1
|
Gillis A, Berry S. Global control of RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195024. [PMID: 38552781 DOI: 10.1016/j.bbagrm.2024.195024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
RNA polymerase II (Pol II) is the multi-protein complex responsible for transcribing all protein-coding messenger RNA (mRNA). Most research on gene regulation is focused on the mechanisms controlling which genes are transcribed when, or on the mechanics of transcription. How global Pol II activity is determined receives comparatively less attention. Here, we follow the life of a Pol II molecule from 'assembly of the complex' to nuclear import, enzymatic activity, and degradation. We focus on how Pol II spends its time in the nucleus, and on the two-way relationship between Pol II abundance and activity in the context of homeostasis and global transcriptional changes.
Collapse
Affiliation(s)
- Alexander Gillis
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Scott Berry
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Pownall ME, Miao L, Vejnar CE, M’Saad O, Sherrard A, Frederick MA, Benitez MD, Boswell CW, Zaret KS, Bewersdorf J, Giraldez AJ. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 2023; 381:92-100. [PMID: 37410825 PMCID: PMC10372697 DOI: 10.1126/science.ade5308] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/17/2023] [Indexed: 07/08/2023]
Abstract
Nanoscale chromatin organization regulates gene expression. Although chromatin is notably reprogrammed during zygotic genome activation (ZGA), the organization of chromatin regulatory factors during this universal process remains unclear. In this work, we developed chromatin expansion microscopy (ChromExM) to visualize chromatin, transcription, and transcription factors in vivo. ChromExM of embryos during ZGA revealed how the pioneer factor Nanog interacts with nucleosomes and RNA polymerase II (Pol II), providing direct visualization of transcriptional elongation as string-like nanostructures. Blocking elongation led to more Pol II particles clustered around Nanog, with Pol II stalled at promoters and Nanog-bound enhancers. This led to a new model termed "kiss and kick", in which enhancer-promoter contacts are transient and released by transcriptional elongation. Our results demonstrate that ChromExM is broadly applicable to study nanoscale nuclear organization.
Collapse
Affiliation(s)
- Mark E. Pownall
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Liyun Miao
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Charles E. Vejnar
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Ons M’Saad
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University; New Haven, CT 06510, USA
| | - Alice Sherrard
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Megan A. Frederick
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria D.J. Benitez
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Curtis W. Boswell
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine; New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University; New Haven, CT 06510, USA
- Department of Physics, Yale University; New Haven, CT 06510, USA
- Nanobiology Institute, Yale University; West Haven, CT 06477, USA
| | - Antonio J. Giraldez
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Stem Cell Center, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Cancer Center, Yale University School of Medicine; New Haven, CT 06510, USA
| |
Collapse
|
3
|
Targeting transcription in heart failure via CDK7/12/13 inhibition. Nat Commun 2022; 13:4345. [PMID: 35896549 PMCID: PMC9329381 DOI: 10.1038/s41467-022-31541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) is associated with high mortality, highlighting an urgent need for new therapeutic strategies. As stress-activated cardiac signaling cascades converge on the nucleus to drive maladaptive gene programs, interdicting pathological transcription is a conceptually attractive approach for HFrEF therapy. Here, we demonstrate that CDK7/12/13 are critical regulators of transcription activation in the heart that can be pharmacologically inhibited to improve HFrEF. CDK7/12/13 inhibition using the first-in-class inhibitor THZ1 or RNAi blocks stress-induced transcription and pathologic hypertrophy in cultured rodent cardiomyocytes. THZ1 potently attenuates adverse cardiac remodeling and HFrEF pathogenesis in mice and blocks cardinal features of disease in human iPSC-derived cardiomyocytes. THZ1 suppresses Pol II enrichment at stress-transactivated cardiac genes and inhibits a specific pathologic gene program in the failing mouse heart. These data identify CDK7/12/13 as druggable regulators of cardiac gene transactivation during disease-related stress, suggesting that HFrEF features a critical dependency on transcription that can be therapeutically exploited.
Collapse
|
4
|
Sun D, Nikonova AS, Zhang P, Deneka AY, Fitzgerald ME, Michael RE, Lee L, Lilly AC, Fisher SL, Phillips AJ, Nasveschuk CG, Proia DA, Tu Z, Golemis EA. Evaluation of the Small-molecule BRD4 Degrader CFT-2718 in Small-cell Lung Cancer and Pancreatic Cancer Models. Mol Cancer Ther 2021; 20:1367-1377. [PMID: 34045230 DOI: 10.1158/1535-7163.mct-20-0831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/25/2021] [Accepted: 04/05/2021] [Indexed: 01/03/2023]
Abstract
Targeted, catalytic degradation of oncoproteins using heterobifunctional small molecules is an attractive modality, particularly for hematologic malignancies, which are often initiated by aberrant transcription factors and are challenging to drug with inhibitors. BRD4, a member of the bromodomain and extraterminal family, is a core transcriptional and epigenetic regulator that recruits the P-TEFb complex, which includes Cdk9 and cyclin T, to RNA polymerase II (pol II). Together, BRD4 and CDK9 phosphorylate serine 2 (pSer2) of heptad repeats in the C-terminal domain of RPB1, the large subunit of pol II, promote transcriptional elongation. Small-molecule degraders of BRD4 have shown encouraging efficacy in preclinical models for several tumor types but less efficacy in other cancers including small-cell lung cancer (SCLC) and pancreatic cancer. Here, we evaluated CFT-2718, a new BRD4-targeting degrader with enhanced catalytic activity and in vivo properties. In vivo, CFT-2718 has significantly greater efficacy than the CDK9 inhibitor dinaciclib in reducing growth of the LX-36 SCLC patient-derived xenograft (PDX) model and performed comparably to dinaciclib in limiting growth of the PNX-001 pancreatic PDX model. In vitro, CFT-2718 reduced cell viability in four SCLC and two pancreatic cancer models. In SCLC models, this activity significantly exceeded that of dinaciclib; furthermore, CFT-2718 selectively increased the expression of cleaved PARP, an indicator of apoptosis. CFT-2718 caused rapid BRD4 degradation and reduced levels of total and pSer2 RPB1 protein. These and other findings suggest that BRD-mediated transcriptional suppression merits further exploration in the setting of SCLC.
Collapse
Affiliation(s)
- Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Institute of Life Sciences, Jiangsu University, Jinkou District, Zhenjiang, Jiangsu, China
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Peishan Zhang
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Institute of Life Sciences, Jiangsu University, Jinkou District, Zhenjiang, Jiangsu, China
| | - Alexander Y Deneka
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Linda Lee
- C4 Therapeutics, Inc., Watertown, Massachusetts
| | - Anna C Lilly
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Jinkou District, Zhenjiang, Jiangsu, China.
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
5
|
Zicari S, Sharma AL, Sahu G, Dubrovsky L, Sun L, Yue H, Jada T, Ochem A, Simon G, Bukrinsky M, Tyagi M. DNA dependent protein kinase (DNA-PK) enhances HIV transcription by promoting RNA polymerase II activity and recruitment of transcription machinery at HIV LTR. Oncotarget 2020; 11:699-726. [PMID: 32133046 PMCID: PMC7041937 DOI: 10.18632/oncotarget.27487] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/29/2020] [Indexed: 01/24/2023] Open
Abstract
Despite reductions in mortality from the use of highly active antiretroviral therapy (HAART), the presence of latent or transcriptionally silent proviruses prevents HIV cure/eradication. We have previously reported that DNA-dependent protein kinase (DNA-PK) facilitates HIV transcription by interacting with the RNA polymerase II (RNAP II) complex recruited at HIV LTR. In this study, using different cell lines and peripheral blood mononuclear cells (PBMCs) of HIV-infected patients, we found that DNA-PK stimulates HIV transcription at several stages, including initiation, pause-release and elongation. We are reporting for the first time that DNA-PK increases phosphorylation of RNAP II C-terminal domain (CTD) at serine 5 (Ser5) and serine 2 (Ser2) by directly catalyzing phosphorylation and by augmenting the recruitment of the positive transcription elongation factor (P-TEFb) at HIV LTR. Our findings suggest that DNA-PK expedites the establishment of euchromatin structure at HIV LTR. DNA-PK inhibition/knockdown leads to the severe impairment of HIV replication and reactivation of latent HIV provirus. DNA-PK promotes the recruitment of Tripartite motif-containing 28 (TRIM28) at LTR and assists the release of paused RNAP II through TRIM28 phosphorylation. These results provide the mechanisms through which DNA-PK controls the HIV gene expression and, likely, can be extended to cellular gene expression, including during cell malignancy, where the role of DNA-PK has been well-established.
Collapse
Affiliation(s)
- Sonia Zicari
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Section of Intercellular Interactions, Eunice-Kennedy National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Department of Pediatric Medicine, The Bambino Gesù Children's Hospital, Rome, Italy.,These authors contributed equally to this work
| | - Adhikarimayum Lakhikumar Sharma
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.,These authors contributed equally to this work
| | - Geetaram Sahu
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA.,These authors contributed equally to this work
| | - Larisa Dubrovsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC 20037, USA
| | - Lin Sun
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA
| | - Han Yue
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA
| | - Tejaswi Jada
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA
| | - Alex Ochem
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Wernher and Beit Building (South), Observatory 7925, Cape Town, South Africa
| | - Gary Simon
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC 20037, USA
| | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA.,Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC 20037, USA
| |
Collapse
|
6
|
Gottesfeld JM. Milestones in transcription and chromatin published in the Journal of Biological Chemistry. J Biol Chem 2019; 294:1652-1660. [PMID: 30710013 DOI: 10.1074/jbc.tm118.004162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During Herbert Tabor's tenure as Editor-in-Chief from 1971 to 2010, JBC has published many seminal papers in the fields of chromatin structure, epigenetics, and regulation of transcription in eukaryotes. As of this writing, more than 21,000 studies on gene transcription at the molecular level have been published in JBC since 1971. This brief review will attempt to highlight some of these ground-breaking discoveries and show how early studies published in JBC have influenced current research. Papers published in the Journal have reported the initial discovery of multiple forms of RNA polymerase in eukaryotes, identification and purification of essential components of the transcription machinery, and identification and mechanistic characterization of various transcriptional activators and repressors and include studies on chromatin structure and post-translational modifications of the histone proteins. The large body of literature published in the Journal has inspired current research on how chromatin organization and epigenetics impact regulation of gene expression.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Departments of Molecular Medicine and Chemistry, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
7
|
Yurko N, Liu X, Yamazaki T, Hoque M, Tian B, Manley JL. MPK1/SLT2 Links Multiple Stress Responses with Gene Expression in Budding Yeast by Phosphorylating Tyr1 of the RNAP II CTD. Mol Cell 2017; 68:913-925.e3. [PMID: 29220656 DOI: 10.1016/j.molcel.2017.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/21/2017] [Accepted: 11/15/2017] [Indexed: 12/28/2022]
Abstract
The RNA polymerase II largest subunit C-terminal domain consists of repeated YSPTSPS heptapeptides. The role of tyrosine-1 (Tyr1) remains incompletely understood, as, for example, mutating all Tyr1 residues to Phe (Y1F) is lethal in vertebrates but a related mutant has only a mild phenotype in S. pombe. Here we show that Y1F substitution in budding yeast resulted in a strong slow-growth phenotype. The Y1F strain was also hypersensitive to several different cellular stresses that involve MAP kinase signaling. These phenotypes were all linked to transcriptional changes, and we also identified genetic and biochemical interactions between Tyr1 and both transcription initiation and termination factors. Further studies uncovered defects related to MAP kinase I (Slt2) pathways, and we provide evidence that Slt2 phosphorylates Tyr1 in vitro and in vivo. Our study has thus identified Slt2 as a Tyr1 kinase, and in doing so provided links between stress response activation and Tyr1 phosphorylation.
Collapse
Affiliation(s)
- Nathan Yurko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xiaochuan Liu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
8
|
Abstract
Chromatin immunoprecipitation (ChIP) is a technique used to determine the association of proteins or histone modifications with chromatin regions in living cells or tissues, and is used extensively in the chromatin biology field to study transcriptional and epigenetic mechanisms. Increasing evidence points to an epigenetic coordination of signaling cascades, such as ERK, that regulate key processes in development and disease, revealing novel principles of gene regulation. Here we describe a detailed protocol for performing chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) for probing histone modifications regulated by ERK signaling in mouse ESCs.
Collapse
Affiliation(s)
- Ozgur Oksuz
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Wee-Wei Tee
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
9
|
Abstract
CDK9 is a protein in constant development in cancer therapy. Herein we present an overview of the enzyme as a target for cancer therapy. We provide data on its characteristics and mechanism of action. In recent years, CDK9 inhibitors that have been designed with molecular modeling have demonstrated good antitumoral activity in vitro. Clinical studies of the drugs flavopiridol, dinaciclib, seliciclib, SNS-032 and RGB-286638 used as CDK9 inhibitors are also reviewed, with their additional targets and their relative IC50 values. Unfortunately, treatment with these drugs remains unsuccessful and involves many adverse effects. We could conclude that there are many small molecules that bind to CDK9, but their lack of selectivity against other CDKs do not allow them to get to the clinical use. However, drug designers currently have the tools needed to improve the selectivity of CDK9 inhibitors and to make successful treatment available to patients.
Collapse
Affiliation(s)
- Fatima Morales
- a Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA
| | - Antonio Giordano
- a Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA.,b Department of Medicine , Surgery and Neuroscience, University of Siena , Siena , Italy
| |
Collapse
|
10
|
Meek K, Xu Y, Bailie C, Yu K, Neal JA. The ATM Kinase Restrains Joining of Both VDJ Signal and Coding Ends. THE JOURNAL OF IMMUNOLOGY 2016; 197:3165-3174. [PMID: 27574300 DOI: 10.4049/jimmunol.1600597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/06/2016] [Indexed: 11/19/2022]
Abstract
The evidence that ATM affects resolution of RAG-induced DNA double-strand breaks is profuse and unequivocal; moreover, it is clear that the RAG complex itself cooperates (in an undetermined way) with ATM to facilitate repair of these double-strand breaks by the classical nonhomologous end-joining pathway. The mechanistic basis for the cooperation between ATM and the RAG complex has not been defined, although proposed models invoke ATM and RAG2's C terminus in maintaining the RAG postcleavage complex. In this study, we show that ATM reduces the rate of both coding and signal joining in a robust episomal assay; we suggest that this is the result of increased stability of the postcleavage complex. ATM's ability to inhibit VDJ joining requires its enzymatic activity. The noncore C termini of both RAG1 and RAG2 are also required for ATM's capacity to limit signal (but not coding) joining. Moreover, potential phosphorylation targets within the C terminus of RAG2 are also required for ATM's capacity to limit signal joining. These data suggest a model whereby the RAG signal end complex is stabilized by phosphorylation of RAG2 by ATM.
Collapse
Affiliation(s)
- Katheryn Meek
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; .,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Yao Xu
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Caleb Bailie
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, College of Human Medicine, Michigan State University, East Lansing, MI 48824
| | - Jessica A Neal
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| |
Collapse
|
11
|
Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay. Nat Commun 2016; 7:12434. [PMID: 27511142 PMCID: PMC4987530 DOI: 10.1038/ncomms12434] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 07/04/2016] [Indexed: 12/13/2022] Open
Abstract
Many gene expression factors contain repetitive phosphorylation sites for single kinases, but the functional significance is poorly understood. Here we present evidence for hyperphosphorylation as a mechanism allowing UPF1, the central factor in nonsense-mediated decay (NMD), to increasingly attract downstream machinery with time of residence on target mRNAs. Indeed, slowing NMD by inhibiting late-acting factors triggers UPF1 hyperphosphorylation, which in turn enhances affinity for factors linking UPF1 to decay machinery. Mutational analyses reveal multiple phosphorylation sites contributing to different extents to UPF1 activity with no single site being essential. Moreover, the ability of UPF1 to undergo hyperphosphorylation becomes increasingly important for NMD when downstream factors are depleted. This hyperphosphorylation-dependent feedback mechanism may serve as a molecular clock ensuring timely degradation of target mRNAs while preventing degradation of non-targets, which, given the prevalence of repetitive phosphorylation among central gene regulatory factors, may represent an important general principle in gene expression. Gene expression is regulated by a range of mechanisms, including post-translational modifications such as phosphorylation. Here the authors present evidence for a feedback mechanism whereby hyperphosphorylation of UPF1 in response to delays in nonsense-mediated decay enhances recruitment of mRNA decay machinery.
Collapse
|
12
|
Jeronimo C, Collin P, Robert F. The RNA Polymerase II CTD: The Increasing Complexity of a Low-Complexity Protein Domain. J Mol Biol 2016; 428:2607-2622. [DOI: 10.1016/j.jmb.2016.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/18/2023]
|
13
|
Mayfield JE, Burkholder NT, Zhang YJ. Dephosphorylating eukaryotic RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:372-87. [PMID: 26779935 DOI: 10.1016/j.bbapap.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nathaniel T Burkholder
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Smith-Kinnaman WR, Berna MJ, Hunter GO, True JD, Hsu P, Cabello GI, Fox MJ, Varani G, Mosley AL. The interactome of the atypical phosphatase Rtr1 in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2015; 10:1730-41. [PMID: 24671508 DOI: 10.1039/c4mb00109e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phosphatase Rtr1 has been implicated in dephosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) during transcription elongation and in regulation of nuclear import of RNAPII. Although it has been shown that Rtr1 interacts with RNAPII in yeast and humans, the specific mechanisms that underlie Rtr1 recruitment to RNAPII have not been elucidated. To address this, we have performed an in-depth proteomic analysis of Rtr1 interacting proteins in yeast. Our studies revealed that hyperphosphorylated RNAPII is the primary interacting partner for Rtr1. To extend these findings, we performed quantitative proteomic analyses of Rtr1 interactions in yeast strains deleted for CTK1, the gene encoding the catalytic subunit of the CTD kinase I (CTDK-I) complex. Interestingly, we found that the interaction between Rtr1 and RNAPII is decreased in ctk1Δ strains. We hypothesize that serine-2 CTD phosphorylation is required for Rtr1 recruitment to RNAPII during transcription elongation.
Collapse
Affiliation(s)
- Whitney R Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cyclin-dependent kinase 7 controls mRNA synthesis by affecting stability of preinitiation complexes, leading to altered gene expression, cell cycle progression, and survival of tumor cells. Mol Cell Biol 2014; 34:3675-88. [PMID: 25047832 DOI: 10.1128/mcb.00595-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) activates cell cycle CDKs and is a member of the general transcription factor TFIIH. Although there is substantial evidence for an active role of CDK7 in mRNA synthesis and associated processes, the degree of its influence on global and gene-specific transcription in mammalian species is unclear. In the current study, we utilize two novel inhibitors with high specificity for CDK7 to demonstrate a restricted but robust impact of CDK7 on gene transcription in vivo and in in vitro-reconstituted reactions. We distinguish between relative low- and high-dose responses and relate them to distinct molecular mechanisms and altered physiological responses. Low inhibitor doses cause rapid clearance of paused RNA polymerase II (RNAPII) molecules and sufficed to cause genome-wide alterations in gene expression, delays in cell cycle progression at both the G1/S and G2/M checkpoints, and diminished survival of human tumor cells. Higher doses and prolonged inhibition led to strong reductions in RNAPII carboxyl-terminal domain (CTD) phosphorylation, eventual activation of the p53 program, and increased cell death. Together, our data reason for a quantitative contribution of CDK7 to mRNA synthesis, which is critical for cellular homeostasis.
Collapse
|
16
|
Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 2014; 156:678-90. [PMID: 24529373 DOI: 10.1016/j.cell.2014.01.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/28/2013] [Accepted: 01/02/2014] [Indexed: 01/22/2023]
Abstract
Erk1/2 activation contributes to mouse ES cell pluripotency. We found a direct role of Erk1/2 in modulating chromatin features required for regulated developmental gene expression. Erk2 binds to specific DNA sequence motifs typically accessed by Jarid2 and PRC2. Negating Erk1/2 activation leads to increased nucleosome occupancy and decreased occupancy of PRC2 and poised RNAPII at Erk2-PRC2-targeted developmental genes. Surprisingly, Erk2-PRC2-targeted genes are specifically devoid of TFIIH, known to phosphorylate RNA polymerase II (RNAPII) at serine-5, giving rise to its initiated form. Erk2 interacts with and phosphorylates RNAPII at its serine 5 residue, which is consistent with the presence of poised RNAPII as a function of Erk1/2 activation. These findings underscore a key role for Erk1/2 activation in promoting the primed status of developmental genes in mouse ES cells and suggest that the transcription complex at developmental genes is different than the complexes formed at other genes, offering alternative pathways of regulation.
Collapse
|
17
|
Yin T, Lallena MJ, Kreklau EL, Fales KR, Carballares S, Torrres R, Wishart GN, Ajamie RT, Cronier DM, Iversen PW, Meier TI, Foreman RT, Zeckner D, Sissons SE, Halstead BW, Lin AB, Donoho GP, Qian Y, Li S, Wu S, Aggarwal A, Ye XS, Starling JJ, Gaynor RB, de Dios A, Du J. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol Cancer Ther 2014; 13:1442-56. [PMID: 24688048 DOI: 10.1158/1535-7163.mct-13-0849] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA-dependent RNA polymerase II (RNAP II) largest subunit RPB1 C-terminal domain (CTD) kinases, including CDK9, are serine/threonine kinases known to regulate transcriptional initiation and elongation by phosphorylating Ser 2, 5, and 7 residues on CTD. Given the reported dysregulation of these kinases in some cancers, we asked whether inhibiting CDK9 may induce stress response and preferentially kill tumor cells. Herein, we describe a potent CDK9 inhibitor, LY2857785, that significantly reduces RNAP II CTD phosphorylation and dramatically decreases MCL1 protein levels to result in apoptosis in a variety of leukemia and solid tumor cell lines. This molecule inhibits the growth of a broad panel of cancer cell lines, and is particularly efficacious in leukemia cells, including orthotopic leukemia preclinical models as well as in ex vivo acute myeloid leukemia and chronic lymphocytic leukemia patient tumor samples. Thus, inhibition of CDK9 may represent an interesting approach as a cancer therapeutic target, especially in hematologic malignancies.
Collapse
Affiliation(s)
- Tinggui Yin
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Maria J Lallena
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Emiko L Kreklau
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Kevin R Fales
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Santiago Carballares
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Raquel Torrres
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Graham N Wishart
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Rose T Ajamie
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Damien M Cronier
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Phillip W Iversen
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Timothy I Meier
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Robert T Foreman
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Douglas Zeckner
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Sean E Sissons
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Bart W Halstead
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Aimee B Lin
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Gregory P Donoho
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Yuewei Qian
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Shuyu Li
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Song Wu
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Amit Aggarwal
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Xiang S Ye
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - James J Starling
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Richard B Gaynor
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Alfonso de Dios
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Jian Du
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| |
Collapse
|
18
|
Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie S, Corden JL, McKnight SL. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 2014; 155:1049-1060. [PMID: 24267890 DOI: 10.1016/j.cell.2013.10.033] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/13/2013] [Accepted: 10/01/2013] [Indexed: 12/29/2022]
Abstract
The low-complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS), and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here, we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state and released for elongation following phosphorylation of the CTD.
Collapse
Affiliation(s)
- Ilmin Kwon
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Masato Kato
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Siheng Xiang
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Leeju Wu
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Pano Theodoropoulos
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Hamid Mirzaei
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Tina Han
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Shanhai Xie
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Jeffry L Corden
- Department of Molecular Biology and Genetics The Johns Hopkins University School of Medicine Baltimore, MD 21205
| | - Steven L McKnight
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| |
Collapse
|
19
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
20
|
Zhao W, Liu Y, Timani KA, He JJ. Tip110 protein binds to unphosphorylated RNA polymerase II and promotes its phosphorylation and HIV-1 long terminal repeat transcription. J Biol Chem 2013; 289:190-202. [PMID: 24217245 DOI: 10.1074/jbc.m113.529784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription plays an important role in both HIV-1 gene expression and replication and mandates complicated but coordinated interactions between the host and virus. Our previous studies have shown that an HIV-1 Tat-interacting protein of 110 kDa, Tip110, binds to and enhances Tat function in Tat-mediated HIV-1 gene transcription and replication (Liu, Y., Li, J., Kim, B. O., Pace, B. S., and He, J. J. (2002) HIV-1 Tat protein-mediated transactivation of the HIV-1 long terminal repeat promoter is potentiated by a novel nuclear Tat-interacting protein of 110 kDa, Tip110. J. Biol. Chem. 277, 23854-23863). However, the underlying molecular mechanisms by which this takes place were not understood. In this study, we demonstrated that Tip110 bound to unphosphorylated RNA polymerase II (RNAPII) in a direct and specific manner. In addition, we detected Tip110 at the HIV-1 long terminal repeat (LTR) promoter and found that Tip110 expression was associated with increased phosphorylation of serine 2 of the heptapeptide repeats within the RNAPII C-terminal domain and increased recruitment of positive transcription elongation factor b to the LTR promoter. Consistent with these findings, we showed that Tip110 interaction with Tat directly enhanced transcription elongation of the LTR promoter. Taken together, these findings have provided additional and mechanistic evidence to support Tip110 function in HIV-1 transcription.
Collapse
Affiliation(s)
- Weina Zhao
- From the Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | | | | | | |
Collapse
|
21
|
The little elongation complex functions at initiation and elongation phases of snRNA gene transcription. Mol Cell 2013; 51:493-505. [PMID: 23932780 DOI: 10.1016/j.molcel.2013.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/13/2013] [Accepted: 07/02/2013] [Indexed: 11/22/2022]
Abstract
The small nuclear RNA (snRNA) genes have been widely used as a model system for understanding transcriptional regulation due to the unique aspects of their promoter structure, selectivity for either RNA polymerase (Pol) II or III, and because of their unique mechanism of termination that is tightly linked with the promoter. Recently, we identified the little elongation complex (LEC) in Drosophila that is required for the expression of Pol II-transcribed snRNA genes. Here, using Drosophila and mammalian systems, we provide genetic and molecular evidence that LEC functions in at least two phases of snRNA transcription: an initiation step requiring the ICE1 subunit, and an elongation step requiring ELL.
Collapse
|
22
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
23
|
Ribavirin-induced intracellular GTP depletion activates transcription elongation in coagulation factor VII gene expression. Biochem J 2013; 449:231-9. [PMID: 23050902 DOI: 10.1042/bj20121286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coagulation FVII (Factor VII) is a vitamin K-dependent glycoprotein synthesized in hepatocytes. It was reported previously that FVII gene (F7) expression was up-regulated by ribavirin treatment in hepatitis C virus-infected haemophilia patients; however, its precise mechanism is still unknown. In the present study, we investigated the molecular mechanism of ribavirin-induced up-regulation of F7 expression in HepG2 (human hepatoma cell line). We found that intracellular GTP depletion by ribavirin as well as other IMPDH (inosine-5'-monophosphate dehydrogenase) inhibitors, such as mycophenolic acid and 6-mercaptopurine, up-regulated F7 expression. FVII mRNA transcription was mainly enhanced by accelerated transcription elongation, which was mediated by the P-TEFb (positive-transcription elongation factor b) complex, rather than by promoter activation. Ribavirin unregulated ELL (eleven-nineteen lysine-rich leukaemia) 3 mRNA expression before F7 up-regulation. We observed that ribavirin enhanced ELL3 recruitment to F7, whereas knockdown of ELL3 diminished ribavirin-induced FVII mRNA up-regulation. Ribavirin also enhanced recruitment of CDK9 (cyclin-dependent kinase 9) and AFF4 to F7. These data suggest that ribavirin-induced intracellular GTP depletion recruits a super elongation complex containing P-TEFb, AFF4 and ELL3, to F7, and modulates FVII mRNA transcription elongation. Collectively, we have elucidated a basal mechanism for ribavirin-induced FVII mRNA up-regulation by acceleration of transcription elongation, which may be crucial in understanding its pleiotropic functions in vivo.
Collapse
|
24
|
Yakovchuk P, Goodrich JA, Kugel JF. B2 RNA represses TFIIH phosphorylation of RNA polymerase II. Transcription 2012; 2:45-9. [PMID: 21326911 DOI: 10.4161/trns.2.1.14306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 12/12/2022] Open
Abstract
Mouse B2 RNA represses RNA polymerase II (Pol II) transcription during the cellular heat shock response. B2 RNA binds Pol II, enters complexes at promoters, and keeps the polymerase from engaging the DNA. Here we show that phosphorylation of Ser5 residues in the Pol II carboxy terminal domain (CTD) decreases after heat shock at the promoter of the repressed actin gene in mouse cells, despite the continued presence of Cdk7 and cyclin H. Biochemical assays revealed that B2 RNA, when present with Pol II in promoter-bound complexes, specifically represses CTD phosphorylation by TFIIH.
Collapse
Affiliation(s)
- Petro Yakovchuk
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, USA
| | | | | |
Collapse
|
25
|
Abstract
The transcription initiation factor TFIIH is a remarkable protein complex that has a fundamental role in the transcription of protein-coding genes as well as during the DNA nucleotide excision repair pathway. The detailed understanding of how TFIIH functions to coordinate these two processes is also providing an explanation for the phenotypes observed in patients who bear mutations in some of the TFIIH subunits. In this way, studies of TFIIH have revealed tight molecular connections between transcription and DNA repair and have helped to define the concept of 'transcription diseases'.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP 163, 67404 Illkirch Cedex, C. U., Strasbourg, France.
| | | |
Collapse
|
26
|
Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition. Mol Cell Biol 2012; 32:2372-83. [PMID: 22508988 DOI: 10.1128/mcb.06657-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In fission yeast, discrete steps in mRNA maturation and synthesis depend on a complex containing the 5'-cap methyltransferase Pcm1 and Cdk9, which phosphorylates the RNA polymerase II (Pol II) carboxyl-terminal domain (CTD) and the processivity factor Spt5 to promote transcript elongation. Here we show that a Cdk9 carboxyl-terminal extension, distinct from the catalytic domain, mediates binding to both Pcm1 and the Pol II CTD. Removal of this segment diminishes Cdk9/Pcm1 chromatin recruitment and Spt5 phosphorylation in vivo and leads to slow growth and hypersensitivity to cold temperature, nutrient limitation, and the IMP dehydrogenase inhibitor mycophenolic acid (MPA). These phenotypes, and the Spt5 phosphorylation defect, are suppressed by Pcm1 overproduction, suggesting that normal transcript elongation and gene expression depend on physical linkage between Cdk9 and Pcm1. The extension is dispensable, however, for recognition of CTD substrates "primed" by Mcs6 (Cdk7). On defined peptide substrates in vitro, Cdk9 prefers CTD repeats phosphorylated at Ser7 over unmodified repeats. In vivo, Ser7 phosphorylation depends on Mcs6 activity, suggesting a conserved mechanism, independent of chromatin recruitment, to order transcriptional CDK functions. Therefore, fission yeast Cdk9 comprises a catalytic domain sufficient for primed substrate recognition and a multivalent recruitment module that couples transcription with capping.
Collapse
|
27
|
Rodrigues F, Thuma L, Klämbt C. The regulation of glial-specific splicing of Neurexin IV requires HOW and Cdk12 activity. Development 2012; 139:1765-76. [PMID: 22461565 DOI: 10.1242/dev.074070] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The differentiation of the blood-brain barrier (BBB) is an essential process in the development of a complex nervous system and depends on alternative splicing. In the fly BBB, glial cells establish intensive septate junctions that require the cell-adhesion molecule Neurexin IV. Alternative splicing generates two different Neurexin IV isoforms: Neurexin IV(exon3), which is found in cells that form septate junctions, and Neurexin IV(exon4), which is found in neurons that form no septate junctions. Here, we show that the formation of the BBB depends on the RNA-binding protein HOW (Held out wings), which triggers glial specific splicing of Neurexin IV(exon3). Using a set of splice reporters, we show that one HOW-binding site is needed to include one of the two mutually exclusive exons 3 and 4, whereas binding at the three further motifs is needed to exclude exon 4. The differential splicing is controlled by nuclear access of HOW and can be induced in neurons following expression of nuclear HOW. Using a novel in vivo two-color splicing detector, we then screened for genes required for full HOW activity. This approach identified Cyclin-dependent kinase 12 (Cdk12) and the splicesosomal component Prp40 as major determinants in regulating HOW-dependent splicing of Neurexin IV. Thus, in addition to the control of nuclear localization of HOW, the phosphorylation of the C-terminal domain of the RNA polymerase II by Cdk12 provides an elegant mechanism in regulating timed splicing of newly synthesized mRNA molecules.
Collapse
Affiliation(s)
- Floriano Rodrigues
- Institut für Neurobiologie, Universität Münster, Badestrasse 9, 48149 Münster, Germany
| | | | | |
Collapse
|
28
|
Two cellular protein kinases, DNA-PK and PKA, phosphorylate the adenoviral L4-33K protein and have opposite effects on L1 alternative RNA splicing. PLoS One 2012; 7:e31871. [PMID: 22363758 PMCID: PMC3283702 DOI: 10.1371/journal.pone.0031871] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/13/2012] [Indexed: 01/21/2023] Open
Abstract
Accumulation of the complex set of alternatively processed mRNA from the adenovirus major late transcription unit (MLTU) is subjected to a temporal regulation involving both changes in poly (A) site choice and alternative 3′ splice site usage. We have previously shown that the adenovirus L4-33K protein functions as an alternative splicing factor involved in activating the shift from L1-52,55K to L1-IIIa mRNA. Here we show that L4-33K specifically associates with the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) in uninfected and adenovirus-infected nuclear extracts. Further, we show that L4-33K is highly phosphorylated by DNA-PK in vitro in a double stranded DNA-independent manner. Importantly, DNA-PK deficient cells show an enhanced production of the L1-IIIa mRNA suggesting an inhibitory role of DNA-PK on the temporal switch in L1 alternative RNA splicing. Moreover, we show that L4-33K also is phosphorylated by protein kinase A (PKA), and that PKA has an enhancer effect on L4-33K-stimulated L1-IIIa splicing. Hence, we demonstrate that these kinases have opposite effects on L4-33K function; DNA-PK as an inhibitor and PKA as an activator of L1-IIIa mRNA splicing. Taken together, this is the first report identifying protein kinases that phosphorylate L4-33K and to suggest novel regulatory roles for DNA-PK and PKA in adenovirus alternative RNA splicing.
Collapse
|
29
|
Tyagi S, Ochem A, Tyagi M. DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression. J Gen Virol 2011; 92:1710-1720. [PMID: 21450944 DOI: 10.1099/vir.0.029587-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK), a nuclear protein kinase that specifically requires association with DNA for its kinase activity, plays important roles in the regulation of different DNA transactions, including transcription, replication and DNA repair, as well as in the maintenance of telomeres. Due to its large size, DNA-PK is also known to facilitate the activities of other factors by providing the docking platform at their site of action. In this study, by running several chromatin immunoprecipitation assays, we demonstrate the parallel distribution of DNA-PK with RNA polymerase II (RNAP II) along the human immunodeficiency virus (HIV) provirus before and after activation with tumour necrosis factor alpha. The association between DNA-PK and RNAP II is also long-lasting, at least for up to 4 h (the duration analysed in this study). Knockdown of endogenous DNA-PK using specific small hairpin RNAs expressed from lentiviral vectors resulted in significant reduction in HIV gene expression and replication, demonstrating the importance of DNA-PK for HIV gene expression. Sequence analysis of the HIV-1 Tat protein revealed three potential target sites for phosphorylation by DNA-PK and, by using kinase assays, we confirmed that Tat is an effective substrate of DNA-PK. Through peptide mapping, we found that two of these three potential phosphorylation sites are recognized and phosphorylated by DNA-PK. Mutational studies on the DNA-PK target sites of Tat further demonstrated the functional significance of the Tat-DNA-PK interaction. Thus, overall our results clearly demonstrate the functional interaction between DNA-PK and RNAP II during HIV transcription.
Collapse
Affiliation(s)
- Shilpi Tyagi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa.,National Center for Biodefense and Infectious Diseases, George Mason University, Biomedical Research Laboratory, 10650 Pyramid Place, MS 1J5, Manassas, VA 20110, USA
| | - Alex Ochem
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Mudit Tyagi
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Adelbert Road, Cleveland, OH 44106, USA.,National Center for Biodefense and Infectious Diseases, George Mason University, Biomedical Research Laboratory, 10650 Pyramid Place, MS 1J5, Manassas, VA 20110, USA
| |
Collapse
|
30
|
Tran K, Gralla JD. The TFIIB tip domain couples transcription initiation to events involved in RNA processing. J Biol Chem 2010; 285:39580-7. [PMID: 20880846 DOI: 10.1074/jbc.m110.171850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TFIIB is the only factor within the multimegadalton transcription complex that is obligatorily required to undergo dissociation and re-association with each round of mRNA transcription. Here we show that a six-amino acid human TFIIB tip region is needed for appropriate levels of serine 5 C-terminal domain phosphorylation and mRNA capping and for retention of the required elongation factor TFIIF. We suggest that the broad functions of this tiny region are used to suppress transcription noise by restricting functional RNA synthesis from non-promoter sites on the genome, which will not contain TFIIB.
Collapse
Affiliation(s)
- Khiem Tran
- Department of Chemistry and Biochemistry and The Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
31
|
Zhang M, Gill GN, Zhang Y. Bio-molecular architects: a scaffold provided by the C-terminal domain of eukaryotic RNA polymerase II. NANO REVIEWS 2010; 1:NANO-1-5502. [PMID: 22110856 PMCID: PMC3215212 DOI: 10.3402/nano.v1i0.5502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/30/2010] [Accepted: 08/03/2010] [Indexed: 11/14/2022]
Abstract
In eukaryotic cells, the transcription of genes is accurately orchestrated both spatially and temporally by the C-terminal domain of RNA polymerase II (CTD). The CTD provides a dynamic platform to recruit different regulators of the transcription apparatus. Different posttranslational modifications are precisely applied to specific sites of the CTD to coordinate transcription process. Regulators of the RNA polymerase II must identify specific sites in the CTD for cellular survival, metabolism, and development. Even though the CTD is disordered in the eukaryotic RNA polymerase II crystal structures due to its intrinsic flexibility, recent advances in the complex structural analysis of the CTD with its binding partners provide essential clues for understanding how selectivity is achieved for individual site recognition. The recent discoveries of the interactions between the CTD and histone modification enzymes disclose an important role of the CTD in epigenetic control of the eukaryotic gene expression. The intersection of the CTD code with the histone code discloses an intriguing yet complicated network for eukaryotic transcriptional regulation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA
| | | | | |
Collapse
|
32
|
Egloff S, Szczepaniak SA, Dienstbier M, Taylor A, Knight S, Murphy S. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain. J Biol Chem 2010; 285:20564-9. [PMID: 20457598 PMCID: PMC2898319 DOI: 10.1074/jbc.m110.132530] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Indexed: 01/02/2023] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II) comprises multiple tandem repeats of the heptapeptide Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). This unusual structure serves as a platform for the binding of factors required for expression of pol II-transcribed genes, including the small nuclear RNA (snRNA) gene-specific Integrator complex. The pol II CTD specifically mediates recruitment of Integrator to the promoter of snRNA genes to activate transcription and direct 3' end processing of the transcripts. Phosphorylation of the CTD and a serine in position 7 are necessary for Integrator recruitment. Here, we have further investigated the requirement of the serines in the CTD heptapeptide and their phosphorylation for Integrator binding. We show that both Ser(2) and Ser(7) of the CTD are required and that phosphorylation of these residues is necessary and sufficient for efficient binding. Using synthetic phosphopeptides, we have determined the pattern of the minimal Ser(2)/Ser(7) double phosphorylation mark required for Integrator to interact with the CTD. This novel double phosphorylation mark is a new addition to the functional repertoire of the CTD code and may be a specific signal for snRNA gene expression.
Collapse
Affiliation(s)
| | | | | | - Alice Taylor
- From the Sir William Dunn School of Pathology and
| | - Sophie Knight
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Shona Murphy
- From the Sir William Dunn School of Pathology and
| |
Collapse
|
33
|
Patel SA, Simon MC. Functional analysis of the Cdk7.cyclin H.Mat1 complex in mouse embryonic stem cells and embryos. J Biol Chem 2010; 285:15587-15598. [PMID: 20231280 PMCID: PMC2865308 DOI: 10.1074/jbc.m109.081687] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/22/2010] [Indexed: 01/27/2023] Open
Abstract
The trimeric Cdk7.cyclin H.Mat1 complex functions in cell cycle regulation, as the Cdk-activating kinase, and in transcription, as a module of the general transcription factor TFIIH. As a component of TFIIH, Cdk7 phosphorylates serines 5 and 7 of the carboxyl-terminal domain of RNA polymerase II and can also directly phosphorylate transcription factors to regulate gene expression. Here we have investigated the function of the Cdk7.cyclin H.Mat1 complex in murine embryonic stem (ES) cells and preimplantation embryos to determine whether it regulates the unique cell cycle structure and transcriptional network of pluripotent cells. We demonstrate that depletion of cyclin H leads to differentiation of ES cells independent of changes in cell cycle progression. In contrast, we observed that developmental genes are acutely up-regulated after cyclin H down-regulation, likely perturbing normal ES self-renewal pathways. We further demonstrate that Spt5, a known phosphorylation target of Cdk7, similarly regulates ES pluripotency and gene expression. Consistent with its function in ES cells, cyclin H depletion from mouse embryos also leads to defects in the expansion of the inner cell mass of blastocysts, a transient pluripotent stem cell population in vivo. Our findings indicate that cyclin H has an essential function in promoting the self-renewal of the pluripotent stem cells of blastocyst stage embryos. Collectively, these studies demonstrate a critical and novel role for cyclin H in maintaining ES cell identity and suggest that cyclin H has important functions in early embryonic development.
Collapse
Affiliation(s)
- Shetal A Patel
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104; School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104; School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
34
|
Rogalińska M, Błoński JZ, Komina O, Góralski P, Żołnierczyk JD, Piekarski H, Robak T, Kiliańska ZM, Węsierska-Gądek J. R-roscovitine (Seliciclib) affects CLL cells more strongly than combinations of fludarabine or cladribine with cyclophosphamide: Inhibition of CDK7 sensitizes leukemic cells to caspase-dependent apoptosis. J Cell Biochem 2009; 109:217-35. [DOI: 10.1002/jcb.22400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Boeing S, Rigault C, Heidemann M, Eick D, Meisterernst M. RNA polymerase II C-terminal heptarepeat domain Ser-7 phosphorylation is established in a mediator-dependent fashion. J Biol Chem 2009; 285:188-96. [PMID: 19901026 DOI: 10.1074/jbc.m109.046565] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The largest subunit of RNA polymerase II (RNAPII) C-terminal heptarepeat domain (CTD) is subject to phosphorylation during initiation and elongation of transcription by RNA polymerase II. Here we study the molecular mechanisms leading to phosphorylation of Ser-7 in the human enzyme. Ser-7 becomes phosphorylated before initiation of transcription at promoter regions. We identify cyclin-dependent kinase 7 (CDK7) as one responsible kinase. Phosphorylation of both Ser-5 and Ser-7 is fully dependent on the cofactor complex Mediator. A subform of Mediator associated with an active RNAPII is critical for preinitiation complex formation and CTD phosphorylation. The Mediator-RNAPII complex independently recruits TFIIB and CDK7 to core promoter regions. CDK7 phosphorylates Ser-7 selectively in the context of an intact preinitiation complex. CDK7 is not the only kinase that can modify Ser-7 of the CTD. ChIP experiments with chemical inhibitors provide evidence that other yet to be identified kinases further phosphorylate Ser-7 in coding regions.
Collapse
Affiliation(s)
- Stefan Boeing
- Institute of Molecular Tumor Biology, University of Muenster, Robert-Koch-Strasse 43, 48149 Muenster, Germany
| | | | | | | | | |
Collapse
|
36
|
Akhtar MS, Heidemann M, Tietjen J, Zhang D, Chapman RD, Eick D, Ansari AZ. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell 2009; 34:387-93. [PMID: 19450536 PMCID: PMC2757088 DOI: 10.1016/j.molcel.2009.04.016] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 03/09/2009] [Accepted: 04/13/2009] [Indexed: 11/24/2022]
Abstract
Posttranslational modifications of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) specify a molecular recognition code that is deciphered by proteins involved in RNA biogenesis. The CTD is comprised of a repeating heptapeptide (Y(1)S(2)P(3)T(4)S(5)P(6)S(7)). Recently, phosphorylation of serine 7 was shown to be important for cotranscriptional processing of two snRNAs in mammalian cells. Here we report that Kin28/Cdk7, a subunit of the evolutionarily conserved TFIIH complex, is a Ser7 kinase. The ability of Kin28/Cdk7 to phosphorylate Ser7 is particularly surprising because this kinase functions at promoters of protein-coding genes, rather than being restricted to promoter-distal regions of snRNA genes. Kin28/Cdk7 is also known to phosphorylate Ser5 residues of the CTD at gene promoters. Taken together, our results implicate the TFIIH kinase in placing bivalent Ser5 and Ser7 marks early in gene transcription. These bivalent CTD marks, in concert with cues within nascent transcripts, specify the cotranscriptional engagement of the relevant RNA processing machinery.
Collapse
Affiliation(s)
- M. Sohail Akhtar
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Martin Heidemann
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Munich, Germany
| | - Joshua Tietjen
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David Zhang
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rob D. Chapman
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Munich, Germany
| | - Dirk Eick
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Munich, Germany
| | - Aseem Z. Ansari
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
- The Genome Center of Wisconsin, Madison, WI 53706
| |
Collapse
|
37
|
Mosley AL, Pattenden SG, Carey M, Venkatesh S, Gilmore JM, Florens L, Workman JL, Washburn MP. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell 2009; 34:168-78. [PMID: 19394294 PMCID: PMC2996052 DOI: 10.1016/j.molcel.2009.02.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 02/03/2009] [Accepted: 02/23/2009] [Indexed: 11/16/2022]
Abstract
Messenger RNA processing is coupled to RNA polymerase II (RNAPII) transcription through coordinated recruitment of accessory proteins to the Rpb1 C-terminal domain (CTD). Dynamic changes in CTD phosphorylation during transcription elongation are responsible for their recruitment, with serine 5 phosphorylation (S5-P) occurring toward the 5' end of genes and serine 2 phosphorylation (S2-P) occurring toward the 3' end. The proteins responsible for regulation of the transition state between S5-P and S2-P CTD remain elusive. We show that a conserved protein of unknown function, Rtr1, localizes within coding regions, with maximum levels of enrichment occurring between the peaks of S5-P and S2-P RNAPII. Upon deletion of Rtr1, the S5-P form of RNAPII accumulates in both whole-cell extracts and throughout coding regions; additionally, RNAPII transcription is decreased, and termination defects are observed. Functional characterization of Rtr1 reveals its role as a CTD phosphatase essential for the S5-to-S2-P transition.
Collapse
Affiliation(s)
- Amber L. Mosley
- Stowers Institute for Medical Research, Kansas City, MO 64110 U.S.A
| | | | - Michael Carey
- Stowers Institute for Medical Research, Kansas City, MO 64110 U.S.A
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA 10833 LeConte Ave Los Angeles, CA 90095 U.S.A
| | | | | | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110 U.S.A
| | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110 U.S.A
| | | |
Collapse
|
38
|
Lolli G. Binding to DNA of the RNA-polymerase II C-terminal domain allows discrimination between Cdk7 and Cdk9 phosphorylation. Nucleic Acids Res 2009; 37:1260-8. [PMID: 19136461 PMCID: PMC2651791 DOI: 10.1093/nar/gkn1061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II regulates transcription through spatially and temporally coordinated events. Previous work had established that the CTD binds DNA but the significance of this interaction has not been determined. The present work shows that the CTD binds DNA in its unphosphorylated form, the form in which it is present in the pre-initiation complex. The CTD/DNA complex is recognized by and is phosphorylated by Cdk7 but not by Cdk9. Model-building studies indicate the structural mechanism underlying such specificity involves interaction of Cdk7 with DNA in the context of the CTD/DNA complex. The model has been tested by mutagenesis experiments. CTD dissociates from DNA following phosphorylation by Cdk7, allowing transcription initiation. The CTD then becomes accessible for further phosphorylation by Cdk9 that drives the transition to transcription elongation.
Collapse
Affiliation(s)
- Graziano Lolli
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
39
|
Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29. J Virol 2008; 83:1036-44. [PMID: 18971272 DOI: 10.1128/jvi.01316-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 (CDK9) and cyclin T, is a global transcription factor for eukaryotic gene expression, as well as a key factor for human immunodeficiency virus (HIV) transcription elongation. P-TEFb phosphorylates the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II (RNAP II), facilitating the transition from nonprocessive to processive transcription elongation. Recently, the bromodomain protein Brd4 has been shown to interact with the low-molecular-weight, active P-TEFb complex and recruit P-TEFb to the HIV type 1 long terminal repeat (LTR) promoter. However, the subsequent events through which Brd4 regulates CDK9 kinase activity and RNAP II-dependent transcription are not clearly understood. Here we provide evidence that Brd4 regulates P-TEFb kinase activity by inducing a negative pathway. Moreover, by analyzing stepwise initiation and elongation complexes, we demonstrate that P-TEFb activity is regulated in the transcription complex. Brd4 induces phosphorylation of CDK9 at threonine 29 (T29) in the HIV transcription initiation complex, inhibiting CDK9 kinase activity. P-TEFb inhibition is transient, as Brd4 is released from the transcription complex between positions +14 and +36. Removal of the phosphate group at T29 by an incoming phosphatase released P-TEFb activity, resulting in increased RNAP II CTD phosphorylation and transcription. Finally, we present chromatin immunoprecipitation studies showing that CDK9 with phosphorylated T29 is associated with the HIV promoter region in the integrated and transcriptionally silent HIV genome.
Collapse
|
40
|
Ueda A, Li P, Feng Y, Vikram M, Kim S, Kang CH, Kang JS, Bahk JD, Lee SY, Fukuhara T, Staswick PE, Pepper AE, Koiwa H. The Arabidopsis thaliana carboxyl-terminal domain phosphatase-like 2 regulates plant growth, stress and auxin responses. PLANT MOLECULAR BIOLOGY 2008; 67:683-97. [PMID: 18506580 DOI: 10.1007/s11103-008-9348-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 05/08/2008] [Indexed: 05/08/2023]
Abstract
More than 20 genes in the Arabidopsis genome encode proteins similar to phosphatases that act on the carboxyl-terminal domain (CTD) of RNA polymerase II. One of these CTD-phosphatase-like (CPL) proteins, CPL2, dephosphorylates CTD-Ser5-PO4 in an intact RNA polymerase II complex and contains a double-stranded (ds)-RNA-binding motif (DRM). Although the dsRNA-binding activity of CPL2 DRM has not been shown to date, T-DNA insertion mutants that express CPL2 variants lacking either a part of DRM (cpl2-1) or the entire DRM (cpl2-2) exhibited leaf expansion defects, early flowering, low fertility, and increased salt sensitivity. cpl2 mutant plants produced shorter hypocotyls than wild-type plants in the light, but were indistinguishable from wild type in the dark. CPL2 was expressed in shoot and root meristems and vasculatures, expanding rosette leaves, and floral organs suggesting a focal role for growth. Microarray and RT-PCR analyses revealed that basal levels of several auxin-responsive transcripts were reduced in cpl2. On the other hand, the levels of endogenous auxin and its conjugates were similar in wild type and cpl2. Overexpression of ARF5 but not all activator ARF transcription factors restored the auxin-responsive DR5-GUS reporter gene expression and the leaf expansion of cpl2 mutant plants but not early flowering phenotype. These results establish CPL2 as a multifunctional regulator that modulates plant growth, stress, and auxin responses.
Collapse
Affiliation(s)
- Akihiro Ueda
- Department of Horticultural Science and Vegetable and Fruit Improvement Center, Texas A&M University, College Station, TX 77843-2133, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ni Z, Saunders A, Fuda NJ, Yao J, Suarez JR, Webb WW, Lis JT. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo. Mol Cell Biol 2008; 28:1161-70. [PMID: 18070927 PMCID: PMC2223398 DOI: 10.1128/mcb.01859-07] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 10/31/2007] [Accepted: 11/15/2007] [Indexed: 12/21/2022] Open
Abstract
Positive transcription elongation factor b (P-TEFb) is the major metazoan RNA polymerase II (Pol II) carboxyl-terminal domain (CTD) Ser2 kinase, and its activity is believed to promote productive elongation and coupled RNA processing. Here, we demonstrate that P-TEFb is critical for the transition of Pol II into a mature transcription elongation complex in vivo. Within 3 min following P-TEFb inhibition, most polymerases were restricted to within 150 bp of the transcription initiation site of the active Drosophila melanogaster Hsp70 gene, and live-cell imaging demonstrated that these polymerases were stably associated. Polymerases already productively elongating at the time of P-TEFb inhibition, however, proceeded with elongation in the absence of active P-TEFb and cleared from the Hsp70 gene. Strikingly, all transcription factors tested (P-TEFb, Spt5, Spt6, and TFIIS) and RNA-processing factor CstF50 exited the body of the gene with kinetics indistinguishable from that of Pol II. An analysis of the phosphorylation state of Pol II upon the inhibition of P-TEFb also revealed no detectable CTD Ser2 phosphatase activity upstream of the Hsp70 polyadenylation site. In the continued presence of P-TEFb inhibitor, Pol II levels across the gene eventually recovered.
Collapse
Affiliation(s)
- Zhuoyu Ni
- Department of Molecular Biology and Genetics,1 School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Up-regulation of P-TEFb by the MEK1-extracellular signal-regulated kinase signaling pathway contributes to stimulated transcription elongation of immediate early genes in neuroendocrine cells. Mol Cell Biol 2007; 28:1630-43. [PMID: 18086894 DOI: 10.1128/mcb.01767-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The positive elongation factor P-TEFb appears to function as a crucial C-terminal-domain (CTD) kinase for RNA polymerase II (Pol II) transcribing immediate early genes (IEGs) in neuroendocrine GH4C1 cells. Chromatin immunoprecipitation indicated that in resting cells Pol II occupied the promoter-proximal regions of the c-fos and junB genes, together with the negative elongation factors DSIF and NELF. Thyrotropin-releasing hormone (TRH)-induced recruitment of positive transcription elongation factor b (P-TEFb) abolished the pausing of Pol II and enhanced phosphorylation of CTD serine 2, resulting in transcription elongation. In addition, P-TEFb was essential for splicing and 3'-end processing of IEG transcripts. Importantly, the MEK1-extracellular signal-regulated kinase (ERK) signaling pathway activated by TRH up-regulated nuclear CDK9 and CDK9/cyclinT1 dimers (i.e., P-TEFb), facilitating the recruitment of P-TEFb to c-fos and other IEGs. Thus, in addition to established gene transcription control via promoter response elements, the MEK1-ERK signaling pathway controls transcription elongation by Pol II via the up-regulation of nuclear CDK9 integrated into P-TEFb.
Collapse
|
43
|
Balakrishnan L, Milavetz B. Histone hyperacetylation during SV40 transcription is regulated by p300 and RNA polymerase II translocation. J Mol Biol 2007; 371:1022-37. [PMID: 17658552 PMCID: PMC1987373 DOI: 10.1016/j.jmb.2007.06.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/17/2007] [Accepted: 06/25/2007] [Indexed: 01/03/2023]
Abstract
The effects of the RNA polymerase II (RNAPII) translocation inhibitors alpha amanitin and 5,6-dichloro-1-beta-D-ribobenzimidazole (DRB) and an siRNA targeting p300 on the presence of RNAPII, p300, hyperacetylated H4 and H3 and unmodified H4 and H3 in transcribing simian virus 40 (SV40) minichromosomes were determined. Following treatment with alpha amanitin we observed a profound reduction in the occupancy of the promoter by RNAPII, the loss of p300 from chromatin fragments containing RNAPII, and an increase in the amount of unmodified H4 and H3 associated with the RNAPII. Treatment with DRB had little effect on the presence of RNAPII or p300 but also resulted in a significant increase in the amount of unmodified H4 and H3 present in chromatin fragments associated with RNAPII. Following treatment with a p300 small interfering RNA (siRNA), we observed a significant decrease in late transcription and a corresponding reduction in the amounts of p300 and hyperacetylated histones associated with the transcribing SV40 minichromosomes. We conclude that in transcribing SV40 minichromosomes histone hyperacetylation and deacetylation is dependent upon the presence of p300 and an as yet unknown histone deacetylase associated with the RNAPII complex that occurs coordinately as the RNAPII complex moves through a nucleosome.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, ND 58203, USA
| | | |
Collapse
|
44
|
Søgaard TMM, Svejstrup JQ. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J Biol Chem 2007; 282:14113-20. [PMID: 17376774 DOI: 10.1074/jbc.m701345200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mediator complex associates with RNA polymerase II (RNAPII) at least partly via the RNAPII C-terminal repeat domain (CTD). This association greatly stimulates the CTD kinase activity of general transcription factor TFIIH, and subsequent CTD phosphorylation is involved in triggering promoter clearance. Here, highly purified proteins and a protein dissociation assay were used to investigate whether the RNAPII.Mediator complex (holo-RNAPII) can be disrupted by CTD phosphorylation, thereby severing one of the bonds that stabilize promoter-associated initiation complexes. We report that CTD phosphorylation by the serine 5-specific TFIIH complex, or its kinase module TFIIK, is indeed sufficient to dissociate holo-RNAPII. Surprisingly, phosphorylation by the CTD serine 2-specific kinase CTDK1 also results in dissociation. Moreover, the Mediator-induced stimulation of CTD phosphorylation previously reported for TFIIH is also observed with CTDK1 kinase. An unrelated CTD-binding protein, Rsp5, is capable of stimulating this CTD kinase activity as well. These data shed new light on mechanisms that drive the RNAPII transcription cycle and suggest a mechanism for the enhancement of CTD kinase activity by the Mediator complex.
Collapse
Affiliation(s)
- T Max M Søgaard
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, UK
| | | |
Collapse
|
45
|
Kang BG, Shin JH, Yi JK, Kang HC, Lee JJ, Heo HS, Chae JH, Shin I, Kim CG. Corepressor MMTR/DMAP1 is involved in both histone deacetylase 1- and TFIIH-mediated transcriptional repression. Mol Cell Biol 2007; 27:3578-88. [PMID: 17371848 PMCID: PMC1899998 DOI: 10.1128/mcb.01808-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transcription corepressor, MAT1-mediated transcriptional repressor (MMTR), was found in mouse embryonic stem cell lines. MMTR orthologs (DMAP1) are found in a wide variety of life forms from yeasts to humans. MMTR down-regulation in differentiating mouse embryonic stem cells in vitro resulted in activation of many unrelated genes, suggesting its role as a general transcriptional repressor. In luciferase reporter assays, the transcriptional repression activity resided at amino acids 221 to 468. Histone deacetylase 1 (HDAC1) interacts with MMTR both in vitro and in vivo and also interacts with MMTR in the nucleus. Interestingly, MMTR activity was only partially rescued by competition with dominant-negative HDAC1(H141A) or by treatment with an HDAC inhibitor, trichostatin A (TSA). To identify the protein responsible for HDAC1-independent MMTR activity, we performed a yeast two-hybrid screen with the full-length MMTR coding sequence as bait and found MAT1. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase which constitutes a subcomplex of TFIIH. The coiled-coil domain in the middle of MAT1 was confirmed to interact with the C-terminal half of MMTR, and the MMTR-mediated transcriptional repression activity was completely restored by MAT1 in the presence of TSA. Moreover, intact MMTR was required to inhibit phosphorylation of the C-terminal domain in the RNA polymerase II largest subunit by TFIIH kinase in vitro. Taken together, these data strongly suggest that MMTR is part of the basic cellular machinery for a wide range of transcriptional regulation via interaction with TFIIH and HDAC.
Collapse
Affiliation(s)
- Bong Gu Kang
- Department of Life Science, College of Natural Sciences, Hanyang University, Haengdang 17, Sungdong-gu, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Griffin B, Moynagh P. In vivo binding of NF-kappaB to the IkappaBbeta promoter is insufficient for transcriptional activation. Biochem J 2006; 400:115-25. [PMID: 16792530 PMCID: PMC1635438 DOI: 10.1042/bj20060786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite certain structural and biochemical similarities, differences exist in the function of the NF-kappaB (nuclear factor kappaB) inhibitory proteins IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. The functional disparity arises in part from variance at the level of gene regulation, and in particular from the substantial induction of IkappaBalpha, but not IkappaBbeta, gene expression post-NF-kappaB activation. In the present study, we probe the differential effects of IL (interleukin)-1beta on induction of IkappaBalpha and perform the first characterization of the human IkappaBbeta promoter. A consensus NF-kappaB-binding site, capable of binding NF-kappaB both in vitro and in vivo, is found in the IkappaBbeta gene 5' flanking region. However, the IkappaBbeta promoter was not substantially activated by pro-inflammatory cytokines, such as IL-1beta and tumour necrosis factor alpha, that are known to cause strong activation of NF-kappaB. Furthermore, in contrast with IkappaBalpha, NF-kappaB activation did not increase expression of endogenous IkappaBbeta as assessed by analysis of mRNA and protein levels. Unlike kappaB-responsive promoters, IkappaBbeta promoter-bound p65 inefficiently recruits RNA polymerase II, which stalls at the promoter. We present evidence that this stalling is likely due to the absence of transcription factor IIH engagement, a prerequisite for RNA polymerase II phosphorylation and transcriptional initiation. Differences in the conformation of promoter-bound NF-kappaB may underlie the variation in the ability to engage the basal transcriptional apparatus at the IkappaBbeta and kappaB-responsive promoters. This accounts for the differential expression of IkappaB family members in response to NF-kappaB activation and furthers our understanding of the mechanisms involved in transcription factor activity and IkappaBbeta gene regulation.
Collapse
Affiliation(s)
- Bryan D. Griffin
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul N. Moynagh
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Wang IF, Chang HY, Shen CKJ. Actin-based modeling of a transcriptionally competent nuclear substructure induced by transcription inhibition. Exp Cell Res 2006; 312:3796-807. [PMID: 17022973 DOI: 10.1016/j.yexcr.2006.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 07/23/2006] [Accepted: 07/26/2006] [Indexed: 12/21/2022]
Abstract
During transcription inactivation, the nuclear bodies in the mammalian cells often undergo reorganization. In particular, the interchromatin granule clusters, or IGCs, become colocalized with RNA polymerase II (RNAP II) upon treatment with transcription inhibitors. This colocalization has also been observed in untreated but transcriptionally inactive cells. We report here that the reorganized IGC domains are unique substructure consisting of outer shells made of SC35, ERK2, SF2/ASF, and actin. The apparently hollow holes of these domains contain clusters of RNAP II, mostly phosphorylated, and the splicing regulator SMN. This class of complexes are also the sites where prominent transcription activities are detected once the inhibitors are removed. Furthermore, actin polymerization is required for reorganization of the IGCs. In connection with this, immunoprecipitation and immunostaining experiments showed that nuclear actin is associated with IGCs and the reorganized IGC domains. The study thus provides further evidence for the existence of an actin-based nuclear skeleton structure in association with the dynamic reorganization processes in the nucleus. Overall, our data suggest that mammalian cells have adapted to utilize the reorganized, uniquely shaped IGC domains as the temporary storage sites of RNAP II transcription machineries in response to certain transient states of transcription inactivation.
Collapse
Affiliation(s)
- I-Fan Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | | | | |
Collapse
|
48
|
Zhou M, Lu H, Park H, Wilson-Chiru J, Linton R, Brady JN. Tax interacts with P-TEFb in a novel manner to stimulate human T-lymphotropic virus type 1 transcription. J Virol 2006; 80:4781-91. [PMID: 16641271 PMCID: PMC1472077 DOI: 10.1128/jvi.80.10.4781-4791.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) encodes a transcriptional activator, Tax, whose function is essential for viral transcription and replication. Tax transactivates the viral long-terminal repeat through a series of protein-protein interactions which facilitate CREB and CBP/p300 binding. In addition, Tax dissociates transcription repressor histone deacetylase 1 interaction with the CREB response element. The subsequent events through which Tax interacts and communicates with RNA polymerase II and cyclin-dependent kinases (CDKs) are not clearly understood. Here we present evidence that Tax recruits positive transcription elongation factor b (P-TEFb) (CDK9/cyclin T1) to the viral promoter. This recruitment likely involves protein-protein interactions since Tax associates with P-TEFb in vitro as demonstrated by glutathione S-transferase fusion protein pull-down assays and in vivo as shown by co-immunoprecipitation assays. Functionally, small interfering RNA directed toward CDK9 inhibited Tax transactivation in transient assays. Consistent with these findings, the depletion of CDK9 from nuclear extracts inhibited Tax transactivation in vitro. Reconstitution of the reaction with wild-type P-TEFb, but not a kinase-dead mutant, recovered HTLV-1 transcription. Moreover, the addition of the CDK9 inhibitor flavopiridol blocked Tax transactivation in vitro and in vivo. Interestingly, we found that Tax regulates CDK9 kinase activity through a novel autophosphorylation pathway.
Collapse
Affiliation(s)
- Meisheng Zhou
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, NCI/NIH, , Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
49
|
Gomes NP, Bjerke G, Llorente B, Szostek SA, Emerson BM, Espinosa JM. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev 2006; 20:601-12. [PMID: 16510875 PMCID: PMC1410802 DOI: 10.1101/gad.1398206] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of the p53 pathway mediates cellular responses to diverse forms of stress. Here we report that the p53 target gene p21(CIP1) is regulated by stress at post-initiation steps through conversion of paused RNA polymerase II (RNAP II) into an elongating form. High-resolution chromatin immunoprecipitation assays (ChIP) demonstrate that p53-dependent activation of p21(CIP1) transcription after DNA damage occurs concomitantly with changes in RNAP II phosphorylation status and recruitment of the elongation factors DSIF (DRB Sensitivity-Inducing Factor), P-TEFb (Positive Transcription Elongation Factor b), TFIIH, TFIIF, and FACT (Facilitates Chromatin Transcription) to distinct regions of the p21(CIP1) locus. Paradoxically, pharmacological inhibition of P-TEFb leads to global inhibition of mRNA synthesis but activation of the p53 pathway through p53 accumulation, expression of specific p53 target genes, and p53-dependent apoptosis. ChIP analyses of p21(CIP1) activation in the absence of functional P-TEFb reveals the existence of two distinct kinases that phosphorylate Ser5 of the RNAP II C-terminal domain (CTD). Importantly, CTD phosphorylation at Ser2 is not required for p21(CIP1) transcription, mRNA cleavage, or polyadenylation. Furthermore, recruitment of FACT requires CTD kinases, yet FACT is dispensable for p21(CIP1) expression. Thus, select genes within the p53 pathway bypass the requirement for P-TEFb and RNAP II phosphorylation to trigger a cellular response to inhibition of global mRNA synthesis.
Collapse
Affiliation(s)
- Nathan P Gomes
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
50
|
Pei Y, Du H, Singer J, Stamour C, Granitto S, Shuman S, Fisher RP. Cyclin-dependent kinase 9 (Cdk9) of fission yeast is activated by the CDK-activating kinase Csk1, overlaps functionally with the TFIIH-associated kinase Mcs6, and associates with the mRNA cap methyltransferase Pcm1 in vivo. Mol Cell Biol 2006; 26:777-88. [PMID: 16428435 PMCID: PMC1347026 DOI: 10.1128/mcb.26.3.777-788.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cyclin-dependent kinase 9 (Cdk9) of fission yeast is an essential ortholog of metazoan positive transcription elongation factor b (P-TEFb), which is proposed to coordinate capping and elongation of RNA polymerase II (Pol II) transcripts. Here we show that Cdk9 is activated to phosphorylate Pol II and the elongation factor Spt5 by Csk1, one of two fission yeast CDK-activating kinases (CAKs). Activation depends on Cdk9 T-loop residue Thr-212. The other CAK-Mcs6, the kinase component of transcription factor IIH (TFIIH)-cannot activate Cdk9. Consistent with the specificities of the two CAKs in vitro, the kinase activity of Cdk9 is reduced approximately 10-fold by csk1 deletion, and Cdk9 complexes from csk1Delta but not csk1+ cells can be activated by Csk1 in vitro. A cdk9(T212A) mutant is viable but phenocopies conditional growth defects of csk1Delta strains, indicating a role for Csk1-dependent activation of Cdk9 in vivo. A cdk9(T212A) mcs6(S165A) strain, in which neither Cdk9 nor Mcs6 can be activated by CAK, has a synthetic growth defect, implying functional overlap between the two CDKs, which have distinct but overlapping substrate specificities. Cdk9 forms complexes in vivo with the essential cyclin Pch1 and with Pcm1, the mRNA cap methyltransferase. The carboxyl-terminal region of Cdk9, through which it interacts with another capping enzyme, the RNA triphosphatase Pct1, is essential. Together, the data support a proposed model whereby Cdk9/Pch1-the third essential CDK-cyclin complex described in fission yeast-helps to target the capping apparatus to the transcriptional elongation complex.
Collapse
Affiliation(s)
- Yi Pei
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY.
| | | | | | | | | | | | | |
Collapse
|