1
|
Bonde NJ, Kozlov AG, Cox MM, Lohman TM, Keck JL. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit Rev Biochem Mol Biol 2024; 59:99-127. [PMID: 38770626 PMCID: PMC11209772 DOI: 10.1080/10409238.2024.2330372] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Raman MD, Abd Rahman N, Elumalai S, Murugaiyah V, Ong MT. Hevea brasiliensis latex dialysed C-serum precipitate subfraction exerts a negligible level of genotoxicity in the Ames test, mouse lymphoma assay and micronucleus assay. J RUBBER RES 2023; 26:139-153. [DOI: 10.1007/s42464-023-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/13/2023] [Indexed: 09/02/2023]
|
3
|
Grúz P, Sugiyama KI, Honma M, Nohmi T. Purification and interactions of the MucA' and MucB proteins constituting the DNA polymerase RI. Genes Environ 2019; 41:10. [PMID: 31061684 PMCID: PMC6495647 DOI: 10.1186/s41021-019-0125-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background The MucA' and MucB proteins comprise the core of DNA polymerase RI which is a strong mutator utilized in mutagenicity assays such as the standard Ames test. A close relative DNA polymerase V, composed of the homologous UmuD' and UmuC proteins, is considered to be an ortholog of the mammalian DNA polymerase η. The catalytic subunits of these polymerases belong to the Y-family which specializes in the translesion DNA synthesis across various DNA adducts to rescue stalled chromosomal replication at the expense of mutations. Based on genetic evidence, DNA polymerase RI possesses the greatest ability to induce various types of mutations among all so far characterized members of the Y-superfamily. The exceptionally high mutagenic potential of MucA'B has been taken advantage of in numerous bacterial mutagenicity assays incorporating the conjugative plasmid pKM101 carrying the mucAB operon such as the Ames Test. Results We established new procedures for the purification of MucB protein as well as its accessory protein MucA' using the refolding techniques. The purified MucA' protein behaved as a molecular dimer which was fully stable in solution. The soluble monomeric form of MucB protein was obtained after refolding on a gel-filtration column and remained stable in a nondenaturing buffer containing protein aggregation inhibitors. Using the surface plasmon resonance technique, we demonstrated that the purified MucA' and MucB proteins interacted and that MucB protein preferentially bound to single-stranded DNA. In addition, we revealed that MucB protein interacted with the β-subunit of DNA polymerase III holoenzyme of E. coli. Conclusion The MucA' and MucB proteins can be isolated from inclusion bodies and solubilized in vitro. The refolded MucB protein interacts with its MucA' partner as well as with DNA what suggests it retains biological activity. The interaction of MucB with the processivity subunit of DNA polymerase III may imply the role of the subunit as an accessory protein to MucB during the translesion DNA synthesis.
Collapse
Affiliation(s)
- Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| |
Collapse
|
4
|
Shamsipur M, Nasirian V, Barati A, Mansouri K, Vaisi-Raygani A, Kashanian S. Determination of cDNA encoding BCR/ABL fusion gene in patients with chronic myelogenous leukemia using a novel FRET-based quantum dots-DNA nanosensor. Anal Chim Acta 2017; 966:62-70. [PMID: 28372728 DOI: 10.1016/j.aca.2017.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/31/2017] [Accepted: 02/13/2017] [Indexed: 01/05/2023]
Abstract
In the present study, we developed a sensitive method based on fluorescence resonance energy transfer (FRET) for the determination of the BCR/ABL fusion gene, which is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). For this purpose, CdTe quantum dots (QDs) were conjugated to amino-modified 18-mer oligonucleotide ((N)DNA) to form the QDs-(N)DNA nanosensor. In the presence of methylene blue (MB) as an intercalator, the hybridization of QDs-(N)DNA with the target BCR/ABL fusion gene (complementary DNA), brings the MB (acceptor) at close proximity of the QDs (donor), leading to FRET upon photoexcitation of the QDs. The enhancement in the emission intensity of MB was used to follow up the hybridization, which was linearly proportional to concentration of the target complementary DNA in a range from 1.0 × 10-9 to 1.25 × 10-7 M. The detection limit of the proposed method was obtained to be 1.5 × 10-10 M. Finally, the feasibility and selectivity of the proposed nanosensor was evaluated by the analysis of derived nucleotides from both mismatched sequences and clinical samples of patients with leukemia as real samples.
Collapse
Affiliation(s)
- Mojtaba Shamsipur
- Department of Chemistry, Razi University, Kermanshah 6714967346, Iran.
| | - Vahid Nasirian
- Department of Chemistry, Razi University, Kermanshah 6714967346, Iran
| | - Ali Barati
- Department of Chemistry, Razi University, Kermanshah 6714967346, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Department of Biochemistry School of Medicine Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Soheila Kashanian
- Department of Chemistry, Razi University, Kermanshah 6714967346, Iran
| |
Collapse
|
5
|
Li W, Koutmou KS, Leahy DJ, Li M. Systemic RNA Interference Deficiency-1 (SID-1) Extracellular Domain Selectively Binds Long Double-stranded RNA and Is Required for RNA Transport by SID-1. J Biol Chem 2015; 290:18904-13. [PMID: 26067272 DOI: 10.1074/jbc.m115.658864] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 12/26/2022] Open
Abstract
During systemic RNA interference (RNAi) in Caenorhabditis elegans, RNA spreads across different cells and tissues in a process that requires the systemic RNA interference deficient-1 (sid-1) gene, which encodes an integral membrane protein. SID-1 acts cell-autonomously and is required for cellular import of interfering RNAs. Heterologous expression of SID-1 in Drosophila Schneider 2 cells enables passive uptake of dsRNA and subsequent soaking RNAi. Previous studies have suggested that SID-1 may serve as an RNA channel, but its precise molecular role remains unclear. To test the hypothesis that SID-1 mediates a direct biochemical recognition of RNA molecule and subsequent permeation, we expressed the extracellular domain (ECD) of SID-1 and purified it to near homogeneity. Recombinant purified SID-1 ECD selectively binds dsRNA but not dsDNA in a length-dependent and sequence-independent manner. Genetic missense mutations in SID-1 ECD causal for deficient systemic RNAi resulted in significant reduction in its affinity for dsRNA. Furthermore, full-length proteins with these mutations decrease SID-1-mediated RNA transport efficiency, providing evidence that dsRNA binding to SID-1 ECD is related to RNA transport. To examine the functional similarity of mammalian homologs of SID-1 (SIDT1 and SIDT2), we expressed and purified mouse SIDT1 and SIDT2 ECDs. We show that they bind long dsRNA in vitro, supportive of dsRNA recognition. In summary, our study illustrates the functional importance of SID-1 ECD as a dsRNA binding domain that contributes to RNA transport.
Collapse
Affiliation(s)
- Weiqiang Li
- From the Solomon H. Snyder Department of Neuroscience, the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | | | - Daniel J Leahy
- the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Min Li
- From the Solomon H. Snyder Department of Neuroscience, GlaxoSmithKline, King of Prussia, Pennsylvania 19406
| |
Collapse
|
6
|
Ying SH, Ji XP, Wang XX, Feng MG, Keyhani NO. The transcriptional co-activator multiprotein bridging factor 1 from the fungal insect pathogen,Beauveria bassiana, mediates regulation of hyphal morphogenesis, stress tolerance and virulence. Environ Microbiol 2014; 16:1879-97. [DOI: 10.1111/1462-2920.12450] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/08/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Sheng-Hua Ying
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou 310058 China
| | - Xiao-Ping Ji
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou 310058 China
| | - Xiu-Xiu Wang
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou 310058 China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science; University of Florida; Gainesville FL 32611 USA
| |
Collapse
|
7
|
Coburn PS, Baghdayan AS, Craig N, Burroughs A, Tendolkar P, Miller K, Najar FZ, Roe BA, Shankar N. A novel conjugative plasmid from Enterococcus faecalis E99 enhances resistance to ultraviolet radiation. Plasmid 2010; 64:18-25. [PMID: 20307569 PMCID: PMC2891438 DOI: 10.1016/j.plasmid.2010.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/02/2010] [Accepted: 03/10/2010] [Indexed: 11/25/2022]
Abstract
Enterococcus faecalis has emerged as a prominent healthcare-associated pathogen frequently encountered in bacteremia, endocarditis, urinary tract infection, and as a leading cause of antibiotic-resistant infections. We recently demonstrated a capacity for high-level biofilm formation by a clinical E. faecalis isolate, E99. This high biofilm-forming phenotype was attributable to a novel locus, designated bee, specifying a pilus at the bacterial cell surface and localized to a large approximately 80 kb conjugative plasmid. To better understand the origin of the bee locus, as well as to potentially identify additional factors important to the biology and pathogenesis of strain E99, we sequenced the entire plasmid. The nucleotide sequence of the plasmid, designated pBEE99, revealed large regions of identity to the previously characterized conjugative plasmid pCF10. In addition to the bee locus, pBEE99 possesses an open reading frame potentially encoding aggregation substance, as well as open reading frames putatively encoding polypeptides with 60% to 99% identity at the amino acid level to proteins involved in regulation of the pheromone response and conjugal transfer of pCF10. However, strain E99 did not respond to the cCF10 pheromone in clumping assays. While pBEE99 was found to be devoid of any readily recognizable antibiotic resistance determinants, it carries two non-identical impB/mucB/samB-type genes, as well as genes potentially encoding a two-component bacteriocin similar to that encoded on pYI14. Although no bacteriocin activity was detected from an OG1RF transconjugant carrying pBEE99 against strain FA2-2, it was approximately an order of magnitude more resistant to ultraviolet radiation. Moreover, curing strain E99 of this plasmid significantly reduced its ability to survive UV exposure. Therefore, pBEE99 represents a novel conjugative plasmid that confers biofilm-forming and enhanced UV resistance traits that might potentially impact the virulence and/or fitness of E. faecalis.
Collapse
Affiliation(s)
- Phillip S Coburn
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73126, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dos Vultos T, Mestre O, Tonjum T, Gicquel B. DNA repair inMycobacterium tuberculosisrevisited. FEMS Microbiol Rev 2009; 33:471-87. [DOI: 10.1111/j.1574-6976.2009.00170.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 2008; 43:289-318. [PMID: 18937104 PMCID: PMC2583361 DOI: 10.1080/10409230802341296] [Citation(s) in RCA: 436] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present. These proteins have often been described as inert, protective DNA coatings. Continuing research is demonstrating a far more complex role of SSB that includes the organization and/or mobilization of all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other proteins that include key components of the elaborate systems involved in every aspect of DNA metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe the energetics of interactions with SSB, and highlight the roles of SSB in the process of recombination. Similar themes to those highlighted in this review are evident in all biological systems.
Collapse
Affiliation(s)
- Robert D Shereda
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
10
|
Zhou D, Ying L, Hong X, Hall EA, Abell C, Klenerman D. A compact functional quantum Dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1659-1664. [PMID: 18193909 DOI: 10.1021/la703583u] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this letter, we report the preparation of a compact, functional quantum dot (QD)-DNA conjugate, where the capturing target DNA is directly and covalently coupled to the QD surface. This enables control of the separation distance between the QD donor and dye acceptor to within the range of the Förster radius. Moreover, a tri(ethylene glycol) linker is introduced to the QD surface coating to effectively eliminate the strong, nonspecific adsorption of DNA on the QD surface. As a result, this QD-DNA conjugate hybridizes specifically to its complementary DNA with a hybridization rate constant comparable to that of free DNAs in solution. We show this system is capable of specific detection of nanomolar unlabeled complimentary DNA at low DNA probe/QD copy numbers via a "signal-on" fluorescence resonance energy transfer (FRET) response.
Collapse
Affiliation(s)
- Dejian Zhou
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Arad G, Hendel A, Urbanke C, Curth U, Livneh Z. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem 2008; 283:8274-82. [PMID: 18223256 DOI: 10.1074/jbc.m710290200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translesion DNA synthesis (TLS) by DNA polymerase V (polV) in Escherichia coli involves accessory proteins, including RecA and single-stranded DNA-binding protein (SSB). To elucidate the role of SSB in TLS we used an in vitro exonuclease protection assay and found that SSB increases the accessibility of 3' primer termini located at abasic sites in RecA-coated gapped DNA. The mutant SSB-113 protein, which is defective in protein-protein interactions, but not in DNA binding, was as effective as wild-type SSB in increasing primer termini accessibility, but deficient in supporting polV-catalyzed TLS. Consistently, the heterologous SSB proteins gp32, encoded by phage T4, and ICP8, encoded by herpes simplex virus 1, could replace E. coli SSB in the TLS reaction, albeit with lower efficiency. Immunoprecipitation experiments indicated that polV directly interacts with SSB and that this interaction is disrupted by the SSB-113 mutation. Taken together our results suggest that SSB functions to recruit polV to primer termini on RecA-coated DNA, operating by two mechanisms: 1) increasing the accessibility of 3' primer termini caused by binding of SSB to DNA and 2) a direct SSB-polV interaction mediated by the C terminus of SSB.
Collapse
Affiliation(s)
- Gali Arad
- Department of Biological Chemistry, Weizmann Institute of Science, Hertzl St, Rehovot, Israel
| | | | | | | | | |
Collapse
|
12
|
Sommer S, Becherel OJ, Coste G, Bailone A, Fuchs RPP. Altered translesion synthesis in E. coli Pol V mutants selected for increased recombination inhibition. DNA Repair (Amst) 2004; 2:1361-9. [PMID: 14642565 DOI: 10.1016/j.dnarep.2003.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Replication of damaged DNA, also termed as translesion synthesis (TLS), involves specialized DNA polymerases that bypass DNA lesions. In Escherichia coli, although TLS can involve one or a combination of DNA polymerases depending on the nature of the lesion, it generally requires the Pol V DNA polymerase (formed by two SOS proteins, UmuD' and UmuC) and the RecA protein. In addition to being an essential component of translesion DNA synthesis, Pol V is also an antagonist of RecA-mediated recombination. We have recently isolated umuD' and umuC mutants on the basis of their increased capacity to inhibit homologous recombination. Despite the capacity of these mutants to form a Pol V complex and to interact with the RecA polymer, most of them exhibit a defect in TLS. Here, we further characterize the TLS activity of these Pol V mutants in vivo by measuring the extent of error-free and mutagenic bypass at a single (6-4)TT lesion located in double stranded plasmid DNA. TLS is markedly decreased in most Pol V mutants that we analyzed (8/9) with the exception of one UmuC mutant (F287L) that exhibits wild-type bypass activity. Somewhat unexpectedly, Pol V mutants that are partially deficient in TLS are more severely affected in mutagenic bypass compared to error-free synthesis. The defect in bypass activity of the Pol V mutant polymerases is discussed in light of the location of the respective mutations in the 3D structure of UmuD' and the DinB/UmuC homologous protein Dpo4 of Sulfolobus solfataricus.
Collapse
Affiliation(s)
- Suzanne Sommer
- Institut de Génétique et Microbiologie, Bât. 409, Université Paris-Sud, F-91405, Orsay, France.
| | | | | | | | | |
Collapse
|
13
|
Davydova EK, Rothman-Denes LB. Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci U S A 2003; 100:9250-5. [PMID: 12876194 PMCID: PMC170904 DOI: 10.1073/pnas.1133325100] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Indexed: 11/18/2022] Open
Abstract
Coliphage N4 virion RNA polymerase (vRNAP), the most distantly related member of the T7-like family of RNA polymerases, is responsible for transcription of the early genes of the linear double-stranded DNA phage genome. Escherichia coli single-stranded DNA-binding protein (EcoSSB) is required for N4 early transcription in vivo, as well as for in vitro transcription on super-coiled DNA templates containing vRNAP promoters. In contrast to other DNA-dependent RNA polymerases, vRNAP initiates transcription on single-stranded, promoter-containing templates with in vivo specificity; however, the RNA product is not displaced, thus limiting template usage to one round. We show that EcoSSB activates vRNAP transcription at limiting single-stranded template concentrations through template recycling. EcoSSB binds to the template and to the nascent transcript and prevents the formation of a transcriptionally inert RNA:DNA hybrid. Using C-terminally truncated EcoSSB mutant proteins, human mitochondrial SSB (Hsmt SSB), phage P1 SSB, and F episome-encoded SSB, as well as a Hsmt-EcoSSB chimera, we have mapped a determinant of template recycling to the C-terminal amino acids of EcoSSB. T7 RNAP contains an amino-terminal domain responsible for binding the RNA product as it exits from the enzyme. No sequence similarity to this domain exists in vRNAP. Hereby, we propose a unique role for EcoSSB: It functionally substitutes in N4 vRNAP for the N-terminal domain of T7 RNAP responsible for RNA binding.
Collapse
Affiliation(s)
- Elena K Davydova
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
14
|
Goodman MF, Woodgate R. The biochemical basis and in vivo regulation of SOS-induced mutagenesis promoted by Escherichia coli DNA polymerase V (UmuD'2C). COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:31-40. [PMID: 12760018 DOI: 10.1101/sqb.2000.65.31] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M F Goodman
- University of Southern California, Hedco Molecular Biology Laboratory, Department of Biological Sciences and Chemistry, Los Angeles, California 90089-1340, USA
| | | |
Collapse
|
15
|
Acharya N, Varshney U. Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J Mol Biol 2002; 318:1251-64. [PMID: 12083515 DOI: 10.1016/s0022-2836(02)00053-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The single-stranded DNA-binding proteins (SSBs) are vital to virtually all DNA functions. Here, we report on the biochemical properties of SSB from a fast-growing mycobacteria, Mycobacterium smegmatis, and the interaction of the homotetrameric SSBs with uracil DNA glycosylases (UDGs) from M. smegmatis (Msm), Mycobacterium tuberculosis (Mtu) and Escherichia coli (Eco). UDG is a crucial DNA repair enzyme, which removes the promutagenic uracil residues. MsmSSB stimulates activity of the homologous Msm UDG and of the heterologous Mtu-, and Eco-UDGs. On the contrary, while the MtuSSB stimulates the Mtu UDG, it inhibits the other two UDGs. Although the MsmSSB shares 84% identity with MtuSSB, the two are strikingly different, in that MsmSSB contains a glycine-rich segment (11 out of 13 residues) in the spacer connecting the N-terminal DNA-binding domain with the C-terminal acidic tail. While the DNA-binding properties of MsmSSB, such as its affinity to oligomeric DNA, requirement of minimum size DNA and the modes of interaction are indistinguishable from those of Eco-, and Mtu-SSBs, it is unclear if the glycine-rich segment confers structural advantage to MsmSSB, responsible for its stimulatory effect on all UDGs tested. More importantly, by using a small polypeptide inhibitor of UDGs, and the deletion mutants of SSBs, we suggest that the C-terminal acidic tail of the SSBs interacts within the DNA-binding groove of the UDGs, and propose a role for SSBs in the recruitment of UDGs to the damaged DNA.
Collapse
Affiliation(s)
- Narottam Acharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | | |
Collapse
|
16
|
Grúz P, Pisani FM, Shimizu M, Yamada M, Hayashi I, Morikawa K, Nohmi T. Synthetic activity of Sso DNA polymerase Y1, an archaeal DinB-like DNA polymerase, is stimulated by processivity factors proliferating cell nuclear antigen and replication factor C. J Biol Chem 2001; 276:47394-401. [PMID: 11581267 DOI: 10.1074/jbc.m107213200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA replication efficiency is dictated by DNA polymerases (pol) and their associated proteins. The recent discovery of DNA polymerase Y family (DinB/UmuC/RAD30/REV1 superfamily) raises a question of whether the DNA polymerase activities are modified by accessory proteins such as proliferating cell nuclear antigen (PCNA). In fact, the activity of DNA pol IV (DinB) of Escherichia coli is enhanced upon interaction with the beta subunit, the processivity factor of DNA pol III. Here, we report the activity of Sso DNA pol Y1 encoded by the dbh gene of the archaeon Sulfolobus solfataricus is greatly enhanced by the presence of PCNA and replication factor C (RFC). Sso pol Y1 per se was a distributive enzyme but a substantial increase in the processivity was observed on poly(dA)-oligo(dT) in the presence of PCNA (039p or 048p) and RFC. The length of the synthesized DNA product reached at least 200 nucleotides. Sso pol Y1 displayed a higher affinity for DNA compared with pol IV of E. coli, suggesting that the two DNA polymerases have distinct reason(s) to require the processivity factors for efficient DNA synthesis. The abilities of pol Y1 and pol IV to bypass DNA lesions and their sensitive sites to protease are also discussed.
Collapse
Affiliation(s)
- P Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Lambert IB, Carroll C, Laycock N, Koziarz J, Lawford I, Duval L, Turner G, Booth R, Douville S, Whiteway J, Nokhbeh MR. Cellular determinants of the mutational specificity of 1-nitroso-6-nitropyrene and 1-nitroso-8-nitropyrene in the lacI gene of Escherichia coli. Mutat Res 2001; 484:19-48. [PMID: 11733069 DOI: 10.1016/s0027-5107(01)00234-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have characterized 202 lacI(-) mutations, and 158 dominant lacI(-d) mutations following treatment of Escherichia coli strains NR6112 and EE125 with 1-nitroso-6-nitropyrene (1,6-NONP), an activated metabolite of the carcinogen 1,6-dinitropyrene. In all, 91% of the induced point mutations occurred at G:C residues. The -(G:C) frameshifts were the dominant mutational class in the lacI(-) collections of both NR6112 and EE125, and in the lacI(-d) collection of NR6112. Frameshift mutations occurred preferentially in runs of guanine residues, and their frequency increased with the length of the reiterated sequence. In strain EE125, which contained the plasmid pKM101, there was a marked stimulation in the frequency of base substitution mutations that was particularly apparent in the lacI(-d) collection. This study completes a comprehensive analysis of 1194 lacI(-) and 348 lacI(-d) mutations induced by either 1,6-NONP or its positional isomer 1-nitroso-8-nitropyrene (1,8-NONP) in strains of E. coli that differ with regard to their ability to carry out nucleotide excision repair and/or their ability to express the translesion synthesis DNA polymerase RI (MucAB) encoded by plasmid pKM101. Among the mutations are 763 frameshift mutations, 367 base substitutions and 47 deletions; these mutations have been characterized at more than 300 distinct sites in the lacI gene. Our studies provide detailed insight into the DNA sequence alterations and mutational mechanisms associated with dinitropyrene mutagenesis. We review the mutational spectra, and discuss cellular lesion repair or tolerance mechanisms that modulate the observed mutational specificity.
Collapse
Affiliation(s)
- I B Lambert
- Biology Department, Carleton University, 1125 Colonel By Drive, Ont., K1S 5B6, Ottawa, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Boudsocq F, Iwai S, Hanaoka F, Woodgate R. Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic poleta. Nucleic Acids Res 2001; 29:4607-16. [PMID: 11713310 PMCID: PMC92520 DOI: 10.1093/nar/29.22.4607] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic analysis of Y-family DNA polymerases suggests that it can be subdivided into several discrete branches consisting of UmuC/DinB/Rev1/Rad30/Rad30A and Rad30B. The most diverse is the DinB family that is found in all three kingdoms of life. Searches of the complete genome of the crenarchaeon Sulfolobus solfataricus P2 reveal that it possesses a DinB homolog that has been termed DNA polymerase IV (Dpo4). We have overproduced and purified native Dpo4 protein and report here its enzymatic characterization. Dpo4 is thermostable, but can also synthesize DNA at 37 degrees C. Under these conditions, the enzyme exhibits misinsertion fidelities in the range of 8 x 10(-3) to 3 x 10(-4). Dpo4 is distributive but at high enzyme to template ratios can synthesize long stretches of DNA and can substitute for Taq polymerase in PCR. On damaged DNA templates, Dpo4 can facilitate translesion replication of an abasic site, a cis-syn thymine-thymine dimer, as well as acetyl aminofluorene adducted- and cisplatinated-guanine residues. Thus, although phylogenetically related to DinB polymerases, our studies suggest that the archaeal Dpo4 enzyme exhibits lesion-bypass properties that are, in fact, more akin to those of eukaryotic poleta.
Collapse
Affiliation(s)
- F Boudsocq
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, MD 20892-2725, USA
| | | | | | | |
Collapse
|
19
|
Sutton MD, Walker GC. Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci U S A 2001; 98:8342-9. [PMID: 11459973 PMCID: PMC37441 DOI: 10.1073/pnas.111036998] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two important and timely questions with respect to DNA replication, DNA recombination, and DNA repair are: (i) what controls which DNA polymerase gains access to a particular primer-terminus, and (ii) what determines whether a DNA polymerase hands off its DNA substrate to either a different DNA polymerase or to a different protein(s) for the completion of the specific biological process? These questions have taken on added importance in light of the fact that the number of known template-dependent DNA polymerases in both eukaryotes and in prokaryotes has grown tremendously in the past two years. Most notably, the current list now includes a completely new family of enzymes that are capable of replicating imperfect DNA templates. This UmuC-DinB-Rad30-Rev1 superfamily of DNA polymerases has members in all three kingdoms of life. Members of this family have recently received a great deal of attention due to the roles they play in translesion DNA synthesis (TLS), the potentially mutagenic replication over DNA lesions that act as potent blocks to continued replication catalyzed by replicative DNA polymerases. Here, we have attempted to summarize our current understanding of the regulation of action of DNA polymerases with respect to their roles in DNA replication, TLS, DNA repair, DNA recombination, and cell cycle progression. In particular, we discuss these issues in the context of the Gram-negative bacterium, Escherichia coli, that contains a DNA polymerase (Pol V) known to participate in most, if not all, of these processes.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
20
|
Livneh Z. DNA damage control by novel DNA polymerases: translesion replication and mutagenesis. J Biol Chem 2001; 276:25639-42. [PMID: 11371576 DOI: 10.1074/jbc.r100019200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Z Livneh
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
21
|
Handa P, Acharya N, Varshney U. Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem 2001; 276:16992-7. [PMID: 11279060 DOI: 10.1074/jbc.m100393200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N- and C-terminal domains of SSBs from E. coli and Mycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction with MtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed.
Collapse
Affiliation(s)
- P Handa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| | | | | |
Collapse
|
22
|
Sikder D, Unniraman S, Bhaduri T, Nagaraja V. Functional cooperation between topoisomerase I and single strand DNA-binding protein. J Mol Biol 2001; 306:669-79. [PMID: 11243779 DOI: 10.1006/jmbi.2000.4384] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-protein interactions play important role in cell biochemistry by favorably or adversely influencing major molecular events. In most documented cases, the interaction is direct between the partner molecules. Influence of activity in the absence of direct physical interaction between DNA transaction proteins is another important means of modulation. We show here that single strand binding protein stimulates DNA topoisomerase I activity without direct protein-protein interactions. The stimulation is specific to topoisomerase I, as DNA gyrase activity is unaffected by SSB. We propose that such cases of functional collaboration between DNA transaction proteins play important roles in vivo.
Collapse
Affiliation(s)
- D Sikder
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | |
Collapse
|
23
|
Goldsmith M, Sarov-Blat L, Livneh Z. Plasmid-encoded MucB protein is a DNA polymerase (pol RI) specialized for lesion bypass in the presence of MucA', RecA, and SSB. Proc Natl Acad Sci U S A 2000; 97:11227-31. [PMID: 11016960 PMCID: PMC17182 DOI: 10.1073/pnas.200361997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replication through damaged sites in DNA requires in Escherichia coli the SOS stress-inducible DNA polymerase V (UmuC), which is specialized for lesion bypass. Homologs of the umuC gene were found on native conjugative plasmids, which often carry multiple antibiotic-resistant genes. MucB is a UmuC homolog present on plasmid R46, and its variant plasmid pKM101 has been introduced into Salmonella strains for use in the Ames test for mutagens. Using a translesion replication assay based on a gapped plasmid carrying a site-specific synthetic abasic site in the single-stranded DNA region, we show that MucB is a DNA polymerase, termed pol RI, which is specialized for lesion bypass. The activity of pol RI requires the plasmid-encoded MucA' protein and the E. coli RecA and single-strand DNA binding proteins. Elimination of any of the proteins from the reaction abolished lesion bypass and polymerase activity. The unprocessed MucA could not substitute for MucA' in the bypass reaction. The presence of a lesion bypass DNA polymerase on a native conjugative plasmid, which has a broad host range specificity and carries multiple antibiotic-resistant genes, raises the possibility that mutagenesis caused by pol RI plays a role in the spreading of antibiotic resistance among bacterial pathogens.
Collapse
Affiliation(s)
- M Goldsmith
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
24
|
Fantappie MR, Osman A, Niles EG, LoVerde PT. Identification and functional characterization of a member of the PUR-alpha family from Schistosoma mansoni. Mol Biochem Parasitol 2000; 110:373-90. [PMID: 11071290 DOI: 10.1016/s0166-6851(00)00292-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Schistosoma mansoni p14 gene encodes an eggshell precursor that is expressed only in vitelline cells of mature female worms in response to a male stimulus. The upstream region of the p14 gene contains several potential cis-acting regulatory sequences. We used the upstream region of the p14 gene as bait in a yeast-one-hybrid screen of a S. mansoni cDNA library to identify interacting proteins. We report the identification and characterization of a cDNA (S. mansoni PUR-alpha (SmPUR-alpha)) encoding a protein homologous to single-stranded DNA transcription activator PUR-alpha, that binds to the p14 upstream region and activates transcription of the HIS3 reporter gene in yeast. SmPUR-alpha has a predicted molecular mass of 30 kDa and shares an overall homology of 63% with mammalian PUR-alpha. The DNA binding domain of SmPUR-alpha is highly conserved. We show by gel shift assays that GST-SmPUR-alpha binds to oligonucleotides comprising the p14 upstream region. SmPUR-alpha binds preferentially to single-stranded DNA and also binds RNA. Unlike the mammalian homologue, SmPUR-alpha exhibits little specificity for the PUR element GGn, but shows strong preference for a sequence containing alternating pyrimidines. Our data support that SmPUR-alpha is a single-copy gene and through reverse transcriptase-polymerase chain reaction and in situ hybridization, we show that SmPUR-alpha is constitutively transcribed in many cell types and thus likely plays a role as a general transcription activator in schistosomes.
Collapse
Affiliation(s)
- M R Fantappie
- Department of Microbiology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA
| | | | | | | |
Collapse
|
25
|
Coles LS, Diamond P, Occhiodoro F, Vadas MA, Shannon MF. An ordered array of cold shock domain repressor elements across tumor necrosis factor-responsive elements of the granulocyte-macrophage colony-stimulating factor promoter. J Biol Chem 2000; 275:14482-93. [PMID: 10799531 DOI: 10.1074/jbc.275.19.14482] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor necrosis factor-alpha-responsive region of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) promoter (-114 to -31) encompasses binding sites for NF-kappaB, CBF, AP-1, ETS, and NFAT families of transcription factors. We show both here and previously that mutation of any one of these binding sites greatly reduces tumor necrosis factor-alpha induction of the GM-CSF promoter. Interspersed between these elements are sequences that when mutated lead to an increase in GM-CSF promoter activity. We have previously shown that two of these repressor elements bind proteins known as cold shock domain (CSD) factors and that overexpression of CSD proteins leads to repression of GM-CSF promoter activity in fibroblasts. CSD proteins are single strand DNA- and RNA-binding proteins that contact 5'-CCTG-3' sequences in the GM-CSF repressor elements. We show here that two newly identified repressor sequences in the proximal promoter can also bind CSD proteins. We have characterized the CSD-containing protein complexes that bind to the GM-CSF promoter and identified a novel protein related to mitochondrial single strand binding protein that forms part of one of these complexes. The four CSD-binding sites on the promoter occur in pairs on opposite strands of the DNA and appear to form an ordered array of binding elements. A similar ordered array of CSD sites are present in the promoters of the granulocyte colony-stimulating factor and interleukin-3 genes, implying a common mechanism for negative regulation of these myeloid growth factors.
Collapse
Affiliation(s)
- L S Coles
- Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia, 5000, Australia.
| | | | | | | | | |
Collapse
|
26
|
Purnapatre K, Handa P, Venkatesh J, Varshney U. Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria. Nucleic Acids Res 1999; 27:3487-92. [PMID: 10446237 PMCID: PMC148591 DOI: 10.1093/nar/27.17.3487] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deamination of cytosines results in accumulation of uracil residues in DNA, which unless repaired lead to GC-->AT transition mutations. Uracil DNA glyco-sylase excises uracil residues from DNA and initiates the base excision repair pathway to safeguard the genomic integrity. In this study, we have investigated the effect of single-stranded DNA binding proteins (SSBs) from Escherichia coli (Eco SSB) and Mycobacterium tuberculosis (Mtu SSB) on uracil excision from synthetic substrates by uracil DNA glycosylases (UDGs) from E. coli, Mycobacterium smegmatis and M.tuberculosis (referred to as Eco -, Msm - and Mtu UDGs respectively). Presence of SSBs with all the three UDGs resulted in decreased efficiency of uracil excision from a single-stranded 'unstructured' oligonucleo-tide, SS-U9. On the other hand, addition of Eco SSB to Eco UDG, or Mtu SSB to Mtu UDG reactions resulted in increased efficiency of uracil excision from a hairpin oligonucleotide containing dU at the second position in a tetraloop (Loop-U2). Interestingly, the efficiency of uracil excision by Msm UDG from the same substrate was decreased in the presence of either Eco- or Mtu SSBs. Furthermore, Mtu SSB also decreased uracil excision from Loop-U2 by Eco UDG. Our studies using surface plasmon resonance technique demonstrated interactions between the homologous combinations of SSBs and UDGs. Heterologous combinations either did not show detectable interaction (Eco SSB with Mtu UDG) or showed a relatively weaker interaction (Mtu SSB with Eco UDG). Taken together, our studies suggest differential interactions between the two groups (SSBs and UDGs) of the highly conserved proteins. Such studies may provide important clues to design selective inhibitors against this important class of DNA repair enzymes.
Collapse
Affiliation(s)
- K Purnapatre
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
27
|
Rothman-Denes LB, Dai X, Davydova E, Carter R, Kazmierczak K. Transcriptional regulation by DNA structural transitions and single-stranded DNA-binding proteins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:63-73. [PMID: 10384271 DOI: 10.1101/sqb.1998.63.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- L B Rothman-Denes
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Venderbure C, Chastanet A, Boudsocq F, Sommer S, Bailone A. Inhibition of homologous recombination by the plasmid MucA'B complex. J Bacteriol 1999; 181:1249-55. [PMID: 9973352 PMCID: PMC93503 DOI: 10.1128/jb.181.4.1249-1255.1999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By its functional interaction with a RecA polymer, the mutagenic UmuD'C complex possesses an antirecombination activity. We show here that MucA'B, a functional homolog of the UmuD'C complex, inhibits homologous recombination as well. In F- recipients expressing MucA'B from a Ptac promoter, Hfr x F- recombination decreased with increasing MucA'B concentrations down to 50-fold. In damage-induced pKM101-containing cells expressing MucA'B from the native promoter, recombination between a UV-damaged F lac plasmid and homologous chromosomal DNA decreased 10-fold. Overexpression of MucA'B together with UmuD'C resulted in a synergistic inhibition of recombination. RecA[UmuR] proteins, which are resistant to UmuD'C inhibition of recombination, are inhibited by MucA'B while promoting MucA'B-promoted mutagenesis efficiently. The data suggest that MucA'B and UmuD'C contact a RecA polymer at distinct sites. The MucA'B complex was more active than UmuD'C in promoting UV mutagenesis, yet it did not inhibit recombination more than UmuD'C does. The enhanced mutagenic potential of MucA'B may result from its inherent superior capacity to assist DNA polymerase in trans-lesion synthesis. In the course of this work, we found that the natural plasmid pKM101 expresses around 45,000 MucA and 13,000 MucB molecules per lexA(Def) cell devoid of LexA. These molecular Muc concentrations are far above those of the chromosomally encoded Umu counterparts. Plasmid pKM101 belongs to a family of broad-host-range conjugative plasmids. The elevated levels of the Muc proteins might be required for successful installation of pKM101-like plasmids into a variety of host cells.
Collapse
Affiliation(s)
- C Venderbure
- Institut Curie, Centre Universitaire, F-91405 Orsay, France
| | | | | | | | | |
Collapse
|
29
|
Tang M, Bruck I, Eritja R, Turner J, Frank EG, Woodgate R, O'Donnell M, Goodman MF. Biochemical basis of SOS-induced mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD'2C mutagenic complex and RecA protein. Proc Natl Acad Sci U S A 1998; 95:9755-60. [PMID: 9707548 PMCID: PMC21409 DOI: 10.1073/pnas.95.17.9755] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Damage-induced SOS mutagenesis requiring the UmuD'C proteins occurs as part of the cells' global response to DNA damage. In vitro studies on the biochemical basis of SOS mutagenesis have been hampered by difficulties in obtaining biologically active UmuC protein, which, when overproduced, is insoluble in aqueous solution. We have circumvented this problem by purifying the UmuD'2C complex in soluble form and have used it to reconstitute an SOS lesion bypass system in vitro. Stimulated bypass of a site-directed model abasic lesion occurs in the presence of UmuD'2C, activated RecA protein (RecA*), beta-sliding clamp, gamma-clamp loading complex, single-stranded binding protein (SSB), and either DNA polymerases III or II. Synthesis in the presence of UmuD'2C is nonprocessive on damaged and undamaged DNA. No lesion bypass is observed when wild-type RecA is replaced with RecA1730, a mutant that is specifically defective for Umu-dependent mutagenesis. Perhaps the most noteworthy property of UmuD'2C resides in its ability to stimulate both nucleotide misincorporation and mismatch extension at aberrant and normal template sites. These observations provide a biochemical basis for the role of the Umu complex in SOS-targeted and SOS-untargeted mutagenesis.
Collapse
Affiliation(s)
- M Tang
- Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Reuven NB, Tomer G, Livneh Z. The mutagenesis proteins UmuD' and UmuC prevent lethal frameshifts while increasing base substitution mutations. Mol Cell 1998; 2:191-9. [PMID: 9734356 DOI: 10.1016/s1097-2765(00)80129-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Error-prone DNA repair consists of replicative filling-in of DNA gaps carrying lesions. We have reconstituted E. coli SOS error-prone repair using purified DNA polymerase III holoenzyme, SSB, RecA, UmuD', a UmuC fusion protein, and a gap lesion plasmid. In the absence of UmuDC, or without SOS induction, replication skips over the lesion, forming mostly one-nucleotide deletions. These cause translational frameshifts that usually inactivate genes. UmuD' and UmuC, in the presence of RecA and SSB, stimulate translesion replication and change its mutagenic specificity such that deletions are prevented and base substitutions are increased. This results in mutagenic but nondetrimental gap repair and provides an effective mechanism for generating genetic variation in bacteria adapting to environmental stress.
Collapse
Affiliation(s)
- N B Reuven
- Department of Biological Chemistry, Faculty of Biochemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|