1
|
Zubareva VM, Lapashina AS, Shugaeva TE, Litvin AV, Feniouk BA. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences. BIOCHEMISTRY (MOSCOW) 2021; 85:1613-1630. [PMID: 33705299 DOI: 10.1134/s0006297920120135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ion-translocating ATPases and ATP synthases (F-, V-, A-type ATPases, and several P-type ATPases and ABC-transporters) catalyze ATP hydrolysis or ATP synthesis coupled with the ion transport across the membrane. F-, V-, and A-ATPases are protein nanomachines that combine transmembrane transport of protons or sodium ions with ATP synthesis/hydrolysis by means of a rotary mechanism. These enzymes are composed of two multisubunit subcomplexes that rotate relative to each other during catalysis. Rotary ATPases phosphorylate/dephosphorylate nucleotides directly, without the generation of phosphorylated protein intermediates. F-type ATPases are found in chloroplasts, mitochondria, most eubacteria, and in few archaea. V-type ATPases are eukaryotic enzymes present in a variety of cellular membranes, including the plasma membrane, vacuoles, late endosomes, and trans-Golgi cisternae. A-type ATPases are found in archaea and some eubacteria. F- and A-ATPases have two main functions: ATP synthesis powered by the proton motive force (pmf) or, in some prokaryotes, sodium-motive force (smf) and generation of the pmf or smf at the expense of ATP hydrolysis. In prokaryotes, both functions may be vitally important, depending on the environment and the presence of other enzymes capable of pmf or smf generation. In eukaryotes, the primary and the most crucial function of F-ATPases is ATP synthesis. Eukaryotic V-ATPases function exclusively as ATP-dependent proton pumps that generate pmf necessary for the transmembrane transport of ions and metabolites and are vitally important for pH regulation. This review describes the diversity of rotary ion-translocating ATPases from different organisms and compares the structural, functional, and regulatory features of these enzymes.
Collapse
Affiliation(s)
- V M Zubareva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A S Lapashina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A V Litvin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes (Basel) 2021; 12:genes12070963. [PMID: 34202810 PMCID: PMC8305020 DOI: 10.3390/genes12070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very low compared to proteins annotated by sequence homology, usually through automated pipelines. Even a GSP may give a misleading assignment when used as a reference: the homolog may be close enough to support isofunctionality, but the substrate of the GSP is absent from the species being annotated. In such cases, the enzymes cannot be isofunctional. Here, we examined a variety of such issues in halophilic archaea (class Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. Results: Annotated proteins of Hfx. volcanii were identified for which public databases tend to assign a function that is probably incorrect. In some cases, an alternative, probably correct, function can be predicted or inferred from the available evidence, but this has not been adopted by public databases because experimental validation is lacking. In other cases, a probably invalid specific function is predicted by homology, and while there is evidence that this assigned function is unlikely, the true function remains elusive. We listed 50 of those cases, each with detailed background information, so that a conclusion about the most likely biological function can be drawn. For reasons of brevity and comprehension, only the key aspects are listed in the main text, with detailed information being provided in a corresponding section of the Supplementary Materials. Conclusions: Compiling, describing and summarizing these open annotation issues and functional predictions will benefit the scientific community in the general effort to improve the evaluation of protein function assignments and more thoroughly detail them. By highlighting the gaps and likely annotation errors currently in the databases, we hope this study will provide a framework for experimentalists to systematically confirm (or disprove) our function predictions or to uncover yet more unexpected functions.
Collapse
|
3
|
Berger S, Cabrera-Orefice A, Jetten MSM, Brandt U, Welte CU. Investigation of central energy metabolism-related protein complexes of ANME-2d methanotrophic archaea by complexome profiling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148308. [PMID: 33002447 DOI: 10.1016/j.bbabio.2020.148308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/02/2023]
Abstract
The anaerobic oxidation of methane is important for mitigating emissions of this potent greenhouse gas to the atmosphere and is mediated by anaerobic methanotrophic archaea. In a 'Candidatus Methanoperedens BLZ2' enrichment culture used in this study, methane is oxidized to CO2 with nitrate being the terminal electron acceptor of an anaerobic respiratory chain. Energy conservation mechanisms of anaerobic methanotrophs have mostly been studied at metagenomic level and hardly any protein data is available at this point. To close this gap, we used complexome profiling to investigate the presence and subunit composition of protein complexes involved in energy conservation processes. All enzyme complexes and their subunit composition involved in reverse methanogenesis were identified. The membrane-bound enzymes of the respiratory chain, such as F420H2:quinone oxidoreductase, membrane-bound heterodisulfide reductase, nitrate reductases and Rieske cytochrome bc1 complex were all detected. Additional or putative subunits such as an octaheme subunit as part of the Rieske cytochrome bc1 complex were discovered that will be interesting targets for future studies. Furthermore, several soluble proteins were identified, which are potentially involved in oxidation of reduced ferredoxin produced during reverse methanogenesis leading to formation of small organic molecules. Taken together these findings provide an updated, refined picture of the energy metabolism of the environmentally important group of anaerobic methanotrophic archaea.
Collapse
Affiliation(s)
- Stefanie Berger
- Institute for Wetland and Water Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Alfredo Cabrera-Orefice
- Molecular Bioenergetics Group, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert-Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Mike S M Jetten
- Institute for Wetland and Water Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert-Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands.
| | - Cornelia U Welte
- Institute for Wetland and Water Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Han W, Xu Y, Feng X, Liang YX, Huang L, Shen Y, She Q. NQO-Induced DNA-Less Cell Formation Is Associated with Chromatin Protein Degradation and Dependent on A 0A 1-ATPase in Sulfolobus. Front Microbiol 2017; 8:1480. [PMID: 28855893 PMCID: PMC5557786 DOI: 10.3389/fmicb.2017.01480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022] Open
Abstract
To investigate DNA damage response in the model crenarchaeon Sulfolobus islandicus, four different DNA damage agents were tested for their effects on cell death of this archaeon, including UV irradiation, methyl methanesulfonate, cisplatin, and 4-nitroquinoline 1-oxide (NQO). Cell death featured with DNA-less cell formation was revealed in DNA damage treatment with each agent. Cellular responses upon NQO treatment were characterized in details, and following sequential events were revealed, including: a modest accumulation of G1/S phase cells, membrane depolarization, proteolytic degradation of chromatin proteins, and chromosomal DNA degradation. Further insights into the process were gained from studying drugs that affect the archaeal ATP synthase, including a proton gradient uncoupler and an ATP synthase inhibitor. Whereas the proton uncoupler-mediated excess proton influx yielded cell death as observed for the NQO treatment, inhibition of ATP synthase attenuated NQO-induced membrane depolarization and DNA-less cell formation. In conclusion, the NQO-induced cell death in S. islandicus is characterized by proteolytic degradation of chromatin protein, and chromosomal DNA degradation, which probably represents a common feature for the cell death induced by different DNA damage agents.
Collapse
Affiliation(s)
- Wenyuan Han
- Archaea Centre, Department of Biology, University of CopenhagenCopenhagen, Denmark
| | - Yanqun Xu
- Archaea Centre, Department of Biology, University of CopenhagenCopenhagen, Denmark.,State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xu Feng
- Archaea Centre, Department of Biology, University of CopenhagenCopenhagen, Denmark.,State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yun X Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China
| | - Qunxin She
- Archaea Centre, Department of Biology, University of CopenhagenCopenhagen, Denmark.,State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
5
|
Jurczyk Ł, Koc-Jurczyk J. Quantitative dynamics of ammonia-oxidizers during biological stabilization of municipal landfill leachate pretreated by Fenton's reagent at neutral pH. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 63:310-326. [PMID: 28159310 DOI: 10.1016/j.wasman.2017.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
The application of multi-stage systems including biological step, for the treatment of leachate from municipal landfills, is economically and technologically justified. When microbial activity is utilized as 2nd stage of treatment, the task of 1st stage is to increase the bioavailability of organic matter. In this work, the effect of advanced oxidation process by Fenton's reagent for treatment efficiency of landfill leachate in the sequencing batch reactor was assessed. The quantitative dynamics of bacteria taking a part in ammonia removal process was evaluated by determination of number of DNA copies of 16S rRNA and amoA. Products of neutral pH chemical oxidation, had a definite positive impact on the quantity of β-proteobacteria 16S rRNA, whereas the same gene specified for Nitrospira sp. as well as amoA did not show a significant increase during the process of biological treatment, regardless of whether the reactor was fed with raw leachate or chemically pre-treated.
Collapse
Affiliation(s)
- Łukasz Jurczyk
- University of Rzeszow, Department of Biology and Agriculture, Cwiklinskiej 1b Str., 35-601 Rzeszow, Poland.
| | - Justyna Koc-Jurczyk
- University of Rzeszow, Department of Biology and Agriculture, Cwiklinskiej 1b Str., 35-601 Rzeszow, Poland
| |
Collapse
|
6
|
Humbert P, Dréno B, Krutmann J, Luger TA, Triller R, Meaume S, Seité S. Recommendations for managing cutaneous disorders associated with advancing age. Clin Interv Aging 2016; 11:141-8. [PMID: 26929610 PMCID: PMC4758790 DOI: 10.2147/cia.s96232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The increasingly aged population worldwide means more people are living with chronic diseases, reduced autonomy, and taking various medications. Health professionals should take these into consideration when managing dermatological problems in elderly patients. Accordingly, current research is investigating the dermatological problems associated with the loss of cutaneous function with age. As cell renewal slows, the physical and chemical barrier function declines, cutaneous permeability increases, and the skin becomes increasingly vulnerable to external factors. In geriatric dermatology, the consequences of cutaneous aging lead to xerosis, skin folding, moisture-associated skin damage, and impaired wound healing. These problems pose significant challenges for both the elderly and their carers. Most often, nurses manage skin care in the elderly. However, until recently, little attention has been paid to developing appropriate, evidence-based, skincare protocols. The objective of this paper is to highlight common clinical problems with aging skin and provide some appropriate advice on cosmetic protocols for managing them. A review of the literature from 2004 to 2014 using PubMed was performed by a working group of six European dermatologists with clinical and research experience in dermatology. Basic topical therapy can restore and protect skin barrier function, which relieves problems associated with xerosis, prevents aggravating moisture-associated skin damage, and enhances quality of life. In conclusion, the authors provide physicians with practical recommendations to assist them in implementing basic skin care for the elderly in an integrated care approach.
Collapse
Affiliation(s)
- Philippe Humbert
- Research and Studies Centre on the Integument (CERT), Clinical Investigation Centre (CIC BT506), Department of Dermatology, Besançon University Hospital, University of Franche-Comté, Besançon, France
| | - Brigitte Dréno
- Department of Dermato-Cancerology, Nantes University Hospital, Nantes, France
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Raoul Triller
- International Centre of Dermatology, Hertford British Hospital, Levallois, France
| | - Sylvie Meaume
- Geriatric Service, Wounds and Healing, Rothschild Hôspital, Paris, France
| | - Sophie Seité
- La Roche-Posay Dermatological Laboratories, Asnières, France
| |
Collapse
|
7
|
Mayer F, Müller V. Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 2014; 38:449-72. [DOI: 10.1111/1574-6976.12043] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
|
8
|
Grüber G, Manimekalai MSS, Mayer F, Müller V. ATP synthases from archaea: the beauty of a molecular motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:940-52. [PMID: 24650628 DOI: 10.1016/j.bbabio.2014.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/18/2022]
Abstract
Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.
Collapse
Affiliation(s)
- Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| | | | - Florian Mayer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
9
|
Siddaramappa S, Challacombe JF, DeCastro RE, Pfeiffer F, Sastre DE, Giménez MI, Paggi RA, Detter JC, Davenport KW, Goodwin LA, Kyrpides N, Tapia R, Pitluck S, Lucas S, Woyke T, Maupin-Furlow JA. A comparative genomics perspective on the genetic content of the alkaliphilic haloarchaeon Natrialba magadii ATCC 43099T. BMC Genomics 2012; 13:165. [PMID: 22559199 PMCID: PMC3403918 DOI: 10.1186/1471-2164-13-165] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 05/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natrialba magadii is an aerobic chemoorganotrophic member of the Euryarchaeota and is a dual extremophile requiring alkaline conditions and hypersalinity for optimal growth. The genome sequence of Nab. magadii type strain ATCC 43099 was deciphered to obtain a comprehensive insight into the genetic content of this haloarchaeon and to understand the basis of some of the cellular functions necessary for its survival. RESULTS The genome of Nab. magadii consists of four replicons with a total sequence of 4,443,643 bp and encodes 4,212 putative proteins, some of which contain peptide repeats of various lengths. Comparative genome analyses facilitated the identification of genes encoding putative proteins involved in adaptation to hypersalinity, stress response, glycosylation, and polysaccharide biosynthesis. A proton-driven ATP synthase and a variety of putative cytochromes and other proteins supporting aerobic respiration and electron transfer were encoded by one or more of Nab. magadii replicons. The genome encodes a number of putative proteases/peptidases as well as protein secretion functions. Genes encoding putative transcriptional regulators, basal transcription factors, signal perception/transduction proteins, and chemotaxis/phototaxis proteins were abundant in the genome. Pathways for the biosynthesis of thiamine, riboflavin, heme, cobalamin, coenzyme F420 and other essential co-factors were deduced by in depth sequence analyses. However, approximately 36% of Nab. magadii protein coding genes could not be assigned a function based on Blast analysis and have been annotated as encoding hypothetical or conserved hypothetical proteins. Furthermore, despite extensive comparative genomic analyses, genes necessary for survival in alkaline conditions could not be identified in Nab. magadii. CONCLUSIONS Based on genomic analyses, Nab. magadii is predicted to be metabolically versatile and it could use different carbon and energy sources to sustain growth. Nab. magadii has the genetic potential to adapt to its milieu by intracellular accumulation of inorganic cations and/or neutral organic compounds. The identification of Nab. magadii genes involved in coenzyme biosynthesis is a necessary step toward further reconstruction of the metabolic pathways in halophilic archaea and other extremophiles. The knowledge gained from the genome sequence of this haloalkaliphilic archaeon is highly valuable in advancing the applications of extremophiles and their enzymes.
Collapse
Affiliation(s)
| | - Jean F Challacombe
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Rosana E DeCastro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 4to Nivel, Mar del Plata, 7600, Argentina
| | - Friedhelm Pfeiffer
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Diego E Sastre
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 4to Nivel, Mar del Plata, 7600, Argentina
| | - María I Giménez
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 4to Nivel, Mar del Plata, 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 4to Nivel, Mar del Plata, 7600, Argentina
| | - John C Detter
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Karen W Davenport
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Lynne A Goodwin
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Roxanne Tapia
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Samuel Pitluck
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Susan Lucas
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Bldg. 981, Museum Rd., P.O. Box 110700, Gainesville, FL, 32611-0700, USA
| |
Collapse
|
10
|
Kwan DC, Thomas JR, Bolhuis A. Bioenergetic requirements of a Tat-dependent substrate in the halophilic archaeon Haloarcula hispanica. FEBS J 2008; 275:6159-67. [PMID: 19016855 DOI: 10.1111/j.1742-4658.2008.06740.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Twin-arginine translocase (Tat) is involved in the translocation of fully folded proteins in a process that is driven by the proton motive force. In most prokaryotes, the Tat system transports only a small proportion of secretory proteins, and Tat substrates are often cofactor-containing proteins that require folding before translocation. A notable exception is found in halophilic archaea (haloarchaea), which are predicted to secrete the majority of their proteins through the Tat pathway. In this study, we have analysed the translocation of a secretory protein (AmyH) from the haloarchaeon Haloarcula hispanica. Using both in vivo and in vitro translocation assays, we demonstrate that AmyH transport is Tat-dependent, and, surprisingly, that its secretion does not depend on the proton motive force but requires the sodium motive force instead.
Collapse
Affiliation(s)
- Daniel C Kwan
- Department of Pharmacy and Pharmacology, University of Bath, UK
| | | | | |
Collapse
|
11
|
Pisa KY, Huber H, Thomm M, Müller V. A sodium ion-dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus. FEBS J 2007; 274:3928-38. [PMID: 17614964 DOI: 10.1111/j.1742-4658.2007.05925.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rotor subunit c of the A(1)A(O) ATP synthase of the hyperthermophilic archaeon Pyrococcus furiosus contains a conserved Na(+)-binding motif, indicating that Na(+) is a coupling ion. To experimentally address the nature of the coupling ion, we isolated the enzyme by detergent solubilization from native membranes followed by chromatographic separation techniques. The entire membrane-embedded motor domain was present in the preparation. The rotor subunit c was found to form an SDS-resistant oligomer. Under the conditions tested, the enzyme had maximal activity at 100 degrees C, had a rather broad pH optimum between pH 5.5 and 8.0, and was inhibited by diethystilbestrol and derivatives thereof. ATP hydrolysis was strictly dependent on Na(+), with a K(m) of 0.6 mM. Li(+), but not K(+), could substitute for Na(+). The Na(+) dependence was less pronounced at higher proton concentrations, indicating competition between Na(+) and H(+) for a common binding site. Moreover, inhibition of the ATPase by N',N'-dicyclohexylcarbodiimide could be relieved by Na(+). Taken together, these data demonstrate the use of Na(+) as coupling ion for the A(1)A(O) ATP synthase of Pyrococcus furiosus, the first Na(+) A(1)A(O) ATP synthase described.
Collapse
Affiliation(s)
- Kim Y Pisa
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, Frankfurt, Germany
| | | | | | | |
Collapse
|
12
|
Müller V, Lemker T, Lingl A, Weidner C, Coskun U, Grüber G. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol 2006; 10:167-80. [PMID: 16645313 DOI: 10.1159/000091563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Archaea are a heterogeneous group of microorganisms that often thrive under harsh environmental conditions such as high temperatures, extreme pHs and high salinity. As other living cells, they use chemiosmotic mechanisms along with substrate level phosphorylation to conserve energy in form of ATP. Because some archaea are rooted close to the origin in the tree of life, these unusual mechanisms are considered to have developed very early in the history of life and, therefore, may represent first energy-conserving mechanisms. A key component in cellular bioenergetics is the ATP synthase. The enzyme from archaea represents a new class of ATPases, the A1A0 ATP synthases. They are composed of two domains that function as a pair of rotary motors connected by a central and peripheral stalk(s). The structure of the chemically-driven motor (A1) was solved by small-angle X-ray scattering in solution, and the structure of the first A1A0 ATP synthases was obtained recently by single particle analyses. These studies revealed novel structural features such as a second peripheral stalk and a collar-like structure. In addition, the membrane-embedded electrically-driven motor (A0) is very different in archaea with sometimes novel, exceptional subunit composition and coupling stoichiometries that may reflect the differences in energy-conserving mechanisms as well as adaptation to temperatures at or above 100 degrees C.
Collapse
Affiliation(s)
- V Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Campus Riedberg, Frankfurt a. Main, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Lewalter K, Müller V. Bioenergetics of archaea: ancient energy conserving mechanisms developed in the early history of life. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:437-45. [PMID: 16806054 DOI: 10.1016/j.bbabio.2006.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/23/2006] [Accepted: 04/19/2006] [Indexed: 11/18/2022]
Abstract
A key component in cellular bioenergetics is the ATP synthase. The enzyme from archaea represents a new class of ATPases, the A1AO ATP synthases. They are composed of two domains that function as a pair of rotary motors connected by a central and peripheral stalk(s). The structure of the chemically-driven motor (A1) was solved by small angle X-ray scattering in solution, and the structure of the first A1AO ATP synthases (from methanoarchaea) was obtained recently by single particle analyses. These studies revealed novel structural features such as a second peripheral stalk and a collar-like structure. Interestingly, the membrane-embedded electrically-driven motor (AO) is very different in archaea with sometimes novel, exceptional subunit composition.
Collapse
Affiliation(s)
- Kim Lewalter
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Campus Riedberg, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | | |
Collapse
|
14
|
Müller V, Lingl A, Lewalter K, Fritz M. ATP Synthases With Novel Rotor Subunits: New Insights into Structure, Function and Evolution of ATPases. J Bioenerg Biomembr 2005; 37:455-60. [PMID: 16691483 DOI: 10.1007/s10863-005-9491-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ATPases with unusual membrane-embedded rotor subunits were found in both F(1)F(0) and A(1)A(0) ATP synthases. The rotor subunit c of A(1)A(0) ATPases is, in most cases, similar to subunit c from F(0). Surprisingly, multiplied c subunits with four, six, or even 26 transmembrane spans have been found in some archaea and these multiplication events were sometimes accompanied by loss of the ion-translocating group. Nevertheless, these enzymes are still active as ATP synthases. A duplicated c subunit with only one ion-translocating group was found along with "normal" F(0) c subunits in the Na(+) F(1)F(0) ATP synthase of the bacterium Acetobacterium woodii. These extraordinary features and exceptional structural and functional variability in the rotor of ATP synthases may have arisen as an adaptation to different cellular needs and the extreme physicochemical conditions in the early history of life.
Collapse
Affiliation(s)
- Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | |
Collapse
|
15
|
Schmidt I, Sliekers O, Schmid M, Bock E, Fuerst J, Kuenen JG, Jetten MSM, Strous M. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 2003; 27:481-92. [PMID: 14550941 DOI: 10.1016/s0168-6445(03)00039-1] [Citation(s) in RCA: 341] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many countries strive to reduce the emissions of nitrogen compounds (ammonia, nitrate, NOx) to the surface waters and the atmosphere. Since mainstream domestic wastewater treatment systems are usually already overloaded with ammonia, a dedicated nitrogen removal from concentrated secondary or industrial wastewaters is often more cost-effective than the disposal of such wastes to domestic wastewater treatment. The cost-effectiveness of separate treatment has increased dramatically in the past few years, since several processes for the biological removal of ammonia from concentrated waste streams have become available. Here, we review those processes that make use of new concepts in microbiology: partial nitrification, nitrifier denitrification and anaerobic ammonia oxidation (the anammox process). These processes target the removal of ammonia from gases, and ammonium-bicarbonate from concentrated wastewaters (i.e. sludge liquor and landfill leachate). The review addresses the microbiology, its consequences for their application, the current status regarding application, and the future developments.
Collapse
Affiliation(s)
- Ingo Schmidt
- University of Nijmegen, Department of Microbiology, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lingl A, Huber H, Stetter KO, Mayer F, Kellermann J, Müller V. Isolation of a complete A1AO ATP synthase comprising nine subunits from the hyperthermophile Methanococcus jannaschii. Extremophiles 2003; 7:249-57. [PMID: 12768457 DOI: 10.1007/s00792-003-0318-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 02/12/2003] [Indexed: 11/27/2022]
Abstract
Archaeal A(1)A(O) ATP synthase/ATPase operons are highly conserved among species and comprise at least nine genes encoding structural proteins. However, all A(1)A(O) ATPase preparations reported to date contained only three to six subunits and, therefore, the study of this unique class of secondary energy converters is still in its infancy. To improve the quality of A(1)A(O) ATPase preparations, we chose the hyperthermophilic, methanogenic archaeon Methanococcus jannaschii as a model organism. Individual subunits of the A(1)A(O) ATPase from M. jannaschii were produced in E. coli, purified, and antibodies were raised. The antibodies enabled the development of a protocol ensuring purification of the entire nine-subunit A(1)A(O) ATPase. The ATPase was solubilized from membranes of M. jannaschii by Triton X-100 and purified to apparent homogeneity by sucrose density gradient centrifugation, ion exchange chromatography, and gel filtration. Electron micrographs revealed the A(1) and A(O) domains and the central stalk, but also additional masses which could represent a second stalk. Inhibitor studies were used to demonstrate that the A(1) and A(O) domains are functionally coupled. This is the first description of an A(1)A(O) ATPase preparation in which the two domains (A(1) and A(O)) are fully conserved and functionally coupled.
Collapse
Affiliation(s)
- Astrid Lingl
- Microbiology Section, Department of Biology I, Ludwig-Maximilians-Universität München, Maria-Ward-Strasse 1a, 80638 Munich, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Metzler DE, Metzler CM, Sauke DJ. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Abstract
In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, Archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring Archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to Archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization.
Collapse
Affiliation(s)
- G Schäfer
- Institut für Biochemie, Medizinische Universität zu Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
19
|
Hinrichs M, Schäfer G, Anemüller S. Functional characterization of an extremely thermophilic ATPase in membranes of the crenarchaeon Acidianus ambivalens. Biol Chem 1999; 380:1063-9. [PMID: 10543443 DOI: 10.1515/bc.1999.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A plasma membrane-bound adenosine triphosphatase with specific activities up to 0.2 micromol min(-1) (mg protein)(-1) at 80 degrees C was detected in the thermoacidophilic crenarchaeon Acidianus ambivalens (DSM 3772). The enzymatic activity exhibited a broad pH-optimum in the neutral range with two suboptima at pH 5.5 and 7.0, respectively. Sulfite activation resulted in only one pH optimum at 6.25. In the presence of the divalent cations Mg2+ and Mn2+ the ATPase activity was maximal. Remarkably, the hydrolytic rates of GTP and ITP were substantially higher than for ATP. ADP and pyrophosphate were only hydrolyzed with small rates, whereas AMP was not hydrolyzed at all. Both activities could be weakly inhibited by the classical F-type ATPase inhibitor N,N'-dicyclohexylcarbodiimide, whereas azide had no influence at all. The classical inhibitor of V-type ATPases, nitrate, also exerted a small inhibitory effect. The strongly specific V-type ATPase inhibitor concanamycin A, however, showed no effect at all. The P-type ATPase inhibitor vanadate had no inhibitory effect on the ATPase activity at pH 7.0, whereas a remarkable inhibition at high concentrations could be observed for the activity at pH 5.5. Arrhenius plots for both membrane bound ATPase activities were linear up to 95 degrees C, reflecting the enormous thermostability of the enzyme.
Collapse
Affiliation(s)
- M Hinrichs
- Institut für Biochemie, Medizinische Universität zu Lübeck, Germany
| | | | | |
Collapse
|