1
|
Bioinformatic Analysis of Genetic Factors from Human Blood Samples and Postmortem Brains in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9235358. [PMID: 36593912 PMCID: PMC9805394 DOI: 10.1155/2022/9235358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders characterized by motor and nonmotor symptoms due to the selective loss of midbrain dopaminergic neurons. Pharmacological and surgical interventions have not been possible to cure PD; however, the cause of neurodegeneration remains unclear. Here, we performed and tested a multitiered bioinformatic analysis using the GEO and Proteinexchange database to investigate the gene expression involved in the pathogenesis of PD. Then we further validated individual differences in gene expression in whole blood samples that we collected in the clinic. We also made an interaction analysis and prediction for these genetic factors. There were in all 1045 genes expressing differently in PD compared with the healthy control group. Protein-protein interaction (PPI) networks showed 10 top hub genes: ACO2, MDH2, SDHA, ATP5A1, UQCRC2, PDHB, SUCLG1, NDUFS3, UQCRC1, and ATP5C1. We validated the ten hub gene expression in clinical PD patients and showed the expression of MDH2 was significantly different compared with healthy control. Besides, we also identified the expression of G6PD, GRID2, RIPK2, CUL4B, BCL6, MRPS31, GPI, and MAP 2 K1 were all significantly increased, and levels of MAPK, ELAVL1, RAB14, KLF9, ARF1, ARFGAP1, ATG7, ABCA7, SFT2D2, E2F2, MAPK7, and UHRF1 were all significantly decreased in PD. Among them, to our knowledge, we presently have the most recent and conclusive evidence that GRID2, RIPK2, CUL4B, E2F2, and ABCA7 are possible PD indicators. We confirmed several genetic factors which may be involved in the pathogenesis of PD. They could be promising markers for discriminating the PD and potential factors that may affect PD development.
Collapse
|
2
|
Carron J, Torricelli C, Silva JK, Coser LDO, Lima CSP, Lourenço GJ. Intronic variants of MITF (rs7623610) and CREB1 (rs10932201) genes may enhance splicing efficiency in human melanoma cell line. Mutat Res 2021; 823:111763. [PMID: 34710701 DOI: 10.1016/j.mrfmmm.2021.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 11/20/2022]
Abstract
We previously reported that intronic single nucleotide variations (SNVs) in MITF (c.938-325G>A, rs7623610) and CREB1 (c.303+373G>A, rs10932201) genes were associated with risk, aggressiveness, and prognosis of cutaneous melanoma (CM). In this study, we investigated the influence of the above SNVs in splicing patterns and efficiency. We constructed minigenes with wild type and variant alleles from MITF and CREB1 to assess the effect of the SNVs on splicing. The minigenes were transfected in the human melanoma cell line (SK-MEL-28). RT-PCR and DNA sequencing investigated the constructs' splicing patterns. Minigenes constructs' splicing efficiency and HNRNPA1 and SF1 splicing genes' expression were investigated by qPCR. We found that MITF and CREB1 SNVs did not alter the splicing pattern, but they influenced the splicing efficiency. MITF-A (p= 0.03) and CREB1-A (p= 0.005) variant minigenes yielded an increase of mRNA generated from the constructions. Additionally, lower mRNA levels of HNRNPA1 and SF1 were seen in the variant minigenes MITF-A (p= 0.04) and CREB1-A (p= 0.005). We described for the first time the potential importance of MITF rs7623610 and CREB1 rs10932201 SNVs in splicing efficiency and its relationship with CM.
Collapse
Affiliation(s)
- Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Caroline Torricelli
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Janet Keller Silva
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Lilian de Oliveira Coser
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil; Department of Radiology, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Bhadra M, Howell P, Dutta S, Heintz C, Mair WB. Alternative splicing in aging and longevity. Hum Genet 2019; 139:357-369. [PMID: 31834493 DOI: 10.1007/s00439-019-02094-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
Alternative pre-mRNA splicing increases the complexity of the proteome that can be generated from the available genomic coding sequences. Dysregulation of the splicing process has been implicated in a vast repertoire of diseases. However, splicing has recently been linked to both the aging process itself and pro-longevity interventions. This review focuses on recent research towards defining RNA splicing as a new hallmark of aging. We highlight dysfunctional alternative splicing events that contribute to the aging phenotype across multiple species, along with recent efforts toward deciphering mechanistic roles for RNA splicing in the regulation of aging and longevity. Further, we discuss recent research demonstrating a direct requirement for specific splicing factors in pro-longevity interventions, and specifically how nutrient signaling pathways interface to splicing factor regulation and downstream splicing targets. Finally, we review the emerging potential of using splicing profiles as a predictor of biological age and life expectancy. Understanding the role of RNA splicing components and downstream targets altered in aging may provide opportunities to develop therapeutics and ultimately extend healthy lifespan in humans.
Collapse
Affiliation(s)
- Malini Bhadra
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Porsha Howell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Sneha Dutta
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Caroline Heintz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
The HIV-1 Tat Protein Enhances Splicing at the Major Splice Donor Site. J Virol 2018; 92:JVI.01855-17. [PMID: 29743356 DOI: 10.1128/jvi.01855-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/25/2018] [Indexed: 12/23/2022] Open
Abstract
Transcription of the HIV-1 proviral DNA and subsequent processing of the primary transcript results in the production of a large set of unspliced and differentially spliced viral RNAs. The major splice donor site (5'ss) that is located in the untranslated leader of the HIV-1 transcript is used for the production of all spliced RNAs, and splicing at this site has to be tightly regulated to allow the balanced production of all viral RNAs and proteins. We demonstrate that the viral Tat protein, which is known to activate viral transcription, also stimulates splicing at the major 5'ss. As for the transcription effect, Tat requires the viral long terminal repeat promoter and the trans-acting responsive RNA hairpin for splicing regulation. These results indicate that HIV-1 transcription and splicing are tightly coupled processes through the coordinated action of the essential Tat protein.IMPORTANCE The HIV-1 proviral DNA encodes a single RNA transcript that is used as RNA genome and packaged into newly assembled virus particles. This full-length RNA is also used as mRNA for the production of structural and enzymatic proteins. Production of other essential viral proteins depends on alternative splicing of the primary transcript, which yields a large set of differentially spliced mRNAs. Optimal virus replication requires a balanced production of all viral RNAs, which means that the splicing process has to be strictly regulated. We show that the HIV-1 Tat protein, a factor that is well known for its transcription activating function, also stimulates splicing. Thus, Tat controls not only the level of the viral RNA but also the balance between spliced and unspliced RNAs.
Collapse
|
5
|
Nanan KK, Ocheltree C, Sturgill D, Mandler MD, Prigge M, Varma G, Oberdoerffer S. Independence between pre-mRNA splicing and DNA methylation in an isogenic minigene resource. Nucleic Acids Res 2017; 45:12780-12797. [PMID: 29244186 PMCID: PMC5727405 DOI: 10.1093/nar/gkx900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022] Open
Abstract
Actively transcribed genes adopt a unique chromatin environment with characteristic patterns of enrichment. Within gene bodies, H3K36me3 and cytosine DNA methylation are elevated at exons of spliced genes and have been implicated in the regulation of pre-mRNA splicing. H3K36me3 is further responsive to splicing, wherein splicing inhibition led to a redistribution and general reduction over gene bodies. In contrast, little is known of the mechanisms supporting elevated DNA methylation at actively spliced genic locations. Recent evidence associating the de novo DNA methyltransferase Dnmt3b with H3K36me3-rich chromatin raises the possibility that genic DNA methylation is influenced by splicing-associated H3K36me3. Here, we report the generation of an isogenic resource to test the direct impact of splicing on chromatin. A panel of minigenes of varying splicing potential were integrated into a single FRT site for inducible expression. Profiling of H3K36me3 confirmed the established relationship to splicing, wherein levels were directly correlated with splicing efficiency. In contrast, DNA methylation was equivalently detected across the minigene panel, irrespective of splicing and H3K36me3 status. In addition to revealing a degree of independence between genic H3K36me3 and DNA methylation, these findings highlight the generated minigene panel as a flexible platform for the query of splicing-dependent chromatin modifications.
Collapse
Affiliation(s)
- Kyster K. Nanan
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody Ocheltree
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariana D. Mandler
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Prigge
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Garima Varma
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Chatrikhi R, Wang W, Gupta A, Loerch S, Maucuer A, Kielkopf CL. SF1 Phosphorylation Enhances Specific Binding to U2AF 65 and Reduces Binding to 3'-Splice-Site RNA. Biophys J 2017; 111:2570-2586. [PMID: 28002734 DOI: 10.1016/j.bpj.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 12/25/2022] Open
Abstract
Splicing factor 1 (SF1) recognizes 3' splice sites of the major class of introns as a ternary complex with U2AF65 and U2AF35 splicing factors. A conserved SPSP motif in a coiled-coil domain of SF1 is highly phosphorylated in proliferating human cells and is required for cell proliferation. The UHM kinase 1 (UHMK1), also called KIS, double-phosphorylates both serines of this SF1 motif. Here, we use isothermal titration calorimetry to demonstrate that UHMK1 phosphorylation of the SF1 SPSP motif slightly enhances specific binding of phospho-SF1 to its cognate U2AF65 protein partner. Conversely, quantitative fluorescence anisotropy RNA binding assays and isothermal titration calorimetry experiments establish that double-SPSP phosphorylation reduces phospho-SF1 and phospho-SF1-U2AF65 binding affinities for either optimal or suboptimal splice-site RNAs. Domain-substitution and mutagenesis experiments further demonstrate that arginines surrounding the phosphorylated SF1 loop are required for cooperative 3' splice site recognition by the SF1-U2AF65 complex (where cooperativity is defined as a nonadditive increase in RNA binding by the protein complex relative to the individual proteins). In the context of local, intracellular concentrations, the subtle effects of SF1 phosphorylation on its associations with U2AF65 and splice-site RNAs are likely to influence pre-mRNA splicing. However, considering roles for SF1 in pre-mRNA retention and transcriptional repression, as well as in splicing, future comprehensive investigations are needed to fully explain the requirement for SF1 SPSP phosphorylation in proliferating human cells.
Collapse
Affiliation(s)
- Rakesh Chatrikhi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | - Wenhua Wang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | - Ankit Gupta
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | - Sarah Loerch
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | | | - Clara L Kielkopf
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York.
| |
Collapse
|
7
|
Cattaruzza M, Nogoy N, Wojtowicz A, Hecker M. Zinc finger motif‐1 antagonizes PDGF‐BB‐induced growth and dediffer‐entiation of vascular smooth muscle cells. FASEB J 2012; 26:4864-75. [DOI: 10.1096/fj.12-210302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco Cattaruzza
- Institute of Physiology and PathophysiologyDivision of Cardiovascular PhysiologyUniversity of HeidelbergGermany
| | - Nicole Nogoy
- Institute of Physiology and PathophysiologyDivision of Cardiovascular PhysiologyUniversity of HeidelbergGermany
| | - Agnieszka Wojtowicz
- Institute of Physiology and PathophysiologyDivision of Cardiovascular PhysiologyUniversity of HeidelbergGermany
| | - Markus Hecker
- Institute of Physiology and PathophysiologyDivision of Cardiovascular PhysiologyUniversity of HeidelbergGermany
| |
Collapse
|
8
|
Manceau V, Swenson M, Le Caer JP, Sobel A, Kielkopf CL, Maucuer A. Major phosphorylation of SF1 on adjacent Ser-Pro motifs enhances interaction with U2AF65. FEBS J 2006; 273:577-87. [PMID: 16420481 PMCID: PMC1949809 DOI: 10.1111/j.1742-4658.2005.05091.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein phosphorylation ensures the accurate and controlled expression of the genome, for instance by regulating the activities of pre-mRNA splicing factors. Here we report that splicing factor 1 (SF1), which is involved in an early step of intronic sequence recognition, is highly phosphorylated in mammalian cells on two serines within an SPSP motif at the junction between its U2AF65 and RNA binding domains. We show that SF1 interacts in vitro with the protein kinase KIS, which possesses a 'U2AF homology motif' (UHM) domain. The UHM domain of KIS is required for KIS and SF1 to interact, and for KIS to efficiently phosphorylate SF1 on the SPSP motif. Importantly, SPSP phosphorylation by KIS increases binding of SF1 to U2AF65, and enhances formation of the ternary SF1-U2AF65-RNA complex. These results further suggest that this phosphorylation event has an important role for the function of SF1, and possibly for the structural rearrangements associated with spliceosome assembly and function.
Collapse
Affiliation(s)
- Valérie Manceau
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| | - Matthew Swenson
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205,USA
| | - Jean-Pierre Le Caer
- Ecole Polytechnique, Laboratoire de Chimie des Mécanismes Réactionnels, Route de Saclay, F-91128 Palaiseau, France
| | - André Sobel
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| | - Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205,USA
| | - Alexandre Maucuer
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| |
Collapse
|
9
|
Auboeuf D, Dowhan DH, Dutertre M, Martin N, Berget SM, O'Malley BW. A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts. Mol Cell Biol 2005; 25:5307-16. [PMID: 15964789 PMCID: PMC1156981 DOI: 10.1128/mcb.25.13.5307-5316.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Didier Auboeuf
- INSERM U685/AVENIR, Centre G. Hayem, Hôpital Saint Louis, Paris, France.
| | | | | | | | | | | |
Collapse
|
10
|
Tanackovic G, Krämer A. Human splicing factor SF3a, but not SF1, is essential for pre-mRNA splicing in vivo. Mol Biol Cell 2005; 16:1366-77. [PMID: 15647371 PMCID: PMC551499 DOI: 10.1091/mbc.e04-11-1034] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The three subunits of human splicing factor SF3a are essential for the formation of the functional 17S U2 snRNP and prespliceosome assembly in vitro. RNAi-mediated depletion indicates that each subunit is essential for viability of human cells. Knockdown of single subunits results in a general block in splicing strongly suggesting that SF3a is a constitutive splicing factor in vivo. In contrast, splicing of several endogenous and reporter pre-mRNAs is not affected after knockdown of SF1, which functions at the onset of spliceosome assembly in vitro and is essential for cell viability. Thus, SF1 may only be required for the splicing of a subset of pre-mRNAs. We also observe a reorganization of U2 snRNP components in SF3a-depleted cells, where U2 snRNA and U2-B'' are significantly reduced in nuclear speckles and the nucleoplasm, but still present in Cajal bodies. Together with the observation that the 17S U2 snRNP cannot be detected in extracts from SF3a-depleted cells, our results provide further evidence for a function of Cajal bodies in U2 snRNP biogenesis.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cell Survival
- Coiled Bodies/metabolism
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Fluorescent Antibody Technique, Indirect
- HeLa Cells
- Humans
- In Situ Hybridization, Fluorescence
- Microscopy, Fluorescence
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Tertiary
- RNA Interference
- RNA Splicing
- RNA Splicing Factors
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Small Nuclear/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleoprotein, U2 Small Nuclear/chemistry
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/physiology
- Ribonucleoproteins, Small Nuclear/metabolism
- Spliceosomes/chemistry
- Time Factors
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Goranka Tanackovic
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
11
|
Cattaruzza M, Schäfer K, Hecker M. Cytokine-induced down-regulation of zfm1/splicing factor-1 promotes smooth muscle cell proliferation. J Biol Chem 2002; 277:6582-9. [PMID: 11748220 DOI: 10.1074/jbc.m108283200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One hallmark of inflammation is the proliferation of bystander cells such as vascular smooth muscle cells (SMC), a process governed by growth factors and cytokines. Whereas cytokine induction of gene products promoting inflammation and proliferation is well characterized, little is known about the concomitant down-regulation of potentially counter-regulatory gene products in these cells. By employing the suppression subtractive hybridization-PCR technique, RNA isolated from rat aortic SMC treated with the cytokines interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF alpha) was subtracted from RNA of control cells. Eleven genes were identified, the expression of which fell by 44-77%. One, the transcriptional repressor splicing factor-1 or zfm1, was characterized further. Antisense oligonucleotide suppression of zfm1 protein synthesis mimicked the stimulatory effects of IL-1 beta and TNF alpha on SMC proliferation and expression of the chemokine MCP-1 and the vascular cell adhesion molecule-1. Moreover, in an in vivo mouse model of atherosclerosis, zfm1 abundance was decreased in proliferating arterial SMC. These findings suggest a role for zfm1 in controlling both proliferation and expression of pro-inflammatory gene products in SMC. Therefore, cytokine-induced down-regulation of zfm1 expression may contribute to the pathogenesis of hyperproliferative inflammatory diseases.
Collapse
Affiliation(s)
- Marco Cattaruzza
- Department of Cardiovascular Physiology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
12
|
Goldstrohm AC, Albrecht TR, Suñé C, Bedford MT, Garcia-Blanco MA. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol 2001; 21:7617-28. [PMID: 11604498 PMCID: PMC99933 DOI: 10.1128/mcb.21.22.7617-7628.2001] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2001] [Accepted: 08/17/2001] [Indexed: 11/20/2022] Open
Abstract
CA150 represses RNA polymerase II (RNAPII) transcription by inhibiting the elongation of transcripts. The FF repeat domains of CA150 bind directly to the phosphorylated carboxyl-terminal domain of the largest subunit of RNAPII. We determined that this interaction is required for efficient CA150-mediated repression of transcription from the alpha(4)-integrin promoter. Additional functional determinants, namely, the WW1 and WW2 domains of CA150, were also required for efficient repression. A protein that interacted directly with CA150 WW1 and WW2 was identified as the splicing-transcription factor SF1. Previous studies have demonstrated a role for SF1 in transcription repression, and we found that binding of the CA150 WW1 and WW2 domains to SF1 correlated exactly with the functional contribution of these domains for repression. The binding specificity of the CA150 WW domains was found to be unique in comparison to known classes of WW domains. Furthermore, the CA150 binding site, within the carboxyl-terminal half of SF1, contains a novel type of proline-rich motif that may be recognized by the CA150 WW1 and WW2 domains. These results support a model for the recruitment of CA150 to repress transcription elongation. In this model, CA150 binds to the phosphorylated CTD of elongating RNAPII and SF1 targets the nascent transcript.
Collapse
Affiliation(s)
- A C Goldstrohm
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
13
|
Lu X, Ansari AZ, Ptashne M. An artificial transcriptional activating region with unusual properties. Proc Natl Acad Sci U S A 2000; 97:1988-92. [PMID: 10681438 PMCID: PMC15741 DOI: 10.1073/pnas.040573197] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a series of transcriptional activators generated by adding amino acids (eight in one case, six in another) to fragments of the yeast Saccharomyces cerevisiae activator Gal4 that dimerize and bind DNA. One of the novel activating regions identified by this procedure is unusual, compared with previously characterized yeast activating regions, in the following ways: it works more strongly than does Gal4's natural activating region as assayed in yeast; it is devoid of acidic residues; and several lines of evidence suggest that it sees targets in the yeast transcriptional machinery at least partially distinct from those seen by Gal4's activating region.
Collapse
Affiliation(s)
- X Lu
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, Box 595, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
14
|
Wu J, Zhou L, Tonissen K, Tee R, Artzt K. The quaking I-5 protein (QKI-5) has a novel nuclear localization signal and shuttles between the nucleus and the cytoplasm. J Biol Chem 1999; 274:29202-10. [PMID: 10506177 DOI: 10.1074/jbc.274.41.29202] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse quaking (qk) gene is essential in both myelination and early embryogenesis. Its product, QKI, is an RNA-binding protein belonging to a growing protein family called STAR (signal transduction and activator of RNA). All members have an approximately 200-amino acid STAR domain, which contains a single extended heteronuclear ribonucleoprotein K homologue domain flanked by two domains called QUA1 and QUA2. We found that QKI isoforms could associate with each other, while one of the lethal mutations qkI(kt4) with a single amino acid change in QUA1 domain, leads to a loss of QKI self-interaction. This suggests that the QUA1 domain is responsible for QKI dimerization. Three QKI isoforms have different carboxyl termini and different subcellular localization. Here, using GFP fusion protein, we identified a 7-amino acid novel nuclear localization sequence in the carboxyl terminus of QKI-5, which is conserved in a subclass of STAR proteins containing SAM68 and ETLE/T-STAR. Thus, we name this motif STAR-NLS. In addition, the effects of active transcription, RNA-binding and self-interaction on QKI-5 localization were analyzed. Furthermore, using an interspecies heterokaryon assay, we found that QKI-5, but not another STAR protein ETLE, shuttles between the nucleus and the cytoplasm, which suggests that QKI-5 functions in both cell compartments.
Collapse
Affiliation(s)
- J Wu
- Institute for Cellular and Molecular Biology, Department of Microbiology, University of Texas, Austin, Texas 78712-1064, USA
| | | | | | | | | |
Collapse
|
15
|
Benuck ML, Li Z, Childs G. Mutations that increase acidity enhance the transcriptional activity of the glutamine-rich activation domain in stage-specific activator protein. J Biol Chem 1999; 274:25419-25. [PMID: 10464271 DOI: 10.1074/jbc.274.36.25419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sea urchin stage-specific activator protein (SSAP) activates transcription of the late H1 gene at the mid-blastula stage of development. Its C-terminal 202 amino acids form a potent glycine/glutamine rich activation domain (GQ domain) that can transactivate reporter genes to levels 5-fold higher than VP16 in several mammalian cell lines. We observed that, unlike other glutamine-rich activation domains, the GQ domain activates transcription to moderate levels in yeast. We utilized this activity to screen in yeast for intragenic mutations that enhance or inhibit the transcriptional activity of the GQ domain. We identified 37 loss of function and 23 gain of function mutants. Most gain of function mutations increased the acidity of the domain. The most frequently isolated mutations conferred enhanced transcriptional activity when assayed in mammalian cells. These mutations also enhance the ability of SSAP to up-regulate the late H1 promoter in sea urchin embryos. We conclude that the GQ domain fundamentally differs from other glutamine-rich activators and may share some properties of acidic activators. The ability of acidity to enhance SSAP-mediated transcription may reflect a mechanism by which phosphorylation of SSAP activates late H1 gene transcription during embryogenesis.
Collapse
Affiliation(s)
- M L Benuck
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
16
|
Wrehlke C, Wiedemeyer WR, Schmitt-Wrede HP, Mincheva A, Lichter P, Wunderlich F. Genomic organization of mouse gene zfp162. DNA Cell Biol 1999; 18:419-28. [PMID: 10360842 DOI: 10.1089/104454999315303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the cloning and characterization of the alternatively spliced mouse gene zfp162, formerly termed mzfm, the homolog of the human ZFM1 gene encoding the splicing factor SF1 and a putative signal transduction and activation of RNA (STAR) protein. The zfp162 gene is about 14 kb long and consists of 14 exons and 13 introns. Comparison of zfp162 with the genomic sequences of ZFM1/SF1 revealed that the exon-intron structure and exon sequences are well conserved between the genes, whereas the introns differ in length and sequence composition. Using fluorescent in situ hybridization, the zfp162 gene was assigned to chromosome 19, region B. Screening of a genomic library integrated in lambda DASH II resulted in the identification of the 5'-flanking region of zfp162. Sequence analysis of this region showed that zfp162 is a TATA-less gene containing an initiator control element and two CCAAT boxes. The promoter exhibits the following motifs: AP-2, CRE, Ets, GRE, HNF5, MRE, SP-1, TRE, TCF1, and PU.1. The core promoter, from position -331 to -157, contains the motifs CRE, SP-1, MRE, and AP-2, as determined in transfected CHO-K1 cells and IC-21 cells by reporter gene assay using a secreted form of human placental alkaline phosphatase. The occurrence of PU.1/GRE supports the view that the zfp162 gene encodes a protein involved not only in nuclear RNA metabolism, as the human ZFM1/SF1, but also in as yet unknown macrophage-inherent functions.
Collapse
Affiliation(s)
- C Wrehlke
- Division of Molecular Parasitology and Centre for Biological and Medical Research, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Li Z, Childs G. Temporal activation of the sea urchin late H1 gene requires stage-specific phosphorylation of the embryonic transcription factor SSAP. Mol Cell Biol 1999; 19:3684-95. [PMID: 10207092 PMCID: PMC84181 DOI: 10.1128/mcb.19.5.3684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stage-specific activator protein (SSAP) is a 41-kDa polypeptide that binds to embryonic enhancer elements of the sea urchin late H1 gene. These enhancer elements mediate the transcriptional activation of the late H1 gene in a temporally specific manner at the mid-blastula stage of embryogenesis. Although SSAP can transactivate the late H1 gene only at late stages of the development, it resides in the sea urchin nucleus and maintains DNA binding activity throughout early embryogenesis. In addition, it has been shown that SSAP undergoes a conversion from a 41-kDa monomer to a approximately 80- to 100-kDa dimer when the late H1 gene is activated. We have demonstrated that SSAP is differentially phosphorylated during embryogenesis. Serine 87, a cyclic AMP-dependent protein kinase consensus site located in the N-terminal DNA binding domain, is constitutively phosphorylated. At the mid-blastula stage of embryogenesis, temporally correlated with SSAP dimer formation and late H1 gene activation, a threonine residue in the C-terminal transactivation domain is phosphorylated. This phosphorylation can be catalyzed by a break-ended double-stranded DNA-activated protein kinase activity from the sea urchin nucleus in vitro. Microinjection of synthetic SSAP mRNAs encoding either serine or threonine phosphorylation mutants results in the failure to transactivate reporter genes that contain the enhancer element, suggesting that both serine and threonine phosphorylation of SSAP are required for the activation of the late H1 gene. Furthermore, SSAP can undergo blastula-stage-specific homodimerization through its GQ-rich transactivation domain. The late-specific threonine phosphorylation in this domain is essential for the dimer assembly. These observations indicate that temporally regulated SSAP activation is promoted by threonine phosphorylation on its transactivation domain, which triggers the formation of a transcriptionally active SSAP homodimer.
Collapse
Affiliation(s)
- Z Li
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
18
|
Zhang D, Paley AJ, Childs G. The transcriptional repressor ZFM1 interacts with and modulates the ability of EWS to activate transcription. J Biol Chem 1998; 273:18086-91. [PMID: 9660765 DOI: 10.1074/jbc.273.29.18086] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ZFM1 protein is both a transcriptional repressor and identical to the splicing factor SF1. ZFM1 was shown to interact with and repress transcription from the glycine, glutamine, serine, and threonine-rich transcription activation domain of the sea urchin transcription factor, stage-specific activator protein (SSAP). EWS, a human protein involved in cellular transformation in Ewing's sarcoma tumors, contains an NH2-terminal transcriptional activation domain (NTD) which resembles that of SSAP in both amino acid composition and the ability to drive transcription to levels higher than VP16 in most cell types. Here we report that ZFM1 also interacts with EWS in both two-hybrid assays and glutathione S-transferase pull-down experiments. The region on EWS which interacts with ZFM1 maps to 37 amino acids within its NTD. Overexpression of ZFM1 in HepG2 cells represses the transactivation of reporter gene expression driven by Gal4-EWS-NTD fusion protein and this repression correlates with ZFM1 binding to EWS. Furthermore, two proteins, TLS and hTAFII68, which have extensive homology to EWS, also interact with ZFM1. Recently, it was discovered that EWS/TLS/hTAFII68 are each present in distinct TFIID populations and EWS and hTAFII68 were also found to be associated with the RNA polymerase II holoenzyme. The association of ZFM1 with these proteins implies that one normal cellular function for ZFM1 may be to negatively modulate transcription of target genes coordinated by these cofactors.
Collapse
Affiliation(s)
- D Zhang
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|