1
|
Gómez-Coronado PA, Kubis A, Kowald M, Ute R, Cotton C, Lindner SN, Bar-Even A, Erb TJ. Two highly specific growth-coupled biosensor for glycolaldehyde detection across micromolar and millimolar concentrations. Synth Biol (Oxf) 2025; 10:ysaf004. [PMID: 40292364 PMCID: PMC12022395 DOI: 10.1093/synbio/ysaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/30/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Glycolaldehyde (GA), the smallest sugar, has significant potential as a biomass-derived platform chemical and is a key metabolite in several synthetic pathways for one-carbon metabolism and new-to-nature photorespiration. This study introduces two metabolic schemes for engineering Escherichia coli into GA biosensors. Through creating GA-dependent auxotrophies, we link growth of these strains to GA-dependent biosynthesis of the essential vitamin pyridoxal-5-phosphate, and 2-ketoglutarate, respectively. We characterized and optimized these strains for the quantification of externally added GA from 2 µM to 1.5 mM. We also demonstrate the capability of these strains to detect GA that is produced intracellularly through different metabolic routes and from different substrates such as xylose, ethylene glycol, and glycolate. Our biosensors offer complementary sensitivities and features, opening up different applications in metabolic engineering and synthetic biology, which we demonstrate in a proof-of-principle by providing the first in vivo demonstration of the reduction of glycolate to GA by a new-to-nature route using engineered enzymes.
Collapse
Affiliation(s)
- Paul A Gómez-Coronado
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Hessen 35043, Germany
- Research Group Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Brandenburg 14476, Germany
| | - Armin Kubis
- Research Group Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Brandenburg 14476, Germany
| | - Maria Kowald
- Research Group Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Brandenburg 14476, Germany
| | - Rahma Ute
- Research Group Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Brandenburg 14476, Germany
| | - Charlie Cotton
- Research Group Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Brandenburg 14476, Germany
| | - Steffen N Lindner
- Research Group Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Brandenburg 14476, Germany
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität, Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Arren Bar-Even
- Research Group Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Brandenburg 14476, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Hessen 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Karl-von-Frisch-Str. 14, Marburg, Hessen 35043, Germany
| |
Collapse
|
2
|
Zhou H, Zhang Z, Velo J, Huo J, Smith S, Ho A, Saier M. Transcriptional mechanism by which IS5 activates the fucAO operon in Escherichia coli. Nucleic Acids Res 2025; 53:gkaf172. [PMID: 40066878 PMCID: PMC11894529 DOI: 10.1093/nar/gkaf172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
The silent E. coli fucAO operon can be activated by IS5 insertion upstream of its regulatory region, allowing cellular growth on L-1,2-propanediol. Little information is available concerning the transcriptional mechanism behind IS5-mediated fucAO activation. In this study, we demonstrate the formation of a unique "fusion" promoter (Pfsn) following IS5 insertion, which drives expression of the downstream fucAO operon. Our findings indicate that this functional σ70 fusion promoter is generated using a DNA sequence carrying a Crp-binding site directly upstream of the IS5 element, followed by the otherwise inactive IS5 transposase promoter. Under non-inducing conditions, this fusion promoter contributes to full operon expression while the native operon promoter PfucAO remains silent. As a typical Class I promoter, Pfsn is independent of the fuc regulon activator FucR, but its activity is exclusively reliant on the binding of Crp-cAMP to the upstream Crp-binding site. Under inducing conditions, the presence of functional FucR can further elevate fucAO operon expression by activating the native operon promoter, PfucAO. In the latter case, Pfsn and PfucAO function independently, and contribute to operon expression to nearly the same extent. Thus, we have discovered a novel IS-dependent fusion expression system that is modulated by a transcriptional factor in bacteria.
Collapse
Affiliation(s)
- Harry Zhou
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Zhongge Zhang
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Juan Velo
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Jialu Huo
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Sofia Smith
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Allyson Ho
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
3
|
Senatore VG, Masotti F, Milanesi R, Ceccarossi S, Maestroni L, Serra I, Branduardi P. Challenges in elucidating ethylene glycol metabolism in Saccharomyces cerevisiae. FEMS Yeast Res 2025; 25:foaf006. [PMID: 39919757 PMCID: PMC11878538 DOI: 10.1093/femsyr/foaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 02/09/2025] Open
Abstract
Polyethylene terephthalate (PET) is one of the most used polymers in the packaging industry; enzymatic recycling is emerging as a sustainable strategy to deal with waste PET, producing the virgin monomers terephthalic acid and ethylene glycol (EG). These monomers can be feedstocks for further microbial transformations. While EG metabolism has been uncovered in bacteria, in yeast the pathway for the oxidation to glycolic acid (GA) has only been proposed, but never experimentally elucidated. In this work, we investigated in Saccharomyces cerevisiae the potential contribution to this metabolism of two endogenous genes, YLL056C (a putative alcohol dehydrogenase) and GOR1 (glyoxylate reductase). Secondly, the possible role of alcohol dehydrogenases (ADHs) was considered, too. Finally, two heterologous genes (gox0313 from Gluconobacter oxydans and AOX1 from Komagataella phaffii) were expressed with the intent to push EG oxidation toward GA. Our main findings revealed that (i) Gor1, Yll056c, and ADHs are not involved in EG oxidation and (ii) the bottleneck of the catabolism is the first step in the pathway, due to the endogenous mechanisms for aldehyde detoxification. Multiomics studies are required to completely elucidate the pathway for EG catabolism, while further engineering directed toward relieving the bottleneck is needed to fully unleash the potential of yeasts for the upcycling of EG to GA.
Collapse
Affiliation(s)
- Vittorio Giorgio Senatore
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Fiorella Masotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Riccardo Milanesi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Sofia Ceccarossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Letizia Maestroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Immacolata Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
4
|
Balola A, Ferreira S, Rocha I. From plastic waste to bioprocesses: Using ethylene glycol from polyethylene terephthalate biodegradation to fuel Escherichia coli metabolism and produce value-added compounds. Metab Eng Commun 2024; 19:e00254. [PMID: 39720189 PMCID: PMC11667706 DOI: 10.1016/j.mec.2024.e00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Polyethylene Terephthalate (PET) is a petroleum-based plastic polymer that, by design, can last decades, if not hundreds of years, when released into the environment through plastic waste leakage. In the pursuit of sustainable solutions to plastic waste recycling and repurposing, the enzymatic depolymerization of PET has emerged as a promising green alternative. However, the metabolic potential of the resulting PET breakdown molecules, such as the two-carbon (C2) molecule ethylene glycol (EG), remains largely untapped. Here, we review and discuss the current state of research regarding existing natural and synthetic microbial pathways that enable the assimilation of EG as a carbon and energy source for Escherichia coli. Leveraging the metabolic versatility of E. coli, we explore the viability of this widely used industrial strain in harnessing EG as feedstock for the synthesis of target value-added compounds via metabolic and protein engineering strategies. Consequently, we assess the potential of EG as a versatile alternative to conventional carbon sources like glucose, facilitating the closure of the loop between the highly available PET waste and the production of valuable biochemicals. This review explores the interplay between PET biodegradation and EG metabolism, as well as the key challenges and opportunities, while offering perspectives and suggestions for propelling advancements in microbial EG assimilation for circular economy applications.
Collapse
Affiliation(s)
- Alexandra Balola
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Sofia Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Isabel Rocha
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
5
|
Nemoto M, Muranushi W, Shuting C, Saito Y, Sugimori D, Yamada M. Beneficial base substitutions in Escherichia coli fucO gene for enhancement of glycolic acid production. J Biosci Bioeng 2024; 138:301-307. [PMID: 39079834 DOI: 10.1016/j.jbiosc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 09/11/2024]
Abstract
Microbial production of glycolic acid (GA) from ethylene glycol is extensively used in a variety of industries because ethylene glycol is not only an inexpensive raw material but also the main component of industrial wastes. In this study, we produced GA from ethylene glycol using Escherichia coli overexpressing the endogenous 1,2-propanediol oxidoreductase (fucO) and lactaldehyde dehydrogenase (aldA) genes. To increase GA productivity, we screened a random mutant library generated using an error-prone polymerase chain reaction of fucO and obtained FucO mutants MF2-9 and MF6-9 with enhanced GA production in Lysogeny Broth medium containing 800 mM ethylene glycol. MF2-9 contained three amino acid substitutions (D23E, E222K, and G363S) and two synonymous mutations (coding DNA [c.] 93G > A and c.1131T > C) in fucO. MF6-9 contained one amino acid substitution (L377H) in FucO. An amino acid substitution (L377H) and a single synonymous mutation (c.1131T > C) in fucO contributed to the enhancement in GA production. Notably, cell lysates from E. coli harboring a synonymous mutation (c.1131T > C) or amino acid substitution (L377H) in fucO showed that only AldA activity was 1.3-fold higher than that of the cell lysate from E. coli harboring the wild-type fucO. We confirmed that c.1131T > C and L377H mutations increased aldA expression in E. coli. Analysis of mRNA levels and simulation of mRNA stabilization indicated that base substitutions at positions c.1130T, which corresponds to L377H amino acid substitution, and c.1131T increased aldA expression due to partial destabilization of the mRNA. These findings will be useful for the large-scale microbial production of GA from industrial waste.
Collapse
Affiliation(s)
- Mayu Nemoto
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Wataru Muranushi
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Chen Shuting
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yusuke Saito
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Daisuke Sugimori
- Materials Science Course, Faculty of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Miwa Yamada
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Agri-Innovation Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
6
|
Nonaka D, Hirata Y, Kishida M, Mori A, Fujiwara R, Kondo A, Mori Y, Noda S, Tanaka T. Parallel metabolic pathway engineering for aerobic 1,2-propanediol production in Escherichia coli. Biotechnol J 2024; 19:e2400210. [PMID: 39167552 DOI: 10.1002/biot.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
The demand for the essential commodity chemical 1,2-propanediol (1,2-PDO) is on the rise, as its microbial production has emerged as a promising method for a sustainable chemical supply. However, the reliance of 1,2-PDO production in Escherichia coli on anaerobic conditions, as enhancing cell growth to augment precursor availability remains a substantial challenge. This study presents glucose-based aerobic production of 1,2-PDO, with xylose utilization facilitating cell growth. An engineered strain was constructed capable of exclusively producing 1,2-PDO from glucose while utilizing xylose to support cell growth. This was accomplished by deleting the gloA, eno, eda, sdaA, sdaB, and tdcG genes for 1,2-PDO production from glucose and introducing the Weimberg pathway for cell growth using xylose. Enhanced 1,2-PDO production was achieved via yagF overexpression and disruption of the ghrA gene involved in the 1,2-PDO-competing pathway. The resultant strain, PD72, produced 2.48 ± 0.15 g L-1 1,2-PDO with a 0.27 ± 0.02 g g-1-glucose yield after 72 h cultivation. Overall, this study demonstrates aerobic 1,2-PDO synthesis through the isolation of the 1,2-PDO synthetic pathway from the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Daisuke Nonaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Ryosuke Fujiwara
- Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Shuhei Noda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| |
Collapse
|
7
|
Shimizu T, Inui M. Novel aspects of ethylene glycol catabolism. Appl Microbiol Biotechnol 2024; 108:369. [PMID: 38861200 PMCID: PMC11166783 DOI: 10.1007/s00253-024-13179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Ethylene glycol (EG) is an industrially important two-carbon diol used as a solvent, antifreeze agent, and building block of polymers such as poly(ethylene terephthalate) (PET). Recently, the use of EG as a starting material for the production of bio-fuels or bio-chemicals is gaining attention as a sustainable process since EG can be derived from materials not competing with human food stocks including CO2, syngas, lignocellulolytic biomass, and PET waste. In order to design and construct microbial process for the conversion of EG to value-added chemicals, microbes capable of catabolizing EG such as Escherichia coli, Pseudomonas putida, Rhodococcus jostii, Ideonella sakaiensis, Paracoccus denitrificans, and Acetobacterium woodii are candidates of chassis for the construction of synthetic pathways. In this mini-review, we describe EG catabolic pathways and catabolic enzymes in these microbes, and further review recent advances in microbial conversion of EG to value-added chemicals by means of metabolic engineering. KEY POINTS: • Ethylene glycol is a potential next-generation feedstock for sustainable industry. • Microbial conversion of ethylene glycol to value-added chemicals is gaining attention. • Ethylene glycol-utilizing microbes are useful as chassis for synthetic pathways.
Collapse
Affiliation(s)
- Tetsu Shimizu
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto, 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto, 619-0292, Japan.
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan.
| |
Collapse
|
8
|
Panda S, Zhou JFJ, Feigis M, Harrison E, Ma X, Fung Kin Yuen V, Mahadevan R, Zhou K. Engineering Escherichia coli to produce aromatic chemicals from ethylene glycol. Metab Eng 2023; 79:38-48. [PMID: 37392985 DOI: 10.1016/j.ymben.2023.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Microbial overproduction of aromatic chemicals has gained considerable industrial interest and various metabolic engineering approaches have been employed in recent years to address the associated challenges. So far, most studies have used sugars (mostly glucose) or glycerol as the primary carbon source. In this study, we used ethylene glycol (EG) as the main carbon substrate. EG could be obtained from the degradation of plastic and cellulosic wastes. As a proof of concept, Escherichia coli was engineered to transform EG into L-tyrosine, a valuable aromatic amino acid. Under the best fermentation condition, the strain produced 2 g/L L-tyrosine from 10 g/L EG, outperforming glucose (the most common sugar feedstock) in the same experimental conditions. To prove the concept that EG can be converted into different aromatic chemicals, E. coli was further engineered with a similar approach to synthesize other valuable aromatic chemicals, L-phenylalanine and p-coumaric acid. Finally, waste polyethylene terephthalate (PET) bottles were degraded using acid hydrolysis and the resulting monomer EG was transformed into L-tyrosine using the engineered E. coli, yielding a comparable titer to that obtained using commercial EG. The strains developed in this study should be valuable to the community for producing valuable aromatics from EG.
Collapse
Affiliation(s)
- Smaranika Panda
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Jie Fu J Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Michelle Feigis
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Emma Harrison
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Xiaoqiang Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Vincent Fung Kin Yuen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | | | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore; Cluster of Food, Chemical and Biotechnology, Singapore Institute of Technology, Singapore.
| |
Collapse
|
9
|
Frazão CJR, Wagner N, Rabe K, Walther T. Construction of a synthetic metabolic pathway for biosynthesis of 2,4-dihydroxybutyric acid from ethylene glycol. Nat Commun 2023; 14:1931. [PMID: 37024485 PMCID: PMC10079672 DOI: 10.1038/s41467-023-37558-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Ethylene glycol is an attractive two-carbon alcohol substrate for biochemical product synthesis as it can be derived from CO2 or syngas at no sacrifice to human food stocks. Here, we disclose a five-step synthetic metabolic pathway enabling the carbon-conserving biosynthesis of the versatile platform molecule 2,4-dihydroxybutyric acid (DHB) from this compound. The linear pathway chains ethylene glycol dehydrogenase, D-threose aldolase, D-threose dehydrogenase, D-threono-1,4-lactonase, D-threonate dehydratase and 2-oxo-4-hydroxybutyrate reductase enzyme activities in succession. We screen candidate enzymes with D-threose dehydrogenase and D-threonate dehydratase activities on cognate substrates with conserved carbon-centre stereochemistry. Lastly, we show the functionality of the pathway by its expression in an Escherichia coli strain and production of 1 g L-1 and 0.8 g L-1 DHB from, respectively, glycolaldehyde or ethylene glycol.
Collapse
Affiliation(s)
- Cláudio J R Frazão
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany
| | - Nils Wagner
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany
| | - Kenny Rabe
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany
| | - Thomas Walther
- Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
10
|
Shanbhag AP, Ghatak A, Rajagopal S. Industrial light at the end of the Iron-containing (group III) alcohol dehydrogenase tunnel. Biotechnol Appl Biochem 2022; 70:537-552. [PMID: 35751426 DOI: 10.1002/bab.2376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
There are three prominent alcohol dehydrogenases superfamilies: Short-chain, Medium-chain, and Iron-containing alcohol dehydrogenases (FeADHs). Many members are valuable catalysts for producing industrially relevant products such as Active pharmaceutical Intermediates, Chiral synthons, Biopolymers, Biofuels and secondary metabolites. However, FeADHs are the least explored enzymes among the superfamilies for commercial tenacities. They portray a conserved structure having a 'tunnel-like' cofactor and substrate binding site with particular functions, despite representing high sequence diversity. Interestingly, phylogenetic analysis demarcates enzymes catalyzing distinct native substrates where closely related clades convert similar molecules. Further, homologs from various mesophilic and thermophilic microbes have been explored for designing a solvent and temperature resistant enzyme for industrial purposes. The review explores different Iron-containing alcohol dehydrogenases potential engineering of the enzymes and substrates helpful in manufacturing commercial products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK Campus, Bangalore, 560065.,Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India
| | - Arindam Ghatak
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Biomoneta Research Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK Campus, Bangalore, 560065
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK Campus, Bangalore, 560065
| |
Collapse
|
11
|
Pandit AV, Harrison E, Mahadevan R. Engineering Escherichia coli for the utilization of ethylene glycol. Microb Cell Fact 2021; 20:22. [PMID: 33482812 PMCID: PMC7821661 DOI: 10.1186/s12934-021-01509-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/02/2021] [Indexed: 01/29/2023] Open
Abstract
Background A considerable challenge in the development of bioprocesses for producing chemicals and fuels has been the high cost of feedstocks relative to oil prices, making it difficult for these processes to compete with their conventional petrochemical counterparts. Hence, in the absence of high oil prices in the near future, there has been a shift in the industry to produce higher value compounds such as fragrances for cosmetics. Yet, there is still a need to address climate change and develop biotechnological approaches for producing large market, lower value chemicals and fuels. Results In this work, we study ethylene glycol (EG), a novel feedstock that we believe has promise to address this challenge. We engineer Escherichia coli (E. coli) to consume EG and examine glycolate production as a case study for chemical production. Using a combination of modeling and experimental studies, we identify oxygen concentration as an important metabolic valve in the assimilation and use of EG as a substrate. Two oxygen-based strategies are thus developed and tested in fed-batch bioreactors. Ultimately, the best glycolate production strategy employed a target respiratory quotient leading to the highest observed fermentation performance. With this strategy, a glycolate titer of 10.4 g/L was reached after 112 h of production time in a fed-batch bioreactor. Correspondingly, a yield of 0.8 g/g from EG and productivity of 0.1 g/L h were measured during the production stage. Our modeling and experimental results clearly suggest that oxygen concentration is an important factor in the assimilation and use of EG as a substrate. Finally, our use of metabolic modeling also sheds light on the intracellular distribution through central metabolism, implicating flux to 2-phosphoglycerate as the primary route for EG assimilation. Conclusion Overall, our work suggests that EG could provide a renewable starting material for commercial biosynthesis of fuels and chemicals that may achieve economic parity with petrochemical feedstocks while sequestering carbon dioxide.
Collapse
Affiliation(s)
- Aditya Vikram Pandit
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Emma Harrison
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada. .,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.
| |
Collapse
|
12
|
Jia X, Kelly RM, Han Y. Simultaneous biosynthesis of ( R)-acetoin and ethylene glycol from D-xylose through in vitro metabolic engineering. Metab Eng Commun 2018; 7:e00074. [PMID: 30197863 PMCID: PMC6127078 DOI: 10.1016/j.mec.2018.e00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 11/28/2022] Open
Abstract
(R)-acetoin is a four-carbon platform compound used as the precursor for synthesizing novel optically active materials. Ethylene glycol (EG) is a large-volume two-carbon commodity chemical used as the anti-freezing agent and building-block molecule for various polymers. Currently established microbial fermentation processes for converting monosaccharides to either (R)-acetoin or EG are plagued by the formation of undesirable by-products. We show here that a cell-free bioreaction scheme can generate enantiomerically pure acetoin and EG as co-products from biomass-derived D-xylose. The seven-step, ATP-free system included in situ cofactor regeneration and recruited enzymes from Escherichia coli W3110, Bacillus subtilis shaijiu 32 and Caulobacter crescentus CB 2. Optimized in vitro biocatalytic conditions generated 3.2 mM (R)-acetoin with stereoisomeric purity of 99.5% from 10 mM D-xylose at 30 °C and pH 7.5 after 24 h, with an initial (R)-acetoin productivity of 1.0 mM/h. Concomitantly, EG was produced at 5.5 mM, with an initial productivity of 1.7 mM/h. This in vitro biocatalytic platform illustrates the potential for production of multiple value-added biomolecules from biomass-based sugars with no ATP requirement.
Collapse
Key Words
- (R)-acetoin
- BSA, bovine serum albumin
- Cofactor regeneration
- D-xylose
- EG, ethylene glycol
- EMP, Embden-Meyerhoff-Parnas
- Ethylene glycol
- FAD, flavin adenine dinucleotide
- GC, gas chromatography
- HPLC, high-pressure liquid chromatography
- IPTG, isopropyl-β-D-thiogalactopyranoside
- In vitro metabolic engineering
- LB, lysogeny broth
- NAD+, oxidized nicotinamide adenine dinucleotide
- NADH, reduced nicotinamide adenine dinucleotide
- PET, polyethylene terephthalate
- PP, pentose phosphate
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- ThDP, Thiamine diphosphate
- ee, enantiomeric excess
Collapse
Affiliation(s)
- Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Inflammation-associated adherent-invasive Escherichia coli are enriched in pathways for use of propanediol and iron and M-cell translocation. Inflamm Bowel Dis 2014; 20:1919-32. [PMID: 25230163 DOI: 10.1097/mib.0000000000000183] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Perturbations of the intestinal microbiome, termed dysbiosis, are linked to intestinal inflammation. Isolation of adherent-invasive Escherichia coli (AIEC) from intestines of patients with Crohn's disease (CD), dogs with granulomatous colitis, and mice with acute ileitis suggests these bacteria share pathoadaptive virulence factors that promote inflammation. METHODS To identify genes associated with AIEC, we sequenced the genomes of phylogenetically diverse AIEC strains isolated from people with CD (4), dogs with granulomatous colitis (2), and mice with ileitis (2) and 1 non-AIEC strain from CD ileum and compared them with 38 genome sequences of E. coli and Shigella. We then determined the prevalence of AIEC-associated genes in 49 E. coli strains from patients with CD and controls and correlated genotype with invasion of intestinal epithelial cells, persistence within macrophages, AIEC pathotype, and growth in standardized conditions. RESULTS Genes encoding propanediol utilization (pdu operon) and iron acquisition (yersiniabactin, chu operon) were overrepresented in AIEC relative to nonpathogenic E. coli. PduC (propanediol dehydratase) was enriched in CD-derived AIEC, correlated with increased cellular invasion, and persistence in vitro and was increasingly expressed in fucose-containing media. Growth of AIEC required iron, and the presence of chuA (heme acquisition) correlated with persistence in macrophages. CD-associated AIEC with lpfA 154 (long polar fimbriae) demonstrated increased invasion of epithelial cells and translocation across M cells. CONCLUSIONS Our findings provide novel insights into the genetic basis of the AIEC pathotype, supporting the concept that AIEC are equipped to exploit and promote intestinal inflammation and reveal potential targets for intervention against AIEC and inflammation-associated dysbiosis.
Collapse
|
14
|
Creation of new metabolic pathways or improvement of existing metabolic enzymes by in vivo evolution in Escherichia coli. Methods Mol Biol 2012; 834:75-86. [PMID: 22144354 DOI: 10.1007/978-1-61779-483-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A method for in vivo evolution of metabolic pathways in bacteria is described. This method is a powerful tool for synthetic biology type of metabolic design and can lead to the creation of new metabolic pathways or the improvement of existing metabolic enzymes. The proposed strategy also permits to relate the evolved phenotype to the genotype and to analyze evolution phenomenon at the genetic, biochemical, and metabolic levels.
Collapse
|
15
|
Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2011; 90:1721-9. [DOI: 10.1007/s00253-011-3190-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/24/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
|
16
|
Barua D, Kim J, Reed JL. An automated phenotype-driven approach (GeneForce) for refining metabolic and regulatory models. PLoS Comput Biol 2010; 6:e1000970. [PMID: 21060853 PMCID: PMC2965739 DOI: 10.1371/journal.pcbi.1000970] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/23/2010] [Indexed: 01/20/2023] Open
Abstract
Integrated constraint-based metabolic and regulatory models can accurately predict cellular growth phenotypes arising from genetic and environmental perturbations. Challenges in constructing such models involve the limited availability of information about transcription factor—gene target interactions and computational methods to quickly refine models based on additional datasets. In this study, we developed an algorithm, GeneForce, to identify incorrect regulatory rules and gene-protein-reaction associations in integrated metabolic and regulatory models. We applied the algorithm to refine integrated models of Escherichia coli and Salmonella typhimurium, and experimentally validated some of the algorithm's suggested refinements. The adjusted E. coli model showed improved accuracy (∼80.0%) for predicting growth phenotypes for 50,557 cases (knockout mutants tested for growth in different environmental conditions). In addition to identifying needed model corrections, the algorithm was used to identify native E. coli genes that, if over-expressed, would allow E. coli to grow in new environments. We envision that this approach will enable the rapid development and assessment of genome-scale metabolic and regulatory network models for less characterized organisms, as such models can be constructed from genome annotations and cis-regulatory network predictions. Computational models of biological networks are useful for explaining experimental observations and predicting phenotypic behaviors. The construction of genome-scale metabolic and regulatory models is still a labor-intensive process, even with the availability of genome sequences and high-throughput datasets. Since our knowledge about biological systems is incomplete, these models are iteratively refined and validated as we discover new connections in biological networks, and eliminate inconsistencies between model predictions and experimental observations. To enable researchers to quickly determine what causes discrepancies between observed phenotypes and model predictions, we developed a new approach (GeneForce) that automatically corrects integrated metabolic and transcriptional regulatory network models. To illustrate the utility of the approach, we applied the developed method to well-curated models of E. coli metabolism and regulation. We found that the approach significantly improved the accuracy of phenotype predictions and suggested changes needed to the metabolic and/or regulatory models. We also used the approach to identify rescue non-growth phenotypes and to evaluate the conservation of transcriptional regulatory interactions between E. coli and S. typhimurium. The developed approach helps reconcile discrepancies between model predictions and experimental data by hypothesizing required network changes, and helps facilitate the development of new genome-scale models.
Collapse
Affiliation(s)
- Dipak Barua
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joonhoon Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer L. Reed
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
17
|
Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a Nonnative carbon source, L-1,2-propanediol. Appl Environ Microbiol 2010; 76:4158-68. [PMID: 20435762 DOI: 10.1128/aem.00373-10] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory adaptive evolution studies can provide key information to address a wide range of issues in evolutionary biology. Such studies have been limited thus far by the inability of workers to readily detect mutations in evolved microbial strains on a genome scale. This limitation has now been overcome by recently developed genome sequencing technology that allows workers to identify all accumulated mutations that appear during laboratory adaptive evolution. In this study, we evolved Escherichia coli K-12 MG1655 with a nonnative carbon source, l-1,2-propanediol (l-1,2-PDO), for approximately 700 generations. We found that (i) experimental evolution of E. coli for approximately 700 generations in 1,2-PDO-supplemented minimal medium resulted in acquisition of the ability to use l-1,2-PDO as a sole carbon and energy source so that the organism changed from an organism that did not grow at all initially to an organism that had a growth rate of 0.35 h(-1); (ii) six mutations detected by whole-genome resequencing accumulated in the evolved E. coli mutant over the course of adaptive evolution on l-1,2-PDO; (iii) five of the six mutations were within coding regions, and IS5 was inserted between two fuc regulons; (iv) two major mutations (mutations in fucO and its promoter) involved in l-1,2-PDO catabolism appeared early during adaptive evolution; and (v) multiple defined knock-in mutant strains with all of the mutations had growth rates essentially matching that of the evolved strain. These results provide insight into the genetic basis underlying microbial evolution for growth on a nonnative substrate.
Collapse
|
18
|
Molecular characterization of the recombinant iron-containing alcohol dehydrogenase from the hyperthermophilic Archaeon, Thermococcus strain ES1. Extremophiles 2008; 13:299-311. [PMID: 19115036 DOI: 10.1007/s00792-008-0217-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022]
Abstract
The gene encoding a thermostable iron-containing alcohol dehydrogenase from Thermococcus Strain ES1 (ES1 ADH) was cloned, sequenced and expressed in Escherichia coli. The recombinant and native ES1 ADHs were purified using multistep column chromatography under anaerobic conditions. Both enzymes appeared to be homotetramers with a subunit size of 45+/-1 kDa as revealed by SDS-PAGE, which was close to the calculated value (44.8 kDa). The recombinant ADH contained 1.0+/-0.1 g-atom iron per subunit. Both enzymes were sensitive to oxygen with a half-life upon exposure to air of about 4 min. The recombinant enzyme exhibited a specific activity of 105+/-2 U mg(-1), which was very similar to that of the native enzyme (110+/-3 U mg(-1)). The optimal pH-values for both enzymes for ethanol oxidation and acetaldehyde reduction were 10.4 and 7.0, respectively. Both enzymes also showed similar temperature-dependent activities, and catalyzed the oxidation of primary alcohols, but there was no activity towards methanol and secondary alcohols. Kinetic parameters of the enzymes showed lower K (m)-values for acetaldehyde and NADPH and higher K (m)-values for ethanol and NADP(+). It is concluded that the gene encoding ES1 ADH was expressed successfully in E. coli. This is the first report of a fully active recombinant version of an iron-containing ADH from a hyperthermophile.
Collapse
|
19
|
Meynial Salles I, Forchhammer N, Croux C, Girbal L, Soucaille P. Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Metab Eng 2007; 9:152-9. [PMID: 17113805 DOI: 10.1016/j.ymben.2006.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 11/22/2022]
Abstract
The Saccharomyces cerevisiae glycerol pathway (GPD1 and GPP2) was evolved in vivo in Escherichia coli. The central metabolism of E. coli was engineered to link glucose consumption and glycerol production. The engineered strain was evolved in a chemostat culture and a high glycerol producer was rapidly obtained. The evolution of the strain was associated to a deletion between GPD1 and GPP2, resulting in the production of a fusion protein with both glycerol-3-P dehydrogenase and glycerol-3-P phosphatase activities. The higher efficiency of the fusion protein was due to partial glycerol-3-P channeling between the two active sites. The evolved strain produces glycerol from glucose at high yield, concentration and productivity.
Collapse
Affiliation(s)
- Isabelle Meynial Salles
- Laboratoire de Biotechnologie-Bioprocédés, UMR-INSA/CNRS 5504, UMR INSA/INRA 792, 135 avenue de Rangueil, 31077 Toulouse cedex 4, France
| | | | | | | | | |
Collapse
|
20
|
Echave P, Esparza-Cerón MA, Cabiscol E, Tamarit J, Ros J, Membrillo-Hernández J, Lin ECC. DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc Natl Acad Sci U S A 2002; 99:4626-31. [PMID: 11917132 PMCID: PMC123698 DOI: 10.1073/pnas.072504199] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2001] [Indexed: 11/18/2022] Open
Abstract
The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase (AdhE) that catalyzes successive reductions of acetyl-CoA to acetaldehyde and then to ethanol reversibly at the expense of NADH. Mutant JE52, serially selected for acquired and improved ability to grow aerobically on ethanol, synthesized an AdhE(A267T/E568K) with two amino acid substitutions that sequentially conferred improved catalytic properties and stability. Here we show that the aerobic growth ability on ethanol depends also on protection of the mutant AdhE against metal-catalyzed oxidation by the chaperone DnaK (a member of the Hsp70 family). No DnaK protection of the enzyme is evident during anaerobic growth on glucose. Synthesis of DnaK also protected E. coli from H2O2 killing under conditions when functional AdhE is not required. Our results therefore suggest that, in addition to the known role of protecting cells against heat stress, DnaK also protects numerous kinds of proteins from oxidative damage.
Collapse
Affiliation(s)
- Pedro Echave
- Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, P.O. Box 70-228, 04510 Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
21
|
Holland-Staley CA, Lee K, Clark DP, Cunningham PR. Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid. J Bacteriol 2000; 182:6049-54. [PMID: 11029424 PMCID: PMC94738 DOI: 10.1128/jb.182.21.6049-6054.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the alcohol dehydrogenase gene, adhE, in Escherichia coli is anaerobically regulated at both the transcriptional and the translational levels. To study the AdhE protein, the adhE(+) structural gene was cloned into expression vectors under the control of the lacZ and trp(c) promoters. Wild-type AdhE protein produced under aerobic conditions from these constructs was inactive. Constitutive mutants (adhC) that produced high levels of AdhE under both aerobic and anaerobic conditions were previously isolated. When only the adhE structural gene from one of the adhC mutants was cloned into expression vectors, highly functional AdhE protein was isolated under both aerobic and anaerobic conditions. Sequence analysis revealed that the adhE gene from the adhC mutant contained two mutations resulting in two amino acid substitutions, Ala267Thr and Glu568Lys. Thus, adhC strains contain a promoter mutation and two mutations in the structural gene. The mutant structural gene from adhC strains was designated adhE*. Fragment exchange experiments revealed that the substitution responsible for aerobic expression in the adhE* clones is Glu568Lys. Genetic selection and site-directed mutagenesis experiments showed that virtually any amino acid substitution for Glu568 produced AdhE that was active under both aerobic and anaerobic conditions. These findings suggest that adhE expression is also regulated posttranslationally and that strict regulation of alcohol dehydrogenase activity in E. coli is physiologically significant.
Collapse
Affiliation(s)
- C A Holland-Staley
- Infectious Disease Research, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
22
|
Membrillo-Hernandez J, Echave P, Cabiscol E, Tamarit J, Ros J, Lin EC. Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins. J Biol Chem 2000; 275:33869-75. [PMID: 10922373 DOI: 10.1074/jbc.m005464200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multifunctional AdhE protein of Escherichia coli (encoded by the adhE gene) physiologically catalyzes the sequential reduction of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. The NH(2)-terminal region of the AdhE protein is highly homologous to aldehyde:NAD(+) oxidoreductases, whereas the COOH-terminal region is homologous to a family of Fe(2+)-dependent ethanol:NAD(+) oxidoreductases. This fusion protein also functions as a pyruvate formate lyase deactivase. E. coli cannot grow aerobically on ethanol as the sole carbon and energy source because of inadequate rate of adhE transcription and the vulnerability of the AdhE protein to metal-catalyzed oxidation. In this study, we characterized 16 independent two-step mutants with acquired and improved aerobic growth ability on ethanol. The AdhE proteins in these mutants catalyzed the sequential oxidation of ethanol to acetaldehyde and to acetyl-CoA. All first stage mutants grew on ethanol with a doubling time of about 240 min. Sequence analysis of a randomly chosen mutant revealed an Ala-267 --> Thr substitution in the acetaldehyde:NAD(+) oxidoreductase domain of AdhE. All second stage mutants grew on ethanol with a doubling time of about 90 min, and all of them produced an AdhE(A267T/E568K). Purified AdhE(A267T) and AdhE(A267T/E568K) showed highly elevated acetaldehyde dehydrogenase activities. It therefore appears that when AdhE catalyzes the two sequential reactions in the counter-physiological direction, acetaldehyde dehydrogenation is the rate-limiting step. Both mutant proteins were more thermosensitive than the wild-type protein, but AdhE(A267T/E568K) was more thermal stable than AdhE(A267T). Since both mutant enzymes exhibited similar kinetic properties, the second mutation probably conferred an increased growth rate on ethanol by stabilizing AdhE(A267T).
Collapse
Affiliation(s)
- J Membrillo-Hernandez
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
23
|
Zientz E, Janausch IG, Six S, Unden G. Functioning of DcuC as the C4-dicarboxylate carrier during glucose fermentation by Escherichia coli. J Bacteriol 1999; 181:3716-20. [PMID: 10368146 PMCID: PMC93849 DOI: 10.1128/jb.181.12.3716-3720.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/1998] [Accepted: 04/07/1999] [Indexed: 11/20/2022] Open
Abstract
The dcuC gene of Escherichia coli encodes an alternative C4-dicarboxylate carrier (DcuC) with low transport activity. The expression of dcuC was investigated. dcuC was expressed only under anaerobic conditions; nitrate and fumarate caused slight repression and stimulation of expression, respectively. Anaerobic induction depended mainly on the transcriptional regulator FNR. Fumarate stimulation was independent of the fumarate response regulator DcuR. The expression of dcuC was not significantly inhibited by glucose, assigning a role to DcuC during glucose fermentation. The inactivation of dcuC increased fumarate-succinate exchange and fumarate uptake by DcuA and DcuB, suggesting a preferential function of DcuC in succinate efflux during glucose fermentation. Upon overexpression in a dcuC promoter mutant (dcuC*), DcuC was able to compensate for DcuA and DcuB in fumarate-succinate exchange and fumarate uptake.
Collapse
Affiliation(s)
- E Zientz
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | | | | | | |
Collapse
|