1
|
Hong L, Niu F, Lin Y, Wang S, Chen L, Jiang L. MYB106 is a negative regulator and a substrate for CRL3 BPM E3 ligase in regulating flowering time in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1104-1119. [PMID: 33470537 DOI: 10.1111/jipb.13071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/16/2021] [Indexed: 05/18/2023]
Abstract
Flowering time is crucial for successful reproduction in plants, the onset and progression of which are strictly controlled. However, flowering time is a complex and environmentally responsive history trait and the underlying mechanisms still need to be fully characterized. Post-translational regulation of the activities of transcription factors (TFs) is a dynamic and essential mechanism for plant growth and development. CRL3BPM E3 ligase is a CULLIN3-based E3 ligase involved in orchestrating protein stability via the ubiquitin proteasome pathway. Our study shows that the mutation of MYB106 induced early flowering phenotype while over-expression of MYB106 delayed Arabidopsis flowering. Transcriptome analysis of myb106 mutants reveals 257 differentially expressed genes between wild type and myb106-1 mutants, including Flowering Locus T (FT) which is related to flowering time. Moreover, in vitro electrophoretic mobility shift assays (EMSA), in vivo chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) assays and dual luciferase assays demonstrate that MYB106 directly binds to the promoter of FT to suppress its expression. Furthermore, we confirm that MYB106 interacts with BPM proteins which are further identified by CRL3BPM E3 ligases as the substrate. Taken together, we have identified MYB106 as a negative regulator in the control of flowering time and a new substrate for CRL3BPM E3 ligases in Arabidopsis.
Collapse
Affiliation(s)
- Liu Hong
- Center for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fangfang Niu
- Center for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Youshun Lin
- Center for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuang Wang
- Center for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Technology University, Shenzhen, 518000, China
| | - Liyuan Chen
- Center for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen, 518055, China
| | - Liwen Jiang
- Center for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
2
|
Sharma N, Kumari R. Rpb4 and Rpb7: multifunctional subunits of RNA polymerase II. Crit Rev Microbiol 2012; 39:362-72. [DOI: 10.3109/1040841x.2012.711742] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
He XJ, Hsu YF, Pontes O, Zhu J, Lu J, Bressan RA, Pikaard C, Wang CS, Zhu JK. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes Dev 2009; 23:318-30. [PMID: 19204117 DOI: 10.1101/gad.1765209] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA-directed DNA methylation (RdDM) is an RNAi-based mechanism for establishing transcriptional gene silencing in plants. The plant-specific RNA polymerases IV and V are required for the generation of 24-nucleotide (nt) siRNAs and for guiding sequence-specific DNA methylation by the siRNAs, respectively. However, unlike the extensively studied multisubunit Pol II, our current knowledge about Pol IV and Pol V is restricted to only the two largest subunits NRPD1a/NRPD1 and NRPD1b/NRPE1 and the one second-largest subunit NRPD2a. It is unclear whether other subunits may be required for the functioning of Pol IV and Pol V in RdDM. From a genetic screen for second-site suppressors of the DNA demethylase mutant ros1, we identified a new component (referred to as RDM2) as well as seven known components (NRPD1, NRPE1, NRPD2a, AGO4, HEN1, DRD1, and HDA6) of the RdDM pathway. The differential effects of the mutations on two mechanistically distinct transcriptional silencing reporters suggest that RDM2, NRPD1, NRPE1, NRPD2a, HEN1, and DRD1 function only in the siRNA-dependent pathway of transcriptional silencing, whereas HDA6 and AGO4 have roles in both siRNA-dependent and -independent pathways of transcriptional silencing. In the rdm2 mutants, DNA methylation and siRNA accumulation were reduced substantially at loci previously identified as endogenous targets of Pol IV and Pol V, including 5S rDNA, MEA-ISR, AtSN1, AtGP1, and AtMU1. The amino acid sequence of RDM2 is similar to that of RPB4 subunit of Pol II, but we show evidence that RDM2 has diverged significantly from RPB4 and cannot function in Pol II. An association of RDM2 with both NRPD1 and NRPE1 was observed by coimmunoprecipitation and coimmunolocalization assays. Our results show that RDM2/NRPD4/NRPE4 is a new component of the RdDM pathway in Arabidopsis and that it functions as part of Pol IV and Pol V.
Collapse
Affiliation(s)
- Xin-Jian He
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, Zhu JK, Hagen G, Guilfoyle TJ, Pasa-Tolić L, Pikaard CS. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell 2008; 33:192-203. [PMID: 19110459 DOI: 10.1016/j.molcel.2008.12.015] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 01/09/2023]
Abstract
In addition to RNA polymerases I, II, and III, the essential RNA polymerases present in all eukaryotes, plants have two additional nuclear RNA polymerases, abbreviated as Pol IV and Pol V, that play nonredundant roles in siRNA-directed DNA methylation and gene silencing. We show that Arabidopsis Pol IV and Pol V are composed of subunits that are paralogous or identical to the 12 subunits of Pol II. Four subunits of Pol IV are distinct from their Pol II paralogs, six subunits of Pol V are distinct from their Pol II paralogs, and four subunits differ between Pol IV and Pol V. Importantly, the subunit differences occur in key positions relative to the template entry and RNA exit paths. Our findings support the hypothesis that Pol IV and Pol V are Pol II-like enzymes that evolved specialized roles in the production of noncoding transcripts for RNA silencing and genome defense.
Collapse
Affiliation(s)
- Thomas S Ream
- Biology Department, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat Struct Mol Biol 2008; 16:91-3. [PMID: 19079263 DOI: 10.1038/nsmb.1539] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 11/26/2008] [Indexed: 11/08/2022]
Abstract
Genetic evidence indicates that plant-specific homologs of DNA-dependent RNA polymerase (Pol) II large subunits form Pol IV and Pol V complexes involved in small interfering RNA production and RNA-directed DNA methylation. Here we describe evidence that Pol V contains subunits shared with Pol II, but that RNA polymerase II subunit (RPB)-4 is missing from Pol V and that RPB5 is present as a Pol V-specific isomer, RPB5b. Pol V also has other proteins that are not present in Pol II, consistent with a role of this complex as an effector of silencing.
Collapse
|
6
|
Genomewide recruitment analysis of Rpb4, a subunit of polymerase II in Saccharomyces cerevisiae, reveals its involvement in transcription elongation. EUKARYOTIC CELL 2008; 7:1009-18. [PMID: 18441121 DOI: 10.1128/ec.00057-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Rpb4/Rpb7 subcomplex of yeast RNA polymerase II (Pol II) has counterparts in all multisubunit RNA polymerases from archaebacteria to higher eukaryotes. The Rpb4/7 subcomplex in Saccharomyces cerevisiae is unique in that it easily dissociates from the core, unlike the case in other organisms. The relative levels of Rpb4 and Rpb7 in yeasts affect the differential gene expression and stress response. Rpb4 is nonessential in S. cerevisiae and affects expression of a small number of genes under normal growth conditions. Here, using a chromatin immunoprecipitation ("ChIP on-chip") technique, we compared genomewide binding of Rpb4 to that of a core Pol II subunit, Rpb3. Our results showed that in spite of being nonessential for survival, Rpb4 was recruited on coding regions of most transcriptionally active genes, similar to the case with the core Pol II subunit, Rpb3, albeit to a lesser extent. The extent of Rpb4 recruitment increased with increasing gene length. We also observed Pol II lacking Rpb4 to be defective in transcribing long, GC-rich transcription units, suggesting a role for Rpb4 in transcription elongation. This role in transcription elongation was supported by the observed 6-azauracil (6AU) sensitivity of the rpb4Delta mutant. Unlike most phenotypes of rpb4Delta, the 6AU sensitivity of the rpb4Delta strain was not rescued by overexpression of RPB7. This report provides the first instance of a distinct role for Rpb4 in transcription, which is independent of its interacting partner, Rpb7.
Collapse
|
7
|
Singh SR, Pillai B, Balakrishnan B, Naorem A, Sadhale PP. Relative levels of RNA polII subunits differentially affect starvation response in budding yeast. Biochem Biophys Res Commun 2007; 356:266-72. [PMID: 17346670 DOI: 10.1016/j.bbrc.2007.02.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
The Rpb4/7 subcomplex of RNA polymerase II in Saccharomyces cerevisiae is known to play an important role in stress response and stress survival. These two proteins perform overlapping functions ensuring an appropriate cellular response through transcriptional regulation of gene expression. Rpb4 and Rpb7 also perform many cellular functions either together or independent of one another. Here, we show that Rpb4 and Rpb7 differently affect during the nutritional starvation response pathways of sporulation and pseudohyphae formation. Rpb4 enhances the cells' proficiency to sporulate but suppresses pseudohyphal growth. On the other hand, Rpb7 promotes pseudohyphal growth and suppresses sporulation in a dose-dependent manner. We present a model whereby the stoichiometry of Rpb4 and Rpb7 and their relative levels in the cell play a switch like role in establishing either sporulation or pseudohyphal gene expression.
Collapse
Affiliation(s)
- Sunanda R Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 12, India
| | | | | | | | | |
Collapse
|
8
|
Sareen A, Choudhry P, Mehta S, Sharma N. Mapping the interaction site of Rpb4 and Rpb7 subunits of RNA polymerase II in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2005; 332:763-70. [PMID: 15913559 DOI: 10.1016/j.bbrc.2005.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
Rpb4 and Rpb7, the fourth and the seventh largest subunits of RNA polymerase II, form a heterodimer in Saccharomyces cerevisiae. To identify the site of interaction between these subunits, we constructed truncation mutants of both these proteins and carried out yeast two hybrid analysis. Deletions in the amino and carboxyl terminal domains of Rpb7 abolished its interaction with Rpb4. In comparison, deletion of up to 49 N-terminal amino acids of Rpb4 reduced its interaction with Rpb7. Complete abolishment of interaction between Rpb4 and Rpb7 occurred by truncation of 1-106, 1-142, 108-221, 172-221 or 198-221 amino acids of Rpb4. Use of the yeast two-hybrid analysis in conjunction with computational analysis of the recently reported crystal structure of Rpb4/Rpb7 sub-complex allowed us to identify regions previously not suspected to be involved in the functional interaction of these proteins. Taken together, our results have identified the regions that are involved in interaction between the Rpb4 and Rpb7 subunits of S. cerevisiae RNA polymerase II in vivo.
Collapse
Affiliation(s)
- Archana Sareen
- School of Biotechnology, G.G.S. Indraprastha University, Kashmere Gate, Delhi 110006, India
| | | | | | | |
Collapse
|
9
|
Sampath V, Sadhale P. Rpb4 and Rpb7: A Sub-complex Integral to Multi-subunit RNA Polymerases Performs a Multitude of Functions. IUBMB Life 2005; 57:93-102. [PMID: 16036568 DOI: 10.1080/15216540500078905] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rpb4 and Rpb7, are conserved subunits of RNA polymerase II that play important roles in stress responses such as growth at extreme temperatures, recovery from stationary phase, sporulation and pseudohyphal growth. Recent reports have shown that apart from stress response, these proteins also affect a multitude of processes including activated transcription, mRNA export, transcription coupled repair etc. We propose a model that integrates the multifarious roles of this sub-complex. We suggest that these proteins function by modulating interactions of one or more ancillary factors with the polymerase leading to specific transcription of subsets of these genes. Preliminary experimental evidence in support of such a model is discussed.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
10
|
Tillemans V, Dispa L, Remacle C, Collinge M, Motte P. Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:567-82. [PMID: 15686520 DOI: 10.1111/j.1365-313x.2004.02321.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Serine/arginine-rich (SR) proteins constitute an important class of splicing regulators in higher eukaryotes that share a modular structure consisting of one or two N-terminal RNA recognition motif (RRM) domains and a C-terminal RS-rich domain. Herein, we have investigated the in vivo functional distribution of Arabidopsis SR factors. Agrobacterium-mediated transient transformation revealed nuclear speckled distribution and the overall colocalization of fluorescent protein (FP)-tagged SR factors in both tobacco and Arabidopsis cells. Their overall colocalization in larger nucleoplasmic domains was further observed after transcriptional and phosphorylation/dephosphorylation inhibition, indicating a close functional association between SR factors, independent of their phosphorylation state. Furthermore, we demonstrated in vivo the conserved role of the RS and RRM domains in the efficient targeting of Arabidopsis SR proteins to nuclear speckles by using a series of structural domain-deleted mutants of atRSp31 and atRSZp22. We suggest additional roles of RS domain such as the shuttling of atRSZp22 between nucleoplasm and nucleolus through its phosphorylation level. The coexpression of deletion mutants with wild-type SR proteins revealed potential complex associations between them. Fluorescence recovery after photobleaching demonstrated similar dynamic properties of SR factors in both tobacco transiently expressing cells and Arabidopsis transgenics. Cell cycle phase-dependent organization of FP-tagged SR proteins was observed in living tobacco BY-2 cells. We showed that atRSp31 is degraded at metaphase by fluorescence quantification. SR proteins also localized within small foci at anaphase. These results demonstrate interesting related features as well as potentially important differences between plant and animal SR proteins.
Collapse
Affiliation(s)
- Vinciane Tillemans
- Laboratory of Plant Cell and Molecular Biology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
11
|
Singh SR, Rekha N, Pillai B, Singh V, Naorem A, Sampath V, Srinivasan N, Sadhale PP. Domainal organization of the lower eukaryotic homologs of the yeast RNA polymerase II core subunit Rpb7 reflects functional conservation. Nucleic Acids Res 2004; 32:201-10. [PMID: 14704357 PMCID: PMC373273 DOI: 10.1093/nar/gkh163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The subcomplex of Rpb4 and Rpb7 subunits of RNA pol II in Saccharomyces cerevisiae is known to be an important determinant of transcription under a variety of physiological stresses. In S.cerevisiae, RPB7 is essential for cell viability while rpb4 null strains are temperature sensitive at low and high temperatures. The rpb4 null strain also shows defect in sporulation and a predisposed state of pseudohyphal growth. We show here that, apart from S.cerevisiae Rpb7, the Rpb7 homologs from other lower eukaryotes like Schizosaccharomyces pombe, Candida albicans and Dictyostelium discoideum can complement for the absence of S.cerevisiae RPB7. This is the first report where we have shown that both the C.albicans and D.discoideum homologs are functional orthologs of the yeast RPB7. We also show that high expression levels of S.cerevisiae RPB7 and its homologs rescue the sporulation defect of rpb4 homozygous null diploids, but only some of them cause significant enhancement of the pseudohyphal phenotype. Structural modeling of Rpb7 and its homologs show a high degree of conservation in the overall structure. This study indicates a structural and functional conservation of different Rpb7 across species and also a conserved role of Rpb7 in the subcomplex with respect to nutritional stress.
Collapse
Affiliation(s)
- Sunanda R Singh
- Department of Microbiology, Indian Institute of Science, Bangalore-12, India
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
13
|
Sampath V, Rekha N, Srinivasan N, Sadhale P. The Conserved and Non-conserved Regions of Rpb4 Are Involved in Multiple Phenotypes in Saccharomyces cerevisiae. J Biol Chem 2003; 278:51566-76. [PMID: 14530281 DOI: 10.1074/jbc.m305863200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rpb4, the fourth largest subunit of RNA polymerase II in Saccharomyces cerevisiae, is required for many phenotypes, including growth at high and low temperatures, sporulation, pseudohyphal growth, activated transcription of a subset of genes, and efficient carbon and energy metabolism. We have used deletion analysis to delineate the domains of the protein involved in these multiple phenotypes. The scRpb4 protein is conserved at the N and C termini but possesses certain non-conserved regions in the central portion. Our deletion analysis and molecular modeling results show that the N- and C-terminal conserved regions of Rpb4 are involved in interaction with Rpb7, the Rpb4 interacting partner in the RNA polymerase II. We further show that the conserved N terminus is required for efficient activated transcription from the INO1 promoter but not the GAL10- or the HSE-containing promoters. The N terminus is not required for any of the stress responses tested: growth at high temperatures, sporulation, and pseudohyphal growth. The conserved C-terminal 23 amino acids are not required for the role of Rpb4 in the pseudohyphal growth phenotype but might play a role in other stress responses and activated transcription. From the deletion analysis of the non-conserved regions, we report that they influence phenotypes involving both the N and C termini (interaction with Rpb7 and transcription from the INO1 promoter) but not any of the stress-responsive phenotypes tested suggesting that they might be involved in maintaining the two conserved domains in an appropriate conformation for interaction with Rpb7 and other proteins. Taken together, our results allow us to assign phenotype-specific roles for the different conserved and non-conserved regions of Rpb4.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
14
|
Armache KJ, Kettenberger H, Cramer P. Architecture of initiation-competent 12-subunit RNA polymerase II. Proc Natl Acad Sci U S A 2003; 100:6964-8. [PMID: 12746495 PMCID: PMC165813 DOI: 10.1073/pnas.1030608100] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Indexed: 12/17/2022] Open
Abstract
RNA polymerase (Pol) II consists of a 10-polypeptide catalytic core and the two-subunit Rpb4/7 complex that is required for transcription initiation. Previous structures of the Pol II core revealed a "clamp," which binds the DNA template strand via three "switch regions," and a flexible "linker" to the C-terminal repeat domain (CTD). Here we derived a model of the complete Pol II by fitting structures of the core and Rpb4/7 to a 4.2-A crystallographic electron density map. Rpb4/7 protrudes from the polymerase "upstream face," on which initiation factors assemble for promoter DNA loading. Rpb7 forms a wedge between the clamp and the linker, restricting the clamp to a closed position. The wedge allosterically prevents entry of the promoter DNA duplex into the active center cleft and induces in two switch regions a conformation poised for template-strand binding. Interaction of Rpb4/7 with the linker explains Rpb4-mediated recruitment of the CTD phosphatase to the CTD during Pol II recycling. The core-Rpb7 interaction and some functions of Rpb4/7 are apparently conserved in all eukaryotic and archaeal RNA polymerases but not in the bacterial enzyme.
Collapse
Affiliation(s)
- Karim-Jean Armache
- Institute of Biochemistry and Gene Center, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | |
Collapse
|
15
|
Lagrange T, Hakimi MA, Pontier D, Courtois F, Alcaraz JP, Grunwald D, Lam E, Lerbs-Mache S. Transcription factor IIB (TFIIB)-related protein (pBrp), a plant-specific member of the TFIIB-related protein family. Mol Cell Biol 2003; 23:3274-86. [PMID: 12697827 PMCID: PMC153204 DOI: 10.1128/mcb.23.9.3274-3286.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although it is now well documented that metazoans have evolved general transcription factor (GTF) variants to regulate their complex patterns of gene expression, there is so far no information regarding the existence of specific GTFs in plants. Here we report the characterization of a ubiquitously expressed gene that encodes a bona fide novel transcription factor IIB (TFIIB)-related protein in Arabidopsis thaliana. We have shown that this protein is the founding member of a plant-specific TFIIB-related protein family named pBrp (for plant-specific TFIIB-related protein). Surprisingly, in contrast to common GTFs that are localized in the nucleus, the bulk of pBrp proteins are bound to the cytoplasmic face of the plastid envelope, suggesting an organelle-specific function for this novel class of TFIIB-related protein. We show that pBrp proteins harbor conditional proteolytic signals that can target these proteins for rapid turnover by the proteasome-mediated protein degradation pathway. Interestingly, under conditions of proteasome inhibition, pBrp proteins accumulate in the nucleus. Together, our results suggest a possible involvement of these proteins in an intracellular signaling pathway between plastids and the nucleus. Our data provide the first evidence for an organelle-related evolution of the eukaryotic general transcription machinery.
Collapse
Affiliation(s)
- Thierry Lagrange
- Laboratoire de Génétique Moléculaire des Plantes, UMR5575, 38041 Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Siaut M, Zaros C, Levivier E, Ferri ML, Court M, Werner M, Callebaut I, Thuriaux P, Sentenac A, Conesa C. An Rpb4/Rpb7-like complex in yeast RNA polymerase III contains the orthologue of mammalian CGRP-RCP. Mol Cell Biol 2003; 23:195-205. [PMID: 12482973 PMCID: PMC140662 DOI: 10.1128/mcb.23.1.195-205.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 08/06/2002] [Accepted: 09/30/2002] [Indexed: 11/20/2022] Open
Abstract
The essential C17 subunit of yeast RNA polymerase (Pol) III interacts with Brf1, a component of TFIIIB, suggesting a role for C17 in the initiation step of transcription. The protein sequence of C17 (encoded by RPC17) is conserved from yeasts to humans. However, mammalian homologues of C17 (named CGRP-RCP) are known to be involved in a signal transduction pathway related to G protein-coupled receptors, not in transcription. In the present work, we first establish that human CGRP-RCP is the genuine orthologue of C17. CGRP-RCP was found to functionally replace C17 in Deltarpc17 yeast cells; the purified mutant Pol III contained CGRP-RCP and had a decreased specific activity but initiated faithfully. Furthermore, CGRP-RCP was identified by mass spectrometry in a highly purified human Pol III preparation. These results suggest that CGRP-RCP has a dual function in mammals. Next, we demonstrate by genetic and biochemical approaches that C17 forms with C25 (encoded by RPC25) a heterodimer akin to Rpb4/Rpb7 in Pol II. C17 and C25 were found to interact genetically in suppression screens and physically in coimmunopurification and two-hybrid experiments. Sequence analysis and molecular modeling indicated that the C17/C25 heterodimer likely adopts a structure similar to that of the archaeal RpoE/RpoF counterpart of the Rpb4/Rpb7 complex. These RNA polymerase subunits appear to have evolved to meet the distinct requirements of the multiple forms of RNA polymerases.
Collapse
Affiliation(s)
- Magali Siaut
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Peyroche G, Levillain E, Siaut M, Callebaut I, Schultz P, Sentenac A, Riva M, Carles C. The A14-A43 heterodimer subunit in yeast RNA pol I and their relationship to Rpb4-Rpb7 pol II subunits. Proc Natl Acad Sci U S A 2002; 99:14670-5. [PMID: 12407181 PMCID: PMC137477 DOI: 10.1073/pnas.232580799] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Accepted: 09/25/2002] [Indexed: 11/18/2022] Open
Abstract
A43, an essential subunit of yeast RNA polymerase I (pol I), interacts with Rrn3, a class I general transcription factor required for rDNA transcription. The pol I-Rrn3 complex is the only form of enzyme competent for promoter-dependent transcription initiation. In this paper, using biochemical and genetic approaches, we demonstrate that the A43 polypeptide forms a stable heterodimer with the A14 pol I subunit and interacts with the common ABC23 subunit, the yeast counterpart of the omega subunit of bacterial RNA polymerase. We show by immunoelectronic microscopy that A43, ABC23, and A14 colocalize in the three-dimensional structure of the pol I, and we demonstrate that the presence of A43 is required for the stabilization of both A14 and ABC23 within the pol I. Because the N-terminal half of A43 is clearly related to the pol II Rpb7 subunit, we propose that the A43-A14 pair is likely the pol I counterpart of the Rpb7-Rpb4 heterodimer, although A14 distinguishes from Rpb4 by specific sequence and structure features. This hypothesis, combined with our structural data, suggests a new localization of Rpb7-Rpb4 subunits in the three-dimensional structure of yeast pol II.
Collapse
Affiliation(s)
- Gerald Peyroche
- Laboratoire de Transcription des Gènes, Commissariat à l'Energie Atomique/Saclay, 91191 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hu P, Wu S, Sun Y, Yuan CC, Kobayashi R, Myers MP, Hernandez N. Characterization of human RNA polymerase III identifies orthologues for Saccharomyces cerevisiae RNA polymerase III subunits. Mol Cell Biol 2002; 22:8044-55. [PMID: 12391170 PMCID: PMC134740 DOI: 10.1128/mcb.22.22.8044-8055.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 08/05/2002] [Accepted: 08/15/2002] [Indexed: 11/20/2022] Open
Abstract
Unlike Saccharomyces cerevisiae RNA polymerase III, human RNA polymerase III has not been entirely characterized. Orthologues of the yeast RNA polymerase III subunits C128 and C37 remain unidentified, and for many of the other subunits, the available information is limited to database sequences with various degrees of similarity to the yeast subunits. We have purified an RNA polymerase III complex and identified its components. We found that two RNA polymerase III subunits, referred to as RPC8 and RPC9, displayed sequence similarity to the RNA polymerase II RPB7 and RPB4 subunits, respectively. RPC8 and RPC9 associated with each other, paralleling the association of the RNA polymerase II subunits, and were thus paralogues of RPB7 and RPB4. Furthermore, the complex contained a prominent 80-kDa polypeptide, which we called RPC5 and which corresponded to the human orthologue of the yeast C37 subunit despite limited sequence similarity. RPC5 associated with RPC53, the human orthologue of S. cerevisiae C53, paralleling the association of the S. cerevisiae C37 and C53 subunits, and was required for transcription from the type 2 VAI and type 3 human U6 promoters. Our results provide a characterization of human RNA polymerase III and show that the RPC5 subunit is essential for transcription.
Collapse
Affiliation(s)
- Ping Hu
- Graduate Program of Molecular and Cellular Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Craighead JL, Chang WH, Asturias FJ. Structure of yeast RNA polymerase II in solution: implications for enzyme regulation and interaction with promoter DNA. Structure 2002; 10:1117-25. [PMID: 12176389 DOI: 10.1016/s0969-2126(02)00813-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An 18 A resolution structure of the 12-subunit yeast RNA polymerase II (RNAPII) calculated from electron microscope images of single particles preserved in amorphous ice reveals the conformation of the enzyme in solution. The Rpb4/Rpb7 polymerase subunit complex was localized and found to be ideally positioned to determine the path of the nascent RNA transcript. The RNAPII structure suggests a revised mode of interaction with promoter DNA and demonstrates that regulation of RNAPII must involve structural changes that render the enzyme competent for initiation.
Collapse
Affiliation(s)
- John L Craighead
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
20
|
Zhou H, Lee KA. An hsRPB4/7-dependent yeast assay for trans-activation by the EWS oncogene. Oncogene 2001; 20:1519-24. [PMID: 11313895 DOI: 10.1038/sj.onc.1204135] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2000] [Revised: 11/27/2000] [Accepted: 11/29/2000] [Indexed: 11/09/2022]
Abstract
Chromosomal fusions of the N-terminal region of the Ewings Sarcoma Oncogene (EWS-Activation-Domain, EAD) to the DNA-binding domains of a variety of cellular transcription factors, produce oncogenic proteins (EWS-fusion proteins (EFPs)) that cause a variety of malignancies. The EAD can act as a potent transcriptional activation domain and is required for the oncogenic activity of EFPs. Previous studies demonstrating a physical interaction between the EAD and the human RNA Polymerase II subunit hsRPB7 suggest a crucial role for RPB7 and its partner, RPB4, in EAD function. Homologues of hsRPB4/7 exist in S. cerevisiae, and here we describe an RPB4/7-dependent yeast assay for EAD-mediated trans-activation. Conditional yeast strains lacking RPB4 are defective for trans-activation by a Gal4/EAD fusion protein at the permissive temperature. Introduction of hsRPB4 alone is unable to rescue trans-activation, while a combination of hsRPB4 and hsRPB7 significantly rescues activity. These findings provide the first functional evidence for a direct role of the RPB4/7 complex in EAD-mediated trans-activation. In addition, the yeast assay provides a tractable system for further molecular analysis of EAD and RPB4/7 action.
Collapse
Affiliation(s)
- H Zhou
- Department of Biology, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, SAR., China
| | | |
Collapse
|
21
|
Abstract
Protein interactions among RNA polymerase small subunits from the archaeon Methanococcus jannaschii were investigated using affinity pulldown assays in pairwise and higher-order combinations. In the most extensive study of archaeal RNA polymerase subunit interactions to date, including 37 pairs of proteins, 10 ternary combinations, and three quaternary combinations, we found evidence for pairwise interactions of subunit D with subunits L and N, and a ternary complex of subunits D, L and N. No other small subunit interactions occurred. These results are consistent with interactions observed in a crystal structure of eukaryotic RNA polymerase II and support a common archaeal/eukaryal RNA polymerase architecture. We further propose that subunit E" is not an integral member of archaeal RNA polymerases. Finally, we discuss the relative accuracy of the various methods that have been used to predict protein-protein interactions in RNA polymerase.
Collapse
Affiliation(s)
- A A Best
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | |
Collapse
|
22
|
Kimura M, Sakurai H, Ishihama A. Intracellular contents and assembly states of all 12 subunits of the RNA polymerase II in the fission yeast Schizosaccharomyces pombe. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:612-9. [PMID: 11168400 DOI: 10.1046/j.1432-1327.2001.01911.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA polymerase II (Pol II) of the fission yeast Schizosaccharomyces pombe is composed of 12 different polypeptides, Rpb1 to Rpb12, of which five, Rpb5, Rpb6, Rpb8, Rpb10 and Rpb12, are shared among three forms of the RNA polymerase. To get an insight into the control of synthesis and assembly of individual subunits, we have measured the intracellular concentrations of all 12 subunits in S. pombe by quantitative immunoblotting. Results indicate that the levels are low for the three large subunits, Rpb1, Rpb2 and Rpb3, which are the homologues of beta', beta and alpha subunits, respectively, of prokaryotic RNA polymerase. On the other hand, the levels of small-sized subunits were between 2- to 15-fold higher than these three core subunits. The levels of the five common subunits shared among RNA polymerases I, II and III are about 10 times greater than those of the Pol II-specific core subunits. The assembly state of the Rpb proteins was analyzed by glycerol gradient centrifugation of S. pombe whole cell extracts. The three core subunits are mostly assembled in Pol II, but some of the small subunits were detected in the slowly sedimenting fractions, indicating that at least some of the excess Rpb proteins exist in unassembled forms. Based on the intracellular concentration of the least abundant Rpb3 subunit, the total number of Pol II in a growing S. pombe cell was estimated to be about 10,000 molecules. The intracellular distribution of some Pol II subunits was also analyzed by microscopic observation of the green fluorescent protein (GFP)-fused Rpb proteins. In agreement with the biochemical analysis, the GFP-Rpb1 and GFP-Rpb3 fusions were present in the nuclei but the GFP-Rpb4 was detected in the cytoplasm as well as the nuclei.
Collapse
Affiliation(s)
- M Kimura
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka, Japan
| | | | | |
Collapse
|
23
|
Werner F, Eloranta JJ, Weinzierl RO. Archaeal RNA polymerase subunits F and P are bona fide homologs of eukaryotic RPB4 and RPB12. Nucleic Acids Res 2000; 28:4299-305. [PMID: 11058130 PMCID: PMC113124 DOI: 10.1093/nar/28.21.4299] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The archaeal and eukaryotic evolutionary domains diverged from each other approximately 2 billion years ago, but many of the core components of their transcriptional and translational machineries still display a readily recognizable degree of similarity in their primary structures. The F and P subunits present in archaeal RNA polymerases were only recently identified in a purified archaeal RNA polymerase preparation and, on the basis of localized sequence homologies, tentatively identified as archaeal versions of the eukaryotic RPB4 and RPB12 RNA polymerase subunits, respectively. We prepared recombinant versions of the F and P subunits from Methanococcus jannaschii and used them in in vitro and in vivo protein interaction assays to demonstrate that they interact with other archaeal subunits in a manner predicted from their eukaryotic counterparts. The overall structural conservation of the M. jannaschii F subunit, although not readily recognizable on the primary amino acid sequence level, is sufficiently high to allow the formation of an archaeal-human F-RPB7 hybrid complex.
Collapse
Affiliation(s)
- F Werner
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, Exhibition Road, London SW7 2AY, UK
| | | | | |
Collapse
|
24
|
Tan Q, Li X, Sadhale PP, Miyao T, Woychik NA. Multiple mechanisms of suppression circumvent transcription defects in an RNA polymerase mutant. Mol Cell Biol 2000; 20:8124-33. [PMID: 11027282 PMCID: PMC86422 DOI: 10.1128/mcb.20.21.8124-8133.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a high-copy-number suppressor screen to obtain clues about the role of the yeast RNA polymerase II subunit RPB4 in transcription, we identified three suppressors of the temperature sensitivity resulting from deletion of the RPB4 gene (DeltaRPB4). One suppressor is Sro9p, a protein related to La protein, another is the nucleosporin Nsp1p, and the third is the RNA polymerase II subunit RPB7. Suppression by RPB7 was anticipated since its interaction with RPB4 is well established both in vitro and in vivo. We examined the effect of overexpression of each suppressor gene on transcription. Interestingly, suppression of the temperature-sensitive phenotype correlates with the correction of a characteristic transcription defect of this mutant: each suppressor restored the level of promoter-specific, basal transcription to wild-type levels. Examination of the effects of the suppressors on other in vivo transcription aberrations in DeltaRPB4 cells revealed significant amelioration of defects in certain inducible genes in Sro9p and RPB7, but not in Nsp1p, suppressor cells. Analysis of mRNA levels demonstrated that overexpression of each of the three suppressors minimally doubled the mRNA levels during stationary phase. However, the elevated mRNA levels in Sro9p suppressor cells appear to result from a combination of enhanced transcription and message stability. Taken together, these results demonstrate that these three proteins influence transcription and implicate Sro9p in both transcription and posttranscription events.
Collapse
Affiliation(s)
- Q Tan
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
25
|
He X, Hohn T, Fütterer J. Transcriptional activation of the rice tungro bacilliform virus gene is critically dependent on an activator element located immediately upstream of the TATA box. J Biol Chem 2000; 275:11799-808. [PMID: 10766804 DOI: 10.1074/jbc.275.16.11799] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the transcriptional mechanisms of rice tungro bacilliform virus, we have systematically analyzed an activator element located immediately upstream of the TATA box in the rice tungro bacilliform virus promoter and its cognate trans-acting factors. Using electrophoretic mobility shift assays, we showed that rice nuclear proteins bind to the activator element, forming multiple specific DNA-protein complexes via protein-protein interactions. Copper-phenanthroline footprinting and DNA methylation interference analysis indicated that multiple DNA-protein complexes share a common binding site located between positions -60 to -39, and the proteins contact the activator element in the major groove. DNA UV cross-linking assays further showed that two nuclear proteins (36 and 33 kDa), found in rice cell suspension and shoot nuclear extracts, and one (27 kDa), present in root nuclear extracts, bind to this activator element. In protoplasts derived from a rice (Oryza sativa) suspension culture, the activator element is a prerequisite for promoter activity and its function is critically dependent on its position relative to the TATA box. Thus, transcriptional activation may function via interactions with the basal transcriptional machinery, and we propose that this activation is mediated by protein-protein interactions in a position-dependent mechanism.
Collapse
Affiliation(s)
- X He
- Friedrich Miescher Institute, P. O. Box 2543, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
26
|
Kimura M, Ishihama A. Involvement of multiple subunit-subunit contacts in the assembly of RNA polymerase II. Nucleic Acids Res 2000; 28:952-9. [PMID: 10648788 PMCID: PMC102587 DOI: 10.1093/nar/28.4.952] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA polymerase II from the fission yeast Schizo-saccharomyces pombe consists of 12 species of subunits, Rpb1-Rpb12. We expressed these subunits, except Rpb4, simultaneously in cultured insect cells with baculovirus expression vectors. For the isolation of subunit complexes formed in the virus-infected cells, a glutathione S -transferase (GST) sequence was fused to the rpb3 cDNA to produce GST-Rpb3 fusion protein and a decahistidine-tag sequence was inserted into the rpb1 cDNA to produce Rpb1H protein. After successive affinity chromatography on glutathione and Ni(2+)columns, complexes consisting of the seven subunits, Rpb1H, Rpb2, GST-Rpb3, Rpb5, Rpb7, Rpb8 and Rpb11, were identified. Omission of the GST-Rpb3 expression resulted in reduced assembly of the Rpb11 into the complex. Direct interaction between Rpb3 and the other six subunits was detected by pairwise coexpression experiments. Coexpression of various combinations of a few subunits revealed that Rpb11 enhances Rpb3-Rpb8 interaction and consequently Rpb8 enhances Rpb1-Rpb3 interaction to some extent. We propose a mechanism in which the assembly of RNA poly-merase II is stabilized through multiple subunit-subunit contacts.
Collapse
Affiliation(s)
- M Kimura
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | |
Collapse
|
27
|
Sakurai H, Mitsuzawa H, Kimura M, Ishihama A. The Rpb4 subunit of fission yeast Schizosaccharomyces pombe RNA polymerase II is essential for cell viability and similar in structure to the corresponding subunits of higher eukaryotes. Mol Cell Biol 1999; 19:7511-8. [PMID: 10523639 PMCID: PMC84753 DOI: 10.1128/mcb.19.11.7511] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1999] [Accepted: 08/16/1999] [Indexed: 11/20/2022] Open
Abstract
Both the gene and the cDNA encoding the Rpb4 subunit of RNA polymerase II were cloned from the fission yeast Schizosaccharomyces pombe. The cDNA sequence indicates that Rpb4 consists of 135 amino acid residues with a molecular weight of 15,362. As in the case of the corresponding subunits from higher eukaryotes such as humans and the plant Arabidopsis thaliana, Rpb4 is smaller than RPB4 from the budding yeast Saccharomyces cerevisiae and lacks several segments, which are present in the S. cerevisiae RPB4 subunit, including the highly charged sequence in the central portion. The RPB4 subunit of S. cerevisiae is not essential for normal cell growth but is required for cell viability under stress conditions. In contrast, S. pombe Rpb4 was found to be essential even under normal growth conditions. The fraction of RNA polymerase II containing RPB4 in exponentially growing cells of S. cerevisiae is about 20%, but S. pombe RNA polymerase II contains the stoichiometric amount of Rpb4 even at the exponential growth phase. In contrast to the RPB4 homologues from higher eukaryotes, however, S. pombe Rpb4 formed stable hybrid heterodimers with S. cerevisiae RPB7, suggesting that S. pombe Rpb4 is similar, in its structure and essential role in cell viability, to the corresponding subunits from higher eukaryotes. However, S. pombe Rpb4 is closer in certain molecular functions to S. cerevisiae RPB4 than the eukaryotic RPB4 homologues.
Collapse
Affiliation(s)
- H Sakurai
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | |
Collapse
|
28
|
Woychik NA. Fractions to functions: RNA polymerase II thirty years later. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:311-7. [PMID: 10384295 DOI: 10.1101/sqb.1998.63.311] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- N A Woychik
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| |
Collapse
|
29
|
Larkin RM, Hagen G, Guilfoyle TJ. Arabidopsis thaliana RNA polymerase II subunits related to yeast and human RPB5. Gene X 1999; 231:41-7. [PMID: 10231567 DOI: 10.1016/s0378-1119(99)00090-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arabidopsis thaliana contains at least four genes that are predicted to encode polypeptides related to the RPB5 subunit found in yeast and human RNA polymerase II. This subunit has been shown to be the largest subunit common to yeast RNA polymerases I, II, and III (RPABC27). More than one of these genes is expressed in Arabidopsis suspension culture cells, but only one of the encoded polypeptides is found in purified RNA polymerases II and III. This polypeptide has a predicted pI of 9.6, matches 14 of 16 amino acids in the amino terminus of cauliflower RPB5 that was microsequenced, and shows 42 and 53% amino acid sequence identity with the yeast and human RPB5 subunits, respectively.
Collapse
Affiliation(s)
- R M Larkin
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
30
|
Sheffer A, Varon M, Choder M. Rpb7 can interact with RNA polymerase II and support transcription during some stresses independently of Rpb4. Mol Cell Biol 1999; 19:2672-80. [PMID: 10082533 PMCID: PMC84060 DOI: 10.1128/mcb.19.4.2672] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rpb4 and Rpb7 are two yeast RNA polymerase II (Pol II) subunits whose mechanistic roles have recently started to be deciphered. Although previous data suggest that Rpb7 can stably interact with Pol II only as a heterodimer with Rpb4, RPB7 is essential for viability, whereas RPB4 is essential only during some stress conditions. To resolve this discrepancy and to gain a better understanding of the mode of action of Rpb4, we took advantage of the inability of cells lacking RPB4 (rpb4Delta, containing Pol IIDelta4) to grow above 30 degrees C and screened for genes whose overexpression could suppress this defect. We thus discovered that overexpression of RPB7 could suppress the inability of rpb4Delta cells to grow at 34 degrees C (a relatively mild temperature stress) but not at higher temperatures. Overexpression of RPB7 could also partially suppress the cold sensitivity of rpb4Delta strains and fully suppress their inability to survive a long starvation period (stationary phase). Notably, however, overexpression of RPB4 could not override the requirement for RPB7. Consistent with the growth phenotype, overexpression of RPB7 could suppress the transcriptional defect characteristic of rpb4Delta cells during the mild, but not during a more severe, heat shock. We also demonstrated, through two reciprocal coimmunoprecipitation experiments, a stable interaction of the overproduced Rpb7 with Pol IIDelta4. Nevertheless, fewer Rpb7 molecules interacted with Pol IIDelta4 than with wild-type Pol II. Thus, a major role of Rpb4 is to augment the interaction of Rpb7 with Pol II. We suggest that Pol IIDelta4 contains a small amount of Rpb7 that is sufficient to support transcription only under nonstress conditions. When RPB7 is overexpressed, more Rpb7 assembles with Pol IIDelta4, enough to permit appropriate transcription also under some stress conditions.
Collapse
Affiliation(s)
- A Sheffer
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
31
|
Sakurai H, Kimura M, Ishihama A. Identification of the gene and the protein of RNA polymerase II subunit 9 (Rpb9) from the fission yeast Schizosacharomyces pombe. Gene 1998; 221:11-6. [PMID: 9852944 DOI: 10.1016/s0378-1119(98)00449-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Both the rpb9 gene and its cDNA encoding the subunit 9 of RNA polymerase II were cloned from the fission yeast Schizosaccharomyces pombe. From the DNA sequences, Rpb9 was predicted to consist of 113 amino acid residues with a molecular mass of 13,175. S. pombe Rpb9 is 47, 40 and 36% identical in amino acid sequence to the corresponding subunits from Saccharomyces cerevisiae, human and Drosophila melanogaster, respectively. Previously, we failed to detect Rpb9 in the purified RNA polymerase II by amino-terminal micro-sequencing of proteolytic fragments of subunits separated by SDS-gel electrophoresis. After Western blot analysis using antibodies raised against the protein product of the newly isolated rpb9 gene, we found that the purified RNA polymerase II contains Rpb9.
Collapse
Affiliation(s)
- H Sakurai
- National Institute of Genetics, Department of Molecular Genetics, Shizuoka, Japan
| | | | | |
Collapse
|