1
|
Moreno A, Quereda-Moraleda I, Lozano-Vallhonrat C, Buñuel-Escudero M, Botha S, Kupitz C, Lisova S, Sierra R, Mariani V, Schleissner P, Gee LB, Dörner K, Schmidt C, Han H, Kloos M, Smyth P, Valerio J, Schulz J, de Wijn R, Melo DVM, Round A, Trost F, Sobolev E, Juncheng E, Sikorski M, Bean R, Martínez-Júlvez M, Martin-Garcia JM, Medina M. New insights into the function and molecular mechanisms of Ferredoxin-NADP + reductase from Brucella ovis. Arch Biochem Biophys 2024; 762:110204. [PMID: 39522858 DOI: 10.1016/j.abb.2024.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Bacterial ferredoxin(flavodoxin)-NADP+ reductases (FPR) primarily catalyze the transfer of reducing equivalents from NADPH to ferredoxin (or flavodoxin) to provide low potential reducing equivalents for the oxidoreductive metabolism. In addition, they can be implicated in regulating reactive oxygen species levels. Here we assess the functionality of FPR from B. ovis to understand its potential roles in the bacteria physiology. We prove that this FPR is active with the endogenous [2Fe-2S] Fdx ferredoxin, exhibiting a KMFdx in the low micromolar range. At the molecular level, this study provides with the first structures of an FPR at room temperature obtained by serial femtosecond crystallography, envisaging increase in flexibility at both the adenine nucleotide moiety of FAD and the C-terminal tail. The produced microcrystals are in addition suitable for future mix-and-inject time-resolved studies with the NADP+/H coenzyme either at synchrotrons or XFELs. Furthermore, the study also predicts the ability of FPR to simultaneously interact with Fdx and NADP+/H.
Collapse
Affiliation(s)
- Andrea Moreno
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), and GBsC (Unizar) join Unit to CSIC, Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Biología, Facultad de Ciencias, Universidad de los Andes, Venezuela
| | - Isabel Quereda-Moraleda
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - Celia Lozano-Vallhonrat
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - María Buñuel-Escudero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, USA
| | | | - Stella Lisova
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Ray Sierra
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Valerio Mariani
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), and GBsC (Unizar) join Unit to CSIC, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain.
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), and GBsC (Unizar) join Unit to CSIC, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
2
|
Truong A, Myerscough D, Campbell I, Atkinson J, Silberg JJ. A cellular selection identifies elongated flavodoxins that support electron transfer to sulfite reductase. Protein Sci 2023; 32:e4746. [PMID: 37551563 PMCID: PMC10503412 DOI: 10.1002/pro.4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Flavodoxins (Flds) mediate the flux of electrons between oxidoreductases in diverse metabolic pathways. To investigate whether Flds can support electron transfer to a sulfite reductase (SIR) that evolved to couple with a ferredoxin, we evaluated the ability of Flds to transfer electrons from a ferredoxin-NADP reductase (FNR) to a ferredoxin-dependent SIR using growth complementation of an Escherichia coli strain with a sulfur metabolism defect. We show that Flds from cyanobacteria complement this growth defect when coexpressed with an FNR and an SIR that evolved to couple with a plant ferredoxin. When we evaluated the effect of peptide insertion on Fld-mediated electron transfer, we observed a sensitivity to insertions within regions predicted to be proximal to the cofactor and partner binding sites, while a high insertion tolerance was detected within loops distal from the cofactor and within regions of helices and sheets that are proximal to those loops. Bioinformatic analysis showed that natural Fld sequence variability predicts a large fraction of the motifs that tolerate insertion of the octapeptide SGRPGSLS. These results represent the first evidence that Flds can support electron transfer to assimilatory SIRs, and they suggest that the pattern of insertion tolerance is influenced by interactions with oxidoreductase partners.
Collapse
Affiliation(s)
- Albert Truong
- Biochemistry and Cell Biology Graduate ProgramRice UniversityHoustonTexasUSA
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | | | - Ian Campbell
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | | | - Jonathan J. Silberg
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Department of BioengineeringRice UniversityHoustonTexasUSA
- Department of Chemical and Biomolecular EngineeringRice UniversityHoustonTexasUSA
| |
Collapse
|
3
|
Abstract
Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN flavins sandwiched by one or several non-catalytic domains. The catalytic domains are analogous to existing globular proteins: the FMN domain is analogous to flavodoxins while the FAD domain resembles ferredoxin reductases. The first structural determination of one member of the diflavin reductases family raised some questions about the architecture of the enzyme during catalysis: both FMN and FAD were in perfect position for interflavin transfers but the steric hindrance of the FAD domain rapidly prompted more complex hypotheses on the possible mechanisms for the electron transfer from FMN to external acceptors. Hypotheses of domain reorganization during catalysis in the context of the different members of this family were given by many groups during the past twenty years. This review will address the recent advances in various structural approaches that have highlighted specific dynamic features of diflavin reductases.
Collapse
Affiliation(s)
- Louise Aigrain
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; E-Mail:
| | - Fataneh Fatemi
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Oriane Frances
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Gilles Truan
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-567048813; Fax: +33-567048814
| |
Collapse
|
4
|
Role of the interface between the FMN and FAD domains in the control of redox potential and electronic transfer of NADPH-cytochrome P450 reductase. Biochem J 2011; 435:197-206. [PMID: 21265736 DOI: 10.1042/bj20101984] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CPR (NADPH-cytochrome P450 reductase) is a multidomain protein containing two flavin-containing domains joined by a connecting domain thought to control the necessary movements of the catalytic domains during electronic cycles. We present a detailed biochemical analysis of two chimaeric CPRs composed of the association of human or yeast FMN with the alternative connecting/FAD domains. Despite the assembly of domains having a relatively large evolutionary distance between them, our data support the idea that the integrity of the catalytic cycle is conserved in our chimaeric enzymes, whereas the recognition, interactions and positioning of both catalytic domains are probably modified. The main consequences of the chimaerogenesis are a decrease in the internal electron-transfer rate between both flavins correlated with changes in the geometry of chimaeric CPRs in solution. Results of the present study highlight the role of the linker and connecting domain in the recognition at the interfaces between the catalytic domains and the impact of interdomain interactions on the redox potentials of the flavins, the internal electron-transfer efficiency and the global conformation and dynamic equilibrium of the CPRs.
Collapse
|
5
|
Novikova LA, Faletrov YV, Kovaleva IE, Mauersberger S, Luzikov VN, Shkumatov VM. From structure and functions of steroidogenic enzymes to new technologies of gene engineering. BIOCHEMISTRY (MOSCOW) 2010; 74:1482-504. [DOI: 10.1134/s0006297909130057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gherasim CG, Zaman U, Raza A, Banerjee R. Impeded electron transfer from a pathogenic FMN domain mutant of methionine synthase reductase and its responsiveness to flavin supplementation. Biochemistry 2008; 47:12515-22. [PMID: 18980384 PMCID: PMC2645915 DOI: 10.1021/bi8008328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methionine synthase reductase (MSR) is a diflavin oxidoreductase that transfers electrons from NADPH to oxidized cobalamin and plays a vital role in repairing inactive cobalamin-dependent methionine synthase. MSR deficiency is a recessive genetic disorder affecting folate and methionine metabolism and is characterized by elevated levels of plasma homocysteine. In this study, we have examined the molecular basis of MSR dysfunction associated with a patient mutation, A129T, which is housed in the FMN binding domain and is adjacent to a cluster of conserved acidic residues found in diflavin oxidoreductases. We show that the substitution of alanine with threonine destabilizes FMN binding without affecting the NADPH coenzyme specificity or affinity, indicating that the mutation's effects may be confined to the FMN module. The A129T MSR mutant transfers electrons to ferricyanide as efficiently as wild type MSR but the rate of cytochrome c, 2,6-dichloroindophenol, and menadione reduction is decreased 10-15 fold. The mutant is depleted in FMN and reactivates methionine synthase with 8% of the efficiency of wild type MSR. Reconstitution of A129T MSR with FMN partially restores its ability to reduce cytochrome c and to reactivate methionine synthase. Hydrogen-deuterium exchange mass spectrometric studies localize changes in backbone amide exchange rates to peptides in the FMN-binding domain. Together, our results reveal that the primary biochemical penalty associated with the A129T MSR mutant is its lower FMN content, provide insights into the distinct roles of the FAD and FMN centers in human MSR for delivering electrons to various electron acceptors, and suggest that patients harboring the A129T mutation may be responsive to riboflavin therapy.
Collapse
Affiliation(s)
- Carmen G Gherasim
- Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | |
Collapse
|
7
|
Impairment of human CYP1A2-mediated xenobiotic metabolism by Antley-Bixler syndrome variants of cytochrome P450 oxidoreductase. Arch Biochem Biophys 2008; 475:93-9. [PMID: 18455494 DOI: 10.1016/j.abb.2008.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 01/08/2023]
Abstract
Y459H and V492E mutations of cytochrome P450 reductase (CYPOR) cause Antley-Bixler syndrome due to diminished binding of the FAD cofactor. To address whether these mutations impaired the interaction with drug-metabolizing CYPs, a bacterial model of human liver expression of CYP1A2 and CYPOR was implemented. Four models were generated: POR(null), POR(wt), POR(YH), and POR(VE), for which equivalent CYP1A2 and CYPOR levels were confirmed, except for POR(null), not containing any CYPOR. The mutant CYPORs were unable to catalyze cytochrome c and MTT reduction, and were unable to support EROD and MROD activities. Activity was restored by the addition of FAD, with V492E having a higher apparent FAD affinity than Y459H. The CYP1A2-activated procarcinogens, 2-aminoanthracene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-amino-3-methylimidazo(4,5-f)quinoline, were significantly less mutagenic in POR(YH) and POR(VE) models than in POR(wt), indicating that CYP1A2, and likely other drug-metabolizing CYPs, are impaired by ABS-related POR mutations as observed in the steroidogenic CYPs.
Collapse
|
8
|
Iyanagi T. Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. ACTA ACUST UNITED AC 2007; 260:35-112. [PMID: 17482904 DOI: 10.1016/s0074-7696(06)60002-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes that catalyze the biotransformation of drugs and xenobiotics are generally referred to as drug-metabolizing enzymes (DMEs). DMEs can be classified into two main groups: oxidative or conjugative. The NADPH-cytochrome P450 reductase (P450R)/cytochrome P450 (P450) electron transfer systems are oxidative enzymes that mediate phase I reactions, whereas the UDP-glucuronosyltransferases (UGTs) are conjugative enzymes that mediate phase II enzymes. Both enzyme systems are localized to the endoplasmic reticulum (ER) where a number of drugs are sequentially metabolized. DMEs, including P450s and UGTs, generally have a highly plastic active site that can accommodate a wide variety of substrates. The P450 and UGT genes constitute a supergene family, in which UGT proteins are encoded by distinct genes and a complex gene. Both the P450 and UGT genes have evolved to diversify their functions. This chapter reviews advances in understanding the structure and function of the P450R/P450 and UGT enzyme systems. In particular, the coordinate biotransformation of xenobiotics by phase I and II enzymes in the ER membrane is examined.
Collapse
Affiliation(s)
- Takashi Iyanagi
- Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| |
Collapse
|
9
|
Ceccarelli EA, Arakaki AK, Cortez N, Carrillo N. Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1698:155-65. [PMID: 15134648 DOI: 10.1016/j.bbapap.2003.12.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 12/05/2003] [Accepted: 12/10/2003] [Indexed: 11/20/2022]
Abstract
Ferredoxin (flavodoxin)-NADP(H) reductases (FNRs) are ubiquitous flavoenzymes that deliver NADPH or low potential one-electron donors (ferredoxin, flavodoxin, adrenodoxin) to redox-based metabolisms in plastids, mitochondria and bacteria. Two great families of FAD-containing proteins displaying FNR activity have evolved from different and independent origins. The enzymes present in mitochondria and some bacterial genera are members of the structural superfamily of disulfide oxidoreductases whose prototype is glutathione reductase. A second group, comprising the FNRs from plastids and most eubacteria, constitutes a unique family, the plant-type FNRs, totally unrelated in sequence with the former. The two-domain structure of the plant family of FNR also provides the basic scaffold for an extended superfamily of electron transfer flavoproteins. In this article we compare FNR flavoenzymes from very different origins and describe how the natural history of these reductases shaped structure, flavin conformation and catalytic activity to face the very different metabolic demands they have to deal with in their hosts. We show that plant-type FNRs can be classified into a plastidic class, characterised by extended FAD conformation and high catalytic efficiency, and a bacterial class displaying a folded FAD molecule and low turnover rates. Sequence alignments supported this classification, providing a criterion to predict the structural and biochemical properties of newly identified members of the family.
Collapse
Affiliation(s)
- Eduardo A Ceccarelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| | | | | | | |
Collapse
|
10
|
Zöllner A, Nogués I, Heinz A, Medina M, Gómez-Moreno C, Bernhardt R. Analysis of the interaction of a hybrid system consisting of bovine adrenodoxin reductase and flavodoxin from the cyanobacterium Anabaena PCC 7119. Bioelectrochemistry 2004; 63:61-5. [PMID: 15110249 DOI: 10.1016/j.bioelechem.2003.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 10/01/2003] [Accepted: 10/10/2003] [Indexed: 11/21/2022]
Abstract
The mitochondrial steroid-hydroxylating system in vertebrates and the NADPH producing electron transfer chain in photosynthetic organisms contain structurally and functionally similar components. Examination of a potential hybrid reconstitution of the electron transfer chain between different components of both systems could help to improve our knowledge on protein-protein interaction and subsequent electron transfer. Here we analyzed the interaction between bovine adrenodoxin reductase and flavodoxin from the cyanobacterium Anabaena PCC 7119. Optical biosensor as well as steady state and fast kinetic experiments showed their ability to form distinct productive complexes. Compared with the corresponding physiological systems the electron transfer is rather slow, probably due to the lack of specificity at the interaction surface.
Collapse
Affiliation(s)
- A Zöllner
- Fachrichtung 8.8-Biochemie, Universität des Saarlandes, P.O. Box 15 11 50, DE-66041, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Hlavica P, Schulze J, Lewis DFV. Functional interaction of cytochrome P450 with its redox partners: a critical assessment and update of the topology of predicted contact regions. J Inorg Biochem 2003; 96:279-97. [PMID: 12888264 DOI: 10.1016/s0162-0134(03)00152-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The problem of donor-acceptor recognition has been the most important and intriguing one in the area of P450 research. The present review outlines the topological background of electron-transfer complex formation, showing that the progress in collaborative investigations, combining physical techniques with chemical-modification and immunolocalization studies as well as site-directed mutagenesis experiments, has increasingly enabled the substantiation of hypothetical work resulting from homology modelling of P450s. Circumstantial analysis reveals the contact regions for redox proteins to cluster on the proximal face of P450s, constituting parts of the highly conserved, heme-binding core fold. However, more variable structural components located in the periphery of the hemoprotein molecules also participate in donor docking. The cross-reactivity of electron carriers, purified from pro- and eukaryotic sources, with a diversity of P450 species points at a possible evolutionary conservation of common anchoring domains. While electrostatic mechanisms appear to dominate orientation toward each other of the redox partners to generate pre-collisional encounter complexes, hydrophobic forces are likely to foster electron transfer events by through-bonding or pi-stacking interactions. Moreover, electron-tunneling pathways seem to be operative as well. The availability of new P450 crystal structures together with improved validation strategies will undoubtedly permit the production of increasingly satisfactory three-dimensional donor-acceptor models serving to better understand the molecular principles governing functional association of the redox proteins.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Nussbaumstrasse 26, D-80336, Munich, Germany.
| | | | | |
Collapse
|
12
|
Vyas NK, Vyas MN, Quiocho FA. Crystal structure of M tuberculosis ABC phosphate transport receptor: specificity and charge compensation dominated by ion-dipole interactions. Structure 2003; 11:765-74. [PMID: 12842040 DOI: 10.1016/s0969-2126(03)00109-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 2.16 A structure of the phosphate-bound PstS-1, the primary extracellular receptor for the ABC phosphate transporter and immunodominant species-specific antigen of Mycobacterium tuberculosis, has been determined. The phosphate, completely engulfed in the cleft between two domains, is bound by 13 hydrogen bonds, 11 of which are formed with NH and OH dipolar donor groups. The further presence of two acidic residues, which serve as acceptors of the protonated phosphate, is key to conferring stringent specificity. The ion-dipole interactions between the phosphate and dipolar groups compensate the ligand's isolated negative charges. Moreover, the surprise finding that the electrostatic surface in and around the cleft is intensely negative demonstrates the power of ion-dipole interactions in anion binding and electrostatic balance. Additional functional features include both the flexible N-terminal segment that tethers PstS-1 on the cell surface and the hinge between the two domains, which should facilitate snaring the phosphate in the medium.
Collapse
Affiliation(s)
- Nand K Vyas
- Verna and Marrs McLean Department, Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
13
|
Casaus JL, Navarro JA, Hervás M, Lostao A, De la Rosa MA, Gómez-Moreno C, Sancho J, Medina M. Anabaena sp. PCC 7119 flavodoxin as electron carrier from photosystem I to ferredoxin-NADP+ reductase. Role of Trp(57) and Tyr(94). J Biol Chem 2002; 277:22338-44. [PMID: 11950835 DOI: 10.1074/jbc.m112258200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of the amino acid residues sandwiching the flavin ring in flavodoxin (Fld) from the cyanobacterium Anabaena sp. PCC 7119 in complex formation and electron transfer (ET) with its natural partners, photosystem I (PSI) and ferredoxin-NADP(+) reductase (FNR), was examined in mutants of the key residues Trp(57) and Tyr(94). The mutants' ability to form complexes with either FNR or PSI is similar to that of wild-type Fld. However, some of the mutants exhibit altered kinetic properties in their ET processes that can be explained in terms of altered flavin accessibility and/or thermodynamic parameters. The most noticeable alteration is produced upon replacement of Tyr(94) by alanine. In this mutant, the processes that involve the transfer of one electron from either PSI or FNR are clearly accelerated, which might be attributable to a larger accessibility of the flavin to the reductant. However, when the opposite ET flow is analyzed with FNR, the reduced Y94A mutant transfers electrons to FNR slightly more slowly than wild type. This can be explained thermodynamically from a decrease in driving force due to the significant shift of 137 mV in the reduction potential value for the semiquinone/hydroquinone couple (E(1)) of Y94A, relative to wild type (Lostao, A., Gómez-Moreno, C., Mayhew, S. G., and Sancho, J. (1997) Biochemistry 36, 14334-14344). The behavior of the rest of the mutants can be explained in the same way. Overall, our data indicate that Trp(57) and Tyr(94) do not play any active role in flavodoxin redox reactions providing a path for the electrons but are rather involved in setting an appropriate structural and electronic environment that modulates in vivo ET from PSI to FNR while providing a tight FMN binding.
Collapse
Affiliation(s)
- José L Casaus
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Anandatheerthavarada HK, Amuthan G, Biswas G, Robin MA, Murali R, Waterman MR, Avadhani NG. Evolutionarily divergent electron donor proteins interact with P450MT2 through the same helical domain but different contact points. EMBO J 2001; 20:2394-403. [PMID: 11350928 PMCID: PMC125462 DOI: 10.1093/emboj/20.10.2394] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have investigated the sites of N-terminally truncated cytochrome P4501A1 targeted to mitochondria (P450MT2) which interact with adrenodoxin (Adx), cytochrome P450 reductase (CPR) and bacterial flavodoxin (Fln). The binding site was mapped by a combination of in vitro mutagenesis, in vivo screening with a mammalian two-hybrid system, spectral analysis, reconstitution of enzyme activity and homology-based structural modeling. Our results show that part of an aqueous accessible helix (putative helix G, residues 264-279) interacts with all three electron donor proteins. Mutational studies revealed that Lys267 and Lys271 are crucial for binding to Adx, while Lys268 and Arg275 are important for binding to CPR and FLN: Additive effects of different electron donor proteins on enzyme activity and models on protein docking show that Adx and CPR bind in a non-overlapping manner to the same helical domain in P450MT2 at different angular orientations, while CPR and Fln compete for the same binding site. We demonstrate that evolutionarily divergent electron donor proteins interact with the same domain but subtly different contact points of P450MT2.
Collapse
Affiliation(s)
| | | | | | | | - Ramachandran Murali
- Department of Animal Biology, School of Veterinary Medicine, 3800 Spruce Street,
Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 and Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA Corresponding author e-mail:
| | - Michael R. Waterman
- Department of Animal Biology, School of Veterinary Medicine, 3800 Spruce Street,
Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 and Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA Corresponding author e-mail:
| | - Narayan G. Avadhani
- Department of Animal Biology, School of Veterinary Medicine, 3800 Spruce Street,
Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 and Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA Corresponding author e-mail:
| |
Collapse
|
15
|
|
16
|
Adak S, Ghosh S, Abu-Soud HM, Stuehr DJ. Role of reductase domain cluster 1 acidic residues in neuronal nitric-oxide synthase. Characterization of the FMN-FREE enzyme. J Biol Chem 1999; 274:22313-20. [PMID: 10428800 DOI: 10.1074/jbc.274.32.22313] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nNOS reductase domain is homologous to cytochrome P450 reductase, which contains two conserved clusters of acidic residues in its FMN module that play varied roles in its electron transfer reactions. To study the role of nNOS reductase domain cluster 1 acidic residues, we mutated two conserved acidic (Asp(918) and Glu(919)) and one conserved aromatic residue (Phe(892)), and investigated the effect of each mutation on flavin binding, conformational change, electron transfer reactions, calmodulin regulation, and catalytic activities. Each mutation destabilized FMN binding without significantly affecting other aspects including substrate, cofactor or calmodulin binding, or catalytic activities upon FMN reconstitution, indicating the mutational effect was restricted to the FMN module. Characterization of the FMN-depleted mutants showed that bound FMN was essential for reduction of the nNOS heme or cytochrome c, but not for ferricyanide or dichlorophenolindolphenol, and established that the electron transfer path in nNOS is NADPH to FAD to FMN to heme. Steady-state and stopped-flow kinetic analysis revealed a novel role for bound FMN in suppressing FAD reduction by NADPH. The suppression could be relieved either by FMN removal or calmodulin binding. Calmodulin binding induced a conformational change that was restricted to the FMN module. This increased the rate of FMN reduction and triggered electron transfer to the heme. We propose that the FMN module of nNOS is the key positive or negative regulator of electron transfer at all points in nNOS. This distinguishes nNOS from other related flavoproteins, and helps explain the mechanism of calmodulin regulation.
Collapse
Affiliation(s)
- S Adak
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
17
|
Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL. Structure of a cytochrome P450-redox partner electron-transfer complex. Proc Natl Acad Sci U S A 1999; 96:1863-8. [PMID: 10051560 PMCID: PMC26702 DOI: 10.1073/pnas.96.5.1863] [Citation(s) in RCA: 388] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1998] [Accepted: 12/30/1998] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of the complex between the heme- and FMN-binding domains of bacterial cytochrome P450BM-3, a prototype for the complex between eukaryotic microsomal P450s and P450 reductase, has been determined at 2.03 A resolution. The flavodoxin-like flavin domain is positioned at the proximal face of the heme domain with the FMN 4.0 and 18.4 A from the peptide that precedes the heme-binding loop and the heme iron, respectively. The heme-binding peptide represents the most efficient and coupled through-bond electron pathway to the heme iron. Substantial differences between the FMN-binding domains of P450BM-3 and microsomal P450 reductase, observed around the flavin-binding sites, are responsible for different redox properties of the FMN, which, in turn, control electron flow to the P450.
Collapse
Affiliation(s)
- I F Sevrioukova
- University of California, Department of Molecular Biology and Biochemistry, 3205 Bio Sci II, Irvine, CA 92697-3900, USA
| | | | | | | | | |
Collapse
|
18
|
Zhao Q, Modi S, Smith G, Paine M, McDonagh PD, Wolf CR, Tew D, Lian LY, Roberts GC, Driessen HP. Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 A resolution. Protein Sci 1999; 8:298-306. [PMID: 10048323 PMCID: PMC2144264 DOI: 10.1110/ps.8.2.298] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The crystal structure of the FMN-binding domain of human NADPH-cytochrome P450 reductase (P450R-FMN), a key component in the cytochrome P450 monooxygenase system, has been determined to 1.93 A resolution and shown to be very similar both to the global fold in solution (Barsukov I et al., 1997, J Biomol NMR 10:63-75) and to the corresponding domain in the 2.6 A crystal structure of intact rat P450R (Wang M et al., 1997, Proc Nat Acad Sci USA 94:8411-8416). The crystal structure of P450R-FMN reported here confirms the overall similarity of its alpha-beta-alpha architecture to that of the bacterial flavodoxins, but reveals differences in the position, number, and length of the helices relative to the central beta-sheet. The marked similarity between P450R-FMN and flavodoxins in the interactions between the FMN and the protein, indicate a striking evolutionary conservation of the FMN binding site. The P450R-FMN molecule has an unusual surface charge distribution, leading to a very strong dipole, which may be involved in docking cytochrome P450 into place for electron transfer near the FMN. Several acidic residues near the FMN are identified by mutagenesis experiments to be important for electron transfer to P4502D6 and to cytochrome c, a clear indication of the part of the molecular surface that is likely to be involved in substrate binding. Somewhat different parts are found to be involved in binding cytochrome P450 and cytochrome c.
Collapse
Affiliation(s)
- Q Zhao
- ICRF Unit of Structural Molecular Biology, Department of Crystallography, Birkbeck College, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gómez-Moreno C, Martínez-Júlvez M, Medina M, Hurley JK, Tollin G. Protein-protein interaction in electron transfer reactions: the ferredoxin/flavodoxin/ferredoxin:NADP+ reductase system from Anabaena. Biochimie 1998; 80:837-46. [PMID: 9893942 DOI: 10.1016/s0300-9084(00)88878-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Electron transfer reactions involving protein-protein interactions require the formation of a transient complex which brings together the two redox centres exchanging electrons. This is the case for the flavoprotein ferredoxin:NADP+ reductase (FNR) from the cyanobacterium Anabaena, an enzyme which interacts with ferredoxin in the photosynthetic pathway to receive the electrons required for NADP+ reduction. The reductase shows a concave cavity in its structure into which small proteins such as ferredoxin can fit. Flavodoxin, an FMN-containing protein that is synthesised in cyanobacteria under iron-deficient conditions, plays the same role as ferredoxin in its interaction with FNR in spite of its different structure, size and redox cofactor. There are a number of negatively charged amino acid residues on the surface of ferredoxin and flavodoxin that play a role in the electron transfer reaction with the reductase. Thus far, in only one case has charge replacement of one of the acidic residues produced an increase in the rate of electron transfer, whereas in several other cases a decrease in the rate is observed. In the most dramatic example, replacement of Glu at position 94 of Anabaena ferredoxin results in virtually the complete loss of ability to transfer electrons. Charge-reversal of positively charged amino acid residues in the reductase also produces strong effects on the rate of electron transfer. Several degrees of impairment have been observed, the most significant involving a positively charged Lys at position 75 which appears to be essential for the stability of the complex between the reductase and ferredoxin. The results presented in this paper provide a clear demonstration of the importance of electrostatic interactions on the stability of the transient complex formed during electron transfer by the proteins presently under study.
Collapse
Affiliation(s)
- C Gómez-Moreno
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
| | | | | | | | | |
Collapse
|
20
|
Zeghouf M, Defaye G, Fontecave M, Coves J. The flavoprotein component of the Escherichia coli sulfite reductase can act as a cytochrome P450c17 reductase. Biochem Biophys Res Commun 1998; 246:602-5. [PMID: 9618257 DOI: 10.1006/bbrc.1998.8671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The flavoprotein component (SiR-FP) of the E. coli sulfite reductase was found to support 17 alpha-hydroxylation of pregnenolone in the presence of cytochrome P450c17. Half maximum activity is obtained for a 1:1 ratio of SiR-FP, expressed as monomer concentration, to P450c17. When compared to bovine NADPH-cytochrome P450 reductase, SiR-FP is about 12-15 times less efficient. P450c17 was demonstrated to interact specifically with the FMN-binding domain of the protein and the N-terminal part of SiR-FP is suspected to play a role in electron transfer. A cluster of negatively charged residues was found in SiR-FP by amino acid sequence comparison with rat cytochrome P450 reductase. These results argue in favour of the flavodoxin origin of the FMN-binding domain of SiR-FP.
Collapse
Affiliation(s)
- M Zeghouf
- Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, CEA-Grenoble, DBMS/CBCRB-CNRS-Université Joseph Fourier, France
| | | | | | | |
Collapse
|
21
|
Jenkins CM, Pikuleva I, Kagawa N, Waterman MR. Escherichia coli flavodoxin sepharose as an affinity resin for cytochromes P450 and use to identify a putative cytochrome P450c17/3beta-hydroxysteroid dehydrogenase interaction. Arch Biochem Biophys 1997; 347:93-102. [PMID: 9344469 DOI: 10.1006/abbi.1997.0318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flavodoxin Sepharose (Fld Sepharose), a reagent originally developed to demonstrate an interaction between native Escherichia coli Fld and cytochrome P450c17, has been synthesized, using highly expressed (7 micromol Fld/liter E. coli culture) recombinant E. coli Fld, for use as an affinity resin for microsomal cytochromes P450. As a test of the specificity of Fld Sepharose, we have examined the utility of this resin for purification of P450c17 and P450c21 from a relatively crude mixture of solubilized adrenocortical microsomal proteins. Chromatography of this mixture on Fld Sepharose resulted in a threefold enrichment of cytochrome P450 specific content without spectrally detectable P450 denaturation. Electrophoretic and immunoblot analyses of fractions eluted from the Fld Sepharose column revealed the presence of P450c17 and P450c21, both of which were sufficiently pure, after SDS-PAGE, for identification by N-terminal sequence analysis. Intriguingly, a major protein copurifying with P450c17 and P450c21 was identified as 3beta-hydroxysteroid dehydrogenase (3beta-HSD) which was subsequently found not to directly bind Fld Sepharose. Purified bovine 3beta-HSD covalently linked to Sepharose can bind recombinant bovine P450c17, an interaction which is partially disrupted upon mild heat denaturation of P450c17 or by the nonionic detergent Emulgen. This interaction, however, does not appear to affect P450c17 hydroxylase and lyase activities as measured in vitro. From these results, we propose that 3beta-HSD and P450c17 may associate, perhaps as part of a steroidogenic complex, in the endoplasmic reticulum.
Collapse
Affiliation(s)
- C M Jenkins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|