1
|
Katikaridis P, Bohl V, Mogk A. Resisting the Heat: Bacterial Disaggregases Rescue Cells From Devastating Protein Aggregation. Front Mol Biosci 2021; 8:681439. [PMID: 34017857 PMCID: PMC8129007 DOI: 10.3389/fmolb.2021.681439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria as unicellular organisms are most directly exposed to changes in environmental growth conditions like temperature increase. Severe heat stress causes massive protein misfolding and aggregation resulting in loss of essential proteins. To ensure survival and rapid growth resume during recovery periods bacteria are equipped with cellular disaggregases, which solubilize and reactivate aggregated proteins. These disaggregases are members of the Hsp100/AAA+ protein family, utilizing the energy derived from ATP hydrolysis to extract misfolded proteins from aggregates via a threading activity. Here, we describe the two best characterized bacterial Hsp100/AAA+ disaggregases, ClpB and ClpG, and compare their mechanisms and regulatory modes. The widespread ClpB disaggregase requires cooperation with an Hsp70 partner chaperone, which targets ClpB to protein aggregates. Furthermore, Hsp70 activates ClpB by shifting positions of regulatory ClpB M-domains from a repressed to a derepressed state. ClpB activity remains tightly controlled during the disaggregation process and high ClpB activity states are likely restricted to initial substrate engagement. The recently identified ClpG (ClpK) disaggregase functions autonomously and its activity is primarily controlled by substrate interaction. ClpG provides enhanced heat resistance to selected bacteria including pathogens by acting as a more powerful disaggregase. This disaggregase expansion reflects an adaption of bacteria to extreme temperatures experienced during thermal based sterilization procedures applied in food industry and medicine. Genes encoding for ClpG are transmissible by horizontal transfer, allowing for rapid spreading of extreme bacterial heat resistance and posing a threat to modern food production.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Valentin Bohl
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
2
|
Ripstein ZA, Vahidi S, Houry WA, Rubinstein JL, Kay LE. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. eLife 2020; 9:e52158. [PMID: 31916936 PMCID: PMC7112952 DOI: 10.7554/elife.52158] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The ClpXP degradation machine consists of a hexameric AAA+ unfoldase (ClpX) and a pair of heptameric serine protease rings (ClpP) that unfold, translocate, and subsequently degrade client proteins. ClpXP is an important target for drug development against infectious diseases. Although structures are available for isolated ClpX and ClpP rings, it remains unknown how symmetry mismatched ClpX and ClpP work in tandem for processive substrate translocation into the ClpP proteolytic chamber. Here, we present cryo-EM structures of the substrate-bound ClpXP complex from Neisseria meningitidis at 2.3 to 3.3 Å resolution. The structures allow development of a model in which the sequential hydrolysis of ATP is coupled to motions of ClpX loops that lead to directional substrate translocation and ClpX rotation relative to ClpP. Our data add to the growing body of evidence that AAA+ molecular machines generate translocating forces by a common mechanism.
Collapse
Affiliation(s)
- Zev A Ripstein
- Department of BiochemistryUniversity of TorontoTorontoCanada
- The Hospital for Sick Children Research InstituteTorontoCanada
| | - Siavash Vahidi
- Department of BiochemistryUniversity of TorontoTorontoCanada
- The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of ChemistryUniversity of TorontoTorontoCanada
| | - Walid A Houry
- Department of BiochemistryUniversity of TorontoTorontoCanada
- Department of ChemistryUniversity of TorontoTorontoCanada
| | - John L Rubinstein
- Department of BiochemistryUniversity of TorontoTorontoCanada
- The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Lewis E Kay
- Department of BiochemistryUniversity of TorontoTorontoCanada
- The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of ChemistryUniversity of TorontoTorontoCanada
| |
Collapse
|
3
|
Amor AJ, Schmitz KR, Sello JK, Baker TA, Sauer RT. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle. ACS Chem Biol 2016; 11:1552-1560. [PMID: 27003103 DOI: 10.1021/acschembio.6b00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ClpXP protease assembles in a reaction in which an ATP-bound ring hexamer of ClpX binds to one or both heptameric rings of the ClpP peptidase. Contacts between ClpX IGF-loops and clefts on a ClpP ring stabilize the complex. How ClpXP stability is maintained during the ATP-hydrolysis cycle that powers mechanical unfolding and translocation of protein substrates is poorly understood. Here, we use a real-time kinetic assay to monitor the effects of nucleotides on the assembly and disassembly of ClpXP. When ATP is present, complexes containing single-chain ClpX assemble via an intermediate and remain intact until transferred into buffers containing ADP or no nucleotides. ATP binding to high-affinity subunits of the ClpX hexamer prevents rapid dissociation, but additional subunits must be occupied to promote assembly. Small-molecule acyldepsipeptides, which compete with the IGF loops of ClpX for ClpP-cleft binding, cause exceptionally rapid dissociation of otherwise stable ClpXP complexes, suggesting that the IGF-loop interactions with ClpP must be highly dynamic. Our results indicate that the ClpX hexamer spends almost no time in an ATP-free state during the ATPase cycle, allowing highly processive degradation of protein substrates.
Collapse
Affiliation(s)
| | | | - Jason K. Sello
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | | | | |
Collapse
|
4
|
Ling L, Montaño SP, Sauer RT, Rice PA, Baker TA. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX. J Mol Biol 2015; 427:2966-82. [PMID: 25797169 DOI: 10.1016/j.jmb.2015.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
ATP-dependent protein remodeling and unfolding enzymes are key participants in protein metabolism in all cells. How these often-destructive enzymes specifically recognize target protein complexes is poorly understood. Here, we use the well-studied AAA+ unfoldase-substrate pair, Escherichia coli ClpX and MuA transposase, to address how these powerful enzymes recognize target protein complexes. We demonstrate that the final transposition product, which is a DNA-bound tetramer of MuA, is preferentially recognized over the monomeric apo-protein through its multivalent display of ClpX recognition tags. The important peptide tags include one at the C-terminus ("C-tag") that binds the ClpX pore and a second one (enhancement or "E-tag") that binds the ClpX N-terminal domain. We construct a chimeric protein to interrogate subunit-specific contributions of these tags. Efficient remodeling of MuA tetramers requires ClpX to contact a minimum of three tags (one C-tag and two or more E-tags), and that these tags are contributed by different subunits within the tetramer. The individual recognition peptides bind ClpX weakly (KD>70 μM) but impart a high-affinity interaction (KD~1.0 μM) when combined in the MuA tetramer. When the weak C-tag signal is replaced with a stronger recognition tag, the E-tags become unnecessary and ClpX's preference for the complex over MuA monomers is eliminated. Additionally, because the spatial orientation of the tags is predicted to change during the final step of transposition, this recognition strategy suggests how AAA+ unfoldases specifically distinguish the completed "end-stage" form of a particular complex for the ideal biological outcome.
Collapse
Affiliation(s)
- Lorraine Ling
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-132, Cambridge, MA 02139, USA
| | - Sherwin P Montaño
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, W225, Chicago, IL 60637, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-132, Cambridge, MA 02139, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, W225, Chicago, IL 60637, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-132, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| |
Collapse
|
5
|
Too PHM, Erales J, Simen JD, Marjanovic A, Coffino P. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit. J Biol Chem 2013; 288:13243-57. [PMID: 23530043 DOI: 10.1074/jbc.m113.452524] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND ATP-dependent proteases translocate and unfold their substrates. RESULTS A human virus sequence with only Gly and Ala residues causes similar dysfunctions of eukaryotic and prokaryotic protease motors: unfolding failure. CONCLUSION Sequences with amino acids of simple shape and small size impair unfolding of contiguous stable domains. SIGNIFICANCE Compartmented ATP-dependent proteases of diverse origin share conserved principles of interaction between translocase/effector and substrate/recipient. ATP-dependent proteases engage, translocate, and unfold substrate proteins. A sequence with only Gly and Ala residues (glycine-alanine repeat; GAr) encoded by the Epstein-Barr virus of humans inhibits eukaryotic proteasome activity. It causes the ATPase translocase to slip on its protein track, stalling unfolding and interrupting degradation. The bacterial protease ClpXP is structurally simpler than the proteasome but has related elements: a regulatory ATPase complex (ClpX) and associated proteolytic chamber (ClpP). In this study, GAr sequences were found to impair ClpXP function much as in proteasomes. Stalling depended on interaction between a GAr and a suitably spaced and positioned folded domain resistant to mechanical unfolding. Persistent unfolding failure results in the interruption of degradation and the production of partial degradation products that include the resistant domain. The capacity of various sequences to cause unfolding failure was investigated. Among those tested, a GAr was most effective, implying that viral selection had optimized processivity failure. More generally, amino acids of simple shape and small size promoted unfolding failure. The ClpX ATPase is a homohexamer. Partial degradation products could exit the complex through transient gaps between the ClpX monomers or, alternatively, by backing out. Production of intermediates by diverse topological forms of the hexamer was shown to be similar, excluding lateral escape. In principle, a GAr could interrupt degradation because 1) the translocase thrusts forward less effectively or because 2) the translocase retains substrate less well when resetting between forward strokes. Kinetic analysis showed that the predominant effect was through the second of these mechanisms.
Collapse
Affiliation(s)
- Priscilla Hiu-Mei Too
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
6
|
ClpXP, an ATP-powered unfolding and protein-degradation machine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:15-28. [PMID: 21736903 DOI: 10.1016/j.bbamcr.2011.06.007] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 11/23/2022]
Abstract
ClpXP is a AAA+ protease that uses the energy of ATP binding and hydrolysis to perform mechanical work during targeted protein degradation within cells. ClpXP consists of hexamers of a AAA+ ATPase (ClpX) and a tetradecameric peptidase (ClpP). Asymmetric ClpX hexamers bind unstructured peptide tags in protein substrates, unfold stable tertiary structure in the substrate, and then translocate the unfolded polypeptide chain into an internal proteolytic compartment in ClpP. Here, we review our present understanding of ClpXP structure and function, as revealed by two decades of biochemical and biophysical studies.
Collapse
|
7
|
The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome. Proc Natl Acad Sci U S A 2010; 107:2437-42. [PMID: 20133746 DOI: 10.1073/pnas.0910905106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hyperstable complex of the tetrameric MuA transposase with recombined DNA must be remodeled to allow subsequent DNA replication. ClpX, a AAA+ enzyme, fulfills this function by unfolding one transpososome subunit. Which MuA subunit is extracted, and how complex destabilization relates to establishment of the correct directionality (left to right) of Mu replication, is not known. Here, using altered-specificity MuA proteins/DNA sites, we demonstrate that transpososome destabilization requires preferential ClpX unfolding of either the catalytic-left or catalytic-right subunits, which make extensive intersubunit contacts in the tetramer. In contrast, ClpX recognizes the other two subunits in the tetramer much less efficiently, and their extraction does not substantially destabilize the complex. Thus, ClpX targets the most stable structural components of the complex. Left-end biased Mu replication is not, however, determined by ClpX's intrinsic subunit preference. The specific targeting of a stabilizing "keystone subunit" within a complex for unfolding is an attractive general mechanism for remodeling by AAA+ enzymes.
Collapse
|
8
|
spr1630 is responsible for the lethality of clpX mutations in Streptococcus pneumoniae. J Bacteriol 2009; 191:4888-95. [PMID: 19465654 DOI: 10.1128/jb.00285-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Clp protease ATPase subunit and chaperone ClpX is dispensable in some bacteria, but it is thought to be essential in others, including streptococci and lactococci. We confirm that clpX is essential in the Rx strain of Streptococcus pneumoniae but show that the requirement for clpX can be relieved by point mutations, frame shifts, or deletion of the gene spr1630, which is found in many isolates of S. pneumoniae. Homologs occur frequently in Staphylococcus aureus as well as in a few strains of Listeria monocytogenes, Lactobacillus johnsonii, and Lactobacillus rhamnosus. In each case, the spr1630 homolog is accompanied by a putative transcriptional regulator with an HTH DNA binding motif. In S. pneumoniae, the spr1630-spr1629 gene pair, accompanied by a RUP element, occurs as an island inserted between the trpA and cclA genes in 15 of 22 sequenced genomes.
Collapse
|
9
|
Abdelhakim AH, Oakes EC, Sauer RT, Baker TA. Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX. Mol Cell 2008; 30:39-50. [PMID: 18406325 PMCID: PMC2717000 DOI: 10.1016/j.molcel.2008.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 11/28/2007] [Accepted: 02/01/2008] [Indexed: 11/17/2022]
Abstract
Clp/Hsp100 ATPases remodel and disassemble multiprotein complexes, yet little is known about how they preferentially recognize these complexes rather than their constituent subunits. We explore how substrate multimerization modulates recognition by the ClpX unfoldase using a natural substrate, MuA transposase. MuA is initially monomeric but forms a stable tetramer when bound to transposon DNA. Destabilizing this tetramer by ClpX promotes an essential transition in the phage Mu recombination pathway. We show that ClpX interacts more tightly with tetrameric than with monomeric MuA. Residues exposed only in the MuA tetramer are important for enhanced recognition--which requires the N domain of ClpX--as well as for a high maximal disassembly rate. We conclude that an extended set of potential enzyme contacts are exposed upon assembly of the tetramer and function as internal guides to recruit ClpX, thereby ensuring that the tetrameric complex is a high-priority substrate.
Collapse
Affiliation(s)
- Aliaa H Abdelhakim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
10
|
Marshall-Batty KR, Nakai H. Activation of a dormant ClpX recognition motif of bacteriophage Mu repressor by inducing high local flexibility. J Biol Chem 2008; 283:9060-70. [PMID: 18230617 DOI: 10.1074/jbc.m705508200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain (CTD) of bacteriophage Mu immunity repressor (Rep) regulates DNA binding by the N-terminal domain and degradation by ClpXP protease. Five residues at the Rep C terminus (CTD5) can serve as a ClpX recognition motif, but it is dormant unless activated, a state that can be induced by the presence of dominant-negative mutant repressors (Vir). Conversion of Rep to ClpXP-sensitive form was associated with not only increased exposure of CTD5 to solvent but also increased CTD motion or flexibility as measured by fluorescence anisotropy. CTD mutations (V183S, K193S, and V196S) promoting ClpXP resistance without destroying the recognition motif prevented increased CTD motion induced by Vir. Suppression of ClpXP protease resistance conferred by the V196S mutation also correlated with restoration of CTD motion. The temperature-sensitive R47Q mutation present in cis within the DNA-binding domain restored ClpXP protease sensitivity to the V196S mutant, and anisotropy analysis indicated that R47Q allows the V196S CTD to gain increased flexibility when Vir was present. The results indicate that the CTD functions to turn the recognition motif on and off, most likely by modulating flexibility of the domain that harbors the ClpX recognition motif, suggesting a general mechanism by which proteins can regulate their own degradation.
Collapse
Affiliation(s)
- Kimberly R Marshall-Batty
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, D. C. 20057, USA
| | | |
Collapse
|
11
|
Marshall-Batty KR, Nakai H. Trans-targeting of protease substrates by conformationally activating a regulable ClpX-recognition motif. Mol Microbiol 2008; 67:920-33. [DOI: 10.1111/j.1365-2958.2007.06099.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Post-translational regulation of the RpoS and PsrA genes in pseudomonas putida WCS358: The role of ClpXP protease. ARCH BIOL SCI 2008. [DOI: 10.2298/abs0801001j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The RpoS and PsrA proteins are key transcriptional regulators that are activated in response to the stationary phase of growth in pseudomonads. This study was designed to establish whether ClpXP (ATP-dependent serine protease) regulates levels of RpoS and PsrA in Pseudomonas putida WCS358. Western blot analysis of P. putida WCS358 protein extracts from the early exponentianl, late exponential, and stationary phases of growth with antibodies against RpoS and PsrA revealed that these proteins are degraded by ClpXP in the early exponential phase of growth. The obtained results demonstrate a role for ClpXP protease in post-translational regulation of proteins encoded by the rpoS and psrA genes in Pseudomonas spp.
Collapse
|
13
|
Zhang Y, Zuber P. Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity. J Bacteriol 2007; 189:7669-80. [PMID: 17827297 PMCID: PMC2168722 DOI: 10.1128/jb.00745-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spx, a transcriptional regulator of the disulfide stress response in Bacillus subtilis, is under the proteolytic control of the ATP-dependent protease ClpXP. Previous studies suggested that ClpXP activity is down-regulated in response to disulfide stress, resulting in elevated concentrations of Spx. The effect of disulfide stress on ClpXP activity was examined using the thiol-specific oxidant diamide. ClpXP-catalyzed degradation of either Spx or a green fluorescent protein derivative bearing an SsrA tag recognized by ClpXP was inhibited by diamide treatment in vitro. Spx is also a substrate for MecA/ClpCP-catalyzed proteolysis in vitro, but diamide used at the concentrations that inhibited ClpXP had little observable effect on MecA/ClpCP activity. ClpX bears a Cys4 Zn-binding domain (ZBD), which in other Zn-binding proteins is vulnerable to thiol-reactive electrophiles. Diamide treatment caused partial release of Zn from ClpX and the formation of high-molecular-weight species, as observed by electrophoresis through nonreducing gels. Reduced Spx proteolysis in vitro and elevated Spx concentration in vivo resulted when two of the Zn-coordinating Cys residues of the ClpX ZBD were changed to Ser. This was reflected in enhanced Spx activity in both transcription activation and repression in cells expressing the Cys-to-Ser mutants. ClpXP activity in vivo is reduced when cells are exposed to diamide, as shown by the enhanced stability of an SsrA-tagged protein after treatment with the oxidant. The results are consistent with the hypothesis that inhibition of ClpXP by disulfide stress is due to structural changes to the N-terminal ZBD of ClpX.
Collapse
Affiliation(s)
- Ying Zhang
- Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20000 NW Walker Rd., Beaverton, OR 97006, USA
| | | |
Collapse
|
14
|
Martin A, Baker TA, Sauer RT. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. Mol Cell 2007; 27:41-52. [PMID: 17612489 PMCID: PMC2074893 DOI: 10.1016/j.molcel.2007.05.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 04/06/2007] [Accepted: 05/28/2007] [Indexed: 11/16/2022]
Abstract
In the ClpXP proteolytic machine, ClpX uses the energy of ATP hydrolysis to unfold protein substrates and translocate them through a central pore and into the degradation chamber of ClpP. Here, we demonstrate a bipartite system of ClpX-ClpP interactions that serves multiple functional roles. High-affinity contacts between six loops near the periphery of the hexameric ClpX ring and a ClpP ring establish correct positioning and increase degradation activity but are insensitive to nucleotide state. These static peripheral interactions maintain a stable ClpXP complex, while other parts of this machine change conformation hundreds of times per minute. By contrast, relatively weak axial contacts between loops at the bottom of the ClpX central channel and N-terminal loops of ClpP vary dynamically with the nucleotide state of individual ClpX subunits, control ATP-hydrolysis rates, and facilitate efficient protein unfolding. Thus, discrete static and dynamic interactions mediate binding and communication between ClpX and ClpP.
Collapse
Affiliation(s)
- Andreas Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
15
|
van Leeuwen H, Monfort A, Puigdomenech P. Mutator-like elements identified in melon, Arabidopsis and rice contain ULP1 protease domains. Mol Genet Genomics 2006; 277:357-64. [PMID: 17136348 DOI: 10.1007/s00438-006-0194-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/05/2006] [Indexed: 01/22/2023]
Abstract
The transposon Mutator was first identified in maize, and is one of the most active mobile elements in plants. The Arabidopsis thaliana genome contains at least 200 Mutator-like elements (MULEs), which contain the Mutator-like transposase gene, and often additional genes. We have detected a novel type of MULEs in melon (CUMULE), which, besides the transposase, contains two ubiquitin-like specific protease-like sequences (ULP1). This element is not present in the observed location in some melon cultivars. Multiple copies of this element exist in the Cucumis melo genome, and it has been detected in other Cucurbitaceae species. Analysis of the A. thaliana genome revealed more than 90 CUMULE-like elements, containing one or two Ulp1-like sequences, although no evidence of mobility exists for these elements. We detected various putative transposable elements containing ULP1-like sequences in rice. The discovery of these MULEs in melon and Arabidopsis, and the existence of similar elements in rice and maize, suggest that a proteolytic function may be important for this subset of the MULE transposable elements.
Collapse
Affiliation(s)
- Hans van Leeuwen
- Departament de Genètica Molecular, Laboratori de Genètica Molecular Vegetal, CSIC-IRTA, Jordi Girona 18, 08034, Barcelona, Spain
| | | | | |
Collapse
|
16
|
Burton BM, Baker TA. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Protein Sci 2005; 14:1945-54. [PMID: 16046622 PMCID: PMC2279306 DOI: 10.1110/ps.051417505] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiprotein complexes in the cell are dynamic entities that are constantly undergoing changes in subunit composition and conformation to carry out their functions. The protein-DNA complex that promotes recombination of the bacteriophage Mu is a prime example of a complex that must undergo specific changes to carry out its function. The Clp/Hsp100 family of AAA+ ATPases plays a critical role in mediating such changes. The Clp/Hsp100 unfolding enzymes have been extensively studied for the roles they play in protein degradation. However, degradation is not the only fate for proteins that come in contact with the ATP-dependent unfolding enzymes. The Clp/Hsp100 enzymes induce structural changes in their substrates. These structural changes, which we refer to as "remodeling", ultimately change the biological activity of the substrate. These biological changes include activation, inactivation (not associated with degradation), and relocation within the cell. Analysis of the interaction between Escherichia coli ClpX unfoldase and the Mu recombination complex, has provided molecular insight into the mechanisms of protein remodeling. We discuss the key mechanistic features of the remodeling reactions promoted by ClpX and possible implications of these findings for other biological reactions.
Collapse
Affiliation(s)
- Briana M Burton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
17
|
North SH, Nakai H. Host factors that promote transpososome disassembly and the PriA-PriC pathway for restart primosome assembly. Mol Microbiol 2005; 56:1601-16. [PMID: 15916609 DOI: 10.1111/j.1365-2958.2005.04639.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Initiation of bacteriophage Mu DNA replication by transposition requires the disassembly of the transpososome that catalyses strand exchange and the assembly of a replisome promoted by PriA, PriB, PriC and DnaT proteins, which function in the host to restart stalled replication forks. Once the molecular chaperone ClpX weakens the very tight binding of the transpososome to the Mu ends, host disassembly factors (MRFalpha-DF) promote the dissociation of the transpososome from the DNA template and the assembly of a new nucleoprotein complex. Prereplisome factors (MRFalpha-PR) further alter the complex, allowing PriA binding and loading of major replicative helicase DnaB onto the template promoted by the restart proteins. MRFalpha-PR is essential for DnaB loading by restart proteins even on the deproteinized Mu fork whereas MRFalpha-DF is not required on the deproteinized template. When the transition from transpososome to replisome was reconstituted using MRFalpha-DF and MRFalpha-PR, initiation of Mu DNA replication was strictly dependent upon added PriC and PriA helicase. In contrast, initiation on the deproteinized template was predominantly dependent upon PriB and did not require PriA's helicase activity. The results indicate that transition mechanisms beginning with the transpososome disassembly can determine the pathway of replisome assembly by restart proteins.
Collapse
Affiliation(s)
- Stella H North
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Room 331 Basic Science Bldg., 3900 Reservoir Road NW, Washington, DC 20057-1455, USA
| | | |
Collapse
|
18
|
Abstract
Target specificity for bacteriophage Mu was studied using a new phage derivative that enabled cloning of Mu-host junctions from phage DNA. Insertions distributed throughout the chromosome showed no orientation bias with respect to transcription or replication polarity. Genes with a high frequency of the triplet CGG were preferred targets.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
19
|
Gribun A, Kimber MS, Ching R, Sprangers R, Fiebig KM, Houry WA. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. J Biol Chem 2005; 280:16185-96. [PMID: 15701650 DOI: 10.1074/jbc.m414124200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpP is a conserved serine-protease with two heptameric rings that enclose a large chamber containing the protease active sites. Each ClpP subunit can be divided into a handle region, which mediates ring-ring interactions, and a head domain. ClpP associates with the hexameric ATPases ClpX and ClpA, which can unfold and translocate substrate proteins through the ClpP axial pores into the protease lumen for degradation. We have determined the x-ray structure of Streptococcus pneumoniae ClpP(A153P) at 2.5 A resolution. The structure revealed two novel features of ClpP which are essential for ClpXP and ClpAP functional activities. First, the Ala --> Pro mutation disrupts the handle region, resulting in an altered ring-ring dimerization interface, which, in conjunction with biochemical data, demonstrates the unusual plasticity of this region. Second, the structure shows the existence of a flexible N-terminal loop in each ClpP subunit. The loops line the axial pores in the ClpP tetradecamer and then protrude from the protease apical surface. The sequence of the N-terminal loop is highly conserved in ClpP across all kingdoms of life. These loops are essential determinants for complex formation between ClpP and ClpX/ClpA. Mutation of several amino acid residues in this loop or the truncation of the loop impairs ClpXP and ClpAP complex formation and prevents the coupling between ClpX/ClpA and ClpP activities.
Collapse
Affiliation(s)
- Anna Gribun
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Donaldson LW, Wojtyra U, Houry WA. Solution Structure of the Dimeric Zinc Binding Domain of the Chaperone ClpX. J Biol Chem 2003; 278:48991-6. [PMID: 14525985 DOI: 10.1074/jbc.m307826200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpX (423 amino acids), a member of the Clp/Hsp100 family of molecular chaperones and the protease, ClpP, comprise a multimeric complex supporting targeted protein degradation in Escherichia coli. The ClpX sequence consists of an NH2-terminal zinc binding domain (ZBD) and a COOH-terminal ATPase domain. Earlier, we have demonstrated that the zinc binding domain forms a constitutive dimer that is essential for the degradation of some ClpX substrates such as gammaO and MuA but is not required for the degradation of other substrates such as green fluorescent protein-SsrA. In this report, we present the NMR solution structure of the zinc binding domain dimer. The monomer fold reveals that ZBD is a member of the treble clef zinc finger family, a motif known to facilitate protein-ligand, protein-DNA, and protein-protein interactions. However, the dimeric ZBD structure is not related to any protein structure in the Protein Data Bank. A trimer-of-dimers model of ZBD is presented, which might reflect the closed state of the ClpX hexamer.
Collapse
Affiliation(s)
- Logan W Donaldson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | | | |
Collapse
|
21
|
Abstract
Proteolysis by cytoplasmic, energy-dependent proteases plays a critical role in many regulatory circuits, keeping basal levels of regulatory proteins low and rapidly removing proteins when they are no longer needed. In bacteria, four families of energy-dependent proteases carry out degradation. In all of them, substrates are first recognized and bound by ATPase domains and then unfolded and translocated to a sequestered proteolytic chamber. Substrate selection depends not on ubiquitin but on intrinsic recognition signals within the proteins and, in some cases, on adaptor or effector proteins that participate in delivering the substrate to the protease. For some, the activity of these adaptors can be regulated, which results in regulated proteolysis. Recognition motifs for proteolysis are frequently found at the N and C termini of substrates. Proteolytic switches appear to be critical for cell cycle development in Caulobacter crescentus, for proper sporulation in Bacillus subtilis, and for the transition in and out of stationary phase in Escherichia coli. In eukaryotes, the same proteases are found in organelles, where they also play important roles.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892-4264, USA.
| |
Collapse
|
22
|
Defenbaugh DA, Nakai H. A context-dependent ClpX recognition determinant located at the C terminus of phage Mu repressor. J Biol Chem 2003; 278:52333-9. [PMID: 14559921 DOI: 10.1074/jbc.m308724200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage Mu immunity repressor is a conformationally sensitive sensor that can be interconverted between forms resistant to and sensitive to degradation by ClpXP protease. Protease-sensitive repressor molecules with an altered C-terminal sequence promote rapid degradation of the wild-type repressor by inducing its C-terminal end to become exposed. Here we determined that the last 5 C-terminal residues (CTD5) of the wild-type repressor contain the motif required for recognition by the ClpX molecular chaperone, a motif that is strongly dependent upon the context in which it is presented. Although attachment of the 11-residue ssrA degradation tag to the C terminus of green fluorescent protein (GFP) promoted its rapid degradation by ClpXP, attachment of 5-27 C-terminal residues of the repressor failed to promote degradation. Disordered peptides derived from 41 and 35 C-terminal residues of CcdA (CcdA41) and thioredoxin (TrxA35), respectively, activated CTD5 when placed as linkers between GFP and repressor C-terminal sequences. However, when the entire thioredoxin sequence was included as a linker to promote an ordered configuration of the TrxA35 peptide, the resulting substrate was not degraded. In addition, a hybrid tag, in which CTD5 replaced the 3-residue recognition motif of the ssrA tag, was inactive when attached directly to GFP but active when attached through the CcdA41 peptide. Thus, CTD5 is sufficient to act as a recognition motif but has requirements for its presentation not shared by the ssrA tag. We suggest that activation of CTD5 may require presentation on a disordered or flexible domain that confers ligand flexibility.
Collapse
Affiliation(s)
- Dawn A Defenbaugh
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | | |
Collapse
|
23
|
Coros CJ, Sekino Y, Baker TA, Chaconas G. Effect of mutations in the C-terminal domain of Mu B on DNA binding and interactions with Mu A transposase. J Biol Chem 2003; 278:31210-7. [PMID: 12791691 DOI: 10.1074/jbc.m303693200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage Mu transposition requires two phage-encoded proteins, the transposase, Mu A, and an accessory protein, Mu B. Mu B is an ATP-dependent DNA-binding protein that is required for target capture and target immunity and is an allosteric activator of transpososome function. The recent NMR structure of the C-terminal domain of Mu B (Mu B223-312) revealed that there is a patch of positively charged residues on the solvent-exposed surface. This patch may be responsible for the nonspecific DNA binding activity displayed by the purified Mu B223-312 peptide. We show that mutations of three lysine residues within this patch completely abolish nonspecific DNA binding of the C-terminal peptide (Mu B223- 312). To determine how this DNA binding activity affects transposition we mutated these lysine residues in the full-length protein. The full-length protein carrying all three mutations was deficient in both strand transfer and allosteric activation of transpososome function but retained ATPase activity. Peptide binding studies also revealed that this patch of basic residues within the C-terminal domain of Mu B is within a region of the protein that interacts directly with Mu A. Thus, we conclude that this protein segment contributes to both DNA binding and protein-protein contacts with the Mu transposase.
Collapse
Affiliation(s)
- Colin J Coros
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
24
|
Burton BM, Baker TA. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. CHEMISTRY & BIOLOGY 2003; 10:463-72. [PMID: 12770828 DOI: 10.1016/s1074-5521(03)00102-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Clp/Hsp100 ATPases are protein unfoldases that both alter protein conformation and target proteins for degradation. An unresolved question has been how such seemingly destructive enzymes can "remodel" some protein substrates rather than destroy them. Here, we investigate the products of ClpX-mediated remodeling of a hyper-stable protein-DNA complex, the Mu transpososome. We find that although an oligomeric complex is maintained, release of some subunits accompanies ClpX action. Replacement of transposase's endogenous ClpX-recognition sequence with an exogenous signal reveals that the mechanism of remodeling is independent of both the recognition signal and the identity of the unfoldase. Finally, examination of the transposase-DNA contacts reveals only a localized region that is altered during remodeling. These results provide a framework for protein remodeling, wherein the physical attributes of a complex can limit the unfolding activity of its remodeler.
Collapse
Affiliation(s)
- Briana M Burton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
25
|
Mukhopadhyay B, Marshall-Batty KR, Kim BD, O'Handley D, Nakai H. Modulation of phage Mu repressor DNA binding and degradation by distinct determinants in its C-terminal domain. Mol Microbiol 2003; 47:171-82. [PMID: 12492862 DOI: 10.1046/j.1365-2958.2003.03286.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rapid degradation of the bacteriophage Mu immunity repressor can be induced in trans by mutant, protease-hypersensitive repressors (Vir) with an altered C-terminal domain (CTD). Genetic and biochemical analysis established that distinct yet overlapping determinants in the wild-type repressor CTD modulate Vir-induced degradation by Escherichia coli ClpXP protease and DNA binding by the N-terminal DNA-binding domain (DBD). Although deletions of the repressor C-terminus resulted in both resistance to ClpXP protease and suppression of a temperature-sensitive DBD mutation (cts62), some cysteine-replacement mutations in the CTD elicited only one of the two phenotypes. Some CTD mutations prevented degradation induced by Vir and resulted in the loss of intrinsic ClpXP protease sensitivity, characteristic of wild-type repressor, and at least two mutant repressors protected Vir from proteolysis. One protease-resistant mutant became susceptible to Vir-induced degradation when it also contained the cts62 mutation, which weakens DNA binding but apparently facilitates conversion to a protease-sensitive conformation. Conversely, this CTD mutation was able to suppress temperature sensitivity of DNA binding by the cts62 repressor. The results suggest that determinants in the CTD not only provide a cryptic ClpX recognition motif but also direct CTD movement that exposes the motif and modulates DNA binding.
Collapse
Affiliation(s)
- Bani Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Rm. 331, Basic Science Bldg., 3900 Reservoir Road NW, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
26
|
O'Handley D, Nakai H. Derepression of bacteriophage mu transposition functions by truncated forms of the immunity repressor. J Mol Biol 2002; 322:311-24. [PMID: 12217693 DOI: 10.1016/s0022-2836(02)00755-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To trigger bacteriophage Mu transposition and replication in response to physiological signals, its immunity repressor must be synchronously inactivated. Two repressor mutants (Vir), which have an altered C-terminal domain and are highly susceptible to degradation by ClpXP protease, confer a dominant negative phenotype by promoting degradation of the wild-type repressor. To search for other modified repressors that can induce Mu derepression in vivo and to determine what part of the inducing repressor molecules are needed to target the unmodified repressor population, repressor peptides with nested deletions starting at the C-terminal end were constructed. Such peptides with a C-terminal ssrA degradation tag promoted a sharp reduction in cellular levels of full-length unmodified repressor, a process largely dependent upon the clpP protease function. Only the repressor DNA-binding domain, located at the N-terminal end, was required in tagged peptides to target unmodified repressor. In addition, some repressor peptides containing the DNA-binding domain promoted derepression without the clpP function, being able to promote repressor inactivation without promoting its degradation. None of the modified repressors could promote derepression if immunity was established by a mutant repressor lacking 18 residues at its C-terminal end. The results indicate that inducing repressor peptides influence the function of the C-terminal domain of the intact repressor, a domain that regulates its degradation and DNA binding. They suggest the possibility that tagged repressor molecules, produced by stalled ribosomes, can be inducers of transposition under starvation conditions.
Collapse
Affiliation(s)
- Diane O'Handley
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | |
Collapse
|
27
|
Hoskins JR, Sharma S, Sathyanarayana BK, Wickner S. Clp ATPases and their role in protein unfolding and degradation. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:413-29. [PMID: 11868279 DOI: 10.1016/s0065-3233(01)59013-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although much has been learned about the structure and function of Clp chaperones and their role in proteolysis, the mechanism of protein unfolding catalyzed by Clp ATPases and the mechanism of translocation of the unfolded proteins from Clp ATPases to partner proteases remain unsolved puzzles. However, models in which mechanical force is used to destabilize the structure of the substrate in a processive and directional manner are probable. It also seems likely that when ClpA ATPases are associated with proteases, unfolding is coupled to extrusion of the unfolded protein into the proteolytic cavity. In summary, it is anticipated that the large family of Clp ATPases will accomplish their many important cellular functions by similar mechanisms and what has been learned by studying the prokaryotic members reviewed here will shed a great deal of light on all members of the family.
Collapse
Affiliation(s)
- J R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
28
|
Lafarga M, Fernández R, Mayo I, Berciano MT, Castaño JG. Proteasome dynamics during cell cycle in rat Schwann cells. Glia 2002; 38:313-28. [PMID: 12007144 DOI: 10.1002/glia.10075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The proteasome is responsible for most of the protein degradation that takes place in the cytoplasm and nucleus. Immunofluorescence and electron microscopy are used to study proteasome dynamics during the cell cycle in rat Schwann cells. During interphase, the proteasome is present in the nucleus and cytoplasm and shows no colocalization with cytoskeletal components. Some cytoplasmic proteasomes always localize in the centrosome both in interphase and in mitotic cells and only associate with microtubules during mitosis. The proteasome exits the nucleus during prophase. In anaphase, the proteasome becomes prominent in the region between the two sets of migrating chromosomes and in association with interzonal microtubules and stem bodies. In telophase, the proteasome begins to reenter the nucleus and is prominent in the midbody region until the end of cytokinesis. The proteasome does not colocalize with actin or vimentin during mitosis, except for colocalization with actin in the sheet-like lamellipodia, which serve as substrate attachments for the cell during mitosis. During S phase, nuclear proteasomes colocalize with foci of BrdU incorporation, but this association changes with time: maximal at early S phase and declining as S phase progresses to the end. These results are discussed in relation to the biochemical pathways involved in cell cycle progression.
Collapse
Affiliation(s)
- Miguel Lafarga
- Departamento de Anatomia y Biología Celular, Universidad de Cantabria, Santander, Spain
| | | | | | | | | |
Collapse
|
29
|
Abstract
The dinucleotide CA found at the termini of transposable phage Mu also occurs at the termini of a large class of transposable elements, including HIV, all retroviruses and many retrotransposons. In order to understand the importance of this sequence conservation, the activity of all 16 dinucleotide permutations of the termini was first examined using a sensitive plasmid-based in vivo transposition assay. The reactivity of these substrates varied over several orders of magnitude in vivo, with substitutions at the A position being more severely impaired than those at the C position. The same general hierarchy of reactivity was observed in vitro using mutant oligonucleotide substrates. These experiments revealed that CA was not important for the chemistry of strand transfer, and that the block in the activity of the mutant substrates was at the stage of assembly of a stable transpososome. Given that DNA at the Mu-host junctions is melted/distorted concomitantly with transpososome assembly, we consider the hypothesis that the CA dinucleotide has been selected at transposon termini primarily for its significant conformational mobility.
Collapse
Affiliation(s)
- I Lee
- Section of Molecular Genetics & Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
30
|
Burton BM, Williams TL, Baker TA. ClpX-mediated remodeling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Mol Cell 2001; 8:449-54. [PMID: 11545746 DOI: 10.1016/s1097-2765(01)00307-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
E. coli ClpX, a member of the Clp/Hsp100 family of ATPases, remodels multicomponent complexes and facilitates ATP-dependent degradation. Here, we analyze the mechanism by which ClpX destabilizes the exceedingly stable Mu transpososome, a natural substrate for remodeling rather than degradation. We find that ClpX has the capacity to globally unfold transposase monomers, the building blocks of the transpososome. A biochemical probe for protein unfolding reveals that ClpX also unfolds MuA subunits during remodeling reactions, but that not all subunits have their structure extensively modified. In fact, direct recognition and unfolding of a single transposase subunit are sufficient for ClpX to destabilize the entire transpososome. Thus, the ability of ClpX to unfold proteins is sufficient to explain its role in both complex destabilization and ATP-dependent proteolysis.
Collapse
Affiliation(s)
- B M Burton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
31
|
Nakai H, Doseeva V, Jones JM. Handoff from recombinase to replisome: insights from transposition. Proc Natl Acad Sci U S A 2001; 98:8247-54. [PMID: 11459960 PMCID: PMC37428 DOI: 10.1073/pnas.111007898] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage Mu replicates as a transposable element, exploiting host enzymes to promote initiation of DNA synthesis. The phage-encoded transposase MuA, assembled into an oligomeric transpososome, promotes transfer of Mu ends to target DNA, creating a fork at each end, and then remains tightly bound to both forks. In the transition to DNA synthesis, the molecular chaperone ClpX acts first to weaken the transpososome's interaction with DNA, apparently activating its function as a molecular matchmaker. This activated transpososome promotes formation of a new nucleoprotein complex (prereplisome) by yet unidentified host factors [Mu replication factors (MRF alpha 2)], which displace the transpososome in an ATP-dependent reaction. Primosome assembly proteins PriA, PriB, DnaT, and the DnaB--DnaC complex then promote the binding of the replicative helicase DnaB on the lagging strand template of the Mu fork. PriA helicase plays an important role in opening the DNA duplex for DnaB binding, which leads to assembly of DNA polymerase III holoenzyme to form the replisome. The MRF alpha 2 transition factors, assembled into a prereplisome, not only protect the fork from action by nonspecific host enzymes but also appear to aid in replisome assembly by helping to activate PriA's helicase activity. They consist of at least two separable components, one heat stable and the other heat labile. Although the MRF alpha 2 components are apparently not encoded by currently known homologous recombination genes such as recA, recF, recO, and recR, they may fulfill an important function in assembling replisomes on arrested replication forks and products of homologous strand exchange.
Collapse
Affiliation(s)
- H Nakai
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 331 Basic Science Building, 3900 Reservoir Road NW, Washington, DC 20007, USA.
| | | | | |
Collapse
|
32
|
Burton RE, Siddiqui SM, Kim YI, Baker TA, Sauer RT. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J 2001; 20:3092-100. [PMID: 11406586 PMCID: PMC150209 DOI: 10.1093/emboj/20.12.3092] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ClpXP is an ATP-dependent protease that denatures native proteins and translocates the denatured polypeptide into an interior peptidase chamber for degradation. To address the mechanism of these processes, Arc repressor variants with dramatically different stabilities and unfolding half-lives varying from months to seconds were targeted to ClpXP by addition of the ssrA degradation tag. Remarkably, ClpXP degraded each variant at a very similar rate and hydrolyzed approximately 150 molecules of ATP for each molecule of substrate degraded. The hyperstable substrates did, however, slow the ClpXP ATPase cycle. These results confirm that ClpXP uses an active mechanism to denature its substrates, probably one that applies mechanical force to the native structure. Furthermore, the data suggest that denaturation is inherently inefficient or that significant levels of ATP hydrolysis are required for other reaction steps. ClpXP degraded disulfide-cross-linked dimers efficiently, even when just one subunit contained an ssrA tag. This result indicates that the pore through which denatured proteins enter the proteolytic chamber must be large enough to accommodate simultaneous passage of two or three polypeptide chains.
Collapse
Affiliation(s)
| | | | - Yong-In Kim
- Department of Biology, Massachusetts Institute of Technology and
Howard Hughes Medical Institute, Cambridge, MA 02139, USA Present address: BASF Bioresearch Corporation, 100 Research Drive, Worcester, MA 01605, USA Corresponding author e-mail:
| | - Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology and
Howard Hughes Medical Institute, Cambridge, MA 02139, USA Present address: BASF Bioresearch Corporation, 100 Research Drive, Worcester, MA 01605, USA Corresponding author e-mail:
| | - Robert T. Sauer
- Department of Biology, Massachusetts Institute of Technology and
Howard Hughes Medical Institute, Cambridge, MA 02139, USA Present address: BASF Bioresearch Corporation, 100 Research Drive, Worcester, MA 01605, USA Corresponding author e-mail:
| |
Collapse
|
33
|
Gillette TG, Huang W, Russell SJ, Reed SH, Johnston SA, Friedberg EC. The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev 2001; 15:1528-39. [PMID: 11410533 PMCID: PMC312714 DOI: 10.1101/gad.869601] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies suggest that the amino-terminal ubiquitin-like (ubl) domain of Rad23 protein can recruit the proteasome for a stimulatory role during nucleotide excision repair in the yeast Saccharomyces cerevisiae. In this report, we show that the 19S regulatory complex of the yeast proteasome can affect nucleotide excision repair independently of Rad23 protein. Strains with mutations in 19S regulatory subunits (but not 20S subunits) of the proteasome promote partial recovery of nucleotide excision repair in vivo in rad23 deletion mutants, but not in other nucleotide excision repair-defective strains tested. In addition, a strain that expresses a temperature-degradable ATPase subunit of the 19S regulatory complex manifests a dramatically increased rate of nucleotide excision repair in vivo. These data indicate that the 19S regulatory complex of the 26S proteasome can negatively regulate the rate of nucleotide excision repair in yeast and suggest that Rad23 protein not only recruits the 19S regulatory complex, but also can mediate functional interactions between the 19S regulatory complex and the nucleotide excision repair machinery. The 19S regulatory complex of the yeast proteasome functions in nucleotide excision repair independent of proteolysis.
Collapse
Affiliation(s)
- T G Gillette
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | | | | | | | | | | |
Collapse
|
34
|
Banecki B, Wawrzynow A, Puzewicz J, Georgopoulos C, Zylicz M. Structure-function analysis of the zinc-binding region of the Clpx molecular chaperone. J Biol Chem 2001; 276:18843-8. [PMID: 11278349 DOI: 10.1074/jbc.m007507200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ClpX heat shock protein of Escherichia coli is a member of the universally conserved Hsp100 family of proteins, and possesses a putative zinc finger motif of the C(4) type. The ClpX is an ATPase which functions both as a substrate specificity component of the ClpXP protease and as a molecular chaperone. Using an improved purification procedure we show that the ClpX protein is a metalloprotein complexed with Zn(II) cations. Contrary to other Hsp100 family members, ClpXZn(II) exists in an oligomeric form even in the absence of ATP. We show that the single ATP-binding site of ClpX is required for a variety of tasks, namely, the stabilization of the ClpXZn(II) oligomeric structure, binding to ClpP, and the ClpXP-dependent proteolysis of the lambdaO replication protein. Release of Zn(II) from ClpX protein affects the ability of ClpX to bind ATP. ClpX, free of Zn(II), cannot oligomerize, bind to ClpP, or participate in ClpXP-dependent proteolysis. We also show that ClpXDeltaCys, a mutant protein whose four cysteine residues at the putative zinc finger motif have been replaced by serine, behaves in similar fashion as wild type ClpX protein whose Zn(II) has been released either by denaturation and renaturation, or chemically by p-hydroxymercuriphenylsulfonic acid.
Collapse
Affiliation(s)
- B Banecki
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | | | | | | | | |
Collapse
|
35
|
Kamali-Moghaddam M, Sundström L. Arrayed transposase-binding sequences on the ends of transposon Tn5090/Tn402. Nucleic Acids Res 2001; 29:1005-11. [PMID: 11160934 PMCID: PMC29607 DOI: 10.1093/nar/29.4.1005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transposon Tn5090/Tn402 encodes a 559 amino acid transposase, TniA, with a DDE motif. Gel mobility shifting and cleavage protection analysis with DNase I and hydroxyl radical probes revealed that TniA binds to multiple repeat sequences on either terminus of Tn5090/Tn402. Four of these TniA-binding 19mers occurred on the left-hand (t) end and two on the right-hand (i) end. Hydroxyl radical cleavage protection demonstrated the presence of 3-6 bp contact sequences on one face of the DNA helix. The binding pattern and organisation of repeats suggested parallels between Tn5090/Tn402 and Mu, which controls its transpositional activity in the assembly step of a higher order transpososome complex. The complex terminal structure and genes of transposase and nucleotide-binding proteins in tandem are hallmarks of the handful of Mu-like elements that are known to date.
Collapse
Affiliation(s)
- M Kamali-Moghaddam
- Department of Pharmaceutical Biosciences, Division of Microbiology, Uppsala University, PO Box 581 BMC, S-751 23 Uppsala, Sweden
| | | |
Collapse
|
36
|
Abstract
Human immunodeficiency virus type-1 (HIV-1) integrase catalyzes the irreversible insertion of the viral genome into host chromosomal DNA. We have developed a mammalian expression system for the synthesis of authentic HIV-1 integrase in the absence of other viral proteins. Integrase, which bears a N-terminal phenylalanine, was found to be a short-lived protein in human embryo kidney 293T cells. The degradation of integrase could be suppressed by proteasome inhibitors. N-terminal phenylalanine is recognized as a degradation signal by a ubiquitin-proteasome proteolytic system known as the N-end rule pathway. The replacement of N-terminal phenylalanine with methionine, valine, or glycine, which are stabilizing residues in the N-end rule, resulted in metabolically stabilized integrase proteins (half-life of N-terminal Met-integrase was at least 3 h). Conversely, the substitution of N-terminal phenylalanine with other destabilizing residues retained the metabolic instability of integrase. These findings indicate that the HIV-1 integrase is a physiological substrate of the N-end rule. We discuss a possible functional similarity to the better understood turnover of the bacteriophage Mu transposase and functions of integrase instability to the maintenance and integrity of the host cell genome.
Collapse
Affiliation(s)
- L C Mulder
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA
| | | |
Collapse
|
37
|
Liu J, Zuber P. The ClpX protein of Bacillus subtilis indirectly influences RNA polymerase holoenzyme composition and directly stimulates sigma-dependent transcription. Mol Microbiol 2000; 37:885-97. [PMID: 10972809 DOI: 10.1046/j.1365-2958.2000.02053.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Bacillus subtilis, several processes associated with the onset of stationary phase, including the initiation of sporulation, require the activity of the minor sigmaH form of RNA polymerase (RNAP). The induction of sigmaH-dependent gene transcription requires the regulatory ATPase, ClpX. The ClpX-dependent post-exponential increase in sigmaH activity is not dependent on the activator of sporulation gene expression, Spo0A. By determining the level of sigmaH and sigmaA in whole-cell extracts and RNAP preparations, evidence is presented that clpX does not influence the concentration of sigma subunits, but is required for the stationary phase reduction in sigmaA-RNAP holoenzyme. This is probably an indirect consequence of ClpX activity, because the ClpX-dependent decrease in sigmaA-RNAP concentration does not occur in a spo0A abrB mutant. The addition of ClpX to in vitro transcription reactions resulted in the stimulation of RNAP holoenzyme activity, but sigmaH-RNAP was observed to be more sensitive to ClpX-dependent stimulation than sigmaA-RNAP. No difference in transcriptional activity was observed in single-cycle in vitro transcription reactions, suggesting that ClpX acted at a step in transcription initiation after closed- and open-promoter complex formation. ClpX is proposed to function indirectly in the displacement of sigmaA from core RNAP and to act directly in the stimulation of sigmaH-dependent transcription in sporulating B. subtilis cells.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006, USA. Health Sciences Cen
| | | |
Collapse
|
38
|
Singh SK, Grimaud R, Hoskins JR, Wickner S, Maurizi MR. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc Natl Acad Sci U S A 2000; 97:8898-903. [PMID: 10922052 PMCID: PMC16793 DOI: 10.1073/pnas.97.16.8898] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpX and ClpA are molecular chaperones that interact with specific proteins and, together with ClpP, activate their ATP-dependent degradation. The chaperone activity is thought to convert proteins into an extended conformation that can access the sequestered active sites of ClpP. We now show that ClpX can catalyze unfolding of a green fluorescent protein fused to a ClpX recognition motif (GFP-SsrA). Unfolding of GFP-SsrA depends on ATP hydrolysis. GFP-SsrA unfolded either by ClpX or by treatment with denaturants binds to ClpX in the presence of adenosine 5'-O-(3-thiotriphosphate) and is released slowly (t(1/2) approximately 15 min). Unlike ClpA, ClpX cannot trap unfolded proteins in stable complexes unless they also have a high-affinity binding motif. Addition of ATP or ADP accelerates release (t(1/2) approximately 1 min), consistent with a model in which ATP hydrolysis induces a conformation of ClpX with low affinity for unfolded substrates. Proteolytically inactive complexes of ClpXP and ClpAP unfold GFP-SsrA and translocate the protein to ClpP, where it remains unfolded. Complexes of ClpXP with translocated substrate within the ClpP chamber retain the ability to unfold GFP-SsrA. Our results suggest a bipartite mode of interaction between ClpX and substrates. ClpX preferentially targets motifs exposed in specific proteins. As the protein is unfolded by ClpX, additional motifs are exposed that facilitate its retention and favor its translocation to ClpP for degradation.
Collapse
Affiliation(s)
- S K Singh
- Laboratory of Cell Biology and Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
39
|
Nakano MM, Zhu Y, Liu J, Reyes DY, Yoshikawa H, Zuber P. Mutations conferring amino acid residue substitutions in the carboxy-terminal domain of RNA polymerase alpha can suppress clpX and clpP with respect to developmentally regulated transcription in Bacillus subtilis. Mol Microbiol 2000; 37:869-84. [PMID: 10972808 DOI: 10.1046/j.1365-2958.2000.02052.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis clpX and clpP genes are the sites of pleiotropic mutations that adversely affect growth on a variety of media and impair developmental processes such as sporulation and competence development. ClpX is necessary for the post-exponential induction of genes that require the sigmaH form of RNA polymerase for transcription. Both ClpX and ClpP are required for the activation of sigmaA-dependent transcription of the srf operon that encodes surfactin synthetase and the regulatory peptide ComS, required for the development of genetic competence. Transcription of srf is activated by the two-component regulatory system ComPA in response to the peptide pheromone, ComX, which mediates cell density-dependent control. A clpX mutant, although able to produce ComX, is unable to respond to the pheromone. A mutant allele of comP, encoding a product whose activity is independent of ComX, is not able to suppress clpX with respect to srf expression, suggesting that ClpXP acts at the level of ComA-dependent activation of srf transcription initiation. Suppressor mutations of clpX (cxs-1 and cxs-2) were isolated in screens for pseudorevertants exhibiting high levels of srf expression and sigmaH-dependent transcription respectively. One mutation, cxs-1, suppressed a clpP null mutation with respect to srf transcription, but did not overcome the block conferred by clpP on competence development and sporulation. Both cxs-1 and cxs-2 mutations map to the region of the rpoA gene encoding the RNA polymerase alpha C-terminal domain (alphaCTD). The reconstruction of the cxs-1 and cxs-2 alleles of rpoA confirmed that these mutations confer the suppressor phenotype. These findings provide further support for the hypothesis that ClpX and ClpP might be intimately associated with transcription initiation in B. subtilis.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Studies on the involvement of chaperone proteins in DNA replication have been limited to a few replication systems, belonging primarily to the prokaryotic world. The insights gained from these studies have substantially contributed to our understanding of the eukaryotic DNA replication process as well. The finding that molecular chaperones can activate some initiation proteins before DNA synthesis has led to the more general suggestion that molecular chaperones can influence the DNA-binding activity of many proteins, including transcriptional factors involved in cell regulatory systems. The DnaK/DnaJ/GrpE molecular chaperone system became a paradigm of our understanding of fundamental processes, such as protein folding, translocation, selective proteolysis and autoregulation of the heat-shock response. Studies on the Clp ATPase family of molecular chaperones will help to define the nature of signals involved in chaperone-dependent proteins' refolding and the degradation of misfolded proteins.
Collapse
Affiliation(s)
- I Konieczny
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki, Poland
| | | |
Collapse
|
41
|
Abstract
A general paradigm for energy-dependent proteases is emerging: ATP may be used to unfold the substrate and translocate it through a narrow channel within the enzyme into a central proteolytic chamber. Different members of the family present intriguing elaborations on this model.
Collapse
Affiliation(s)
- M Schmidt
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | | | | |
Collapse
|
42
|
Pak M, Hoskins JR, Singh SK, Maurizi MR, Wickner S. Concurrent chaperone and protease activities of ClpAP and the requirement for the N-terminal ClpA ATP binding site for chaperone activity. J Biol Chem 1999; 274:19316-22. [PMID: 10383442 DOI: 10.1074/jbc.274.27.19316] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpA, a member of the Clp/Hsp100 family of ATPases, is both an ATP-dependent molecular chaperone and the regulatory component of ClpAP protease. We demonstrate that chaperone and protease activities occur concurrently in ClpAP complexes during a single round of RepA binding to ClpAP and ATP-dependent release. This result was substantiated with a ClpA mutant, ClpA(K220V), carrying an amino acid substitution in the N-terminal ATP binding site. ClpA(K220V) is unable to activate RepA, but the presence of ClpP or chemically inactivated ClpP restores its ability to activate RepA. The presence of ClpP simultaneously facilitates degradation of RepA. ClpP must remain bound to ClpA(K220V) for these effects, indicating that both chaperone and proteolytic activities of the mutant complex occur concurrently. ClpA(K220V) itself is able to form stable complexes with RepA in the presence of a poorly hydrolyzed ATP analog, adenosine 5'-O-(thiotriphosphate), and to release RepA upon exchange of adenosine 5'-O-(thiotriphosphate) with ATP. However, the released RepA is inactive in DNA binding, indicating that the N-terminal ATP binding site is essential for the chaperone activity of ClpA. Taken together, these results suggest that substrates bound to the complex of the proteolytic and ATPase components can be partitioned between release/reactivation and translocation/degradation.
Collapse
Affiliation(s)
- M Pak
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Liu J, Cosby WM, Zuber P. Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis. Mol Microbiol 1999; 33:415-28. [PMID: 10411757 DOI: 10.1046/j.1365-2958.1999.01489.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA polymerase sigma subunit, sigmaH (Spo0H) of Bacillus subtilis, is essential for the transcription of genes that function in sporulation and genetic competence. Although spo0H is transcriptionally regulated by the key regulatory device that controls sporulation initiation, the Spo0 phosphorelay, there is considerable evidence implicating a mechanism of post-translational control that governs the activity and concentration of sigmaH. Post-translational control of spo0H is responsible for the reduced expression of genes requiring sigmaH under conditions of low environmental pH. It is also responsible for heightened sigmaH activity upon relief of acid stress and during nutritional depletion. In this study, the ATP-dependent proteases LonA and B and the regulatory ATPase ClpX were found to function in the post-translational control of sigmaH. Mutations in lonA and lonB result in elevated sigmaH protein concentrations in low-pH cultures. However, this is not sufficient to increase sigmaH-dependent transcription. Activation of sigmaH-dependent transcription upon raising medium pH and in cells undergoing sporulation requires clpX, as shown by measuring the expression of lacZ fusions that require sigmaH for transcription and by complementation of a clpX null mutation. A hypothesis is presented that low environmental pH results in the Lon-dependent degradation of sigmaH, but the activity of sigmaH in sporulating cells and in cultures at neutral pH is stimulated by a ClpX-dependent mechanism in response to nutritional stress.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, OR 97291-1000, USA
| | | | | |
Collapse
|
44
|
Gonciarz-Swiatek M, Wawrzynow A, Um SJ, Learn BA, McMacken R, Kelley WL, Georgopoulos C, Sliekers O, Zylicz M. Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease. J Biol Chem 1999; 274:13999-4005. [PMID: 10318812 DOI: 10.1074/jbc.274.20.13999] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has previously been established that sequences at the C termini of polypeptide substrates are critical for efficient hydrolysis by the ClpP/ClpX ATP-dependent protease. We report for the bacteriophage lambda O replication protein, however, that N-terminal sequences play the most critical role in facilitating proteolysis by ClpP/ClpX. The N-terminal portion of lambda O is degraded at a rate comparable with that of wild type O protein, whereas the C-terminal domain of O is hydrolyzed at least 10-fold more slowly. Consistent with these results, deletion of the first 18 amino acids of lambda O blocks degradation of the N-terminal domain, whereas proteolysis of the O C-terminal domain is only slightly diminished as a result of deletion of the C-terminal 15 amino acids. We demonstrate that ClpX retains its capacity to bind to the N-terminal domain following removal of the first 18 amino acids of O. However, ClpX cannot efficiently promote the ATP-dependent binding of this truncated O polypeptide to ClpP, the catalytic subunit of the ClpP/ClpX protease. Based on our results with lambda O protein, we suggest that two distinct structural elements may be required in substrate polypeptides to enable efficient hydrolysis by the ClpP/ClpX protease: (i) a ClpX-binding site, which may be located remotely from substrate termini, and (ii) a proper N- or C-terminal sequence, whose exposure on the substrate surface may be induced by the binding of ClpX.
Collapse
Affiliation(s)
- M Gonciarz-Swiatek
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Neuwald AF. The hexamerization domain of N-ethylmaleimide-sensitive factor: structural clues to chaperone function. Structure 1999; 7:R19-23. [PMID: 10368290 DOI: 10.1016/s0969-2126(99)80015-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The hexameric structure of the D2 ATP-binding module of N-ethylmaleimide-sensitive factor (NSF), a chaperone involved in SNARE complex disassembly, was recently determined. This structure and the previously determined structure of the DNA polymerase III delta' subunit have far-reaching biological significance because these modules are related to diverse ATPases that promote the assembly, disassembly and operation of various protein complexes.
Collapse
Affiliation(s)
- A F Neuwald
- Cold Spring Harbor Laboratory, PO Box 1001, Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
46
|
Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA+: A Class of Chaperone-Like ATPases Associated with the Assembly, Operation, and Disassembly of Protein Complexes. Genome Res 1999. [DOI: 10.1101/gr.9.1.27] [Citation(s) in RCA: 716] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using a combination of computer methods for iterative database searches and multiple sequence alignment, we show that protein sequences related to the AAA family of ATPases are far more prevalent than reported previously. Among these are regulatory components of Lon and Clp proteases, proteins involved in DNA replication, recombination, and restriction (including subunits of the origin recognition complex, replication factor C proteins, MCM DNA-licensing factors and the bacterial DnaA, RuvB, and McrB proteins), prokaryotic NtrC-related transcription regulators, the Bacillus sporulation protein SpoVJ, Mg2+, and Co2+ chelatases, theHalobacterium GvpN gas vesicle synthesis protein, dynein motor proteins, TorsinA, and Rubisco activase. Alignment of these sequences, in light of the structures of the clamp loader δ′ subunit ofEscherichia coli DNA polymerase III and the hexamerization component of N-ethylmaleimide-sensitive fusion protein, provides structural and mechanistic insights into these proteins, collectively designated the AAA+ class. Whole-genome analysis indicates that this class is ancient and has undergone considerable functional divergence prior to the emergence of the major divisions of life. These proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes. The hexameric architecture often associated with this class can provide a hole through which DNA or RNA can be thread; this may be important for assembly or remodeling of DNA–protein complexes.
Collapse
|