013; 52:2218-27. [DOI: 10.1021/bi301509r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ashlee Plummer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
27695, United States
| | - Matthew K. Thompson
- Department
of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
37232, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
27695, United States
| |
Collapse
|
50
|
Schkolnik G, Utesch T, Zhao J, Jiang S, Thompson MK, Mroginski MA, Hildebrandt P, Franzen S. Catalytic efficiency of dehaloperoxidase A is controlled by electrostatics – application of the vibrational Stark effect to understand enzyme kinetics. Biochem Biophys Res Commun 2013; 430:1011-5. [DOI: 10.1016/j.bbrc.2012.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 11/17/2022]
|