1
|
Smith GA. Frank-Starling law and mass action calcium activation of the myofibril ATPase; comment on "de Tombe PP, Mateja RD, Tachampa K, Mou YA, Farman GP, Irving TC. Myofilament length dependent activation. J Mol Cell Cardiol 2010; 48: 851-8". J Mol Cell Cardiol 2010; 49:707-8; author reply 709. [PMID: 20624395 DOI: 10.1016/j.yjmcc.2010.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022]
|
2
|
Calcium and the role of motoneuronal doublets in skeletal muscle control. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:159-73. [DOI: 10.1007/s00249-008-0364-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/26/2022]
|
3
|
Kistemaker DA, Van Soest AJ, Bobbert MF. A model of open-loop control of equilibrium position and stiffness of the human elbow joint. BIOLOGICAL CYBERNETICS 2007; 96:341-50. [PMID: 17171564 DOI: 10.1007/s00422-006-0120-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 10/14/2006] [Indexed: 05/13/2023]
Abstract
According to the equilibrium point theory, the control of posture and movement involves the setting of equilibrium joint positions (EP) and the independent modulation of stiffness. One model of EP control, the alpha-model, posits that stable EPs and stiffness are set open-loop, i.e. without the aid of feedback. The purpose of the present study was to explore for the elbow joint the range over which stable EPs can be set open-loop and to investigate the effect of co-contraction on intrinsic low-frequency elbow joint stiffness (K (ilf)). For this purpose, a model of the upper and lower arm was constructed, equipped with Hill-type muscles. At a constant neural input, the isometric force of the contractile element of the muscles depended on both the myofilamentary overlap and the effect of sarcomere length on the sensitivity of myofilaments to [Ca2+] (LDCS). The musculoskeletal model, for which the parameters were chosen carefully on the basis of physiological literature, captured the salient isometric properties of the muscles spanning the elbow joint. It was found that stable open-loop EPs could be achieved over the whole range of motion of the elbow joint and that K (ilf), which ranged from 18 to 42 N m.rad(-1), could be independently controlled. In the model, LDCS contributed substantially to K (ilf) (up to 25 N m.rad(-1)) and caused K (ilf) to peak at a sub-maximal level of co-contraction.
Collapse
Affiliation(s)
- Dinant A Kistemaker
- Institute for Fundamental and Clinical Human Movement Sciences, IFKB, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | | | |
Collapse
|
4
|
Cantino ME, Quintanilla A. Cooperative effects of rigor and cycling cross-bridges on calcium binding to troponin C. Biophys J 2006; 92:525-34. [PMID: 17056730 PMCID: PMC1751382 DOI: 10.1529/biophysj.106.093757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects of rigor and cycling cross-bridges on distributions of calcium (Ca) bound within sarcomeres of rabbit psoas muscle fibers were compared using electron probe x-ray microanalysis. Calcium in the overlap region of rigor fibers, after correction for that bound to thick filaments, was significantly higher than in the I-band at all pCa levels tested between 6.9 and 4.8, but the difference was greatest at pCa 6.9. With addition of MgATP, differences were significant at high levels of activation (pCa 5.6 and 4.9); near and below the threshold for activation, Ca was the same in I-band and overlap regions. Comparison of Ca and mass profiles at the A-I junction showed elevation of Ca extending 55-110 nm (up to three regulatory units) into the I-band. Extraction of TnC-reduced I-band and overlap Ca in rigor fibers at pCa 5.6 to the same levels found in unextracted fibers at pCa 8.9, suggesting that variations reported here reflect changes in Ca bound to troponin C (TnC). Taken together, these observations provide evidence for near-neighbor cooperative effects of both rigor and cycling cross-bridges on Ca(2+) binding to TnC.
Collapse
Affiliation(s)
- Marie E Cantino
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.
| | | |
Collapse
|
5
|
Kistemaker DA, Van Soest AKJ, Bobbert MF. Length-dependent [Ca2+] sensitivity adds stiffness to muscle. J Biomech 2005; 38:1816-21. [PMID: 16023468 DOI: 10.1016/j.jbiomech.2004.08.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 08/24/2004] [Indexed: 11/16/2022]
Abstract
It is well documented that muscle fibers become more sensitive for [Ca2+] with increasing sarcomere length. In mechanical terms this length-dependent [Ca2+] sensitivity (LDCS) adds to the stiffness of muscle fibers, because muscle force, normalized for the force-length relationship at maximal stimulation, increases with contractile element (CE) length. Although LDCS is well-documented in the physiological literature, it is ignored in most motor control studies. The aim of the present study was to investigate the importance of LDCS as a contributor to the stiffness of a muscle. Comparison of experimental data with predictions derived from the model of activation dynamics proposed by Hatze (Myocybernetic Control Models of Skeletal Muscle, University of South Africa, Pretoria, 1981, pp. 31-42) indicated that this model captures the main characteristics of LDCS well. It was shown that LDCS accounts for the experimentally observed shifts in optimum length at sub-maximal stimulation levels. Furthermore, it was shown that in conditions with low-to-medium muscle stimulation, the contribution of LDCS to the total amount of stiffness provided by the muscle is substantial. It was concluded that LDCS is an important muscle property and should be taken into account in studies concerning motor control.
Collapse
Affiliation(s)
- Dinant A Kistemaker
- Faculty of Human Movement Sciences, Institute for Fundamental and Clinical Human Movement Sciences, IFKB, Vrije Universiteit, van der Boechorststraat 9, 1081 BT Amsterdam, Netherlands.
| | | | | |
Collapse
|
6
|
Fuchs F, Martyn DA. Length-dependent Ca2+ activation in cardiac muscle: some remaining questions. J Muscle Res Cell Motil 2005; 26:199-212. [PMID: 16205841 DOI: 10.1007/s10974-005-9011-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/20/2005] [Indexed: 10/25/2022]
Abstract
The steep relationship between systolic force and end diastolic volume in cardiac muscle (Frank-Starling relation) is, to a large extent, based on length-dependent changes in myofilament Ca(2+) sensitivity. How sarcomere length modulates Ca(2+) sensitivity is still a topic of active investigation. Two general themes have emerged in recent years. On the one hand, there is a large body of evidence indicating that length-dependent changes in lattice spacing determine changes in Ca(2+) sensitivity for a given set of conditions. A model has been put forward in which the number of strong-binding cross-bridges that are formed is directly related to the proximity of the myosin heads to binding sites on actin. On the other hand, there is also a body of evidence suggesting that lattice spacing and Ca(2+) sensitivity are not tightly linked and that there is a length-sensing element in the sarcomere, which can modulate actin-myosin interactions independent of changes in lattice spacing. In this review, we examine the evidence that has been cited in support of these viewpoints. Much recent progress has been based on the combination of mechanical measurements with X-ray diffraction analysis of lattice spacing and cross-bridge interaction with actin. Compelling evidence indicates that the relationship between sarcomere length and lattice spacing is influenced by the elastic properties of titin and that changes in lattice spacing directly modulate cross-bridge interactions with thin filaments. However, there is also evidence that the precise relationship between Ca(2+) sensitivity and lattice spacing can be altered by changes in protein isoform expression, protein phosphorylation, modifiers of cross-bridge kinetics, and changes in titin compliance. Hence although there is no unique relationship between Ca(2+) sensitivity and lattice spacing the evidence strongly suggests that under any given set of physiological circumstances variation in lattice spacing is the major determinant of length-dependent changes in Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Franklin Fuchs
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
7
|
Rassier DE, MacIntosh BR. Length-dependent twitch contractile characteristics of skeletal muscle. Can J Physiol Pharmacol 2002; 80:993-1000. [PMID: 12450066 DOI: 10.1139/y02-127] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The length dependence of force development of mammalian skeletal muscles was evaluated during twitch, double-pulse, and tetanic contractions, and the relation between muscle length and the time-dependent characteristics of twitch and double-pulse contractions were determined. In situ isometric contractions of the rat gastrocnemius muscle were analyzed at seven different lengths, based on a reference length at which the maximal response to double-pulse contractions occurred (Lopt-2P). Twitch and double-pulse contractions were analyzed for developed tension (DT), contraction time (tC), average rate of force development (DT-tC(-1)), half-relaxation time (t50%R), peak rate of relaxation (DT x dtmin(-1)), and 90%-relaxation time (t90%R). Considering the length at which maximal tetanic DT occurred to be the optimal length (Lo-TET), the peak DT for twitch contractions and double-pulse contractions was observed at Lo-TET + 0.75 mm (p < 0.05) and Lo-TET + 0.1 mm (p > 0.05), respectively. When measured at the length for which maximal twitch and double-pulse contractions were obtained, tetanic DT was 95.2 +/- 3 and 99.0 +/- 2% of the maximal value, respectively. These observations suggest that double-pulse contractions are more suitable for setting length for experimental studies than twitch contractions. Twitch and double-pulse contraction tC were 15.53 +/- 1.14 and 25.0 +/- 0.6 ms, respectively, at Lopt-2P, and increased above Lopt-2P and decreased below Lopt-2P. Twitch t50%R was 12.18 +/- 0.90 ms at Lopt-2P, and increased above Lopt-2P and below Lopt-2P. Corresponding changes for double-pulse contractions were greater. Stretching the muscle leads to slower twitch contractions and double-pulse contractions, but the mechanisms of this change in time course remain unclear.
Collapse
Affiliation(s)
- Dilson E Rassier
- Human Performance Laboratory, Faculty of Kinesiology, 2500 University Drive, The University of Calgary, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
8
|
Wang Y, Kerrick WGL. The off rate of Ca(2+) from troponin C is regulated by force-generating cross bridges in skeletal muscle. J Appl Physiol (1985) 2002; 92:2409-18. [PMID: 12015355 DOI: 10.1152/japplphysiol.00376.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of dissociation of force-generating cross bridges on intracellular Ca(2+), pCa-force, and pCa-ATPase relationships were investigated in mouse skeletal muscle. Mechanical length perturbations were used to dissociate force-generating cross bridges in either intact or skinned fibers. In intact muscle, an impulse stretch or release, a continuous length vibration, a nonoverlap stretch, or an unloaded shortening during a twitch caused a transient increase in intracellular Ca(2+) compared with that in isometric controls and resulted in deactivation of the muscle. In skinned fibers, sinusoidal length vibrations shifted pCa-force and pCa-actomyosin ATPase rate relationships to higher Ca(2+) concentrations and caused actomyosin ATPase rate to decrease at submaximal Ca(2+) and increase at maximal Ca(2+) activation. These results suggest that dissociation of force-generating cross bridges during a twitch causes the off rate of Ca(2+) from troponin C to increase (a decrease in the Ca(2+) affinity of troponin C), thus decreasing the Ca(2+) sensitivity and resulting in the deactivation of the muscle. The results also suggest that the Fenn effect only exists at maximal but not submaximal force-activating Ca(2+) concentrations.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | |
Collapse
|
9
|
Wang Y, Fuchs F. Interfilament spacing, Ca2+ sensitivity, and Ca2+ binding in skinned bovine cardiac muscle. J Muscle Res Cell Motil 2002; 22:251-7. [PMID: 11763197 DOI: 10.1023/a:1012298921684] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The length-dependence of myofilament Ca2+ sensitivity in cardiac muscle appears to be a function of length-dependent variation in the lateral separation of actin and myosin filaments. The goal of this study was to determine how force, Ca2+ sensitivity, and Ca2+ binding to troponin C are correlated in skinned bovine ventricular muscle bundles set at sarcomere length 1.9 microm and subjected to varying degrees of osmotic compression with Dextran T-500. With 5, 10, and 15% Dextran T-500 the muscle diameter was reduced by 13, 21, and 25%, respectively. Addition of 5% Dextran T-500 caused increases in developed force, Ca2+ sensitivity, and in the affinity of Ca2+ for the regulatory binding site on troponin C. All of these parameters were reversed back toward control levels with 10% Dextran T-500. With 15% Dextran T-500 all parameters were decreased to below control levels. These data indicate that (1) there is an optimal filament separation at which both Ca2+ sensitivity and Ca2+ binding are maximized, and (2) Ca2+-troponin C affinity is linked to changes in Ca2+ sensitivity rather than to changes in interfilament spacing.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, PA 15261, USA
| | | |
Collapse
|
10
|
Fuchs F. The Frank -Starling Relationship: Cellular and Molecular Mechanisms. MOLECULAR CONTROL MECHANISMS IN STRIATED MUSCLE CONTRACTION 2002. [DOI: 10.1007/978-94-015-9926-9_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Martyn DA, Gordon AM. Influence of length on force and activation-dependent changes in troponin c structure in skinned cardiac and fast skeletal muscle. Biophys J 2001; 80:2798-808. [PMID: 11371454 PMCID: PMC1301465 DOI: 10.1016/s0006-3495(01)76247-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Linear dichroism of 5' tetramethyl-rhodamine (5'ATR) was measured to monitor the effect of sarcomere length (SL) on troponin C (TnC) structure during Ca2+ activation in single glycerinated rabbit psoas fibers and skinned right ventricular trabeculae from rats. Endogenous TnC was extracted, and the preparations were reconstituted with TnC fluorescently labeled with 5'ATR. In skinned psoas fibers reconstituted with sTnC labeled at Cys 98 with 5'ATR, dichroism was maximal during relaxation (pCa 9.2) and was minimal at pCa 4.0. In skinned cardiac trabeculae reconstituted with a mono-cysteine mutant cTnC (cTnC(C84)), dichroism of the 5'ATR probe attached to Cys 84 increased during Ca2+ activation of force. Force and dichroism-[Ca2+] relations were fit with the Hill equation to determine the pCa50 and slope (n). Increasing SL increased the Ca2+ sensitivity of force in both skinned psoas fibers and trabeculae. However, in skinned psoas fibers, neither SL changes or force inhibition had an effect on the Ca2+ sensitivity of dichroism. In contrast, increasing SL increased the Ca2+ sensitivity of both force and dichroism in skinned trabeculae. Furthermore, inhibition of force caused decreased Ca2+ sensitivity of dichroism, decreased dichroism at saturating [Ca2+], and loss of the influence of SL in cardiac muscle. The data indicate that in skeletal fibers SL-dependent shifts in the Ca2+ sensitivity of force are not caused by corresponding changes in Ca2+ binding to TnC and that strong cross-bridge binding has little effect on TnC structure at any SL or level of activation. On the other hand, in cardiac muscle, both force and activation-dependent changes in cTnC structure were influenced by SL. Additionally, the effect of SL on cardiac muscle activation was itself dependent on active, cycling cross-bridges.
Collapse
Affiliation(s)
- D A Martyn
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
12
|
Wang YP, Fuchs F. Length-dependent effects of osmotic compression on skinned rabbit psoas muscle fibers. J Muscle Res Cell Motil 2000; 21:313-9. [PMID: 11032342 DOI: 10.1023/a:1005679215704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The goal of this study was to characterize the interrelationship between sarcomere length and interfilament spacing in the control of Ca2+ sensitivity in skinned rabbit psoas muscle fibers. Measurements were made at sarcomere lengths 2.0, 2.7 and 3.4 microm. At 2.7 microm the fiber width was reduced by 17% relative to that at 2.0 microm and the pCa50 for force development was increased by approximately 0.3 pCa units. In the presence of 5% Dextran T-500 the fiber width at sarcomere length 2.0 microm was also decreased by 17% and the Ca2+ sensitivity was increased to the same value as at 2.7 microm. In contrast, at sarcomere length 2.7 microm the addition of as much as 10% Dextran T-500 had no effect on Ca2+ sensitivity. At sarcomere length 3.4 microm there was an additional 7% compression and the Ca2+ sensitivity was increased slightly (approximately 0.1 pCa units) relative to that at 2.7 microm. However at 3.4 microm the addition of 5% Dextran T-500 caused the Ca2+ sensitivity to decrease to the level seen at 2.0 microm. Given that the skinning process causes a swelling of the filament lattice it is evident that the relationship between sarcomere length and Ca2+ sensitivity observed in skinned fibers may not always be applicable to intact fibers. These data are consistent with measurements of Ca2+ in intact fibers which indicate that there might be a decline in Ca2+ sensitivity at long sarcomere lengths.
Collapse
Affiliation(s)
- Y P Wang
- Department of Cell Biology and Physiology, University of Pittsbhugh School of Medicine, PA 15261, USA
| | | |
Collapse
|
13
|
Abstract
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
14
|
Welikson RE, Buck SH, Patel JR, Moss RL, Vikstrom KL, Factor SM, Miyata S, Weinberger HD, Leinwand LA. Cardiac myosin heavy chains lacking the light chain binding domain cause hypertrophic cardiomyopathy in mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H2148-58. [PMID: 10362699 DOI: 10.1152/ajpheart.1999.276.6.h2148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin is a chemomechanical motor that converts chemical energy into the mechanical work of muscle contraction. More than 40 missense mutations in the cardiac myosin heavy chain (MHC) gene and several mutations in the two myosin light chains cause a dominantly inherited heart disease called familial hypertrophic cardiomyopathy. Very little is known about the biochemical defects in these alleles and how the mutations lead to disease. Because removal of the light chain binding domain in the lever arm of MHC should alter myosin's force transmission but not its catalytic function, we tested the hypothesis that such a mutant MHC would act as a dominant mutation in cardiac muscle. Hearts from transgenic mice expressing this mutant myosin are asymmetrically hypertrophied, with increases in mass primarily restricted to the cardiac anterior wall. Histological examination demonstrates marked cellular hypertrophy, myocyte disorganization, small vessel coronary disease, and severe valvular pathology that included thickening and plaque formation. Skinned myocytes and multicellular preparations from transgenic hearts exhibited decreased Ca2+ sensitivity of tension and decreased relaxation rates after flash photolysis of diazo 2. These experiments demonstrate that alterations in myosin force transmission are sufficient to trigger the development of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- R E Welikson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fentzke RC, Buck SH, Patel JR, Lin H, Wolska BM, Stojanovic MO, Martin AF, Solaro RJ, Moss RL, Leiden JM. Impaired cardiomyocyte relaxation and diastolic function in transgenic mice expressing slow skeletal troponin I in the heart. J Physiol 1999; 517 ( Pt 1):143-57. [PMID: 10226156 PMCID: PMC2269324 DOI: 10.1111/j.1469-7793.1999.0143z.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. To assess the specific functions of the cardiac isoform of troponin I (cTnI), we produced transgenic mice that expressed slow skeletal troponin I (ssTnI) specifically in cardiomyocytes. Cardiomyocytes from these mice displayed quantitative replacement of cTnI with transgene-encoded ssTnI. 2. The ssTnI transgenic mice were viable and fertile and did not display increased mortality or detectable cardiovascular histopathology. They exhibited normal ventricular weights and heart rates. 3. Permeabilized transgenic cardiomyocytes demonstrated an increased Ca2+ sensitivity of tension and a lack of contractile responsiveness to cAMP-dependent protein kinase (PKA). Isolated cardiomyocytes from transgenic mice had normal velocities of unloaded shortening but unlike wild-type controls exhibited no enhancement of the velocity of shortening in response to treatment with isoprenaline. Transgenic cardiomyocytes exhibited greater extents of shortening than non-transgenic cardiomyocytes at baseline and after treatment with isoprenaline. 4. The rates of rise of intracellular [Ca2+] and the peak amplitudes of the intracellular [Ca2+] transients were similar in transgenic and wild-type myocytes. However, the half-time of intracellular [Ca2+] decay was significantly greater in the transgenic myocytes. This change in decay of intracellular [Ca2+] was correlated with an increase in the re-lengthening time of the transgenic cells. 5. These changes in cardiomyocyte function in vitro were manifested in vivo as impaired diastolic function both at baseline and after stimulation with isoprenaline. 6. Thus, cTnI has important roles in regulating the Ca2+ sensitivity of cardiac myofibrils and controlling cardiomyocyte relaxation and cardiac diastolic function. cTnI is also required for the normal responsiveness of cardiomyocytes to beta-adrenergic receptor stimulation.
Collapse
Affiliation(s)
- R C Fentzke
- Departments of Medicine and Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rassier DE, MacIntosh BR, Herzog W. Length dependence of active force production in skeletal muscle. J Appl Physiol (1985) 1999; 86:1445-57. [PMID: 10233103 DOI: 10.1152/jappl.1999.86.5.1445] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is proportionally decreased when overlap is diminished. The force-length relationship is a static property of skeletal muscle and, therefore, it does not predict the consequences of dynamic contractions. Changes in sarcomere length during muscle contraction result in modulation of the active force that is not necessarily predicted by the cross-bridge theory. The results of in vivo studies of the force-length relationship suggest that muscles that operate on the ascending limb of the force-length relationship typically function in stretch-shortening cycle contractions, and muscles that operate on the descending limb typically function in shorten-stretch cycle contractions. The joint moments produced by a muscle depend on the moment arm and the sarcomere length of the muscle. Moment arm magnitude also affects the excursion (length change) of a muscle for a given change in joint angle, and the number of sarcomeres arranged in series within a muscle fiber determines the sarcomere length change associated with a given excursion.
Collapse
Affiliation(s)
- D E Rassier
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
17
|
Fitzsimons DP, Patel JR, Moss RL. Role of myosin heavy chain composition in kinetics of force development and relaxation in rat myocardium. J Physiol 1998; 513 ( Pt 1):171-83. [PMID: 9782168 PMCID: PMC2231272 DOI: 10.1111/j.1469-7793.1998.171by.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 08/07/1998] [Indexed: 11/30/2022] Open
Abstract
1. The effects of ventricular myosin heavy chain (MHC) composition on the kinetics of activation and relaxation were examined in both chemically skinned and intact myocardial preparations from adult rats. Thyroid deficiency was induced to alter ventricular MHC isoform expression from approximately 80% alpha-MHC/20% beta-MHC in euthyroid rats to 100% beta-MHC, without altering the expression of thin-filament-associated regulatory proteins. 2. In single skinned myocytes, increased expression of beta-MHC did not significantly affect either maximal Ca2+-activated tension (P0) or the Ca2+ sensitivity of tension (pCa50). However, unloaded shortening velocity (V0) decreased by 80% due to increased beta-MHC expression. 3. The kinetics of activation and relaxation were examined in skinned multicellular preparations using the caged Ca2+ compound DM-nitrophen and caged Ca2+ chelator diazo-2, respectively. Myocardium expressing 100% beta-MHC exhibited apparent rates of submaximal and maximal tension development (kCa) that were 60% lower than in control myocardium, and a 2-fold increase in the half-time for relaxation from steady-state submaximal force. 4. The time courses of cell shortening and intracellular Ca2+ transients were assessed in living, electrically paced myocytes, both with and without beta-adrenergic stimulation (70 nM isoproterenol (isoprenaline)). Thyroid deficiency had no affect on either the extent of myocyte shortening or the resting or peak fura-2 fluorescence ratios. However, induction of beta-MHC expression by thyroid deficiency was associated with increased half-times for myocyte shortening and relengthening and increased half-time for the decay of the fura-2 fluorescence ratio. Qualitatively similar results were obtained in both the absence and the presence of beta-adrenergic stimulation although the beta-agonist accelerated the kinetics of the twitch and the Ca2+ transient. 5. Collectively, these data provide evidence that increased beta-MHC expression contributes significantly to the observed depression of contractile function in thyroid deficient myocardium by slowing the rates of both force development and force relaxation.
Collapse
Affiliation(s)
- D P Fitzsimons
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI 53706, USA
| | | | | |
Collapse
|
18
|
Fitzsimons DP, Moss RL. Strong binding of myosin modulates length-dependent Ca2+ activation of rat ventricular myocytes. Circ Res 1998; 83:602-7. [PMID: 9742055 DOI: 10.1161/01.res.83.6.602] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reductions in sarcomere length (SL) and concomitant increases in interfilament lattice spacing have been shown to decrease the Ca2+ sensitivity of tension in myocardium. We tested the idea that increased lattice spacing influences the SL dependence of isometric tension by reducing the probability of strong interactions of myosin crossbridges with actin, thereby decreasing cooperative activation of the thin filament. Single ventricular myocytes were isolated by enzymatic digestion of rat hearts and were subsequently rapidly skinned. Maximal tension and Ca2+ sensitivity of tension (ie, pCa50) were measured in the absence and presence of N-ethylmaleimide-modified myosin subfragment 1 (NEM-S1) at both short and long SLs. NEM-S1, a strong-binding non-tension-generating derivative of the myosin head, was applied to single skinned myocytes to cooperatively promote strong binding of endogenous myosin crossbridges. Compared with control myocytes at SL of approximately 1.90 microm, application of NEM-S1 markedly increased submaximal Ca2+-activated tensions and thereby increased Ca2+ sensitivity; ie, pCa50 increased from 5.40+/-0.02 to 5.52+/-0.02 pCa units in the presence of NEM-S1. Furthermore, NEM-S1 treatment reversibly eliminated the SL dependence of the Ca2+ sensitivity of tension, in that the DeltapCa50 between short and long lengths was 0. 02+/-0.01 pCa units in the presence of NEM-S1 compared with a DeltapCa50 of 0.10+/-0.01 pCa units in control myocytes. From these results we conclude that the decrease in the Ca2+ sensitivity of tension at short SL results predominantly from decreased cooperative activation of the thin filament due to reductions in the number of strong-binding crossbridges.
Collapse
Affiliation(s)
- D P Fitzsimons
- From the Department of Physiology, University of Wisconsin School of Medicine, Madison, USA.
| | | |
Collapse
|
19
|
Brown EB, Webb WW. Two-photon activation of caged calcium with submicron, submillisecond resolution. Methods Enzymol 1998; 291:356-80. [PMID: 9661159 DOI: 10.1016/s0076-6879(98)91023-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- E B Brown
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|