1
|
Elzinga BM, Nyhan MJ, Crowley LC, O'Donovan TR, Cahill MR, McKenna SL. Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein. Am J Hematol 2013; 88:455-62. [PMID: 23440701 DOI: 10.1002/ajh.23428] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/22/2013] [Indexed: 01/07/2023]
Abstract
Chronic Myeloid Leukemia (CML) is a disease of hematopoietic stem cells which harbor the chimeric gene Bcr-Abl. Expression levels of this constitutively active tyrosine kinase are critical for response to tyrosine kinase inhibitor treatment and also disease progression, yet the regulation of protein stability is poorly understood. We have previously demonstrated that imatinib can induce autophagy in Bcr-Abl expressing cells. Autophagy has been associated with the clearance of large macromolecular signaling complexes and abnormal proteins, however, the contribution of autophagy to the turnover of Bcr-Abl protein in imatinib treated cells is unknown. In this study, we show that following imatinib treatment, Bcr-Abl is sequestered into vesicular structures that co-localize with the autophagy marker LC3 or GABARAP. This association is inhibited by siRNA mediated knockdown of autophagy regulators (Beclin 1/ATG7). Pharmacological inhibition of autophagy also reduced Bcr-Abl/LC3 co-localization in both K562 and CML patient cells. Bcr-Abl protein expression was reduced with imatinib treatment. Inhibition of both autophagy and proteasome activity in imatinib treated cells was required to restore Bcr-Abl protein levels to those of untreated cells. This ability to down-regulate Bcr-Abl protein levels through the induction of autophagy may be an additional and important feature of the activity of imatinib.
Collapse
Affiliation(s)
- Baukje M. Elzinga
- Leslie C. Quick Laboratory; Cork Cancer Research Centre, BioSciences Institute, University College Cork; Cork; Ireland
| | - Michelle J. Nyhan
- Leslie C. Quick Laboratory; Cork Cancer Research Centre, BioSciences Institute, University College Cork; Cork; Ireland
| | - Lisa C. Crowley
- Leslie C. Quick Laboratory; Cork Cancer Research Centre, BioSciences Institute, University College Cork; Cork; Ireland
| | - Tracey R. O'Donovan
- Leslie C. Quick Laboratory; Cork Cancer Research Centre, BioSciences Institute, University College Cork; Cork; Ireland
| | - Mary R. Cahill
- Department of Haematology; Cork University Hospital; Cork; Ireland
| | - Sharon L. McKenna
- Leslie C. Quick Laboratory; Cork Cancer Research Centre, BioSciences Institute, University College Cork; Cork; Ireland
| |
Collapse
|
2
|
Park AR, Oh D, Lim SH, Choi J, Moon J, Yu DY, Park SG, Heisterkamp N, Kim E, Myung PK, Lee JR. Regulation of dendritic arborization by BCR Rac1 GTPase-activating protein, a substrate of PTPRT. J Cell Sci 2012; 125:4518-31. [PMID: 22767509 DOI: 10.1242/jcs.105502] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dendritic arborization is important for neuronal development as well as the formation of neural circuits. Rac1 is a member of the Rho GTPase family that serve as regulators of neuronal development. Breakpoint cluster region protein (BCR) is a Rac1 GTPase-activating protein that is abundantly expressed in the central nervous system. Here, we show that BCR plays a key role in neuronal development. Dendritic arborization and actin polymerization were attenuated by overexpression of BCR in hippocampal neurons. Knockdown of BCR using specific shRNAs increased the dendritic arborization as well as actin polymerization. The number of dendrites in null mutant BCR(-/-) mice was considerably increased compared with that in wild-type mice. We found that the function of the BCR GTPase-activating domain could be modulated by protein tyrosine phosphatase receptor T (PTPRT), which is expressed principally in the brain. We demonstrate that tyrosine 177 of BCR was the main target of PTPRT and the BCR mutant mimicking dephosphorylation of tyrosine 177 alleviated the attenuation of dendritic arborization. Additionally the attenuated dendritic arborization found upon BCR overexpression was relieved upon co-expression of PTPRT. When PTPRT was knocked down by a specific shRNA, the dendritic arborization was significantly reduced. The activity of the BCR GTPase-activating domain was modulated by means of conversions between the intra- and inter-molecular interactions, which are finely regulated through the dephosphorylation of a specific tyrosine residue by PTPRT. We thus show conclusively that BCR is a novel substrate of PTPRT and that BCR is involved in the regulation of neuronal development via control of the BCR GTPase-activating domain function by PTPRT.
Collapse
Affiliation(s)
- A-Reum Park
- Biomedical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia 2012; 26:2384-9. [PMID: 22513837 DOI: 10.1038/leu.2012.109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myeloproliferative neoplasms are frequently associated with aberrant constitutive tyrosine kinase (TK) activity resulting from chimaeric fusion genes or point mutations such as BCR-ABL1 or JAK2 V617F. We report here the cloning and functional characterization of two novel fusion genes BCR-RET and FGFR1OP-RET in chronic myelomonocytic leukemia (CMML) cases generated by two balanced translocations t(10;22)(q11;q11) and t(6;10)(q27;q11), respectively. The two RET fusion genes leading to the aberrant activation of RET, are able to transform hematopoietic cells and skew the hematopoietic differentiation program towards the monocytic/macrophage lineage. The RET fusion genes seem to constitutively mimic the same signaling pathway as RAS mutations frequently involved in CMML. One patient was treated with Sorafenib, a specific inhibitor of the RET TK function, and demonstrated cytological and clinical remissions.
Collapse
|
4
|
De Keersmaecker K, Versele M, Cools J, Superti-Furga G, Hantschel O. Intrinsic differences between the catalytic properties of the oncogenic NUP214-ABL1 and BCR-ABL1 fusion protein kinases. Leukemia 2008; 22:2208-16. [PMID: 18784740 DOI: 10.1038/leu.2008.242] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The NUP214-ABL1 fusion kinase has recently been identified in 6% of patients with T-cell acute lymphoblastic leukemia. In contrast to the more common oncogenic ABL1 fusion BCR-ABL1, NUP214-ABL1 localizes to the nuclear pore complexes and has attenuated transforming properties in hematopoietic cells and in mouse bone marrow transplant models. We have performed a thorough biochemical comparative analysis of NUP214-ABL1 and BCR-ABL1 and show that, despite their common tyrosine kinase domain, the two fusion proteins differ in many critical catalytic properties. NUP214-ABL1 has lower in vitro tyrosine kinase activity, which is in agreement with the absence of phosphorylation on its activation loop. NUP214-ABL1 was more sensitive to imatinib (Glivec) than BCR-ABL1 in vitro and in cells, indicating a different activation state and conformation of the two ABL1 fusion kinases. Using a peptide array, we identified differences in the spectrum and efficiency of substrate peptide phosphorylation and a differential involvement of Src kinases in downstream signaling. These results clearly indicate that different fusion partners of the same kinase can determine not only localization, but also critical functional properties of the enzyme such as inhibitor sensitivity and substrate preference, with subsequent differences in downstream signaling effectors and likely consequences in disease pathogenesis.
Collapse
Affiliation(s)
- K De Keersmaecker
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
| | | | | | | | | |
Collapse
|
5
|
Dawson MI, Xia Z, Liu G, Ye M, Fontana JA, Farhana L, Patel BB, Arumugarajah S, Bhuiyan M, Zhang XK, Han YH, Stallcup WB, Fukushi JI, Mustelin T, Tautz L, Su Y, Harris DL, Waleh N, Hobbs PD, Jong L, Chao WR, Schiff LJ, Sani BP. An adamantyl-substituted retinoid-derived molecule that inhibits cancer cell growth and angiogenesis by inducing apoptosis and binds to small heterodimer partner nuclear receptor: effects of modifying its carboxylate group on apoptosis, proliferation, and protein-tyrosine phosphatase activity. J Med Chem 2007; 50:2622-39. [PMID: 17489579 PMCID: PMC2528874 DOI: 10.1021/jm0613323] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apoptotic and antiproliferative activities of small heterodimer partner (SHP) nuclear receptor ligand (E)-4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC), which was derived from 6-[3'-(1-adamantyl)-4'-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN), and several carboxyl isosteric or hydrogen bond-accepting analogues were examined. 3-Cl-AHPC continued to be the most effective apoptotic agent, whereas tetrazole, thiazolidine-2,4-dione, methyldinitrile, hydroxamic acid, boronic acid, 2-oxoaldehyde, and ethyl phosphonic acid hydrogen bond-acceptor analogues were inactive or less efficient inducers of KG-1 acute myeloid leukemia and MDA-MB-231 breast, H292 lung, and DU-145 prostate cancer cell apoptosis. Similarly, 3-Cl-AHPC was the most potent inhibitor of cell proliferation. 4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorophenyltetrazole, (2E)-5-{2-[3'-(1-adamantyl)-2-chloro-4'-hydroxy-4-biphenyl]ethenyl}-1H-tetrazole, 5-{4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorobenzylidene}thiazolidine-2,4-dione, and (3E)-4-[3'-(1-adamantyl)-2-chloro-4'-hydroxy-4-biphenyl]-2-oxobut-3-enal were very modest inhibitors of KG-1 proliferation. The other analogues were minimal inhibitors. Fragment-based QSAR analyses relating the polar termini with cancer cell growth inhibition revealed that length and van der Waals electrostatic surface potential were the most influential features on activity. 3-Cl-AHPC and the 3-chlorophenyltetrazole and 3-chlorobenzylidenethiazolidine-2,4-dione analogues were also able to inhibit SHP-2 protein-tyrosine phosphatase, which is elevated in some leukemias. 3-Cl-AHPC at 1.0 microM induced human microvascular endothelial cell apoptosis but did not inhibit cell migration or tube formation.
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Underhill-Day N, Pierce A, Thompson SE, Xenaki D, Whetton AD, Owen-Lynch PJ. Role of the C-terminal actin binding domain in BCR/ABL-mediated survival and drug resistance. Br J Haematol 2006; 132:774-83. [PMID: 16487179 DOI: 10.1111/j.1365-2141.2005.05949.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Philadelphia chromosome-positive, chronic myeloid leukaemia (CML) stem and progenitor cells have a survival and growth advantage compared with their normal counterparts. The mechanisms through which the BCR/ABL protein tyrosine kinase (PTK) induces these effects and the important domains within this protein are not fully defined. The F- and G-actin binding region of the BCR/ABL C-terminus may be important in BCR/ABL-mediated events, and we have investigated this by expressing a C-terminus deletion mutant of the temperature-sensitive BCR/ABL PTK, in a haemopoietic progenitor cell line, which models the chronic phase of CML. The truncated BCR/ABL PTK displayed similar levels of PTK activity when compared with wild type and activation of second messenger formation (in the form of sn-1,2-diacylglycerol) remains intact. On fibronectin substrata, localisation of the protein to the periphery of the cell was, however, dependent on the C-terminus of BCR/ABL PTK. Deletion of the C-terminus reversed both BCR/ABL-mediated apoptotic suppression and drug resistance although the progenitor cells did retain a proliferative advantage at low concentrations of growth factor. These results demonstrated that the C-terminal actin-binding domain of BCR/ABL is important for some of BCR/ABL PTK-mediated leukaemogenic effects.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Differentiation/genetics
- Cell Division/genetics
- Cell Line, Tumor
- Cloning, Molecular/methods
- Cytarabine/pharmacology
- Drug Resistance, Neoplasm/genetics
- Fluorescent Antibody Technique/methods
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/genetics
- Humans
- Hydroxyurea/pharmacology
- Interleukin-3/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Lipids/analysis
- Models, Biological
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/physiology
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Temperature
Collapse
Affiliation(s)
- N Underhill-Day
- Faculty of Life Sciences, University of Manchester, Christie Hospital, Withington, Manchester, UK
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The proliferation and differentiation of lymphocytes are regulated by receptors localized on the cell surface. Engagement of these receptors induces the activation of intracellular signaling proteins that transmit the receptor signals to distinct targets and control the cellular responses. The first signaling proteins to be discovered in higher organisms were the products of oncogenes. For example, the kinases Src and Abelson (Abl) were originally identified as oncogenes and were later characterized as important proteins for signal transduction in various cell types, including lymphocytes. Now, as many cellular signaling molecules have been discovered and ordered into certain pathways, we can better understand why particular signaling proteins are associated with tumorigenesis. In this review, we discuss recent progress in unraveling the molecular mechanisms of signaling pathways that control the proliferation and differentiation of early B cells. We point out the concepts of auto-inhibition and subcellular localization as crucial aspects in the regulation of B cell signaling.
Collapse
Affiliation(s)
- Hassan Jumaa
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany.
| | | | | |
Collapse
|
8
|
Beissert T, Puccetti E, Bianchini A, Güller S, Boehrer S, Hoelzer D, Ottmann OG, Nervi C, Ruthardt M. Targeting of the N-terminal coiled coil oligomerization interface of BCR interferes with the transformation potential of BCR-ABL and increases sensitivity to STI571. Blood 2003; 102:2985-93. [PMID: 12829585 DOI: 10.1182/blood-2003-03-0811] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translocations involving the abl locus on chromosome 9 fuses the tyrosine kinase c-ABL to proteins harboring oligomerization interfaces such as BCR or TEL, enabling these ABL-fusion proteins (X-ABL) to transform cells and to induce leukemia. The ABL kinase activity is blocked by the ABL kinase inhibitor STI571 which abrogates transformation by X-ABL. To investigate the role of oligomerization for the transformation potential of X-ABL and for the sensitivity to STI571, we constructed ABL chimeras with oligomerization interfaces of proteins involved in leukemia-associated translocations such as BCR, TEL, PML, and PLZF. We assessed the capacity of these chimeras to form high molecular weight (HMW) complexes as compared with p185(BCR-ABL). There was a direct relationship between the size of HMW complexes formed by these chimeras and their capacity to induce factor independence in Ba/F3 cells, whereas there was an inverse relationship between the size of the HMW complexes and the sensitivity to STI571. The targeting of the oligomerization interface of p185(BCR-ABL) by a peptide representing the coiled coil region of BCR reduced its potential to transform fibroblasts and increased sensitivity to STI571. Our results indicate that targeting of the oligomerization interfaces of the X-ABL enhances the effects of STI571 in the treatment of leukemia caused by X-ABL.
Collapse
Affiliation(s)
- Tim Beissert
- Med. Klinik III/Abtl. Hämatologie, Klinikum der J.W. Goethe Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
STI-571 (imatinib, Gleevec, Glivec, CGP 57148) is an inhibitor of the Abl group of protein-tyrosine kinases. One of these enzymes, the Bcr-Abl oncoprotein, results from the fusion of the BCR and ABL genes that result from the reciprocal chromosomal translocation that forms the Philadelphia chromosome. The Philadelphia chromosome occurs in 95% of people with chronic myeloid leukemia. ABL is the cellular homologue of the oncogene found in murine Abelson leukemia virus, and BCR refers to breakpoint cluster region. The Bcr-Abl oncoprotein exhibits elevated protein-tyrosine kinase activity, which is strongly implicated in the mechanism of development of chronic myeloid leukemia. STI-571 is effective in the treatment of the stable phase of chronic myeloid leukemia. The c-Abl protein kinase domain exists in an active and inactive conformation. STI-571 binds only to the inactive state of the enzyme as shown by X-ray crystallography. The drug binds to a portion of the ATP-binding site and extends from there into adjacent hydrophobic regions. STI-571 is a competitive inhibitor of Abl kinase with respect to ATP. Resistance to STI-571 is often the result of mutations in residues of the Bcr-Abl kinase that ordinarily bind to the drug. Inhibition of target protein kinases represents an emerging therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Robert Roskoski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA 70119, USA.
| |
Collapse
|
10
|
Wertheim JA, Perera SA, Hammer DA, Ren R, Boettiger D, Pear WS. Localization of BCR-ABL to F-actin regulates cell adhesion but does not attenuate CML development. Blood 2003; 102:2220-8. [PMID: 12791659 DOI: 10.1182/blood-2003-01-0062] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously found that P210BCR-ABL increases the adhesion of hematopoietic cell lines to fibronectin by a mechanism that is independent of tyrosine kinase activity. To investigate the pathway(s) by which P210BCR-ABL influences cell adhesion, we used a quantitative cell adhesion device that can discern small changes in cell adhesion to assay P210BCR-ABL with mutations in several critical domains. We expressed P210BCR-ABL mutants in 32D myeloblast cells and found that binding to fibronectin is mediated primarily by the alpha5beta1 integrin. We performed a structure/function analysis to map domains important for cell adhesion. Increased adhesion was mediated by 3 domains: (1) the N-terminal coiled-coil domain that facilitates oligomerization and F-actin localization; (2) bcr sequences between aa 163 to 210; and (3) F-actin localization through the C-terminal actin-binding domain of c-abl. We compared our adhesion results with the ability of these mutants to cause a chronic myelogenous leukemia (CML)-like disease in a murine bone marrow transplantation assay and found that adhesion to fibronectin did not correlate with the ability of these mutants to cause CML. Together, our results suggest that F-actin localization may play a pivotal role in modulating adhesion but that it is dispensable for the development of CML.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Bone Marrow Transplantation
- Cell Adhesion/physiology
- Fibronectins/metabolism
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Integrin alpha4beta1/metabolism
- Integrin alpha5beta1/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mice
- Mice, Inbred C57BL
- Protein Binding/physiology
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Jason A Wertheim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 611 BRB II/III, 421 Curie Blvd, Philadelphia, PA 19104-6160
| | | | | | | | | | | |
Collapse
|
11
|
Wertheim JA, Miller JP, Xu L, He Y, Pear WS. The biology of chronic myelogenous leukemia:mouse models and cell adhesion. Oncogene 2002; 21:8612-28. [PMID: 12476308 DOI: 10.1038/sj.onc.1206089] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic myelogenous leukemia (CML) is a biphasic neoplasm of the bone marrow that is precipitated by the Philadelphia chromosome, a t(9;22) balanced translocation that encodes a constitutively activated nonreceptor tyrosine kinase termed P210(BCR-ABL). This oncoprotein has several intracellular functions; however, the most important effect of P210(BCR-ABL) leading to cell transformation is phosphorylation of signaling molecules through a constitutively active tyrosine kinase domain. Despite extensive knowledge of the structure and functional domains of BCR-ABL, its precise function in transformation is not known. Progress has been hampered, in part, by the lack of relevant CML models, as cell culture and in vitro assays do not mimic the pathogenesis of CML. Recently, there has been significant progress toward improving murine models that closely resemble human CML. This has allowed researchers to evaluate critical functions of BCR-ABL and has provided a model to test the efficacy of therapeutic medications that block these pathways. Our laboratory has developed two intersecting research programs to better understand the functioning of P210(BCR-ABL) in leukemogenesis. In one approach, we have developed a murine CML model by transferring HSCs that express BCR-ABL from a retroviral vector. All recipients develop a rapidly fatal MPD that shares several important features with CML. This model has been extremely useful for studying the function of BCR-ABL in the pathogenesis of CML. A second approach utilizes a quantitative cell detachment apparatus capable of measuring small changes in cell adhesion to investigate the mechanism by which P210(BCR-ABL) causes abnormal cell binding. Altered cell adhesion may contribute to the imbalance between proliferation and self-renewal in the hematopoietic progenitor compartment. To better understand the role abnormal adhesion may play in the development of leukemia, we have attempted to correlate the effects of functional P210(BCR-ABL) mutants in regulating adhesion and oncogenicity.
Collapse
Affiliation(s)
- Jason A Wertheim
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | |
Collapse
|
12
|
Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21:3314-33. [PMID: 12032772 DOI: 10.1038/sj.onc.1205317] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase oncogenes are formed as a result of mutations that induce constitutive kinase activity. Many of these tyrosine kinase oncogenes that are derived from genes, such as c-Abl, c-Fes, Flt3, c-Fms, c-Kit and PDGFRbeta, that are normally involved in the regulation of hematopoiesis or hematopoietic cell function. Despite differences in structure, normal function, and subcellular location, many of the tyrosine kinase oncogenes signal through the same pathways, and typically enhance proliferation and prolong viability. They represent excellent potential drug targets, and it is likely that additional mutations will be identified in other kinases, their immediate downstream targets, or in proteins regulating their function.
Collapse
Affiliation(s)
- Blanca Scheijen
- Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
13
|
Abstract
Chronic myeloid leukaemia (CML) is a clonal disorder of the pluripotent haematopoietic stem cell. The typical triphasic course of CML starts with the premalignant chronic phase initiated by BCR-ABL hybrid oncogene formation. Secondary genetic and epigenetic aberrations accompany the progression to the accelerated phase and fatal blastic crisis. Properly timed bone marrow transplantation in eligible patients can result in durable remissions or cure. Both of these states are often accompanied by a long-term persistence of quiescent leukaemic cells. Accordingly, a "functional cure" (i.e. tumour dormancy induction), rather than complete eradication of the malignant cells, is an adequate therapeutical goal. The level of the residual BCR-ABL-positive clones should be monitored and salvage treatment initiated whenever these quiescent leukaemic cells exit their dormant state.
Collapse
Affiliation(s)
- P J Shteper
- Department of Haematology, Hadassah University Hospital, Ein-Karem, P.O.B. 12000, Jerusalem 91120, Israel
| | | |
Collapse
|
14
|
Zambrano N, Bruni P, Minopoli G, Mosca R, Molino D, Russo C, Schettini G, Sudol M, Russo T. The beta-amyloid precursor protein APP is tyrosine-phosphorylated in cells expressing a constitutively active form of the Abl protoncogene. J Biol Chem 2001; 276:19787-92. [PMID: 11279131 DOI: 10.1074/jbc.m100792200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytosolic domain of the beta-amyloid precursor protein APP interacts with three PTB (phosphotyrosine binding domain)-containing adaptor proteins, Fe65, X11, and mDab1. Through these adaptors, other molecules can be recruited at the cytodomain of APP; one of them is Mena, that binds to the WW domain (a protein module with two conserved tryptophans) of Fe65. The enabled and disabled genes of Drosophila, homologues of the mammalian Mena and mDab1 genes, respectively, are genetic modulators of the phenotype observed in flies null for the Abl tyrosine kinase gene. The involvement of Mena and mDab1 in the APP-centered protein-protein interaction network suggests the possibility that Abl plays a role in APP biology. We show that Fe65, through its WW domain, binds in vitro and in vivo the active form of Abl. Furthermore, in cells expressing the active form of Abl, APP is tyrosine-phosphorylated. Phosphopeptide analysis and site-directed mutagenesis support the hypothesis that Tyr(682) of APP(695) is the target of this phosphorylation. Co-immunoprecipitation experiments demonstrate that active Abl and tyrosine-phosphorylated APP also form a stable complex, which could result from the interaction of the pYENP motif of the APP cytodomain with the SH2 domain of Abl. These results suggest that Abl, Mena, and mDab1 are involved in a common molecular machinery and that APP can play a role in tyrosine kinase-mediated signaling.
Collapse
Affiliation(s)
- N Zambrano
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- R Chopra
- Christie Hospital and Paterson Institute for Cancer Research, Manchester, UK
| | | | | |
Collapse
|
16
|
Craig AW, Zirngibl R, Greer P. Disruption of coiled-coil domains in Fer protein-tyrosine kinase abolishes trimerization but not kinase activation. J Biol Chem 1999; 274:19934-42. [PMID: 10391941 DOI: 10.1074/jbc.274.28.19934] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The protein-tyrosine kinase Fer and the highly homologous proto-oncoprotein Fps/Fes are implicated in signaling from a variety of growth factor and cytokine receptors. Here we examine the molecular basis of Fer kinase activation with an emphasis on the role of oligomerization. We show that Fer forms trimers in vivo and that disruption of either the first or second coiled-coil domain abolishes oligomerization, suggesting a cooperative interaction between these two domains. Although Fps/Fes also forms homotypic oligomers, probably via homologous coiled-coil domains, no heterotypic interactions were observed between Fer and Fps/Fes. Incorporation of catalytically inactive Fer peptides into the oligomeric complex caused only mild reduction of wild type Fer kinase activity, suggesting that kinase-inactive Fer would not behave as a potent dominant negative. Although oligomerization of Fer can potentiate autophosphorylation in trans at three major phosphorylation sites, these residues can likely also be phosphorylated in cis. In contrast, the testis-specific FerT isomer does not oligomerize and is able to autophosphorylate in cis at two of the same three residues autophosphorylated in Fer. These results suggest that although oligomerization potentiates autophosphorylation in trans, this is apparently not necessary for Fer activation.
Collapse
Affiliation(s)
- A W Craig
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
17
|
Fogerty FJ, Juang JL, Petersen J, Clark MJ, Hoffmann FM, Mosher DF. Dominant effects of the bcr-abl oncogene on Drosophila morphogenesis. Oncogene 1999; 18:219-32. [PMID: 9926937 DOI: 10.1038/sj.onc.1202239] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We targeted expression of human/fly chimeric Bcr-Abl proteins to the developing central nervous system (CNS) and eye imaginal disc of Drosophila melanogaster. Neural expression of human/fly chimeric P210 Bcr-Abl or P185 Bcr-Abl rescued abl mutant flies from pupal lethality, indicating that P210 and P185 Bcr-Abl can substitute functionally for Drosophila Abl during axonogenesis. However, increased levels of neurally expressed P210 or P185 Bcr-Abl but not Drosophila Abl produced CNS defects and lethality. Expression of P210 or P185 in the eye imaginal disc produced a dominant rough eye phenotype that was dependent on dosage of the transgene. Drosophila Enabled, previously identified as a suppressor of the abl mutant phenotype and substrate for Drosophila Abl kinase, had markedly increased phosphotyrosine levels in Bcr-Abl expressing Drosophila, indicating that it is a substrate for Bcr-Abl as well. Drosophila, therefore, is a suitable model system to identify Bcr-Abl interactions important for signal transduction and oncogenesis.
Collapse
Affiliation(s)
- F J Fogerty
- Department of Medicine, University of Wisconsin Comprehensive Cancer Center, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hannemann JR, McManus DM, Kabarowski JH, Wiedemann LM. Haemopoietic transformation by the TEL/ABL oncogene. Br J Haematol 1998; 102:475-85. [PMID: 9695962 DOI: 10.1046/j.1365-2141.1998.00803.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rare, novel forms of activated ABL kinase, the result of a fusion between TEL (or ETV6, a member of the ETS transcription factor family), and the non-receptor tyrosine kinase ABL, have been identified. We have analysed the TEL/ABL fusion protein (type A) cloned from an acute lymphoblastic leukaemia patient. In contrast to a second TEL/ABL fusion (type B) identified in two cases of myeloid leukaemia, the portion of TEL contained in the type A TEL/ABL fusion was smaller and did not contain a potential Grb2 binding site. The type A TEL/ABL cDNA we used in this study encoded a 155 kD protein with elevated tyrosine kinase activity and was responsible for the phosphorylation of a number of proteins in vivo. Its expression in factor-dependent murine haemopoietic precursor cells efficiently converted these cells to factor independence for both survival and growth. These cells continued to express high levels of myc mRNA after growth factor depletion. We also demonstrated that type A TEL/ABL self-associated in stably expressing haemopoietic cells. Although the TEL portion of the TEL/ABL fusion protein has no sequence similarity to that of BCR in the BCR/ABL protein, all forms of these fusion proteins contain a structure implicated in oligomerization. Our results support the conclusion that the protein interaction domain of BCR and TEL, but not the Grb2 binding site, are the important functional components in the activation of ABL kinase in haemopoietic discase.
Collapse
Affiliation(s)
- J R Hannemann
- Leukaemia Research Fund Centre at the Institute of Cancer Research, Chester Beatty Laboratories, London
| | | | | | | |
Collapse
|
19
|
Warmuth M, Bergmann M, Priess A, Häuslmann K, Emmerich B, Hallek M. The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J Biol Chem 1997; 272:33260-70. [PMID: 9407116 DOI: 10.1074/jbc.272.52.33260] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
bcr-abl, the oncogene causing chronic myeloid leukemia, encodes a fusion protein with constitutively active tyrosine kinase and transforming capacity in hematopoietic cells. Various intracellular signaling intermediates become activated and/or associate by/with Bcr-Abl, including the Src family kinase Hck. To elucidate some of the structural requirements and functional consequences of the association of Bcr-Abl with Hck, their interaction was investigated in transiently transfected COS7 cells. Neither the complex formation of Hck kinase with Bcr-Abl nor the activation of Hck by Bcr-Abl was dependent on the Abl kinase activity. Both inactivating point mutations of Hck and dephosphorylation of Hck enhanced its complex formation with Bcr-Abl, indicating that their physical interaction was negatively regulated by Hck (auto)phosphorylation. Finally, experiments with a series of kinase negative Bcr-Abl mutants showed that Hck phosphorylated Bcr-Abl and induced the binding of Grb2 to Tyr177 of Bcr-Abl. Taken together, our results suggest that Bcr-Abl preferentially binds inactive forms of Hck by an Abl kinase-independent mechanism. This physical interaction stimulates the Hck tyrosine kinase, which may then phosphorylate the Grb2-binding site in Bcr-Abl.
Collapse
Affiliation(s)
- M Warmuth
- Medizinische Klinik, Klinikum Innenstadt, Universität München, D-80336 München, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Kim H, Baumann H. Transmembrane domain of gp130 contributes to intracellular signal transduction in hepatic cells. J Biol Chem 1997; 272:30741-7. [PMID: 9388212 DOI: 10.1074/jbc.272.49.30741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin-6 (IL-6) induces the expression of acute phase plasma protein genes in hepatic cells through the action of gp130, the signal-transducing subunit of the IL-6 receptor. To identify whether the transmembrane domain of gp130 is required for signaling function, cytoplasmic forms of gp130 were constructed that consisted of the tetramerizing N-terminal domain of Bcr linked to the transmembrane and cytoplasmic domains of gp130 (Bcr/gp130) or just to the cytoplasmic domain of gp130 (Bcr/gp130DeltaTM). The expression and function of both constructs were determined in transiently transfected COS-1 and HepG2 cells. Bcr/gp130 is capable of interacting with JAK1, JAK2, and TYK2; is constitutively active; and induces gene expression through IL-6-responsive elements. In contrast, Bcr/gp130DeltaTM, while expressed at a higher level than Bcr/gp130 and still able to interact with JAK1, is ineffective in recruiting the endogenous signal transduction pathways for inducing gene expression. However, Bcr/gp130DeltaTM initiates partial signaling in the presence of overexpressed JAK1 and TYK2, but not JAK2. The data suggest that the transmembrane domain of gp130 is necessary for signal transduction and determines the interaction with members of the Janus kinase family.
Collapse
Affiliation(s)
- H Kim
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | |
Collapse
|