1
|
Madsen TD, Topaktas AB, Dworkin LA, Hintze J, Hansen LH, Nikpour M, Lackman JJ, Goth C, Larson G, Shiplett EJ, Edmondson AC, Zhou Z, Miller RL, Joshi HJ, Vakhrushev SY, Schjoldager KT. Map of the Neuronal O-glycoproteome Reveal Driver Functions in the Regulated Secretory Pathway. J Biol Chem 2025:110313. [PMID: 40449597 DOI: 10.1016/j.jbc.2025.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 06/03/2025] Open
Abstract
Impairments in protein glycosylation, including O-GalNAc-type glycosylation, are linked to severe developmental disorders with prominent neurological involvement. However, the role of this glycosylation pathway at a cellular level is not yet fully understood. Here, we report a comprehensive map of GalNAc-type O-glycoproteins (>800) and O-glycosites (>4,000) from neuronal tissues and cell lines and identify abundant O-glycosites within major classes of proteins involved in neuroplasticity including axon guidance, membrane remodeling, and regulated vesicular secretion. Applying the map, we demonstrate that the regulated secretory pathway constitutes highly O-glycosylated proteins including Chromogranin A, a key player in dense core granulogenesis, and that correct O-glycosylation is important for its multimerization. Concurrently, genetically engineered neuronal cell lines deficient in O-glycosylation exhibit altered capacity for storing neurotransmitter noradrenaline and present enlarged neurotransmitter-containing dense core granules. Collectively, this map provides the foundation for uncovering critical roles for O-glycosylation in regulating neuroplasticity and provides evidence that dense core granule content is regulated by this pathway. Subjects: Granin, glycosylation, glycosaminoglycans, dense core granules (DCG), perineuronal net (PNN), mucin, central nervous system (CNS), neuron, neuroplasticity, neurotransmitter.
Collapse
Affiliation(s)
- Thomas D Madsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Asli B Topaktas
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Leo A Dworkin
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - John Hintze
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lasse H Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Mahnaz Nikpour
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, SE41345, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jarkko J Lackman
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Christoffer Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Göran Larson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, SE41345, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Emily J Shiplett
- Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Andrew C Edmondson
- Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Genetics and the Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhaolan Zhou
- Department of Genetics and the Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
2
|
Tyurin A, Akhiiarova K, Minniakhmetov I, Mokrysheva N, Khusainova R. The Genetic Markers of Knee Osteoarthritis in Women from Russia. Biomedicines 2024; 12:782. [PMID: 38672138 PMCID: PMC11048526 DOI: 10.3390/biomedicines12040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoarthritis is a chronic progressive joint disease that clinically debuts at the stage of pronounced morphologic changes, which makes treatment difficult. In this regard, an important task is the study of genetic markers of the disease, which have not been definitively established, due to the clinical and ethnic heterogeneity of the studied populations. To find the genetic markers for the development of knee osteoarthritis (OA) in women from the Volga-Ural region of Russia, we conducted research in two stages using different genotyping methods, such as the restriction fragment length polymorphism (RFLP) measurement, TaqMan technology and competitive allele-specific PCR-KASPTM. In the first stage, we studied polymorphic variants of candidate genes (ACAN, ADAMTS5, CHST11, SOX9, COL1A1) for OA development. The association of the *27 allele of the VNTR locus of the ACAN gene was identified (OR = 1.6). In the second stage, we replicated the GWAS results (ASTN2, ALDH1A2, DVWA, CHST11, GNL3, NCOA3, FILIP/SENP1, MCF2L, GLT8D, DOT1L) for knee OA studies. The association of the *T allele of the rs7639618 locus of the DVWA gene was detected (OR = 1.54). Thus, the VNTR locus of ACAN and the rs7639618 locus of DVWA are risk factors for knee OA in women from the Volga-Ural region of Russia.
Collapse
Affiliation(s)
- Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Karina Akhiiarova
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Ildar Minniakhmetov
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.); (R.K.)
| | - Natalia Mokrysheva
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.); (R.K.)
| | - Rita Khusainova
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.); (R.K.)
- Medical Genetics Department, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
3
|
Hu Y, Gong H, Lu Z, Zhang P, Zheng S, Wang J, Tian B, Fang A, Yang Y, Bi C, Cheng J, Yu Y. Variable Tandem Glycine-Rich Repeats Contribute to Cell Death-Inducing Activity of a Glycosylphosphatidylinositol-Anchored Cell Wall Protein That Is Associated with the Pathogenicity of Sclerotinia sclerotiorum. Microbiol Spectr 2023; 11:e0098623. [PMID: 37140432 PMCID: PMC10269696 DOI: 10.1128/spectrum.00986-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in eukaryotes. GPI-anchored proteins are widely distributed in fungal plant pathogens, but the specific roles of the GPI-anchored proteins in the pathogenicity of Sclerotinia sclerotiorum, a devastating necrotrophic plant pathogen with a worldwide distribution, remain largely unknown. This research addresses SsGSR1, which encodes an S. sclerotiorum glycine- and serine-rich protein named SsGsr1 with an N-terminal secretory signal and a C-terminal GPI-anchor signal. SsGsr1 is located at the cell wall of hyphae, and deletion of SsGSR1 leads to abnormal cell wall architecture and impaired cell wall integrity of hyphae. The transcription levels of SsGSR1 were maximal in the initial stage of infection, and SsGSR1-deletion strains showed impaired virulence in multiple hosts, indicating that SsGSR1 is critical for the pathogenicity. Interestingly, SsGsr1 targeted the apoplast of host plants to induce cell death that relies on the glycine-rich 11-amino-acid repeats arranged in tandem. The homologs of SsGsr1 in Sclerotinia, Botrytis, and Monilinia species contain fewer repeat units and have lost their cell death activity. Moreover, allelic variants of SsGSR1 exist in field isolates of S. sclerotiorum from rapeseed, and one of the variants lacking one repeat unit results in a protein that exhibits loss of function relative to the cell death-inducing activity and the virulence of S. sclerotiorum. Taken together, our results demonstrate that a variation in tandem repeats provides the functional diversity of GPI-anchored cell wall protein that, in S. sclerotiorum and other necrotrophic pathogens, allows successful colonization of the host plants. IMPORTANCE Sclerotinia sclerotiorum is an economically important necrotrophic plant pathogen and mainly applies cell wall-degrading enzymes and oxalic acid to kill plant cells before colonization. In this research, we characterized a glycosylphosphatidylinositol (GPI)-anchored cell wall protein named SsGsr1, which is critical for the cell wall architecture and the pathogenicity of S. sclerotiorum. Additionally, SsGsr1 induces rapid cell death of host plants that is dependent on glycine-rich tandem repeats. Interestingly, the number of repeat units varies among homologs and alleles of SsGsr1, and such a variation creates alterations in the cell death-inducing activity and the role in pathogenicity. This work advances our understanding of the variation of tandem repeats in accelerating the evolution of a GPI-anchored cell wall protein associated with the pathogenicity of necrotrophic fungal pathogens and prepares the way toward a fuller understanding of the interaction between S. sclerotiorum and host plants.
Collapse
Affiliation(s)
- Yawen Hu
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Hang Gong
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Ziyang Lu
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Pengpeng Zhang
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Sinian Zheng
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan City, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| |
Collapse
|
4
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
5
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
6
|
Abstract
Aggrecan (Acan) and versican (Vcan) are large chondroitin sulfate proteoglycans of the extracellular matrix. They share the same structural domains at both N and C-termini. The N-terminal G1 domain binds hyaluronan (HA), forms an HA-rich matrix, and regulates HA-mediated signaling. The C-terminal G3 domain binds other extracellular matrix molecules and forms a supramolecular structure that stores TGFb and BMPs and regulates their signaling. EGF-like motifs in the G3 domain may directly act like an EGF ligand. Both Acan and Vcan are present in cartilage, intervertebral disc, brain, heart, and aorta. Their localizations are essentially reciprocal. This review describes their structural domains, expression patterns and functions, and regulation of their expression.
Collapse
Affiliation(s)
- Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
7
|
Mukamel RE, Handsaker RE, Sherman MA, Barton AR, Zheng Y, McCarroll SA, Loh PR. Protein-coding repeat polymorphisms strongly shape diverse human phenotypes. Science 2021; 373:1499-1505. [PMID: 34554798 PMCID: PMC8549062 DOI: 10.1126/science.abg8289] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many human proteins contain domains that vary in size or copy number because of variable numbers of tandem repeats (VNTRs) in protein-coding exons. However, the relationships of VNTRs to most phenotypes are unknown because of difficulties in measuring such repetitive elements. We developed methods to estimate VNTR lengths from whole-exome sequencing data and impute VNTR alleles into single-nucleotide polymorphism haplotypes. Analyzing 118 protein-altering VNTRs in 415,280 UK Biobank participants for association with 786 phenotypes identified some of the strongest associations of common variants with human phenotypes, including height, hair morphology, and biomarkers of health. Accounting for large-effect VNTRs further enabled fine-mapping of associations to many more protein-coding mutations in the same genes. These results point to cryptic effects of highly polymorphic common structural variants that have eluded molecular analyses to date.
Collapse
Affiliation(s)
- Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Boston, MA, USA
| | - Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Bioinformatics and Integrative Genomics Program, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yiming Zheng
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
| |
Collapse
|
8
|
Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. Nat Genet 2021; 53:779-786. [PMID: 33972781 DOI: 10.1038/s41588-021-00865-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/05/2021] [Indexed: 01/05/2023]
Abstract
Long-read sequencing (LRS) promises to improve the characterization of structural variants (SVs). We generated LRS data from 3,622 Icelanders and identified a median of 22,636 SVs per individual (a median of 13,353 insertions and 9,474 deletions). We discovered a set of 133,886 reliably genotyped SV alleles and imputed them into 166,281 individuals to explore their effects on diseases and other traits. We discovered an association of a rare deletion in PCSK9 with lower low-density lipoprotein (LDL) cholesterol levels, compared to the population average. We also discovered an association of a multiallelic SV in ACAN with height; we found 11 alleles that differed in the number of a 57-bp-motif repeat and observed a linear relationship between the number of repeats carried and height. These results show that SVs can be accurately characterized at the population scale using LRS data in a genome-wide non-targeted approach and demonstrate how SVs impact phenotypes.
Collapse
|
9
|
A novel mutation in the ACAN gene in a family with autosomal dominant short stature and intervertebral disc disease. Hum Genome Var 2020; 7:44. [PMID: 33298914 PMCID: PMC7712780 DOI: 10.1038/s41439-020-00132-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Heterozygous mutations in the ACAN gene have been reported in individuals with short stature and advanced bone age, with or without early-onset osteoarthritis and/or osteochondritis dissecans. We report a family with a phenotypic constellation carrying a novel mutation in the ACAN gene. The proband was a 7-year-old Japanese girl with short stature. Her mother and maternal grandmother also had short stature and intervertebral disc disease. We analyzed the ACAN gene in the family and identified a novel heterozygous mutation: c.4634delT, Leu1545Profs*11.
Collapse
|
10
|
Linthorst J, Meert W, Hestand MS, Korlach J, Vermeesch JR, Reinders MJT, Holstege H. Extreme enrichment of VNTR-associated polymorphicity in human subtelomeres: genes with most VNTRs are predominantly expressed in the brain. Transl Psychiatry 2020; 10:369. [PMID: 33139705 PMCID: PMC7608644 DOI: 10.1038/s41398-020-01060-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The human genome harbors numerous structural variants (SVs) which, due to their repetitive nature, are currently underexplored in short-read whole-genome sequencing approaches. Using single-molecule, real-time (SMRT) long-read sequencing technology in combination with FALCON-Unzip, we generated a de novo assembly of the diploid genome of a 115-year-old Dutch cognitively healthy woman. We combined this assembly with two previously published haploid assemblies (CHM1 and CHM13) and the GRCh38 reference genome to create a compendium of SVs that occur across five independent human haplotypes using the graph-based multi-genome aligner REVEAL. Across these five haplotypes, we detected 31,680 euchromatic SVs (>50 bp). Of these, ~62% were comprised of repetitive sequences with 'variable number tandem repeats' (VNTRs), ~10% were mobile elements (Alu, L1, and SVA), while the remaining variants were inversions and indels. We observed that VNTRs with GC-content >60% and repeat patterns longer than 15 bp were 21-fold enriched in the subtelomeric regions (within 5 Mb of the ends of chromosome arms). VNTR lengths can expand to exceed a critical length which is associated with impaired gene transcription. The genes that contained most VNTRs, of which PTPRN2 and DLGAP2 are the most prominent examples, were found to be predominantly expressed in the brain and associated with a wide variety of neurological disorders. Repeat-induced variation represents a sizeable fraction of the genetic variation in human genomes and should be included in investigations of genetic factors associated with phenotypic traits, specifically those associated with neurological disorders. We make available the long and short-read sequence data of the supercentenarian genome, and a compendium of SVs as identified across 5 human haplotypes.
Collapse
Affiliation(s)
- Jasper Linthorst
- grid.484519.5Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands ,grid.5292.c0000 0001 2097 4740Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Wim Meert
- grid.5596.f0000 0001 0668 7884Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Matthew S. Hestand
- grid.5596.f0000 0001 0668 7884Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jonas Korlach
- grid.423340.20000 0004 0640 9878Pacific Biosciences, Menlo Park, CA USA
| | | | - Marcel J. T. Reinders
- grid.5292.c0000 0001 2097 4740Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Henne Holstege
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands. .,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands. .,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Barakat AH, Elwell VA, Lam KS. Stem cell therapy in discogenic back pain. JOURNAL OF SPINE SURGERY (HONG KONG) 2019; 5:561-583. [PMID: 32043007 PMCID: PMC6989932 DOI: 10.21037/jss.2019.09.22] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 04/23/2023]
Abstract
Chronic low back pain has both substantial social and economic impacts on patients and healthcare budgets. Adding to the magnitude of the problem is the difficulty in identifying the exact causes of disc degeneration with modern day diagnostic and imaging techniques. With that said, current non-operative and surgical treatment modalities for discogenic low back pain fails to meet the expectations in many patients and hence the challenge. The objective for newly emerging stem cell regenerative therapy is to treat degenerative disc disease (DDD) by restoring the disc's cellularity and modulating the inflammatory response. Appropriate patient selection is crucial for the success of stem cell therapy. Regenerative modalities for discogenic pain currently focus on the use of either primary cells harvested from the intervertebral discs or stem cells from other sources whether autogenic or allogenic. The microenvironment in which stem cells are being cultured has been recognized to play a crucial role in directing or maintaining the production of the desired phenotypes and may enhance their regenerative potential. This has led to a more specific focus on innovating more effective culturing techniques, delivery vehicles and scaffolds for stem cell application. Although stem cell therapy might offer an attractive alternative treatment option, more clinical studies are still needed to establish on the safety and feasibility of such therapy. In this literature review, we aim to present the most recent in vivo and in vitro studies related to the use of stem cell therapy in the treatment of discogenic low back pain.
Collapse
Affiliation(s)
- Ahmed H. Barakat
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Vivian A. Elwell
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | | |
Collapse
|
12
|
Wei Q, Zhang X, Zhou C, Ren Q, Zhang Y. Roles of large aggregating proteoglycans in human intervertebral disc degeneration. Connect Tissue Res 2019; 60:209-218. [PMID: 29992840 DOI: 10.1080/03008207.2018.1499731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Degeneration of the intervertebral discs, a natural progression of the aging process, is strongly implicated as a cause of low back pain. Aggrecan is the major structural proteoglycan in the extracellular matrix of the intervertebral disc. It is large, possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. The negatively charged glycosaminoglycan side chains in aggrecan in the nucleus pulposus of the intervertebral discs can bind electrostatically to polar water molecules, which are crucial for maintaining the well-hydrated state that enables the discs to undergo reversible deformation under compressive loading. A more in-depth understanding of the molecular basis of disc degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Within this scope, we discuss the current knowledge concerning the structure and function of aggrecan in intervertebral disc degeneration. These data suggest that aggrecan plays a central role in the function and degeneration of the intervertebral disc, which may suggest potential aggrecan-based therapies for disc regeneration.
Collapse
Affiliation(s)
- Qingshen Wei
- a Department of Orthopedic Surgery , Rizhao Traditional Chinese Medicine Hospital , Rizhao , China
| | - Xiangwei Zhang
- a Department of Orthopedic Surgery , Rizhao Traditional Chinese Medicine Hospital , Rizhao , China
| | - Caiju Zhou
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| | - Qiang Ren
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| | - Yuntao Zhang
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| |
Collapse
|
13
|
Shapovalova DA, Tyurin AV, Litvinov SS, Khusnutdinova EK, Khusainova RI. The role of VNTR aggrecan gene polymorphism in the development of osteoarthritis in women. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Osteoarthritis (OA) is a common multifactorial joint disease. Undifferentiated connective tissue dysplasia (uCTD) is a genetically determined lesion of the connective tissue structures, including joints, and it can be one of the factors predisposing to development of OA. Solving the problem of comorbidity of OA and uCTD signs will contribute to the early diagnosis and prophylactics of OA. Aggrecan is one of the major structural components of cartilage and it provides the ability to resist compressive loads throughout life. We examined 316 women (mean age 50.5 ± 4.77) for signs of uCTD and OA. A study of the aggrecan gene (ACAN) VNTR polymorphism, which is represented by a variable number of 57 nucleotide repeats, was performed. We searched for associations between the VNTR locus and OA in general and with an account of the localization of the pathological process, as well as with the presence of uCTD signs. Twelve allelic variants and 24 genotypes of the VNTR polymorphism of the aggrecan gene (ACAN) were identified, the most frequent variants were alleles with 27, 28 and 26 repeats. A significance of allele *27 (х2= 6.297, p = 0.012, odds ratio (OR) = 1.50; 95 % confidence interval (CI) 1.09-2.05) in the development of OA in general, knee OA (х2= 4.613, p = 0.031, OR = 1.52; 95 % CI 1.04-2.23), and multiple OA (х2= 4.181, p = 0.04, OR = 1.68; 95 % CI 1.02-2.78) was revealed. Homozygous genotype *27*27 was associated with OA (х2= 3.921, р = 0.047, OR = 1.72; 95 % CI 1-2.96), and OA with uCTD signs in women (х2= 5.415, p = 0.019, OR = 2.34; 95 % CI 1.13-4.83).
Collapse
Affiliation(s)
- D. A. Shapovalova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre, RASU
| | - A. V. Tyurin
- Bashkir State Medical University of the Ministry of Health of the Russian Federation
| | - S. S. Litvinov
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre, RASU
| | - E. K. Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre, RASU
| | - R. I. Khusainova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre, RASU
| |
Collapse
|
14
|
Yasmin, Maskari RA, McEniery CM, Cleary SE, Li Y, Siew K, Figg NL, Khir AW, Cockcroft JR, Wilkinson IB, O'Shaughnessy KM. The matrix proteins aggrecan and fibulin-1 play a key role in determining aortic stiffness. Sci Rep 2018; 8:8550. [PMID: 29867203 PMCID: PMC5986773 DOI: 10.1038/s41598-018-25851-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Stiffening of the aorta is an important independent risk factor for myocardial infarction and stroke. Yet its genetics is complex and little is known about its molecular drivers. We have identified for the first time, tagSNPs in the genes for extracellular matrix proteins, aggrecan and fibulin-1, that modulate stiffness in young healthy adults. We confirmed SNP associations with ex vivo stiffness measurements and expression studies in human donor aortic tissues. Both aggrecan and fibulin-1 were found in the aortic wall, but with marked differences in the distribution and glycosylation of aggrecan reflecting loss of chondroitin-sulphate binding domains. These differences were age-dependent but the striking finding was the acceleration of this process in stiff versus elastic young aortas. These findings suggest that aggrecan and fibulin-1 have critical roles in determining the biomechanics of the aorta and their modification with age could underpin age-related aortic stiffening.
Collapse
Affiliation(s)
- Yasmin
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Raya Al Maskari
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Carmel M McEniery
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Sarah E Cleary
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Ye Li
- Brunel Institute of Bioengineering, Brunel University, Uxbridge, Middlesex, UK
| | - Keith Siew
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Nichola L Figg
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Ashraf W Khir
- Brunel Institute of Bioengineering, Brunel University, Uxbridge, Middlesex, UK
| | - John R Cockcroft
- Division of Cardiology, New York-Presbyterian Hospital, Columbia University, New York, USA
| | - Ian B Wilkinson
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
15
|
Park TSW, Kuo A, Smith MT. Chronic low back pain: a mini-review on pharmacological management and pathophysiological insights from clinical and pre-clinical data. Inflammopharmacology 2018; 26:10.1007/s10787-018-0493-x. [PMID: 29754321 DOI: 10.1007/s10787-018-0493-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Globally, low back pain (LBP) is one of the most common health problems affecting humans. The lifetime prevalence of non-specific LBP is approximately 84%, with the chronic prevalence at about 23%. Chronic LBP in humans is defined as LBP that persists for more than 12 weeks without a significant pain improvement. Although there are numerous evidence-based guidelines on the management of acute LBP, this is not the case for chronic LBP, which is regarded as particularly difficult to treat. Research aimed at discovering new drug treatments for alleviation of chronic mechanical LBP is lacking due to the paucity of knowledge on the pathobiology of this condition, despite its high morbidity in the affected adult population. For a debilitating condition such as chronic LBP, it is necessary to assess the sustained effects of pharmacotherapy of various agents spanning months to years. Although many rodent models of mechanical LBP have been developed to mimic the human condition, some of the major shortcomings of many of these models are (1) the presence of a concurrent neuropathic component that develops secondary to posterior intervertebral disc puncture, (2) severe model phenotype, and/or (3) use of behavioural endpoints that have yet to be validated for pain. Hence, there is a great, unmet need for research aimed at discovering new biological targets in rodent models of chronic mechanical LBP for use in drug discovery programs as a means to potentially produce new highly effective and well-tolerated analgesic agents to improve relief of chronic LBP. On a cautionary note, it must be borne in mind that because humans and rats display orthograde and pronograde postures, respectively, the different mechanical forces on their spines add to the difficulty in translation of promising rodent data to humans.
Collapse
Affiliation(s)
- Thomas S W Park
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, Steele Building, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andy Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Pharmacy, Pharmacy Australia Centre of Excellence, Faculty of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
16
|
Cong L, Tu G, Liang D. A systematic review of the relationship between the distributions of aggrecan gene VNTR polymorphism and degenerative disc disease/osteoarthritis. Bone Joint Res 2018; 7:308-317. [PMID: 29922449 PMCID: PMC5987698 DOI: 10.1302/2046-3758.74.bjr-2017-0207.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objectives Degenerative disc disease (DDD) and osteoarthritis (OA) are relatively frequent causes of disability amongst the elderly; they constitute serious socioeconomic costs and significantly impair quality of life. Previous studies to date have found that aggrecan variable number of tandem repeats (VNTR) contributes both to DDD and OA. However, current data are not consistent across studies. The purpose of this study was to evaluate systematically the relationship between aggrecan VNTR, and DDD and/or OA. Methods This study used a highly sensitive search strategy to identify all published studies related to the relationship between aggrecan VNTR and both DDD and OA in multiple databases from January 1996 to December 2016. All identified studies were systematically evaluated using specific inclusion and exclusion criteria. Cochrane methodology was also applied to the results of this study. Results The final selection of seven studies was comprehensively evaluated and includes results for 2928 alleles. The most frequent allele among all the studies was allele 27. After comparing the distributions of each allele with others, statistically significant differences have been found in the distribution of the alleles by the two groups, with an over-representation of allele (A)21 (disease: 3.22%, control: 0.44%). Thus, carrying A21 increased the risk of DDD. Such an association was not found to be statistically significant when considering the risk of OA. Conclusions The findings suggest that VNTR A21 seems to be associated with higher risk to DDD, however, such an association may not be statistically significant regarding the risk of OA. Cite this article: L. Cong, G. Tu, D. Liang. A systematic review of the relationship between the distributions of aggrecan gene VNTR polymorphism and degenerative disc disease/osteoarthritis. Bone Joint Res 2018;7:308–317. DOI: 10.1302/2046-3758.74.BJR-2017-0207.R1
Collapse
Affiliation(s)
- L Cong
- Department of Orthopaedic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - G Tu
- Department of Orthopaedic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - D Liang
- Department of Orthopaedic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Deng Y, Tan XT, Wu Q, Wang X. Correlations Between COL2A and Aggrecan Genetic Polymorphisms and the Risk and Clinicopathological Features of Intervertebral Disc Degeneration in a Chinese Han Population: A Case-Control Study. Genet Test Mol Biomarkers 2016; 21:108-115. [PMID: 27991836 DOI: 10.1089/gtmb.2016.0256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES This case-control study was designed to evaluate the association of three COL2A1 single nucleotide polymorphism (SNPs) (rs1793953, rs2276454, and rs1793937) and Aggrecan variable number of tandem repeat (VNTR) polymorphisms with the risk and clinicopathological features of intervertebral disc degeneration (IVDD) in a Chinese Han population. MATERIALS AND METHODS Data from 295 IVDD patients (case group) and 324 healthy volunteers (control group) were collected between January 2012 and December 2014. Magnetic resonance examinations were conducted on all included subjects. The frequency distributions of the COL2A1 and Aggrecan polymorphisms were detected using direct sequencing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, respectively. RESULTS The genotype and allele frequencies of the COL2A1 genetic polymorphisms (rs1793953 and rs2276454) and the Aggrecan VNTR polymorphisms differed significantly between the case group and the control group (all p < 0.05). The haplotype analysis indicated that the frequencies of ACGL (L, long) and GTCL haplotypes were lower in the case group than in the control group (both p < 0.05). In the case group, the genotype and allele frequencies of the COL2A1 genes, rs1793953 and rs2276454, and Aggrecan VNTR significantly differed in terms of Pfirrmann grades III, IV, and V (all p < 0.05). Personal history of spine sprain or crush injury, history of IVDD in a first-degree relative, and COL2A1 rs2276454 and Aggrecan VNTR presence may be independent risk factors of IVDD (all p < 0.05, odds ratio [OR] >1), whereas tea drinking habit, part-time sports participation, and COL2A1 rs1793953 presence may be protective factors of IVDD (all p < 0.05, OR <1). CONCLUSION Our study provides evidence that COL2A1 and Aggrecan genetic polymorphisms may be correlated with the risk and clinicopathological features of IVDD in a Chinese Han population, and ACGL and GTCL haplotypes may be protective factors of IVDD.
Collapse
Affiliation(s)
- Yu Deng
- 1 Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University , Wuhan, P.R. China
| | - Xin-Ti Tan
- 2 Department of Histology and Embryology, Basic Medical School, Wuhan University , Wuhan, P.R. China
| | - Qiang Wu
- 1 Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University , Wuhan, P.R. China
| | - Xin Wang
- 1 Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University , Wuhan, P.R. China
| |
Collapse
|
18
|
Hemanta D, Jiang XX, Feng ZZ, Chen ZX, Cao YW. Etiology for Degenerative Disc Disease. ACTA ACUST UNITED AC 2016; 31:185-191. [DOI: 10.1016/s1001-9294(16)30049-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Priyadarshani P, Li Y, Yao L. Advances in biological therapy for nucleus pulposus regeneration. Osteoarthritis Cartilage 2016; 24:206-12. [PMID: 26342641 DOI: 10.1016/j.joca.2015.08.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/29/2015] [Accepted: 08/18/2015] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The intervertebral disc (IVD) is composed of the external annulus fibrosus (AF) and the inner gel-like center, the nucleus pulposus (NP). The elastic NP can function to relieve stress and maintain IVD function by distributing hydraulic pressure evenly to annulus and endplate. Degeneration of the NP, which leads to increased death of NP cells, the loss of proteoglycan (PG), and aberrant gene expression, may result in an overall alteration of the biomechanics of the spinal column and cause low back pain. Recent advances in biological therapy strategies that target therapy at the regeneration of degenerated and damaged NP have been investigated in in vitro and in vivo studies and demonstrated promising outcomes. In this article, we review recent studies of biological approaches for NP regeneration. METHOD The articles regarding NP regeneration using biomaterials, stem cells, and gene vectors were identified in PubMed databases. RESULTS Stem cell-mediated cell therapy demonstrates the potential to restore the function and structure of the NP. The viral or non-viral vectors encoding functional genes may generate a therapeutic effect when they are introduced into grafted cells or native cells in the NP. Biomaterial scaffolds generate an initial permissive environment for cell growth and allow the remodeling of scaffolds in the regeneration process. Biomaterial scaffolds provide structural support for NP regeneration and serve as a carrier for stem cell and gene vector delivery. CONCLUSION Though recent studies advance the body of knowledge needed to treat degenerated discs, many challenges need to be overcome before the application of these approaches can be successful clinically.
Collapse
Affiliation(s)
- P Priyadarshani
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA.
| | - Y Li
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA.
| | - L Yao
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA.
| |
Collapse
|
20
|
Abstract
Lumbar disc herniation is the most common diagnosis among the degenerative abnormalities of the lumbar spine (affecting 2 to 3% of the population), and is the principal cause of spinal surgery among the adult population. The typical clinical picture includes initial lumbalgia, followed by progressive sciatica. The natural history of disc herniation is one of rapid resolution of the symptoms (four to six weeks). The initial treatment should be conservative, managed through medication and physiotherapy, sometimes associated with percutaneous nerve root block. Surgical treatment is indicated if pain control is unsuccessful, if there is a motor deficit greater than grade 3, if there is radicular pain associated with foraminal stenosis, or if cauda equina syndrome is present. The latter represents a medical emergency. A refined surgical technique, with removal of the extruded fragment and preservation of the ligamentum flavum, resolves the sciatic symptoms and reduces the risk of recurrence over the long term.
Collapse
Affiliation(s)
- Luis Roberto Vialle
- Titular Professor of Orthopedics and Traumatology, Catholic Pontificate University of Paraná, and Spinal Surgery Group, Cajuru University Hospital, Curitiba
| | | | | | - Gustavo Giraldo
- Trainee in Spinal Surgery, Cajuru University, Catholic Pontificate University of Paraná
| |
Collapse
|
21
|
Complete sequencing and characterization of equine aggrecan. Vet Comp Orthop Traumatol 2015; 28:79-87. [PMID: 25632964 DOI: 10.3415/vcot-14-05-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To fully sequence and characterize equine aggrecan and confirm conservation of major aggrecanase, calpain and matrix metalloproteinase (MMP) cleavage sites. METHODS Reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends were used to generate clones that encompassed the complete equine aggrecan sequence. Clones were sequenced and compared with the equine genome database to determine intron-exon boundaries. RESULTS The aggrecan gene spans over 61 kb on chromosome 1 and is encoded by 17 exons. Two major variants of aggrecan were cloned; one containing 8187 bp (2728 amino acids) and a second sequence of 8061 nucleotides (2686 amino acids). The variation was due to a CS1 domain polymorphism. Both sequences are substantially larger than predicted by the genomic database; 11 CS1 repeat elements are absent in the database sequence. The equine amino acid sequence was compared with human, bovine and murine sequences. Globular domains 1, 2 and 3 are highly conserved (overall identity over 80%). Equine CS1 is considerably larger than in other species and, therefore, is the least conserved domain (an overall amino acid identity of 22%). Previously defined aggrecanase, calpain and MMP cleavage sites were identified. Western blotting of chondrocyte culture samples showed complex post-secretion processing. CLINICAL SIGNIFICANCE The complete equine aggrecan sequence will support more in-depth research on aggrecan processing and degradation in equine articular cartilage and other musculoskeletal tissues.
Collapse
|
22
|
Cong L, Zhu Y, Pang H, Guanjun TU. The interaction between aggrecan gene VNTR polymorphism and obesity in predicting incident symptomatic lumbar disc herniation. Connect Tissue Res 2014; 55:384-90. [PMID: 25188217 DOI: 10.3109/03008207.2014.959117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An association between aggrecan gene variable number of tandem repeats polymorphism (VNTR) and symptomatic lumbar disc herniation (LDH) has been reported in Chinese Han of Northern China, and obesity had previously been suspected of causing severe LDH. However, the interaction between aggrecan VNTR and obesity in symptomatic LDH has not been well studied. To examine the interaction between aggrecan VNTR and obesity in the susceptibility of symptomatic LDH, 259 participants participated in this study and donated a blood sample. The disease group comprised 61 patients already diagnosed with symptomatic LDH. The control group consisted of 198 healthy blood donors without symptoms of LDH who were not diagnosed with LDH. The aggrecan gene VNTR region was analyzed using polymerase chain reaction. The data indicated that between the two groups, participants carrying one or two alleles ≤25 repeats who were non-obese people showed a 1.057-fold increase in risk for symptomatic LDH (p = 0.895, changing the number of repeat alleles to <25 repeats alone did not demonstrably change the risk of LDH), and participants carrying two alleles >25 repeats who were obese people showed an 1.061-fold higher risk (p = 0.885, adding obesity to the mix alone did not demonstrably increase the risk of LDH), while participants carrying one or two alleles ≤25 repeats who were obese people showed a 4.667-fold increase in risk for symptomatic LDH (p = 0.0003, adding obesity plus changing the repeat allele number significantly increased the risk of LDH by 4.667). Overall, the findings suggest an underlying interaction between aggrecan VNTR and obesity in symptomatic LDH.
Collapse
Affiliation(s)
- Lin Cong
- Department of Orthopaedics, the First Affiliated Hospital of China Medical University , Heping District, Shenyang City, Liaoning Province , P.R. China and
| | | | | | | |
Collapse
|
23
|
Sivan SS, Wachtel E, Roughley P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim Biophys Acta Gen Subj 2014; 1840:3181-9. [PMID: 25065289 DOI: 10.1016/j.bbagen.2014.07.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/11/2014] [Accepted: 07/18/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Aggrecan is the major non-collagenous component of the intervertebral disc. It is a large proteoglycan possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. Its abundance and unique molecular features provide the disc with its osmotic properties and ability to withstand compressive loads. Degradation and loss of aggrecan result in impairment of disc function and the onset of degeneration. SCOPE OF REVIEW This review summarizes current knowledge concerning the structure and function of aggrecan in the normal intervertebral disc and how and why these change in aging and degenerative disc disease. It also outlines how supplementation with aggrecan or a biomimetic may be of therapeutic value in treating the degenerate disc. MAJOR CONCLUSIONS Aggrecan abundance reaches a plateau in the early twenties, declining thereafter due to proteolysis, mainly by matrix metalloproteinases and aggrecanases, though degradation of hyaluronan and non-enzymic glycation may also participate. Aggrecan loss is an early event in disc degeneration, although it is a lengthy process as degradation products may accumulate in the disc for decades. The low turnover rate of the remaining aggrecan is an additional contributing factor, preventing protein renewal. It may be possible to retard the degenerative process by restoring the aggrecan content of the disc, or by supplementing with a bioimimetic possessing similar osmotic properties. GENERAL SIGNIFICANCE This review provides a basis for scientists and clinicians to understand and appreciate the central role of aggrecan in the function, degeneration and repair of the intervertebral disc.
Collapse
Affiliation(s)
- Sarit Sara Sivan
- Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982 Israel.
| | - Ellen Wachtel
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter Roughley
- Shriners Hospital for Children, Genetics Unit, 1529 Cedar Avenue, Montreal, Quebec H3G 1A6, Canada
| |
Collapse
|
24
|
Roughley PJ, Mort JS. The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop 2014; 1:8. [PMID: 26914753 PMCID: PMC4648834 DOI: 10.1186/s40634-014-0008-7] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 01/13/2023] Open
Abstract
Aggrecan is a large proteoglycan bearing numerous chondroitin sulfate and keratan sulfate chains that endow articular cartilage with its ability to withstand compressive loads. It is present in the extracellular matrix in the form of proteoglycan aggregates, in which many aggrecan molecules interact with hyaluronan and a link protein stabilizes each interaction. Aggrecan structure is not constant throughout life, but changes due to both synthetic and degradative events. Changes due to synthesis alter the structure of the chondroitin sulfate and keratan sulfate chains, whereas those due to degradation cause cleavage of all components of the aggregate. These latter changes can be viewed as being detrimental to cartilage function and are enhanced in osteoarthritic cartilage, resulting in aggrecan depletion and predisposing to cartilage erosion. Matrix metalloproteinases and aggrecanases play a major role in aggrecan degradation and their production is upregulated by mediators associated with joint inflammation and overloading. The presence of increased levels of aggrecan fragments in synovial fluid has been used as a marker of ongoing cartilage destruction in osteoarthritis. During the early stages of osteoarthritis it may be possible to retard the destructive process by enhancing the production of aggrecan and inhibiting its degradation. Aggrecan production also plays a central role in cartilage repair techniques involving stem cell or chondrocyte implantation into lesions. Thus aggrecan participates in both the demise and survival of articular cartilage.
Collapse
Affiliation(s)
- Peter J Roughley
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada.
| | - John S Mort
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Aggrecan variable number of tandem repeat polymorphism and lumbar disc degeneration: a meta-analysis. Spine (Phila Pa 1976) 2013; 38:E1600-7. [PMID: 24296484 DOI: 10.1097/brs.0000000000000012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Data on the association between the ACAN (encoded for aggrecan core protein) variable number of tandem repeat (VNTR) polymorphism and lumbar disc degeneration are conflicting, so we performed a meta-analysis. OBJECTIVE Aggrecan is involved in the shock absorbing function of the lumbar disc; we performed a meta-analysis to assess the association between ACAN VNTR and lumbar degeneration. SUMMARY OF BACKGROUND DATA To perform a meta-analysis, we searched for studies published until September 2012, using electronic databases (PubMed, EMBASE, and China National Knowledge Infrastructure). Eight studies involving 965 cases of lumbar disc degeneration and 982 control subjects were identified. METHODS Assessment for eligibility and extraction of data were performed by 2 independent investigators. We extracted allele frequency for each study. We calculated the pooled odds ratios (ORs) and 95% confidence intervals (CI) to assess the strength of the association between the ACAN VNTR polymorphism and lumbar disc degeneration risk. RESULTS Results from the allele model suggested an increased risk of lumbar disc degeneration for the shorter alleles carriers compared with the normal alleles and longer alleles (OR = 1.54, 95% CI: 1.04-2.30, P = 0.03). In subgroup analysis by ethnicity, significant increased risks were found among Asians with shorter alleles (OR=1.65, 95% CI: 1.17-2.33, P = 0.004). CONCLUSION Our results suggest an increased risk of shorter alleles compared with normal alleles and longer alleles against lumbar disc degeneration among populations especially among Asian descent. Such association may not be statistically significant in European populations.
Collapse
|
26
|
Mayer JE, Iatridis JC, Chan D, Qureshi SA, Gottesman O, Hecht AC. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J 2013; 13:299-317. [PMID: 23537453 PMCID: PMC3655694 DOI: 10.1016/j.spinee.2013.01.041] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/02/2013] [Accepted: 01/25/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Disc degeneration (DD) is a multifaceted chronic process that alters the structure and function of the intervertebral discs and can lead to painful conditions. The pathophysiology of degeneration is not well understood, but previous studies suggest that certain genetic polymorphisms may be important contributing factors leading to an increased risk of DD. PURPOSE To review the genetic factors in DD with a focus on polymorphisms and their putative role in the pathophysiology of degeneration. Elucidating the genetic components that are associated with degeneration could provide insights into the mechanism of the process. Furthermore, defining these relationships and eventually using them in a clinical setting may allow an identification and early intervention for those who are at a high risk for painful DD. STUDY DESIGN Literature review. METHODS This literature review focused on the studies concerning genetic polymorphisms and their associations with DD. RESULTS Genetic polymorphisms in 20 genes have been analyzed in association with DD, including vitamin D receptor, growth differentiation factor 5 (GDF5), aggrecan, collagen Types I, IX, and XI, fibronectin, hyaluronan and proteoglycan link protein 1 (HAPLN1), thrombospondin, cartilage intermediate layer protein (CILP), asporin, MMP1, 2, and 3, parkinson protein 2, E3 ubiquitin protein ligase (PARK2), proteosome subunit β type 9 (PSMB9), tissue inhibitor of metalloproteinase (TIMP), cyclooxygenase-2 (COX2), and IL1α, IL1β, and IL6. Each genetic polymorphism codes for a protein that has a functional role in the pathogenesis of DD. CONCLUSIONS There are known associations between several genetic polymorphisms and DD. Of the 20 genes analyzed, polymorphisms in vitamin D receptor, aggrecan, Type IX collagen, asporin, MMP3, IL1, and IL6 show the most promise as functional variants. Genetic studies are crucial for understanding the mechanism of the degeneration. This genetic information could eventually be used as a predictive model for determining a patient's risk for symptomatic DD.
Collapse
Affiliation(s)
- Jillian E. Mayer
- Leni and Peter W May Department of Orthopaedics, Mount Sinai Medical Center, 5 East 98th Street, 9th Floor, New York, NY 10029, USA
| | - James C. Iatridis
- Leni and Peter W May Department of Orthopaedics, Mount Sinai Medical Center, 5 East 98th Street, 9th Floor, New York, NY 10029, USA
| | - Danny Chan
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sheeraz A. Qureshi
- Leni and Peter W May Department of Orthopaedics, Mount Sinai Medical Center, 5 East 98th Street, 9th Floor, New York, NY 10029, USA
| | - Omri Gottesman
- Institute for Personalized Medicine, Mount Sinai Medical Center, 1468 Madison Avenue, 18th Floor, New York, NY 10029, USA
| | - Andrew C. Hecht
- Leni and Peter W May Department of Orthopaedics, Mount Sinai Medical Center, 5 East 98th Street, 9th Floor, New York, NY 10029, USA,Corresponding Author: Andrew C. Hecht, Mount Sinai Medical Center. 5 East 98 Street, 9 Floor, New York, NY 10029, USA. Tel: (212) 241-8892; Fax: (212) 423-0827.
| |
Collapse
|
27
|
Kepler CK, Ponnappan RK, Tannoury CA, Risbud MV, Anderson DG. The molecular basis of intervertebral disc degeneration. Spine J 2013; 13:318-30. [PMID: 23537454 DOI: 10.1016/j.spinee.2012.12.003] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 08/08/2012] [Accepted: 12/08/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration remains a clinically important condition for which treatment is costly and relatively ineffective. The molecular basis of degenerative disc disease has been an intense focus of research recently, which has greatly increased our understanding of the biology underlying this process. PURPOSE To review the current understanding of the molecular basis of disc degeneration. STUDY DESIGN Review article. METHODS A literature review was performed to identify recent investigations and current knowledge regarding the molecular basis of IVD degeneration. RESULTS The unique structural requirements and biochemical properties of the disc contribute to its propensity toward degeneration. Mounting evidence suggests that genetic factors account for up to 75% of individual susceptibility to IVD degeneration, far more than the environmental factors such as occupational exposure or smoking that were previously suspected to figure prominently in this process. Decreased extracellular matrix production, increased production of degradative enzymes, and increased expression of inflammatory cytokines contribute to the loss of structural integrity and accelerate IVD degeneration. Neurovascular ingrowth occurs, in part, because of the changing degenerative phenotype. CONCLUSIONS A detailed understanding of the biology of IVD degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Although significant advances have been made in explaining the biologic mediators of disc degeneration, the inhospitable biochemical environment of the IVD remains a challenging environment for biological therapies.
Collapse
Affiliation(s)
- Christopher K Kepler
- Department of Orthopaedic Surgery, Thomas Jefferson University & Rothman Institute, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
28
|
Vo NV, Hartman RA, Yurube T, Jacobs LJ, Sowa GA, Kang JD. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J 2013; 13:331-41. [PMID: 23369495 PMCID: PMC3637842 DOI: 10.1016/j.spinee.2012.02.027] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/09/2011] [Accepted: 02/15/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Destruction of extracellular matrix (ECM) leads to intervertebral disc degeneration (IDD), which underlies many spine-related disorders. Matrix metalloproteinases (MMPs), and disintegrins and metalloproteinases with thrombospondin motifs (ADAMTSs) are believed to be the major proteolytic enzymes responsible for ECM degradation in the intervertebral disc (IVD). PURPOSE To summarize the current literature on gene expression and regulation of MMPs, ADAMTSs, and tissue inhibitors of metalloproteinases (TIMPs) in IVD aging and IDD. METHODS A comprehensive literature review of gene expression of MMP, ADAMTS, and TIMP in human IDD and reported studies on regulatory factors controlling their expressions and activities in both human and animal model systems. RESULTS Upregulation of specific MMPs (MMP-1, -2, -3, -7, -8, -10, and -13) and ADAMTS (ADAMTS-1, -4, and -15) were reported in human degenerated IVDs. However, it is still unclear from conflicting published studies whether the expression of ADAMTS-5, the predominant aggrecanase, is increased with IDD. Tissue inhibitors of metalloproteinase-3 is downregulated, whereas TIMP-1 is upregulated in human degenerated IVDs relative to nondegenerated IVDs. Numerous studies indicate that the expression levels of MMP and ADAMTS are modulated by a combination of many factors, including mechanical, inflammatory, and oxidative stress, some of which are mediated in part through the p38 mitogen-activated protein kinase pathway. Genetic predisposition also plays an important role in determining gene expression of MMP-1, -2, -3, and -9. CONCLUSIONS Upregulation of MMP and ADAMTS expression and enzymatic activity is implicated in disc ECM destruction, leading to the development of IDD. Future IDD therapeutics depends on identifying specific MMPs and ADAMTSs whose dysregulation result in pathological proteolysis of disc ECM.
Collapse
Affiliation(s)
- Nam V. Vo
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Robert A. Hartman
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15261, USA
,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 5th Ave., Suite 202, Pittsburgh, PA 15213, USA
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15261, USA
,Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Lloydine J. Jacobs
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Gwendolyn A. Sowa
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15261, USA
,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 5th Ave., Suite 202, Pittsburgh, PA 15213, USA
| | - James D. Kang
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15261, USA
,Corresponding author. Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15261, USA. Tel: (412) 648-1090; fax: (412) 383-5307.
| |
Collapse
|
29
|
Xu G, Mei Q, Zhou D, Wu J, Han L. Vitamin D receptor gene and aggrecan gene polymorphisms and the risk of intervertebral disc degeneration - a meta-analysis. PLoS One 2012; 7:e50243. [PMID: 23209686 PMCID: PMC3509154 DOI: 10.1371/journal.pone.0050243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 10/22/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND A series of studies have been conducted to evaluate the associations between vitamin D receptor (VDR) and aggrecan variable numbers of tandem repeat (VNTR) polymorphisms and the risk of intervertebral disc degeneration (IDD), but produced conflicting results. OBJECTIVE we performed a meta-analysis to address a more accurate estimation of the associations between the above gene polymorphisms and the risk of IDD. METHODS A comprehensive literature search was conducted to identify all the relevant studies. The fixed or random effect model was selected based on the heterogeneity test among studies evaluated using the I(2). Publication bias was estimated using Begg's funnel plots and Egger's regression test. RESULTS A total of 9, 5, 3, and 7 studies were finally included in the analyses for the associations between the VDR TaqI (rs731236), FokI (rs2228570), ApaI (rs7975232), or aggrecan VNTR polymorphisms and the risk of IDD, respectively. The combined results showed that none of the VDR (TaqI, FokI, ApaI) polymorphisms were significantly associated with the risk of IDD. In contrast, the alleles with shorter VNTR length was found to significantly increase the risk of IDD (≦25 vs. >25: OR = 1.850, 95%CI 1.477-2.318; ≦23 vs. >23: OR = 1.955, 95%CI 1.41-2.703). Subgroup analysis confirmed the above results. After excluding studies deviated from Hardy-Weinberg equilibrium (HWE) in controls, no other studies were found to significantly influence the pooled effects in each genetic model. No potential publication bias was detected. CONCLUSION This meta-analysis suggested that the alleles with shorter VNTR length significantly increased the risk of IDD, while the VDR (TaqI, FokI, ApaI) gene polymorphisms were not significantly associated with the risk of IDD. Since potential confounders could not be ruled out completely, further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Ge Xu
- Department of OrthoPedics, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
30
|
MMP proteolysis of the human extracellular matrix protein aggrecan is mainly a process of normal turnover. Biochem J 2012; 446:213-23. [DOI: 10.1042/bj20120274] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although it has been shown that aggrecanases are involved in aggrecan degradation, the role of MMP (matrix metalloproteinase) aggrecanolysis is less well studied. To investigate MMP proteolysis of human aggrecan, in the present study we used neoepitope antibodies against MMP cleavage sites and Western blot analysis to identify MMP-generated fragments in normal and OA (osteoarthritis/osteoarthritic) cartilage, and in normal, knee injury and OA and SF (synovial fluid) samples. MMP-3 in vitro digestion showed that aggrecan contains six MMP cleavage sites, in the IGD (interglobular domain), the KS (keratan sulfate) region, the border between the KS region and CS (chondroitin sulfate) region 1, the CS1 region, and the border between the CS2 and the G3 domain, and kinetic studies showed a specific order of digestion where the cleavage between CS2 and the G3 domain was the most preferred. In vivo studies showed that OA cartilage contained (per dry weight) 3.4-fold more MMP-generated FFGV fragments compared with normal cartilage, and although aggrecanase-generated SF-ARGS concentrations were increased 14-fold in OA and knee-injured patients compared with levels in knee-healthy reference subjects, the SF-FFGV concentrations did not notably change. The results of the present study suggest that MMPs are mainly involved in normal aggrecan turnover and might have a less-active role in aggrecan degradation during knee injury and OA.
Collapse
|
31
|
Abstract
Aggrecan is essential for the normal function of articular cartilage and intervertebral disc, where it provides the ability for the tissues to withstand compressive loading. This property depends on both the high charge density endowed by its numerous chondroitin sulfate and keratan sulfate chains and its ability to form large molecular aggregates via interaction with hyaluronan. Degradation of aggrecan via the action of proteases takes place throughout life and the degradation products accumulate in the tissue and impair its function. Such degradation is exacerbated in degenerative or inflammatory joint disorders. The use of antibodies recognizing the various regions of aggrecan and the neoepitopes generated upon proteolytic cleavage has shown that matrix metalloproteinases and aggrecanases, members of the ADAMTS family, are responsible for aggrecan degradation, both throughout life and in disease. By using immunoblotting techniques, it is possible to determine the extent of aggrecan degradation and to identify the degradation products that have accumulated in the tissue, and immunohistochemistry allows the location of the aggrecan degradation to be established.
Collapse
|
32
|
Molecular basis of intervertebral disc degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 760:114-33. [PMID: 23281517 DOI: 10.1007/978-1-4614-4090-1_8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intervertebral disc (IVD) degeneration is a disease of the discs connecting adjoining vertebrae in which structural damage leads to degeneration of the disc and surrounding area. Degeneration of the disc is considered to be a normal process of aging, but can accelerate faster than expected or be precipitated by other factors. The scientific community has come a long way in understanding the biological basis and interpreting the lifestyle implications of IVD degeneration. Of all the diseases of the intervertebral disc, degeneration is the most common and has earned much attention due to its diversity in presentation and potential multiorgan involvement. We will provide a brief overview of the anatomic, cellular, and molecular structure of the IVD, and delve into the cellular and molecular pathophysiology surrounding IVD degeneration. We will then highlight some of the newest developments in stem cell, protein, and genetic therapy for IVD degeneration.
Collapse
|
33
|
Chan WCW, Sze KL, Samartzis D, Leung VYL, Chan D. Structure and biology of the intervertebral disk in health and disease. Orthop Clin North Am 2011; 42:447-64, vii. [PMID: 21944583 DOI: 10.1016/j.ocl.2011.07.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The intervertebral disks along the spine provide motion and protection against mechanical loading. The 3 structural components, nucleus pulposus, annulus fibrosus, and cartilage endplate, function as a synergistic unit, though each has its own role. The cells within each of these components have distinct origins in development and morphology, producing specific extracellular matrix proteins that are organized into unique architectures fit for intervertebral disk function. This article focuses on various aspects of intervertebral disk biology and disruptions that could lead to diseases such as intervertebral disk degeneration.
Collapse
Affiliation(s)
- Wilson C W Chan
- Department of Biochemistry, The University of Hong Kong, LKS Faculty of Medicine, Pokfulam, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
34
|
Gruber HE, Hoelscher GL, Ingram JA, Bethea S, Zinchenko N, Hanley EN. Variations in aggrecan localization and gene expression patterns characterize increasing stages of human intervertebral disk degeneration. Exp Mol Pathol 2011; 91:534-9. [PMID: 21689646 DOI: 10.1016/j.yexmp.2011.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/03/2011] [Indexed: 01/07/2023]
Abstract
During disk degeneration, annulus dehydration and matrix fraying culminate in the formation of tears through which nucleus and annulus disk material may rupture, causing radicular pain. Annular tears are present in more than half of the patients in early adulthood and are almost always present in the elderly. Aggrecan, which provides the disk with a shock absorber function under loading, is a key disk extracellular matrix (ECM) component. The objective of the present study was to assess the immunolocalization of aggrecan in the annulus, and to assess molecular gene expression patterns in the annulus ECM utilizing microarray analysis. Immunohistochemistry was performed on 45 specimens using an anti-human aggrecan antibody. Affymetrix microarray gene expression studies used the extracellular matrix ontology approach to evaluate an additional 6 grade I-II, 9 grade III, and 4 grade IV disks. Grade III/IV disks were compared to healthier grade I/II disks. Healthy and less degenerated disks showed a general uniform aggrecan immunolocalization; more degenerated disks contained regions with little or no identifiable aggrecan localization. In degenerated disks, molecular studies showed a significant downregulation of aggrecan, ADAMTS-like 3, and ADAMTS10. Collagen types III and VIII, fibronectin, decorin, connective tissue growth factor, TIMP-3, latent TGF-β binding protein 2 and TGF-β1 were significantly upregulated with fold changes ranging from 2.4 to 9.8. Findings here help us better understand changes in the immunohistochemical distribution of a key proteoglycan during disk aging. Such information may have application as we work towards biologic therapies to improve the aging/degenerating disk matrix.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Kim NK, Shin DA, Han IB, Yoo EH, Kim SH, Chung SS. The association of aggrecan gene polymorphism with the risk of intervertebral disc degeneration. Acta Neurochir (Wien) 2011; 153:129-33. [PMID: 20936487 DOI: 10.1007/s00701-010-0831-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/28/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Intervertebral disc degeneration is now considered to be genetically determined in large part, with environmental factors also playing an important role. The human is known to uniquely exhibit variable numbers of tandem repeat polymorphism within the aggrecan CS1 domain. To date, the analysis of aggrecan's variable numbers of tandem repeat polymorphism has given inconsistent results with respect to the correlation between the allele's size and intervertebral disc degeneration. We wanted to investigate the patterns of the variable numbers of tandem repeat polymorphism in the aggrecan CS1 domain of Koreans, and we analyzed the association between the polymorphism and intervertebral disc degeneration. METHOD A total of 66 males and 38 females participated in this study. Their ages ranged from 13 to 73 years. Genomic deoxyribonucleic acid was extracted from blood samples and PCR was carried out to detect the alleles of the aggrecan gene. The subjects were evaluated on MRI and they were classified by the number, severity, and morphology of disc degeneration. FINDINGS The genotyping identified 11 alleles ranging from 21 to 36 repeats. Alleles 13, 18, 19, and 20 were not found in this study. Of the 104 subjects, 29 (28%) were homozygotes and 75 (72%) were heterozygotes. Allele 27 (39%) was the most common form together with alleles 26 (26%) and 28 (14%). The allele 36 is the longest among the alleles ever discovered. For the case that the analysis was limited to subjects with the fourth decades or less, the 21 allele was significantly overrepresented among the persons with multilevel disc degeneration (p < 0.006). CONCLUSIONS Carrying a copy of the allele with 21 repeats might increase the risk of multiple disc degeneration in the subjects below the age of 40 years.
Collapse
Affiliation(s)
- Nam Keun Kim
- The Institute of Clinical Research, CHA University, Pochon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Stacey MW, Neumann SA, Dooley A, Segna K, Kelly RE, Nuss D, Kuhn AM, Goretsky MJ, Fecteau AH, Pastor A, Proud VK. Variable number of tandem repeat polymorphisms (VNTRs) in theACANgene associated with pectus excavatum. Clin Genet 2010; 78:502-4. [DOI: 10.1111/j.1399-0004.2010.01492.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Cong L, Pang H, Xuan D, Tu G. The interaction between aggrecan gene VNTR polymorphism and cigarette smoking in predicting incident symptomatic intervertebral disc degeneration. Connect Tissue Res 2010; 51:397-403. [PMID: 20367118 DOI: 10.3109/03008200903564455] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An association between the aggrecan variable number of tandem repeat (VNTR) polymorphism and the disc degeneration has been previously reported in Finnish men, and smoking had previously been suspected of causing disc degeneration. However, the interaction between aggrecan gene VNTR polymorphism and smoking in symptomatic intervertebral disc degeneration (IDD) has not been well studied. To examine the interaction between aggrecan gene VNTR and smoking in the susceptibility of symptomatic IDD of Chinese Han in northern China, intervertebral discs of 132 participants were evaluated on magnetic resonance imaging, using decreased signal intensity. After harvesting the blood samples, the aggrecan gene VNTR region was analyzed using polymerase chain reaction (PCR). The data indicated that between the two groups, participants carrying one or two alleles ≤25 repeats who did not smoke showed a 1.102-fold increased risk for symptomatic IDD (p= 0.855; 95% confidence interval 0.389-3.119), and participants carrying two alleles >25 repeats who smoked more than 1 pack-year showed a 1.013-fold higher risk (p = 0.982; 95% confidence interval 0.333-3.084), whereas participants carrying one or two alleles ≤25 repeats who smoked more than 1 pack-year showed a 4.5-fold increased risk for symptomatic IDD (p = 0.005; 95% confidence interval 1.589-12.743). Overall, we observed an underlying additive and multiplicative interaction between the aggrecan gene VNTR polymorphism and smoking in symptomatic IDD.
Collapse
Affiliation(s)
- Lin Cong
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang, China
| | | | | | | |
Collapse
|
38
|
Association between the expression of aggrecan and the distribution of aggrecan gene variable number of tandem repeats with symptomatic lumbar disc herniation in Chinese Han of Northern China. Spine (Phila Pa 1976) 2010; 35:1371-6. [PMID: 20505571 DOI: 10.1097/brs.0b013e3181c4e022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Case-control study. OBJECTIVE To examine the association between the expression of aggrecan and the aggrecan gene variable number of tandem repeats (VNTR) polymorphism with symptomatic lumbar disc herniation (LDH) in Chinese Han of Northern China. SUMMARY OF BACKGROUND DATA Aggrecan fragments have been found in human degenerated discs, and an association between the aggrecan VNTR polymorphism and intervertebral disc degeneration has been previously reported in middle-aged Finnish men. However, the relationship between the munity of symptomatic LDH with the expression of aggrecan and aggrecan gene VNTR has not been well studied. METHODS The disease group consisted of 70 patients already diagnosed with symptomatic LDH. The control group consisted of 14 patients restricted to spinal trauma and 113 healthy blood donors without symptoms of LDH who were not diagnosed with LDH. Disc tissue samples were obtained from surgical operations, and blood samples were donated from all participants. The aggrecan expression in isolated tissues was assessed by Western blot using specific antibodies. The aggrecan gene VNTR region was analyzed by polymerase chain reaction. RESULTS The aggrecan expression positive rate of control group was statistically and significantly higher (P < 0.001) than that of the disease group. Moreover, there was a statistically significant higher frequency of allele 25 or allele 21 in disease group compared with controls (P(A25) = 0.003416 and P(A21) = 0.000716). Compared with the participants with 2 alleles > 25 repeats, subjects with 1 or 2 alleles < or = 25 repeats statistically and significantly overrepresented the disease group without the expression of aggrecan (P < 0.001). CONCLUSION The findings suggest a relation between aggrecan and symptomatic LDH, where symptomatic LDH has a lower tendency of allele repeats. In addition, this study observed an association between the distribution of aggrecan gene VNTR polymorphism and the expression of aggrecan in symptomatic LDH.
Collapse
|
39
|
Mashayekhi F, Shafiee G, Kazemi M, Dolati P. Lumbar Disk Degeneration Disease and Aggrecan Gene Polymorphism in Northern Iran. Biochem Genet 2010; 48:684-9. [DOI: 10.1007/s10528-010-9350-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 03/15/2010] [Indexed: 11/30/2022]
|
40
|
Virgintino D, Perissinotto D, Girolamo F, Mucignat MT, Montanini L, Errede M, Kaneiwa T, Yamada S, Sugahara K, Roncali L, Perris R. Differential distribution of aggrecan isoforms in perineuronal nets of the human cerebral cortex. J Cell Mol Med 2009; 13:3151-73. [PMID: 19220578 PMCID: PMC4516474 DOI: 10.1111/j.1582-4934.2009.00694.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aggrecan is a component of the CNS extracellular matrix (ECM) and we show here that the three primary alternative spliced transcripts of the aggrecan gene found in cartilage are also present in the adult CNS. Using a unique panel of core protein-directed antibodies against human aggrecan we further show that different aggrecan isoforms are deposited in perineuronal nets (PNNs) and neuropil ECM of Brodmann’s area 6 of the human adult cerebral cortex. According to their distribution pattern, the identified cortical aggrecan isoforms were subdivided into five clusters spanning from cluster 1, comprised isoforms that appeared widespread throughout the cortex, to cluster 5, which was an aggrecan-free subset. Comparison of brain and cartilage tissues showed a different relative abundance of aggrecan isoforms, with cartilage-specific isoforms characterizing cluster 5, and PNN-associated isoforms lacking keratan sulphate chains. In the brain, isoforms of cluster 1 were disclosed in PNNs surrounding small-medium interneurons of layers II–V, small-medium pyramidal neurons of layers III and V and large interneurons of layer VI. Aggrecan PNNs enveloped both neuron bodies and neuronal processes, encompassing pre-terminal nerve fibres, synaptic boutons and terminal processes of glial cells and aggrecan was also observed in continuous ‘coats’ associated with satellite, neuron-associated cells of a putative glial nature. Immunolabelling for calcium-binding proteins and glutamate demonstrated that aggrecan PNNs were linked to defined subsets of cortical interneurons and pyramidal cells. We suggest that in the human cerebral cortex, discrete, layer-specific PNNs are assembled through the participation of selected aggrecan isoforms that characterize defined subsets of cortical neurons.
Collapse
Affiliation(s)
- Daniela Virgintino
- Department of Human Anatomy and Histology, University of Bari School of Medicine, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR. The pathophysiology of disc degeneration: a critical review. ACTA ACUST UNITED AC 2008; 90:1261-70. [PMID: 18827232 DOI: 10.1302/0301-620x.90b10.20910] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathophysiology of intervertebral disc degeneration has been extensively studied. Various factors have been suggested as influencing its aetiology, including mechanical factors, such as compressive loading, shear stress and vibration, as well as ageing, genetic, systemic and toxic factors, which can lead to degeneration of the disc through biochemical reactions. How are these factors linked? What is their individual importance? There is no clear evidence indicating whether ageing in the presence of repetitive injury or repetitive injury in the absence of ageing plays a greater role in the degenerative process. Mechanical factors can trigger biochemical reactions which, in turn, may promote the normal biological changes of ageing, which can also be accelerated by genetic factors. Degradation of the molecular structure of the disc during ageing renders it more susceptible to superimposed mechanical injuries. This review supports the theory that degeneration of the disc has a complex multifactorial aetiology. Which factors initiate the events in the degenerative cascade is a question that remains unanswered, but most evidence points to an age-related process influenced primarily by mechanical and genetic factors.
Collapse
Affiliation(s)
- A G Hadjipavlou
- Division of Spine Surgery, University of Texas Medical Branch at Galveston, Texas, USA.
| | | | | | | |
Collapse
|
42
|
Jandial R, Aryan HE, Park J, Taylor WT, Snyder EY. Stem cell-mediated regeneration of the intervertebral disc: cellular and molecular challenge. Neurosurg Focus 2008; 24:E21. [PMID: 18341398 DOI: 10.3171/foc/2008/24/3-4/e20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Regenerative medicine and stem cells hold great promise for intervertebral disc (IVD) disease. The therapeutic implications of utilizing stem cells to repair degenerated discs and treat back pain are highly anticipated by both the clinical and scientific communities. Although the avascular environment of the IVD poses a challenge for stem cell-mediated regeneration, neuroprogenitor cells have been discovered within degenerated discs, allowing scientists to revisit the hostile environment of the IVD as a target for stem cell therapy. Issues now under investigation include the timing of cell delivery and manipulation of stem cells to make them more efficient and adaptive in the IVD niche. This review covers the mechanisms underlying disc degeneration as well as the molecular and cellular challenges involved in directing stem cells to the desired cell type for intradiscal transplantation.
Collapse
Affiliation(s)
- Rahul Jandial
- Division of Neurosurgery, University of California, San Diego, California, USA
| | | | | | | | | |
Collapse
|
43
|
Solovieva S, Noponen N, Männikkö M, Leino-Arjas P, Luoma K, Raininko R, Ala-Kokko L, Riihimäki H. Association between the aggrecan gene variable number of tandem repeats polymorphism and intervertebral disc degeneration. Spine (Phila Pa 1976) 2007; 32:1700-5. [PMID: 17632389 DOI: 10.1097/brs.0b013e3180b9ed51] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Cross-sectional study. OBJECTIVE To examine the association between an aggrecan variable number of tandem repeats (VNTR) polymorphism and intervertebral disc degeneration in middle-aged Finnish men. SUMMARY OF BACKGROUND DATA An association between the aggrecan VNTR polymorphism and multilevel disc degeneration has been previously reported in young Japanese women. METHODS Lumbar discs of 132 men representing 3 occupations (carpenters, machine drivers, and office workers) were evaluated on magnetic resonance imaging, using decreased signal intensity of the nucleus pulposus, disc bulges, and decreased disc height as signs of degeneration. The aggrecan gene VNTR region was analyzed by Southern hybridization. RESULTS The allele A26 with 26 repeats was statistically significantly overrepresented among the persons with dark nucleus pulposus. Carrying 2 copies of the A26 allele increased the risk of dark nucleus pulposus (odds ratio = 2.77; 95% confidence interval, 1.24-6.16). Carrying the alleles with either less or more than 26 repeats decreased the risk of dark nucleus pulposus. The carpenters and machine drivers with the A26 allele had a statistically significantly higher risk of disc bulge and decreased disc height than the office workers without the allele. CONCLUSION The findings provide additional support for the role of the aggrecan gene VNTR polymorphism in intervertebral disc degeneration.
Collapse
|
44
|
Paesold G, Nerlich AG, Boos N. Biological treatment strategies for disc degeneration: potentials and shortcomings. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2007; 16:447-68. [PMID: 16983559 PMCID: PMC2229827 DOI: 10.1007/s00586-006-0220-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/14/2006] [Accepted: 08/15/2006] [Indexed: 01/07/2023]
Abstract
Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient.
Collapse
Affiliation(s)
- Günther Paesold
- Centre for Spinal Surgery, University of Zürich, Balgrist, Zurich, Switzerland.
| | | | | |
Collapse
|
45
|
Kämäräinen OP, Solovieva S, Vehmas T, Luoma K, Leino-Arjas P, Riihimäki H, Ala-Kokko L, Männikkö M. Aggrecan core protein of a certain length is protective against hand osteoarthritis. Osteoarthritis Cartilage 2006; 14:1075-80. [PMID: 16713721 DOI: 10.1016/j.joca.2006.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 04/04/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To study the contribution of aggrecan VNTR (variable number of tandem repeats) polymorphism to clinically differing manifestations of hand osteoarthritis (OA). DESIGN Five hundred thirty Finnish females representing two academically similar occupations with completely diverse exposure to hand load were included. Radiographs of hands were analysed, the OA findings were graded and the subjects were divided into categories. Aggrecan VNTR alleles were identified by Southern hybridization. Statistical analyses were used to compare joint involvement and pathological findings with the prevalences of the alleles and genotypes. RESULTS Subjects homozygous for the most common aggrecan VNTR allele, A27 with 27 repeats, had a significantly lower risk of hand OA, with OR 0.46 (95% CI 0.27-0.78) for OA of grade 2 or more. Our results suggest that carrying two copies of the alleles with less than 27 repeats could predispose a subject to a severe hand OA (OR 2.45, 95% CI 1.17-5.12) and carrying two copies of the alleles with more than 27 repeats also increases the risk of the disease (OR 1.73, 95% CI 1.03-2.89). CONCLUSIONS These findings indicate that allele A27 provides protection from hand OA and that alleles shorter or longer than this may predispose subjects to the disease. Furthermore, they suggest that a certain number of tandem repeats provide for optimal functioning of the aggrecan molecule and that the contribution of genetic factors to the development of hand OA may be even more important than that of environmental factors.
Collapse
Affiliation(s)
- O-P Kämäräinen
- Collagen Research Unit, Biocenter and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chan D, Song Y, Sham P, Cheung KMC. Genetics of disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2006; 15 Suppl 3:S317-25. [PMID: 16819621 PMCID: PMC2335375 DOI: 10.1007/s00586-006-0171-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/02/2006] [Accepted: 06/07/2006] [Indexed: 01/16/2023]
Abstract
Low back pain from degenerative disc disease (DDD) is one of the most common disorders seen in general and orthopaedic practices. DDD has been attributed to the accumulation of environmental factors, primarily mechanical insults and injuries, imposed on the "normal" aging changes. However, recent studies have shown an association between genetic influences and disc degeneration, with risk of developing DDD quoted to be increased up to six times that of the general population. It is likely that DDD is a complex, multifactorial disease determined by the interplay between gene(s) and the environment. This review focuses on the evidence for genetic disposition, the genes or biological processes that are implicated, and the need to consolidate resources and clarify phenotype definition to take advantage of the new technologies in genetic analysis to enhance our understanding of this condition.
Collapse
Affiliation(s)
- Danny Chan
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Youqiang Song
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong Medical Centre, Pokfulam, Hong Kong SAR, China
- Genome Research Centre, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pak Sham
- Genome Research Centre, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Institute of Psychiatry, London University, London, UK
| | - Kenneth M. C. Cheung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong Medical Centre, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
47
|
Marosy B, Justice CM, Nzegwu N, Kumar G, Wilson AF, Miller NH. Lack of association between the aggrecan gene and familial idiopathic scoliosis. Spine (Phila Pa 1976) 2006; 31:1420-5. [PMID: 16741449 DOI: 10.1097/01.brs.0000219944.18223.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A study was conducted to determine the potential association between a specific aggrecan gene polymorphism and familial idiopathic scoliosis (FIS). OBJECTIVES To determine the allelic distribution of the exon 12 polymorphism within a sample of families with FIS. SUMMARY OF BACKGROUND DATA FIS is a structural curvature of the spine where the underlying genetic etiology has not been established. The aggrecan locus has been linked to multiple skeletal disorders. A polymorphism, within the aggrecan gene, was previously reported to be associated with curve severity in individuals with scoliosis. METHODS Fifty-eight families with FIS were genotyped for the aggrecan exon 12 polymorphism using a polymerase chain reaction method. Model-independent sib-pair linkage analyses and tests of association were performed to analyze the genetic effects of the exon 12 polymorphism. RESULTS Linkage analyses of a genomic screen performed on a subgroup of 48 families with a most likely to be X-linked dominant mode of inheritance of FIS showed marginally significant results on chromosome 15q25-26 (P < 0.05). The overall distribution of the alleles was consistent with previously reported literature; no evidence of association and marginal significance of linkage was found between the polymorphism and FIS or the degree of lateral curvature. CONCLUSIONS Despite the negative association reported here, further investigation of the gene and its potential association to FIS is required.
Collapse
Affiliation(s)
- Beth Marosy
- Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Rodriguez E, Roland SK, Plaas A, Roughley PJ. The glycosaminoglycan attachment regions of human aggrecan. J Biol Chem 2006; 281:18444-50. [PMID: 16679517 DOI: 10.1074/jbc.m512531200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aggrecan possesses both chondroitin sulfate (CS) and keratan sulfate (KS) chains attached to its core protein, which reside mainly in the central region of the molecule termed the glycosaminoglycan-attachment region. This region is further subdivided into the KS-rich domain and two adjacent CS-rich domains (CS1 and CS2). The CS1 domain of the human is unique in exhibiting length polymorphism due to a variable number of tandem amino acid repeats. The focus of this work was to determine how length polymorphism affects the structure of the CS1 domain and whether CS and KS chains can coexist in the different glycosaminoglycan-attachment domains. The CS1 domain possesses several amino acid repeat sequences that divide it into three subdomains. Variation in repeat number may occur in any of these domains, with the consequence that CS1 domains of the same length may possess different amino acid sequences. There was no evidence to support the presence of KS in either the CS1 or the CS2 domains nor the presence of CS in the KS-rich domain. The structure of the CS chains was shown to vary between the CS1 and CS2 domains, particularly in the adult, with variation occurring in chain length and the sulfation of the non-reducing terminal N-acetyl galactosamine residue. CS chains in the adult CS2 domain were shorter than those in the CS1 domain and possessed disulfated terminal residues in addition to monosulfated residues. There was, however, no change in the sulfation pattern of the disaccharide repeats in the CS chains from the two domains.
Collapse
Affiliation(s)
- Elida Rodriguez
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada
| | | | | | | |
Collapse
|
49
|
Sharipov RN, Zaidman AM, Zorkol’tseva IV, Aksenovich TI, Dymshits GM. Polymorphism of the Aggrecan gene in families with idiopathic scoliosis. Mol Biol 2006. [DOI: 10.1134/s0026893306030174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Nobuhara Y, Usuku K, Saito M, Izumo S, Arimura K, Bangham CRM, Osame M. Genetic variability in the extracellular matrix protein as a determinant of risk for developing HTLV-I-associated neurological disease. Immunogenetics 2006; 57:944-52. [PMID: 16402214 DOI: 10.1007/s00251-005-0075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 12/04/2005] [Indexed: 10/25/2022]
Abstract
Aggrecan, which is a well-known proteoglycan in joint cartilage, also exists in the spinal cord and plays an important role in maintaining water content in the extracellular matrix structure. In this study, we first examined the variable number of tandem repeat (VNTR) polymorphism of the aggrecan gene in 227 HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients, in 217 HTLV-I-infected healthy carriers (HCs), and in 85 normal controls. The VNTR allele 28 (1,630 bp) was more frequently observed in HAM/TSP patients than in HCs (chi2=12.02, p=0.0005, odds ratio 1.79, 95% C.I. 1.29-2.50) and in controls (chi2=13.43, p=0.0002, odds ratio 2.54, 95% C.I. 1.52-4.25), although this allele was not related to disease progression or to HTLV-I provirus load. We also found that the aggrecan concentration in cerebrospinal fluid (CSF) from rapidly progressive HAM/TSP patients was significantly higher than in slowly progressive patients (corrected p=0.0145) but not in infected non-inflammatory neurological other disease controls (OND) (corrected p=0.078). We then analyzed this aggrecan VNTR polymorphism in the different set of patients with HAM/TSP (n=58) and healthy carriers (n=70). This analysis, again, revealed that allele 28 was detected more frequently in HAM/TSP group than in HCs (chi2=11.03, p=0.0009, odd ratio 3.04, 95% C.I. 1.55-5.97). The reproducibility of our study was regarded as a second- or third-class association by comparing combined p values and the Better Associations for Disease and GEnes (BADGE) system. Our results suggest that aggrecan polymorphism can be a novel genetic risk factor for developing HAM/TSP.
Collapse
Affiliation(s)
- Yasuyuki Nobuhara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|