1
|
Dong L, Malkowski MG. Coupling Subunit-Specific States to Allosteric Regulation in Homodimeric Cyclooxygenase-2. Biochemistry 2025; 64:1380-1392. [PMID: 40021482 DOI: 10.1021/acs.biochem.4c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The homodimeric cyclooxygenase enzymes (COX-1 and COX-2) oxygenate arachidonic acid (AA) to generate prostaglandins. COX-2 behaves as a conformational heterodimer in solution comprised of allosteric (Eallo) and catalytic (Ecat) subunits that function cooperatively. We previously utilized 19F-nuclear magnetic resonance spectroscopy (19F-NMR) to show that the cyclooxygenase active site entrances in a COX-2 homodimer construct exhibited composite tightened and relaxed states that are dependent upon the type of ligand bound. A third state, hypothesized to represent the alteration of a loop comprised of residues 120-129, was also detected in the presence of ligands that allosterically potentiate activity. We report here studies that couple the use of 19F-NMR with COX-2 heterodimer constructs to characterize states arising in the individual subunits. Glycine and proline substitutions at Ser-121 were introduced to examine how these mutations alter the 120-129 loop. In the presence of AA, the subunits exhibited asymmetry, with tightened and relaxed states observed in Eallo and Ecat, respectively. Allosteric ligand binding resulted in a shift to equivalent symmetrical states, with tightened states observed in the presence of the allosteric inhibitor flurbiprofen and relaxed states observed in the presence of the allosteric potentiator palmitic acid. The S121P substitution results in a shift to equivalent relaxed states, as well as an alteration of the 120-129 loop in the absence of bound ligand. We put forth a model linking the observed differential states arising from allosteric ligand binding with structural transitions across the dimer interface that govern the regulation of cyclooxygenase activity.
Collapse
Affiliation(s)
- Liang Dong
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, New York 14203, United States
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, New York 14203, United States
| |
Collapse
|
2
|
Dong L, Malkowski MG. Defining the Conformational Ensembles Associated with Ligand Binding to Cyclooxygenase-2. Biochemistry 2023; 62:3134-3144. [PMID: 37852627 PMCID: PMC11425902 DOI: 10.1021/acs.biochem.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Cyclooxygenases (COX) catalyze the committed step in the production of prostaglandins responsible for the maintenance of physiological homeostasis. While crystal structures of COX in complex with substrates and inhibitors have provided insight into the molecular interactions governing their binding, they have not uncovered specific details related to the protein conformational motions responsible for important aspects of the COX function. We created a cysteine-free COX-2 construct and introduced a free cysteine at position-122 to enable labeling with 3-bromo-1,1,1-trifluoroacetone (BTFA). Placement of the label adjacent to the cyclooxygenase channel entrance permitted the detection of alterations upon ligand binding. 19F-nuclear magnetic resonance spectroscopy (19F-NMR) was then used to probe the conformational ensembles arising from BTFA-labeled COX-2 constructs in the presence and absence of ligands known to allosterically activate or inhibit COX-2. 19F-NMR analyses performed in the presence of the time-dependent inhibitor flurbiprofen, as well as Arg-120, Tyr-355, and Glu-524 mutations, led to the classification of two ensembles as representing the relaxed and tightened states of the cyclooxygenase channel entrance. A third ensemble, generated in the presence of arachidonic acid and the Y355F mutant and modulated by the allosteric potentiators palmitic acid and oleic acid and the nonallosteric substrates 2-arachidonoyl glycerol ether and anandamide, was classified as being related to the allosteric regulation of COX activity. The ensemble-based insight into COX function demonstrated here complements the static information derived from crystal structure analyses, collectively providing a more detailed framework of the dynamics involved in the regulation of COX catalysis and inhibition.
Collapse
Affiliation(s)
- Liang Dong
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY 14203, USA
| | - Michael G. Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Insights into the binding interaction mechanism of 12,12-dihydrochromeno[2,3-c]isoquinolin-5-amine in bovine serum albumin and prostaglandin H2 synthase-1: A biophysical approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Biochemical characterization of the cyclooxygenase enzyme in penaeid shrimp. PLoS One 2021; 16:e0250276. [PMID: 33886622 PMCID: PMC8062024 DOI: 10.1371/journal.pone.0250276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Cyclooxygenase (COX) is a two-step enzyme that converts arachidonic acid into prostaglandin H2, a labile intermediate used in the production of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α). In vertebrates and corals, COX must be N-glycosylated on at least two asparagine residues in the N-(X)-S/T motif to be catalytically active. Although COX glycosylation requirement is well-characterized in many species, whether crustacean COXs require N-glycosylation for their enzymatic function have not been investigated. In this study, a 1,842-base pair cox gene was obtained from ovarian cDNA of the black tiger shrimp Penaeus monodon. Sequence analysis revealed that essential catalytic residues and putative catalytic domains of P. monodon COX (PmCOX) were well-conserved in relation to other vertebrate and crustacean COXs. Expression of PmCOX in 293T cells increased levels of secreted PGE2 and PGF2α up to 60- and 77-fold, respectively, compared to control cells. Incubation of purified PmCOX with endoglycosidase H, which cleaves oligosaccharides from N-linked glycoproteins, reduced the molecular mass of PmCOX. Similarly, addition of tunicamycin, which inhibits N-linked glycosylation, in PmCOX-expressing cells resulted in PmCOX protein with lower molecular mass than those obtained from untreated cells, suggesting that PmCOX was N-glycosylated. Three potential glycosylation sites of PmCOX were identified at N79, N170 and N424. Mutational analysis revealed that although all three residues were glycosylated, only mutations at N170 and N424 completely abolished catalytic function. Inhibition of COX activity by ibuprofen treatment also decreased the levels of PGE2 in shrimp haemolymph. This study not only establishes the presence of the COX enzyme in penaeid shrimp, but also reveals that N-glycosylation sites are highly conserved and required for COX function in crustaceans.
Collapse
|
5
|
Molnar F, Norris LS, Schulten K. Simulated (Un)Binding of Arachidonic Acid in the Cyclooxygenase site of Prostaglandin H2 Synthase-1. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Molecular dynamics simulations with external forces are employed to study the unbinding and binding of arachidonic acid (AA) in the cyclooxygenase (COX) site of prostaglandin H2 synthase-1. Simulations with AA inside the COX binding channel reveal sequences of concerted bond rotations in the fatty acid alkyl chain which obviate the need for gross conformational changes in the protein and substrate during unbinding and binding. The all-cis structure of AA, with double bonds separated by two single bonds, facilitates easy access to the COX channel and correct positioning inside the active site for the COX chemistry to occur. Two derivatives of AA, one with a cis double bond changed to a trans configuration and the other with a double bond reduced to a single bond, are also studied. In both cases the concertedness of bond rotations in the fatty acid chain is diminished and larger forces are required to move the fatty acid inside the COX channel. Important motions of residues near the mouth of the COX channel are found and analyzed. In particular, a conformational “switch” involving Arg83, Glu524 and Arg120 is seen to mediate the movement of the substrate from the membrane to the channel.
Collapse
Affiliation(s)
- Ferenc Molnar
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, Illinois 61801
| | - Lawrence S. Norris
- Departments of Biomedical Engineering and Chemistry, Northwestern University, 2145 Sheridan, Evanston, IL 60208, USA
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, Illinois 61801
| |
Collapse
|
6
|
Shamsudin Y, Gutiérrez-de-Terán H, Åqvist J. Molecular Mechanisms in the Selectivity of Nonsteroidal Anti-Inflammatory Drugs. Biochemistry 2018; 57:1236-1248. [PMID: 29345921 DOI: 10.1021/acs.biochem.7b01019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) 1 and 2 with varying degrees of selectivity. A group of COX-2 selective inhibitors-coxibs-binds in a time-dependent manner through a three-step mechanism, utilizing a side pocket in the binding site. Coxibs have been extensively probed to identify the structural features regulating the slow tight-binding mechanism responsible for COX-2 selectivity. In this study, we further probe a structurally and kinetically diverse data set of COX inhibitors in COX-2 by molecular dynamics and free energy simulations. We find that the features regulating the high affinities associated with time-dependency in COX depend on the inhibitor kinetics. In particular, most time-dependent inhibitors share a common structural binding mechanism, involving an induced-fit rotation of the side-chain of Leu531 in the main binding pocket. The high affinities of two-step slow tight-binding inhibitors and some slow reversible inhibitors can thus be explained by the increased space in the main binding pocket after this rotation. Coxibs that belong to a separate class of slow tight-binding inhibitors benefit more from the displacement of the neighboring side-chain of Arg513, exclusive to the COX-2 side-pocket. This displacement further stabilizes the aforementioned rotation of Leu531 and can explain the selectivity of coxibs for COX-2.
Collapse
Affiliation(s)
- Yasmin Shamsudin
- Department of Cell and Molecular Biology, Box 596, Uppsala University, BMC , SE-751 24 Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Box 596, Uppsala University, BMC , SE-751 24 Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Box 596, Uppsala University, BMC , SE-751 24 Uppsala, Sweden
| |
Collapse
|
7
|
Goodman MC, Xu S, Rouzer CA, Banerjee S, Ghebreselasie K, Migliore M, Piomelli D, Marnett LJ. Dual cyclooxygenase-fatty acid amide hydrolase inhibitor exploits novel binding interactions in the cyclooxygenase active site. J Biol Chem 2018; 293:3028-3038. [PMID: 29326169 DOI: 10.1074/jbc.m117.802058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
The cyclooxygenases COX-1 and COX-2 oxygenate arachidonic acid (AA) to prostaglandin H2 (PGH2). COX-2 also oxygenates the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamide (AEA) to the corresponding PGH2 analogs. Both enzymes are targets of nonsteroidal anti-inflammatory drugs (NSAIDs), but NSAID-mediated COX inhibition is associated with gastrointestinal toxicity. One potential strategy to counter this toxicity is to also inhibit fatty acid amide hydrolase (FAAH), which hydrolyzes bioactive fatty acid ethanolamides (FAEs) into fatty acids and ethanolamine. Here, we investigated the mechanism of COX inhibition by ARN2508, an NSAID that inhibits both COXs and FAAH with high potency, target selectivity, and decreased gastrointestinal toxicity in mouse models, presumably due to its ability to increase levels of FAEs. A 2.27-Å-resolution X-ray crystal structure of the COX-2·(S)-ARN2508 complex reveals that ARN2508 adopts a binding pose similar to that of its parent NSAID flurbiprofen. However, ARN2508's alkyl tail is inserted deep into the top channel, an active site region not exploited by any previously reported NSAID. As for flurbiprofen, ARN2508's potency is highly dependent on the configuration of the α-methyl group. Thus, (S)-ARN2508 is more potent than (R)-ARN2508 for inhibition of AA oxygenation by both COXs and 2-AG oxygenation by COX-2. Also, similarly to (R)-flurbiprofen, (R)-ARN2508 exhibits substrate selectivity for inhibition of 2-AG oxygenation. Site-directed mutagenesis confirms the importance of insertion of the alkyl tail into the top channel for (S)-ARN2508's potency and suggests a role for Ser-530 as a determinant of the inhibitor's slow rate of inhibition compared with that of (S)-flurbiprofen.
Collapse
Affiliation(s)
- Michael C Goodman
- From the A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology and Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Shu Xu
- From the A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology and Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Carol A Rouzer
- From the A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology and Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Surajit Banerjee
- the Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois 60439
| | - Kebreab Ghebreselasie
- From the A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology and Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Marco Migliore
- the Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Daniele Piomelli
- the Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy.,the Departments of Anatomy, Neurobiology, Pharmacology, and Biological Chemistry, University of California, Irvine, California 92697, and
| | - Lawrence J Marnett
- From the A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology and Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,
| |
Collapse
|
8
|
Karlsson J, Gouveia-Figueira S, Alhouayek M, Fowler CJ. Effects of tumour necrosis factor α upon the metabolism of the endocannabinoid anandamide in prostate cancer cells. PLoS One 2017; 12:e0185011. [PMID: 28910408 PMCID: PMC5599064 DOI: 10.1371/journal.pone.0185011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/04/2017] [Indexed: 11/19/2022] Open
Abstract
Tumour necrosis factor α (TNFα) is involved in the pathogenesis of prostate cancer, a disease where disturbances in the endocannabinoid system are seen. In the present study we have investigated whether treatment of DU145 human prostate cancer cells affects anandamide (AEA) catabolic pathways. Additionally, we have investigated whether cyclooxygenase-2 (COX-2) can regulate the uptake of AEA into cells. Levels of AEA synthetic and catabolic enzymes were determined by qPCR. AEA uptake and hydrolysis in DU145 and RAW264.7 macrophage cells were assayed using AEA labeled in the arachidonic and ethanolamine portions of the molecule, respectively. Levels of AEA, related N-acylethanolamines (NAEs), prostaglandins (PG) and PG-ethanolamines (PG-EA) in DU145 cells and medium were quantitated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. TNFα treatment of DU145 cells increased mRNA levels of PTSG2 (gene of COX-2) and decreased the mRNA of the AEA synthetic enzyme N-acyl-phosphatidylethanolamine selective phospholipase D. mRNA levels of the AEA hydrolytic enzymes fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase were not changed. AEA uptake in both DU145 and RAW264.7 cells was inhibited by FAAH inhibition, but not by COX-2 inhibition, even in RAW264.7 cells where the expression of this enzyme had greatly been induced by lipopolysaccharide + interferon γ treatment. AEA and related NAEs were detected in DU145 cells, but PGs and PGE2-EA were only detected when the cells had been preincubated with 100 nM AEA. The data demonstrate that in DU145 cells, TNFα treatment changes the relative expression of the enzymes involved in the hydrolytic and oxygenation catabolic pathways for AEA. In RAW264.7 cells, COX-2, in contrast to FAAH, does not regulate the cellular accumulation of AEA. Further studies are necessary to determine the extent to which inflammatory mediators are involved in the abnormal endocannabinoid signalling system in prostate cancer.
Collapse
Affiliation(s)
- Jessica Karlsson
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| | | | - Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Grosser T, Theken KN, FitzGerald GA. Cyclooxygenase Inhibition: Pain, Inflammation, and the Cardiovascular System. Clin Pharmacol Ther 2017; 102:611-622. [PMID: 28710775 DOI: 10.1002/cpt.794] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022]
Abstract
Inhibitors of the cyclooxygenases (COXs), the nonsteroidal antiinflammatory drugs (NSAIDs), relieve inflammatory pain, but are associated with gastrointestinal and cardiovascular complications. Given the widespread use of NSAIDs, there has been a longstanding interest in optimizing their risk-benefit ratio, for example by reducing their gastrointestinal risk. More recently, the focus has shifted toward the cardiovascular complications of NSAIDs and very large prospective studies have been performed to compare cardiovascular risk across distinct NSAIDs. Surprisingly, much less attention has been paid to the efficacy side of the risk-benefit ratio. There is marked variability in the degree of pain relief by NSAIDs due to the complex interplay of molecular mechanisms contributing to the pain sensation, variability in the disposition of NSAIDs, and imprecision in the quantification of human pain. Here we discuss how NSAIDs relieve pain, how molecular mechanisms relate to clinical efficacy, and how this may inform our interpretation of clinical trials.
Collapse
Affiliation(s)
- Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine N Theken
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Grosser T, Ricciotti E, FitzGerald GA. The Cardiovascular Pharmacology of Nonsteroidal Anti-Inflammatory Drugs. Trends Pharmacol Sci 2017; 38:733-748. [PMID: 28651847 DOI: 10.1016/j.tips.2017.05.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/27/2022]
Abstract
The principal molecular mechanisms underlying the cardiovascular (CV) and renal adverse effects of nonsteroidal anti-inflammatory drugs (NSAIDs), such as myocardial infarction and hypertension, are understood in more detail than most side effects of drugs. Less is known, however, about differences in the CV safety profile between chemically distinct NSAIDs and their relative predisposition to complications. In review article, we discuss how heterogeneity in the pharmacokinetics and pharmacodynamics of distinct NSAIDs may be expected to affect their CV risk profile. We consider evidence afforded by studies in model systems, mechanistic clinical trials, a meta-analysis of randomized controlled trials, and two recent large clinical trials, Standard Care vs. Celecoxib Outcome Trial (SCOT) and Prospective Randomized Evaluation of Celecoxib Integrated Safety versus Ibuprofen or Naproxen (PRECISION), designed specifically to compare the CV safety of the cyclooxygenase-2-selective NSAID, celecoxib, with traditional NSAIDs. We conclude that SCOT and PRECISION have apparently not compared equipotent doses and have other limitations that bias them toward underestimation of the relative risk of celecoxib.
Collapse
Affiliation(s)
- Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Fajmut A, Emeršič T, Dobovišek A, Antić N, Schäfer D, Brumen M. Dynamic model of eicosanoid production with special reference to non-steroidal anti-inflammatory drug-triggered hypersensitivity. IET Syst Biol 2016; 9:204-15. [PMID: 26405144 DOI: 10.1049/iet-syb.2014.0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The authors developed a mathematical model of arachidonic acid (AA) degradation to prostaglandins (PGs) and leukotrienes (LTs), which are implicated in the processes of inflammation and hypersensitivity to non-steroidal anti-inflammatory drugs (NSAIDs). The model focuses on two PGs (PGE2 and PGD2) and one LT (LTC4), their % increases and their ratios. Results are compared with experimental studies obtained from non-asthmatics (NAs), and asthmatics tolerant (ATA) or intolerant (AIA) to aspirin. Simulations are carried out for predefined model populations NA, ATA and three AIA, based on the differences of two enzymes, PG E synthase and/or LTC4-synthase in two states, that is, no-inflammation and inflammation. Their model reveals that the model population with concomitant malfunctions in both enzymes is the most sensitive to NSAIDs, since the duration and the capacity for bronchoconstriction risk are highest after simulated oral dosing of indomethacin. Furthermore, inflammation prolongs the duration of the bronchoconstriction risk in all AIA model populations, and the sensitivity analysis reveals multiple possible scenarios leading to hypersensitivity, especially if inflammatory processes affect the expression of multiple enzymes of the AA metabolic pathway. Their model estimates the expected fold-changes in enzyme activities and gives valuable information for further targeted transcriptomic/proteomic and metabolomic studies.
Collapse
Affiliation(s)
- Aleš Fajmut
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia.
| | - Tadej Emeršič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Andrej Dobovišek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Nataša Antić
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Dirk Schäfer
- Allergie und Intoleranzlabor, Medizinisch Klinik III, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstraße 4a, 91054 Erlangen, Germany
| | - Milan Brumen
- Jožef Stefan Institute, Jamova ulica 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Crunfli F, Vilela FC, Giusti-Paiva A. Cannabinoid CB1 receptors mediate the effects of dipyrone. Clin Exp Pharmacol Physiol 2015; 42:246-55. [PMID: 25430877 DOI: 10.1111/1440-1681.12347] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022]
Abstract
Dipyrone is a non-steroidal anti-inflammatory drug used primarily as an analgesic and antipyretic. Some hypothesize that dipyrone activity can modulate other pathways, including endocannabinoid signalling. Thus, the aim of the present study was to evaluate the possible role of endocannabinoids in mediating dipyrone activity. This study is based on the tetrad effects of cannabinoids, namely an antinociceptive and cataleptic state, hypolocomotion and hypothermia. Dipyrone (500 mg/kg, i.p.) treatment decreased locomotor activity, increased the latency to a thermal analgesic response and induced a cataleptic and hypothermic state. These reactions are similar to the tetrad effects caused by the cannabinoid agonist WIN 55,212-2 (3 mg/kg, i.p.). The cannabinoid CB1 receptor antagonist AM251 (10 mg/kg, i.p.) reversed the effects of dipyrone on locomotor activity, the cataleptic response and thermal analgesia. Both AM251 (10 mg/kg, i.p.) and the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine (10 mg/kg, i.p.) accentuated the reduction in body temperature caused by dipyrone. However, the CB2 receptor antagonist AM630 did not alter the hypothermic response to dipyrone. These results indicate involvement of the endocannabinoid system, especially CB1 receptors, in the analgesic and cataleptic effects of dipyrone, as well as hypolocomotion. However, cannabinoid receptors and TRPV1 were not involved in the hypothermic effects of dipyrone. We hypothesize that the mechanism of action of dipyrone may involve inhibition of cyclo-oxygenase and fatty acid amide hydrolase, which together provide additional arachidonic acid as substrate for endocannabinoid synthesis or other related molecules. This increase in endocannabinoid availability enhances CB1 receptor stimulation, contributing to the observed effects.
Collapse
Affiliation(s)
- Fernanda Crunfli
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG; Graduate Program in Health Biosciences, Federal University of Alfenas, Alfenas, MG
| | | | | |
Collapse
|
13
|
Assadieskandar A, Amirhamzeh A, Salehi M, Ozadali K, Ostad SN, Shafiee A, Amini M. Synthesis, cyclooxygenase inhibitory effects, and molecular modeling study of 4-aryl-5-(4-(methylsulfonyl)phenyl)-2-alkylthio and -2-alkylsulfonyl-1 H -imidazole derivatives. Bioorg Med Chem 2013; 21:2355-2362. [DOI: 10.1016/j.bmc.2013.01.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 12/12/2022]
|
14
|
Yazid S, Norling LV, Flower RJ. Anti-inflammatory drugs, eicosanoids and the annexin A1/FPR2 anti-inflammatory system. Prostaglandins Other Lipid Mediat 2012; 98:94-100. [DOI: 10.1016/j.prostaglandins.2011.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 02/02/2023]
|
15
|
Perrone MG, Vitale P, Malerba P, Altomare A, Rizzi R, Lavecchia A, Di Giovanni C, Novellino E, Scilimati A. Diarylheterocycle Core Ring Features Effect in Selective COX-1 Inhibition. ChemMedChem 2012; 7:629-41. [DOI: 10.1002/cmdc.201100530] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/07/2011] [Indexed: 11/06/2022]
|
16
|
Dobovišek A, Fajmut A, Brumen M. Strategy for NSAID administration to aspirin-intolerant asthmatics in combination with PGE2 analogue: a theoretical approach. Med Biol Eng Comput 2011; 50:33-42. [PMID: 22120424 DOI: 10.1007/s11517-011-0844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
Abstract
Aspirin-induced asthma (AIA) is a severe inflammatory disease, which affects aspirin-intolerant patients after ingestion of aspirin or other non-steroidal anti-inflammatory drugs (NSAIDs). In this article, a mathematical model describing arachidonic acid metabolism and its interaction with NSAIDs, is used to study the strategy for safe managing of NSAIDs to AIA patients. Three different AIA patient populations are taken into consideration. First, the values of aspirin and ibuprofen limiting doses that might induce symptoms of AIA are calculated and compared to experimentally observed threshold doses to enlighten which AIA patient population is susceptible to aspirin and ibuprofen. Second, the methodology of NSAID administration is studied on AIA populations susceptible to aspirin and ibuprofen by using 1,000 mg dose of aspirin and 200 or 400 mg dose of ibuprofen followed by PGE(2) analogue dosing. Our model results show that successive doses of PGE(2) analogue applied at appropriate time after aspirin or ibuprofen ingestion would enable administration of both NSAIDs to AIA patients. PGE(2) analogue doses and the corresponding times of their applications are calculated. The model is also used to estimate the duration of symptoms of AIA for different aspirin and ibuprofen doses.
Collapse
Affiliation(s)
- A Dobovišek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.
| | | | | |
Collapse
|
17
|
Rouzer CA, Marnett LJ. Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem Rev 2011; 111:5899-921. [PMID: 21923193 PMCID: PMC3191732 DOI: 10.1021/cr2002799] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Carol A Rouzer
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
18
|
Vecchio AJ, Malkowski MG. The structural basis of endocannabinoid oxygenation by cyclooxygenase-2. J Biol Chem 2011; 286:20736-45. [PMID: 21489986 PMCID: PMC3121521 DOI: 10.1074/jbc.m111.230367] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/28/2011] [Indexed: 11/06/2022] Open
Abstract
The cyclooxygenases (COX-1 and COX-2) oxygenate arachidonic acid (AA) in the committed step of prostaglandin biogenesis. Substitutions of I434V, H513R, and I523V constitute the only differences in residues lining the cyclooxygenase channel between COX-1 and COX-2. These changes create a hydrophobic pocket in COX-2, with Arg-513 located at the base of the pocket, which has been exploited in the design of COX-2-selective inhibitors. Previous studies have shown that COX-2, but not COX-1, can oxygenate endocannabinoid substrates, including 2-arachidonoyl glycerol (2-AG). To investigate the isoform-specific structural basis of endocannabinoid binding to COX-2, we determined the crystal structure of the 2-AG isomer 1-arachidonoyl glycerol (1-AG) in complex with wild type and R513H murine (mu) COX-2 to 2.2 and 2.35 Å, respectively, and R513H muCOX-2 in complex with AA to 2.45 Å resolution. The 2,3-dihydroxypropyl moiety of 1-AG binds near the opening of the cyclooxygenase channel in the space vacated by the movement of the Leu-531 side chain, validating our previous hypothesis implicating the flexibility of the Leu-531 side chain as a determinant for the ability of COX-2 to oxygenate endocannabinoid substrates. Functional analyses carried out to compliment our structural findings indicated that Y355F and R513H muCOX-2 constructs had no effect on the oxygenation of 1-AG and 2-AG, whereas substitutions that resulted in a shortened side chain for Leu-531 had only modest effects. Both AA and 1-AG bind to R513H muCOX-2 in conformations similar to those observed in the co-crystal structures of these substrates with wild type enzyme.
Collapse
Affiliation(s)
- Alex J. Vecchio
- From the Hauptman-Woodward Medical Research Institute and the Department of Structural Biology, The State University of New York, Buffalo, New York, 14203
| | - Michael G. Malkowski
- From the Hauptman-Woodward Medical Research Institute and the Department of Structural Biology, The State University of New York, Buffalo, New York, 14203
| |
Collapse
|
19
|
Role of expression of prostaglandin synthases 1 and 2 and leukotriene C4 synthase in aspirin-intolerant asthma: a theoretical study. J Pharmacokinet Pharmacodyn 2011; 38:261-78. [PMID: 21331560 DOI: 10.1007/s10928-011-9192-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
Altered expressions of the key enzymes in arachidonic acid (AA) metabolism, prostaglandin synthase 1 and 2 and cysteinyl leukotriene C(4) synthase, are of importance in understanding aspirin-induced asthma. We propose a mathematical model of AA metabolism and its interaction with non-steroidal anti-inflammatory drugs (NSAIDs). Model simulations depict the impact of modified expressions of the above enzymes on the time dependent synthesis of cysteinyl leukotrienes and anti-inflammatory prostaglandins before and during NSAID exposure in different model states describing healthy humans as well as aspirin-tolerant and -intolerant asthmatics. The results are compared and evaluated with experimental data taken from the literature. Our results identify the decreased expression of prostaglandin H synthase 1 and increased expression of leukotriene C(4) synthase as the key elements in AA metabolism that contribute to increased leukotriene C(4) and decreased anti-inflammatory prostaglandins after NSAID dosing in aspirin-intolerant patients. On the other hand, the decreased expression of prostaglandin H synthase 2 implies permanently increased leukotriene C(4) and lowers the sensitivity to increased drug doses. The model is used for identification of susceptible patient populations for aspirin and ibuprofen, and for identification of critical aspirin doses that might induce bronchoconstriction.
Collapse
|
20
|
Mazzoni O, Esposito G, Diurno MV, Brancaccio D, Carotenuto A, Grieco P, Novellino E, Filippelli W. Synthesis and pharmacological evaluation of some 4-oxo-quinoline-2-carboxylic acid derivatives as anti-inflammatory and analgesic agents. Arch Pharm (Weinheim) 2011; 343:561-9. [PMID: 20938950 DOI: 10.1002/ardp.201000016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The synthesis and the pharmacological activity of a series of 1-aroyl derivatives of kynurenic acid methyl ester (4-oxo-quinolin-2-carboxy methyl (KYNA) esters), structurally related to NSAID indomethacin are described. The derivatives were screened in vivo for anti-inflammatory and analgesic activities. Most of the compounds exhibited good anti-inflammatory and analgesic activities. An automatic docking of the synthesized compounds was performed using X-ray structures of COX-1 and COX-2. Docking results are in good accordance with the experimental biological data.
Collapse
Affiliation(s)
- Orazio Mazzoni
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Napoli, Italia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Techniques used to characterize the binding of cyclooxygenase inhibitors to the cyclooxygenase active site. Methods Mol Biol 2010. [PMID: 20645169 DOI: 10.1007/978-1-59745-364-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Inhibitors of enzyme-catalyzed reactions are typically characterized by their ability to diminish product formation while altering the Michaelis Menten constants V(max) and K(m). Determination of an apparent inhibitor affinity (K(i)) for the enzyme is also possible using this approach. Unfortunately, analysis of product formation does not easily provide information regarding the kinetics of inhibitor binding and may not be possible depending upon the mechanism of action. Radiolabeling of the inhibitor allows one to do a direct binding assay and thereby more directly determine the kinetics of inhibitor binding. With this in mind, we developed a radioligand-based binding assay for inhibitors of cyclooxygenase.
Collapse
|
22
|
Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proc Natl Acad Sci U S A 2010; 107:5411-6. [PMID: 20215464 DOI: 10.1073/pnas.0913377107] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The widely used nonsteroidal anti-inflammatory drugs block the cyclooxygenase enzymes (COXs) and are clinically used for the treatment of inflammation, pain, and cancers. A selective inhibition of the different isoforms, particularly COX-2, is desirable, and consequently a deeper understanding of the molecular basis of selective inhibition is of great demand. Using an advanced computational technique we have simulated the full dissociation process of a highly potent and selective inhibitor, SC-558, in both COX-1 and COX-2. We have found a previously unreported alternative binding mode in COX-2 explaining the time-dependent inhibition exhibited by this class of inhibitors and consequently their long residence time inside this isoform. Our metadynamics-based approach allows us to illuminate the highly dynamical character of the ligand/protein recognition process, thus explaining a wealth of experimental data and paving the way to an innovative strategy for designing new COX inhibitors with tuned selectivity.
Collapse
|
23
|
Grosser T, Yu Y, Fitzgerald GA. Emotion recollected in tranquility: lessons learned from the COX-2 saga. Annu Rev Med 2010; 61:17-33. [PMID: 20059330 DOI: 10.1146/annurev-med-011209-153129] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonsteroidal antinflammatory drugs (NSAIDs) inhibit prostaglandin formation by cyclooxygenases (COX) 1 and 2. NSAIDs selective for inhibition of COX-2 are less likely than traditional drugs to cause serious gastrointestinal adverse effects, but predispose to adverse cardiovascular events, such as heart failure, myocardial infarction, and stroke. Evidence from human pharmacology and genetics, genetically manipulated rodents, and other animal models and randomized trials indicates that this is consequent to suppression of COX-2-dependent cardioprotective prostagladins, particularly prostacyclin. Lessons drawn from how this saga unfolded are relevant to how we approach drug surveillance and regulation, integrate diversifed forms of information and might pursue a more personalized approach to drug efficacy and risk.
Collapse
Affiliation(s)
- Tilo Grosser
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA.
| | | | | |
Collapse
|
24
|
Turman MV, Marnett LJ. Prostaglandin Endoperoxide Synthases. COMPREHENSIVE NATURAL PRODUCTS II 2010:35-63. [DOI: 10.1016/b978-008045382-8.00028-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
25
|
Farooq M, Haq I, Qureshi AS. Cardiovascular risks of COX inhibition: current perspectives. Expert Opin Pharmacother 2008; 9:1311-9. [PMID: 18473706 DOI: 10.1517/14656566.9.8.1311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND NSAIDs are among the most commonly used pharmacotherapeutic agents worldwide. As the long-term use of these drugs is associated with serious gastrointestinal side effects, a new subgroup of COX-2 selective NSAIDs was developed. It was thought that the therapeutic strategy underlying the development of these newer compounds would enable them to provide the same analgesic and anti-inflammatory benefits as those of their traditional counterparts but perhaps offer a much safer gastrointestinal profile. Much scientific data has accumulated over the last few years, however, raising concerns regarding the increased cardiovascular complications associated with the use of COX-2 selective NSAIDs, and perhaps of the traditional NSAIDs as well. OBJECTIVE To review current and emerging evidence related to the cardiovascular effects of COX inhibitors and examine the clinical implications. METHOD We studied data from basic clinical research, non-randomized analyses, and randomized trials of COX inhibitors that investigated their cardiovascular effects. CONCLUSION Both COX-2 selective and traditional NSAIDs are associated with a moderately increased risk of cardiovascular events.
Collapse
Affiliation(s)
- Mohsin Farooq
- University Hospitals of Leicester, Department of Cardiology, Leicester LE3 9QP, UK.
| | | | | |
Collapse
|
26
|
Wey SJ, Augustyniak ME, Cochran ED, Ellis JL, Fang X, Garvey DS, Janero DR, Letts LG, Martino AM, Melim TL, Murty MG, Richardson SK, Schroeder JD, Selig WM, Trocha AM, Wexler RS, Young DV, Zemtseva IS, Zifcak BM. Structure-based design, synthesis, and biological evaluation of indomethacin derivatives as cyclooxygenase-2 inhibiting nitric oxide donors. J Med Chem 2007; 50:6367-82. [PMID: 17994684 DOI: 10.1021/jm0611861] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Indomethacin, a nonselective cyclooxygenase (COX) inhibitor, was modified in three distinct regions in an attempt both to increase cyclooxygenase-2 (COX-2) selectivity and to enhance drug safety by covalent attachment of an organic nitrate moiety as a nitric oxide donor. A human whole-blood COX assay shows the modifications on the 3-acetic acid part of the indomethacin yielding an amide-nitrate derivative 32 and a sulfonamide-nitrate derivative 61 conferred COX-2 selectivity. Along with their respective des-nitrate analogs, for example, 31 and 62, the nitrates 32 and 61 were effective antiinflammatory agents in the rat air-pouch model. After oral dosing, though, only 32 increased nitrate and nitrite levels in rat plasma, indicating that its nitrate tether served as a nitric oxide donor in vivo. In a rat gastric injury model, examples 31 and 32 both show a 98% reduction in gastric lesion score compared to that of indomethacin. In addition, the nitrated derivative 32 inducing 85% fewer gastric lesions when coadministered with aspirin as compared to the combination of aspirin and valdecoxib.
Collapse
Affiliation(s)
- Shiow-Jyi Wey
- NitroMed, Inc., 125 Spring Street, Lexington, Massachusetts 02421, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Datar PA, Khedkar SA, Malde AK, Coutinho EC. Comparative residue interaction analysis (CoRIA): a 3D-QSAR approach to explore the binding contributions of active site residues with ligands. J Comput Aided Mol Des 2006; 20:343-60. [PMID: 17009094 DOI: 10.1007/s10822-006-9051-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/27/2006] [Indexed: 11/29/2022]
Abstract
A novel approach termed comparative residue-interaction analysis (CoRIA), emphasizing the trends and principles of QSAR in a ligand-receptor environment has been developed to analyze and predict the binding affinity of enzyme inhibitors. To test this new approach, a training set of 36 COX-2 inhibitors belonging to nine families was selected. The putative binding (bioactive) conformations of inhibitors in the COX-2 active site were searched using the program DOCK. The docked configurations were further refined by a combination of Monte Carlo and simulated annealing methods with the Affinity program. The non-bonded interaction energies of the inhibitors with the individual amino acid residues in the active site were then computed. These interaction energies, plus specific terms describing the thermodynamics of ligand-enzyme binding, were correlated to the biological activity with G/PLS. The various QSAR models obtained were validated internally by cross validation and boot strapping, and externally using a test set of 13 molecules. The QSAR models developed on the CoRIA formalism were robust with good r (2), q (2) and r (pred) (2) values. The major highlights of the method are: adaptation of the QSAR formalism in a receptor setting to answer both the type (qualitative) and the extent (quantitative) of ligand-receptor binding, and use of descriptors that account for the complete thermodynamics of the ligand-receptor binding. The CoRIA approach can be used to identify crucial interactions of inhibitors with the enzyme at the residue level, which can be gainfully exploited in optimizing the inhibitory activity of ligands. Furthermore, it can be used with advantage to guide point mutation studies. As regards the COX-2 dataset, the CoRIA approach shows that improving Coulombic interaction with Pro528 and reducing van der Waals interaction with Tyr385 will improve the binding affinity of inhibitors.
Collapse
Affiliation(s)
- Prasanna A Datar
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | | | | | | |
Collapse
|
28
|
Sang N, Zhang J, Chen C. PGE2 glycerol ester, a COX-2 oxidative metabolite of 2-arachidonoyl glycerol, modulates inhibitory synaptic transmission in mouse hippocampal neurons. J Physiol 2006; 572:735-45. [PMID: 16484297 PMCID: PMC1780008 DOI: 10.1113/jphysiol.2006.105569] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The oxygenation of endogenous cannabinoids (eCBs) 2-arachidonoyl glycerol (2-AG) and arachidonoyl ethanolamide by cyclooxygenase-2 (COX-2) produces novel types of prostanoids: prostaglandin glycerol esters (PG-Gs) and prostaglandin ethanolamides (PG-EAs). However, the physiological function of COX-2 oxidative metabolites of eCBs is still unclear. Here we demonstrate that PGE2-G, a COX-2 oxidative metabolite of 2-AG, induced a concentration-dependent increase in the frequency ofminiature inhibitory postsynaptic currents (mIPSCs) in primary cultured hippocampal neurons, an effect opposite to that of 2-AG. This increase was not inhibited by SR141716, a CB1 receptor antagonist, but was attenuated by an IP3 or MAPK inhibitor. In addition, we also examined the effects of other prostanoids derived from COX-2 oxygenation of eCBs on mIPSCs. PGD2-G, PGF2alpha-G and PGD2-EA, but not PGE2-EA or PGF2alpha-EA, also increased the frequency of mIPSCs. The eCB-derived prostanoid-induced responses appeared to be different from those of corresponding arachidonic acid-derived prostanoids, implying that these effects are not mediated via known prostanoid receptors. We further discovered that the inhibition of COX-2 activity reduced inhibitory synaptic activity and augmented depolarization-induced suppression of inhibition (DSI), whereas the enhancement of COX-2 augmented the synaptic transmission and abolished DSI. Our results, which show that COX-2 oxidative metabolites of eCBs exert opposite effects to their parent molecules on inhibitory synaptic transmission, suggest that alterations in COX-2 activity will have significant impact on endocannabinoid signalling in hippocampal synaptic activity.
Collapse
Affiliation(s)
- Nan Sang
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
29
|
Fowler PW, Coveney PV. A computational protocol for the integration of the monotopic protein prostaglandin H2 synthase into a phospholipid bilayer. Biophys J 2006; 91:401-10. [PMID: 16632499 PMCID: PMC1483072 DOI: 10.1529/biophysj.105.077784] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostaglandin H2 synthase (PGHS) synthesizes PGH2, a prostaglandin precursor, from arachidonic acid and was the first monotopic enzyme to have its structure experimentally determined. Both isozymes of PGHS are inhibited by nonsteroidal antiinflammatory drugs, an important class of drugs that are the primary means of relieving pain and inflammation. Selectively inhibiting the second isozyme, PGHS-2, minimizes the gastrointestinal side-effects. This had been achieved by the new PGHS-2 selective NSAIDs (i.e., COX-2 inhibitors) but it has been recently suggested that they suffer from additional side-effects. The design of these drugs only made use of static structures from x-ray crystallographic experiments. Investigating the dynamics of both PGHS-1 and PGHS-2 using classical molecular dynamics is expected to generate new insight into the differences in behavior between the isozymes, and therefore may allow improved PGHS-2 selective inhibitors to be designed. We describe a molecular dynamics protocol that integrates PGHS monomers into phospholipid bilayers, thereby producing in silico atomistic models of the PGHS system. Our protocol exploits the vacuum created beneath the protein when several lipids are removed from the top leaflet of the bilayer. The protein integrates into the bilayer during the first 5 ns in a repeatable process. The integrated PGHS monomer is stable and forms multiple hydrogen bonds between the phosphate groups of the lipids and conserved basic residues (Arg, Lys) on the protein. These interactions stabilize the system and are similar to interactions observed for transmembrane proteins.
Collapse
Affiliation(s)
- Philip W Fowler
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
| | | |
Collapse
|
30
|
Rogge CE, Ho B, Liu W, Kulmacz RJ, Tsai AL. Role of Tyr348 in Tyr385 radical dynamics and cyclooxygenase inhibitor interactions in prostaglandin H synthase-2. Biochemistry 2006; 45:523-32. [PMID: 16401081 PMCID: PMC2851202 DOI: 10.1021/bi051235w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both prostaglandin H synthase (PGHS) isoforms utilize a radical at Tyr385 to abstract a hydrogen atom from arachidonic acid, initializing prostaglandin synthesis. A Tyr348-Tyr385 hydrogen bond appears to be conserved in both isoforms; this hydrogen bonding has the potential to modulate the positioning and reactivity of the Tyr385 side chain. The EPR signal from the Tyr385 radical undergoes a time-dependent transition from a wide doublet to a wide singlet species in both isoforms. In PGHS-2, this transition results from radical migration from Tyr385 to Tyr504. Localization of the radical to Tyr385 in the recombinant human PGHS-2 Y504F mutant was exploited in examining the effects of blocking Tyr385 hydrogen bonding by introduction of a further Y348F mutation. Cyclooxygenase and peroxidase activities were found to be maintained in the Y348F/Y504F mutant, but the Tyr385 radical was formed more slowly and had greater rotational freedom, as evidenced by observation of a transition from an initial wide doublet species to a narrow singlet species, a transition not seen in the parent Y504F mutant. The effect of disrupting Tyr385 hydrogen bonding on the cyclooxygenase active site structure was probed by examination of cyclooxygenase inhibitor kinetics. Aspirin treatment eliminated all oxygenase activity in the Y348F/Y504F double mutant, with no indication of the lipoxygenase activity observed in aspirin-treated wild-type PGHS-2. Introduction of the Y348F mutation also strengthened the time-dependent inhibitory action of nimesulide. These results suggest that removal of Tyr348-Tyr385 hydrogen bonding in PGHS-2 allows greater conformational flexibility in the cyclooxygenase active site, resulting in altered interactions with inhibitors and altered Tyr385 radical behavior.
Collapse
Affiliation(s)
- Corina E. Rogge
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Bryant Ho
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Wen Liu
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Richard J. Kulmacz
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Ah-Lim Tsai
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
31
|
Patrignani P, Tacconelli S, Sciulli MG, Capone ML. New insights into COX-2 biology and inhibition. ACTA ACUST UNITED AC 2005; 48:352-9. [PMID: 15850674 DOI: 10.1016/j.brainresrev.2004.12.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 01/03/2023]
Abstract
It is now established that prostanoids play important roles in many cellular responses and pathophysiologic processes including modulation of the inflammatory reaction, erosion of cartilage and juxtaarticular bone, gastrointestinal cytoprotection and ulceration, angiogenesis and cancer, hemostasis and thrombosis, renal hemodynamics, and progression of kidney disease. The initial step in the formation of prostanoids, i.e., the conversion of free arachidonic acid (AA) to prostaglandin (PG)G(2) and then to PGH(2), is controlled by two PGH synthases (COX-1 and COX-2). Selective inhibitors of COX-2 (coxibs) have established efficacy in the treatment of pain and inflammation comparable to that of nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) but exhibit enhanced gastrointestinal safety. Several lines of evidence suggest a critical role of COX-2 expression in cancer and selective COX-2 inhibitors may represent novel chemopreventive tools. Moreover, it has been suggested that COX-2 inhibitors may contribute to maintain high levels of chemotherapeutics in tumor tissues by preventing the overexpression of the multidrug resistance protein MDR1/P-gp. The place of COX-2 inhibitors in neurological diseases continues to attract basic and clinical investigation. The possible involvement of COX-2 in neurodegeneration, substained by the results of epidemiological studies with nonselective NSAIDs, has not been confirmed by the results of initial clinical trials with coxibs in Alzheimer's disease. Recently, the involvement of COX-2 in endogenous cannabinoid system has been suggested. Interestingly, COX-2-mediated oxygenation of arachidonylethanolamide (anandamide, AEA) and 2-arachidonylglycerol (2-AG) provides diverse sets of novel lipids that are structurally related to prostaglandins.
Collapse
Affiliation(s)
- Paola Patrignani
- Department of Medicine and Center of Excellence on Aging, G.d'Annunzio University, School of Medicine, Chieti, Italy.
| | | | | | | |
Collapse
|
32
|
Levoin N, Blondeau C, Guillaume C, Grandcolas L, Chretien F, Jouzeau JY, Benoit E, Chapleur Y, Netter P, Lapicque F. Elucidation of the mechanism of inhibition of cyclooxygenases by acyl-coenzyme A and acylglucuronic conjugates of ketoprofen. Biochem Pharmacol 2005; 68:1957-69. [PMID: 15476667 DOI: 10.1016/j.bcp.2004.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 07/15/2004] [Indexed: 11/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the cyclooxygenase (COX) isoforms which accounts for their clinical effects. The differential inhibition of COX-1 and COX-2 is not sufficient to explain the absence of a correlation between in vitro and in vivo effects, especially for 2-aryl-propionates, thus indicating the participation of metabolites. Conjugates to glucuronic acid and to coenzyme-A are mainly produced, and have been shown to be chemically reactive. Therefore, we studied the interaction of the ketoprofen metabolites with the COX enzymes. After incubation with bovine pulmonary artery endothelial cells (BPAEC), COX-1 was inhibited stereoselectively by S-ketoprofen acylglucuronide, and more significantly by CoA-thioester. After washing-out the medium, COX-1 activity was essentially recovered, indicating a reversible inhibition. In LPS-stimulated J774.2 cells, COX activity (mainly inducible COX-2) was inhibited reversibly and stereospecifically by S-ketoprofen glucuronide, whereas it disappeared totally and was not recovered after incubation with CoA-thioester. Correspondingly, inhibition of purified COX-2 with this compound was observed to be rapid and irreversible. Using an anti-ketoprofen antibody, COX immunoprecipitated from cells exhibited adduct formation for COX-2 but not for COX-1. This was observed after incubation with CoA-thioester, and, surprisingly, also with glucuronide. Molecular docking gave support to explain this discrepancy: the glucuronide was found to establish a strong interaction with Y115 located in the membrane binding domain, whereas the thioester was preferentially bound to the active site of the enzyme. Overall, our results suggest a contribution of CoA-thioester metabolites of carboxylic NSAIDs to their pharmacological action by irreversibly and selectively inhibiting COX-2.
Collapse
Affiliation(s)
- Nicolas Levoin
- UMR 7561 CNRS-UHP, Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine-BP 184, F-54505 Vandoeuvre les Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Datar PA, Coutinho EC. A CoMFA study of COX-2 inhibitors with receptor based alignment. J Mol Graph Model 2004; 23:239-51. [PMID: 15530820 DOI: 10.1016/j.jmgm.2004.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/23/2004] [Accepted: 07/23/2004] [Indexed: 11/16/2022]
Abstract
A diverse set of 53 cyclooxygenase-2 (COX-2) inhibitors which were aligned in two different ways were subjected to CoMFA analysis. The first method of alignment of the molecules was based on the binding information sourced from the crystallographic study, from which CoMFA Model 1 was derived. The second mode of alignment was generated by docking the inhibitors in the binding pocket using the DOCK and AFFINITY suite of programs; this gave a second model. The CoMFA Model 2 was slightly better than Model 1 in terms of the statistical parameters r(2) and q(2). The two models could predict very well the activity of a test set of diverse molecules, with a predictive r(2) of 0.593 and 0.768, respectively. Besides the QSAR results, the docking studies give a deep insight into the H-bonding interactions between the inhibitors and residues in the active site of the enzyme, which can be exploited in designing better inhibitors. Useful ideas on activity improvement could be gleaned from these models.
Collapse
Affiliation(s)
- Prasanna A Datar
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400 098, India
| | | |
Collapse
|
34
|
Swinney DC. Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov 2004; 3:801-8. [PMID: 15340390 DOI: 10.1038/nrd1500] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug discovery is extremely difficult. There are many unanticipated scientific, medical and business challenges to every drug discovery programme. It is important to increase our understanding of the fundamental properties of effective drugs so that we can anticipate potential problems in developing new agents. This article addresses potential drug discovery and development risks associated with the biochemical mechanism of drug action, and proposes simple rules to minimize these risks.
Collapse
Affiliation(s)
- David C Swinney
- Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, California 94304, USA.
| |
Collapse
|
35
|
Ouellet M, Falgueyret JP, Percival MD. Detergents profoundly affect inhibitor potencies against both cyclo-oxygenase isoforms. Biochem J 2004; 377:675-84. [PMID: 14510637 PMCID: PMC1223887 DOI: 10.1042/bj20030969] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 09/19/2003] [Accepted: 09/26/2003] [Indexed: 11/17/2022]
Abstract
The sensitivity of Coxs (cyclo-oxygenases) to inhibition is known to be highly dependent on assay conditions. In the present study, the inhibitor sensitivities of purified Cox-1 and -2 were determined in a colorimetric assay using the reducing agent N, N, N ', N '-tetramethyl- p -phenylenediamine. With the detergent genapol X-100 (2 mM) present, the potencies of nimesulide, ibuprofen, flufenamic acid, niflumic acid and naproxen were increased over 100-fold against Cox-2 and titration curve shapes changed, so that maximal inhibition now approached 100%. Indomethacin, diclofenac and flosulide were not changed in potency. Similar effects of genapol were observed with inhibitors of Cox-1. DuP-697 and two analogues became more than 10-fold less potent against Cox-2 with genapol present. Tween-20, Triton X-100 and phosphatidylcholine, but not octylglucoside, gave qualitatively similar effects as genapol. Similar detergent-dependent changes in inhibitor potency were also observed using a [(14)C]arachidonic acid HPLC assay. The increases in potency of ibuprofen, flufenamic acid, isoxicam and niflumic acid towards Cox-2 and ibuprofen towards Cox-1 were accompanied by a change from time-independent to time-dependent inhibition. The interactions of Cox inhibitors has been described in terms of multiple binding step mechanisms. The genapol-dependent increase in inhibitor potency for ketoprofen was associated with an increase in the rate constant for the conversion of the initial enzyme-inhibitor complex to a second, more tightly bound form. The loss of potency for some inhibitors is probably due to inhibitor partitioning into detergent micelles. The present study identifies detergents as another factor that must be considered when determining inhibitor potencies against both Cox isoforms.
Collapse
Affiliation(s)
- Marc Ouellet
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Pointe-Claire-Dorval, Quebec, Canada
| | | | | |
Collapse
|
36
|
Garavito RM, Mulichak AM. The structure of mammalian cyclooxygenases. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:183-206. [PMID: 12574066 DOI: 10.1146/annurev.biophys.32.110601.141906] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclooxygenases-1 and -2 (COX-1 and COX-2, also known as prostaglandin H2 synthases-1 and -2) catalyze the committed step in prostaglandin synthesis. COX-1 and -2 are of particular interest because they are the major targets of nonsteroidal antiinflammatory drugs (NSAIDs) including aspirin, ibuprofen, and the new COX-2-selective inhibitors. Inhibition of the COXs with NSAIDs acutely reduces inflammation, pain, and fever, and long-term use of these drugs reduces the incidence of fatal thrombotic events, as well as the development of colon cancer and Alzheimer's disease. In this review, we examine how the structures of COXs relate mechanistically to cyclooxygenase and peroxidase catalysis and how alternative fatty acid substrates bind within the COX active site. We further examine how NSAIDs interact with COXs and how differences in the structure of COX-2 result in enhanced selectivity toward COX-2 inhibitors.
Collapse
Affiliation(s)
- R Michael Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| | | |
Collapse
|
37
|
Kulmacz RJ, van der Donk WA, Tsai AL. Comparison of the properties of prostaglandin H synthase-1 and -2. Prog Lipid Res 2003; 42:377-404. [PMID: 12814642 DOI: 10.1016/s0163-7827(03)00023-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Biosynthesis of prostanoid lipid signaling agents from arachidonic acid begins with prostaglandin H synthase (PGHS), a hemoprotein in the myeloperoxidase family. Vertebrates from humans to fish have two principal isoforms of PGHS, termed PGHS-1 and-2. These two isoforms are structurally quite similar, but they have very different pathophysiological roles and are regulated very differently at the level of catalysis. The focus of this review is on the structural and biochemical distinctions between PGHS-1 and-2, and how these differences relate to the functional divergence between the two isoforms.
Collapse
Affiliation(s)
- Richard J Kulmacz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | | | | |
Collapse
|
38
|
Hood WF, Gierse JK, Isakson PC, Kiefer JR, Kurumbail RG, Seibert K, Monahan JB. Characterization of celecoxib and valdecoxib binding to cyclooxygenase. Mol Pharmacol 2003; 63:870-7. [PMID: 12644588 DOI: 10.1124/mol.63.4.870] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two compounds (celecoxib and valdecoxib) from the diarylheterocycle class of cyclooxygenase inhibitors were radiolabeled and used to characterize their binding to cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), several single-point variants of COX-2 (Val523Ile, Tyr355Ala, Arg120Ala, Arg120Gln, Arg120Asn) and one triple-point variant of COX-2 [Val523Ile, Arg513His, Val434Ile (IHI)]. We demonstrate highly specific and saturable binding of these inhibitors to COX-2. Under the same assay conditions, little or no specific binding to COX-1 could be detected. The affinity of [(3)H]celecoxib for COX-2 (K(D) = 2.3 nM) was similar to the affinity of [(3)H]valdecoxib (K(D) = 3.2 nM). The binding to COX-2 seems to be both rapid and slowly reversible with association rates of 5.8 x 10(6)/M/min and 4.5 x 10(6)/M/min and dissociation rates of 14 x 10(-3)/min (t(1/2) = 50 min) and 7.0 x 10(-3)/min (t(1/2) = 98 min) for [(3)H]celecoxib and [(3)H]valdecoxib, respectively. These association rates increased (4- to 11-fold) when the charged arginine residue located at the entrance to the main hydrophobic channel was mutated to smaller uncharged amino acids (Arg120Ala, Arg120Gln, and Arg120Asn). Mutation of residues located within the active site of COX-2 that define a 'side pocket' (Tyr355Ala, Val523Ile, IHI) of the main channel had a greater effect on the dissociation rate than the association rate. These mutations, which modified the shape of and access to the 'side pocket', affected the binding affinity of [(3)H]valdecoxib more than that of [(3)H]celecoxib. These binding studies provide direct insight into the properties and binding constants of celecoxib and valdecoxib to COX-2.
Collapse
Affiliation(s)
- William F Hood
- Pharmacia Research and Development, St. Louis, Missouri, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Aspirin, arguably the world's favourite drug, has been around since the late nineteenth century, but it wasn't until the late 1970s that its ability to inhibit prostaglandin production by the cyclooxygenase enzyme was identified as the basis of its therapeutic action. Early hints of a second form of the cyclooxygenase that was differentially sensitive to other aspirin-like drugs ultimately ushered in an exciting era of drug discovery, culminating in the introduction of an entirely new generation of anti-inflammatories. This article reviews the story of this discovery and looks at the future of cyclooxygenase pharmacology.
Collapse
Affiliation(s)
- Rod J Flower
- Department of Biochemical Pharmacology, The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
40
|
Pouplana R, Lozano JJ, Pérez C, Ruiz J. Structure-based QSAR study on differential inhibition of human prostaglandin endoperoxide H synthase-2 (COX-2) by nonsteroidal anti-inflammatory drugs. J Comput Aided Mol Des 2002; 16:683-709. [PMID: 12650588 DOI: 10.1023/a:1022488507391] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The prostaglandin-endoperoxide H synthase-1 (PGHS- 1) and prostaglandin-endoperoxide H synthase-2 (PGHS-2) are the targets of nonsteroidal anti-inflammatory drugs (NSAIDs). It appears that the high degree of selectivity for inhibition of PGHS-2 shown by certain compounds is the result of two mechanisms (time-dependent, time-independent inhibition), by which they interact with each isoform. Molecular models of the complexes formed by indomethacin, sulindac, fenamates, 2-phenylpropionic acids and selective cyclooxygenase-2 (COX-2) inhibitors with the cyclooxygenase active site of human PGHS-2 have been built, paying particular attention to water molecules that participate in the hydrogen-bonding network at the polar active site entrance. The stability of the complexes has been assessed by molecular dynamics simulations and interaction energy decomposition analysis, and their biological significance has been discussed in light of available X-ray crystallographic and kinetic results. The selective PGHS-2 inhibitors exploit the extra space of a side-pocket in the active site of PGHS-2 that is not found in PGHS-1. The results suggest that active site hydration together with residues Tyr355, Glu524, Arg120 and Arg513 are crucial to understand the time-dependent inhibition mechanism. A marked relationship between the isoform selectivity and tightly interactions with residues into the side pocket bordered by Val523 is also found.
Collapse
Affiliation(s)
- R Pouplana
- Department de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s/n, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
41
|
Prusakiewicz JJ, Kingsley PJ, Kozak KR, Marnett LJ. Selective oxygenation of N-arachidonylglycine by cyclooxygenase-2. Biochem Biophys Res Commun 2002; 296:612-7. [PMID: 12176025 DOI: 10.1016/s0006-291x(02)00915-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nonsteroidal anti-inflammatory drugs prevent hyperalgesia and inflammation by inhibiting the cyclooxygenase-2 (COX-2) catalyzed oxygenation of arachidonic acid to prostaglandin (PG) H(2). The lipoamino acid N-arachidonylglycine (NAGly) has also been shown to suppress tonic inflammatory pain and is naturally present at significant levels in many of the same mammalian tissues that express COX-2. Here, we report that COX-2 selectively metabolizes NAGly to PGH(2) glycine (PGH(2)-Gly) and hydroxyeicosatetraenoic glycine (HETE-Gly). Site-directed mutagenesis experiments identify the side pocket residues of COX-2, especially Arg-513, as critical determinants of the COX-2 selectivity towards NAGly. This is the first report of a charged arachidonyl derivative that is a selective substrate for COX-2. These results suggest a possible role for COX-2 in the regulation of NAGly levels and the formation of a novel class of eicosanoids from NAGly metabolism.
Collapse
Affiliation(s)
- Jeffery J Prusakiewicz
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
42
|
Garavito RM, Malkowski MG, DeWitt DL. The structures of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat 2002; 68-69:129-52. [PMID: 12432914 DOI: 10.1016/s0090-6980(02)00026-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite the marked differences in their physiological roles, the structures and catalytic functions of the prostaglandin H2 endoperoxide synthases-1 and -2 (PGHS-1 and -2) are almost completely identical. These integral membrane proteins catalyze the conversion of arachidonic acid to PGG2 and finally to PGH2. The crystal structures of PGHS-1 and -2 provide new insights into the catalytic mechanism for fatty acid oxygenation. Moreover, a clearer picture emerges to explain how a handful of amino acid substitutions can give rise to subtle differences in ligand binding between the two isoforms. These "small" alterations of isozyme structure are sufficient to allow the design of new, isoform-selective drugs.
Collapse
Affiliation(s)
- R Michael Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, USA.
| | | | | |
Collapse
|
43
|
Ulbrich H, Dannhardt G. [A heterogenous drug class. NSAID: classification and spectrum of action]. PHARMAZIE IN UNSERER ZEIT 2002; 31:146-54. [PMID: 11977450 DOI: 10.1002/1615-1003(200203)31:2<146::aid-pauz146>3.0.co;2-o] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Holger Ulbrich
- Institut für Pharmazie Johannes Gutenberg-Universität Mainz Staudinger Weg 5 55099 Mainz
| | | |
Collapse
|
44
|
Llorens O, Perez JJ, Palomer A, Mauleon D. Differential binding mode of diverse cyclooxygenase inhibitors. J Mol Graph Model 2002; 20:359-71. [PMID: 11885959 DOI: 10.1016/s1093-3263(01)00135-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are competitive inhibitors of cyclooxygenase (COX), the enzyme that mediates biosynthesis of prostaglandins and thromboxanes from arachidonic acid. There are at least two different isoforms of the enzyme known as COX-1 and -2. Site directed mutagenesis studies suggest that non-selective COX inhibitors of diverse chemical families exhibit differential binding modes to the two isozymes. These results cannot clearly be explained from the sole analysis of the crystal structures of COX available from X-ray diffraction studies. With the aim to elucidate the structural features governing the differential inhibitory binding behavior of these inhibitors, molecular modeling studies were undertaken to generate atomic models compatible with the experimental data available. Accordingly, docking of different COX inhibitors, including selective and non-selective ligands: rofecoxib, ketoprofen, suprofen, carprofen, zomepirac, indomethacin, diclofenac and meclofenamic acid were undertaken using the AMBER program. The results of the present study provide new insights into a better understanding of the differential binding mode of diverse families of COX inhibitors, and are expected to contribute to the design of new selective compounds.
Collapse
Affiliation(s)
- Oriol Llorens
- Department of d'Enginyeria Química, UPC, ETSEIB, Barcelona, Spain
| | | | | | | |
Collapse
|
45
|
Abstract
There is increasing evidence that endocannabinoids play roles in a number of physiological and pathological processes ranging from the regulation of food intake to the inhibition of cancer cell proliferation. Consequently, multiple investigations into endocannabinoid metabolic disposition have been initiated. Such studies have begun to shed light on the mechanisms that regulate the endogenous cannabinoid system. In addition, they have identified a number of novel, endocannabinoid-derived lipids. In the future, these studies may form the foundation of efforts designed to subtly manipulate endocannabinoid tone in vivo to achieve therapeutic benefits without the profound side-effects observed with synthetic cannabinoid treatment. In addition to the well-studied hydrolytic mode of endocannabinoid metabolism, accumulating data suggest that these lipids are also susceptible to oxidative metabolism by a number of fatty acid oxygenases. These include the cyclooxygenases, lipoxygenases, and cytochrome P450s known to be involved in eicosanoid production from arachidonic acid. The available evidence concerning endocannabinoid oxidation is reviewed and the potential biological significance of this mode of metabolism is considered.
Collapse
Affiliation(s)
- K R Kozak
- Departments of Biochemistry and Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
46
|
Kothekar V, Sahi S. Design of peptides and peptidomimetics as COX-2 selective inhibitors. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(01)00659-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Pouplana R, Lozano JJ, Ruiz J. Molecular modelling of the differential interaction between several non-steroidal anti-inflammatory drugs and human prostaglandin endoperoxide H synthase-2 (h-PGHS-2). J Mol Graph Model 2002; 20:329-43. [PMID: 11858641 DOI: 10.1016/s1093-3263(01)00133-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The prostaglandin endoperoxide H synthase-1 (PGHS-1) and prostaglandin endoperoxide H synthase-2 (PGHS-2) are the targets of non-steroidal anti-inflammatory drugs (NSAIDs). The high degree of selectivity for inhibition of PGHS-2 shown by certain compounds appears to stem from two mechanisms (time-dependent, time-independent inhibition) by which they interact with each isoform. Molecular models of the complexes between indomethacin, fenamates, 2-phenylpropionic acids and the selective cyclooxygenase-2 (COX-2) inhibitors, with the cyclooxygenase active site of human PGHS-2 have been built by combining homology modelling, conformational searching and automated docking techniques. The stability of the resulting complexes has been assessed by molecular dynamics simulations combined with extended linear response calculations. The results allow us to identify regions of biological significance consistent with both X-ray crystallographic and kinetic results. The selective PGHS-2 inhibitors exploit the extra space of a side-pocket in the active site of PGHS-2 that is not found in PGHS-1. The results obtained point out a marked relationship between the experimental affinity and the electrostatic interaction energy alone for a series of NSAIDs. Analysis of the structural and the energetic data provides evidence supporting that network of hydrogen bonds between Tyr355, Glu524, Arg120 and Arg513 might be involved in mediating the binding of the time-dependent inhibitors of PGHS-2.
Collapse
Affiliation(s)
- R Pouplana
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Spain.
| | | | | |
Collapse
|
48
|
Abstract
Prostaglandins (PGs) are the oxidation products of PG endoperoxide (PGH) synthase and other tissue enzymes. They occur in a tissue-specific manner and act as local hormones. Biotechnological production of PGs has been of interest, but not yet fully established. Biological tissues have been used as PG sources, but this disturbs ecological balance, and the cost of production is very high for commercial purposes. On the other hand, various microorganisms have been shown to synthesize them de novo, or biotransform precursors to active molecules, but these processes have not been further evaluated. Using mammalian enzymes in free or immobilized form is a promising new approach to synthesize PG from fatty acid substrates. Rapid enzyme inactivation during the catalysis is the main problem to be solved. Optimization of factors in the reactions and the design of special reactors that will allow removal of products continuously from the reaction medium without affecting enzyme activity need immediate attention from researchers and the pharmaceutical industry.
Collapse
Affiliation(s)
- E Yilmaz
- Department of Food Engineering, Faculty of Engineering and Architecture, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey.
| |
Collapse
|
49
|
Molecular modeling study of COX-2 inhibition by diarylheterocycles and sulindac sulfide. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0166-1280(01)00485-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Walker MC, Kurumbail RG, Kiefer JR, Moreland KT, Koboldt CM, Isakson PC, Seibert K, Gierse JK. A three-step kinetic mechanism for selective inhibition of cyclo-oxygenase-2 by diarylheterocyclic inhibitors. Biochem J 2001; 357:709-18. [PMID: 11463341 PMCID: PMC1222000 DOI: 10.1042/0264-6021:3570709] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclo-oxygenase (COX) enzymes are the targets for non-steroidal anti-inflammatory drugs (NSAIDs). These drugs demonstrate a variety of inhibitory mechanisms, which include simple competitive, as well as slow binding and irreversible inhibition. In general, most NSAIDs inhibit COX-1 and -2 by similar mechanisms. A unique class of diarylheterocyclic inhibitors has been developed that is highly selective for COX-2 by virtue of distinct inhibitory mechanisms for each isoenzyme. Several of these inhibitors, with varying selectivity, have been utilized to probe the mechanisms of COX inhibition. Results from analysis of both steady-state and time-dependent inhibition were compared. A generalized mechanism for inhibition, consisting of three sequential reversible steps, can account for the various types of kinetic behaviour observed with these inhibitors.
Collapse
Affiliation(s)
- M C Walker
- Searle Discovery Research, Pharmacia Corp., 700 Chesterfield Parkway N., St Louis, MO 63198, USA.
| | | | | | | | | | | | | | | |
Collapse
|