1
|
Korenskaia AE, Shishkina OD, Klimenko AI, Andreenkova OV, Bobrovskikh MA, Shatskaya NV, Vasiliev GV, Gruntenko NE. New Wolbachia pipientis Genotype Increasing Heat Stress Resistance of Drosophila melanogaster Host Is Characterized by a Large Chromosomal Inversion. Int J Mol Sci 2022; 23:16212. [PMID: 36555851 PMCID: PMC9786649 DOI: 10.3390/ijms232416212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The maternally transmitted endocellular bacteria Wolbachia is a well-known symbiont of insects, demonstrating both negative and positive effects on host fitness. The previously found Wolbachia strain wMelPlus is characterized by a positive effect on the stress-resistance of its host Drosophila melanogaster, under heat stress conditions. This investigation is dedicated to studying the genomic underpinnings of such an effect. We sequenced two closely related Wolbachia strains, wMelPlus and wMelCS112, assembled their complete genomes, and performed comparative genomic analysis engaging available Wolbachia genomes from the wMel and wMelCS groups. Despite the two strains under study sharing very close gene-composition, we discovered a large (>1/6 of total genome) chromosomal inversion in wMelPlus, spanning through the region that includes the area of the inversion earlier found in the wMel group of Wolbachia genotypes. A number of genes in unique inversion blocks of wMelPlus were identified that might be involved in the induction of a stress-resistant phenotype in the host. We hypothesize that such an inversion could rearrange established genetic regulatory-networks, causing the observed effects of such a complex fly phenotype as a modulation of heat stress resistance. Based on our findings, we propose that wMelPlus be distinguished as a separate genotype of the wMelCS group, named wMelCS3.
Collapse
Affiliation(s)
- Aleksandra E. Korenskaia
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Olga D. Shishkina
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Alexandra I. Klimenko
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
2
|
Zhou L, Yu H, Wang K, Chen T, Ma Y, Huang Y, Li J, Liu L, Li Y, Kong Z, Zheng Q, Wang Y, Gu Y, Xia N, Li S. Genome re-sequencing and reannotation of the Escherichia coli ER2566 strain and transcriptome sequencing under overexpression conditions. BMC Genomics 2020; 21:407. [PMID: 32546194 PMCID: PMC7296898 DOI: 10.1186/s12864-020-06818-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Escherichia coli ER2566 strain (NC_CP014268.2) was developed as a BL21 (DE3) derivative strain and had been widely used in recombinant protein expression. However, like many other current RefSeq annotations, the annotation of the ER2566 strain was incomplete, with missing gene names and miscellaneous RNAs, as well as uncorrected annotations of some pseudogenes. Here, we performed a systematic reannotation of the ER2566 genome by combining multiple annotation tools with manual revision to provide a comprehensive understanding of the E. coli ER2566 strain, and used high-throughput sequencing to explore how the strain adapted under external pressure. RESULTS The reannotation included noteworthy corrections to all protein-coding genes, led to the exclusion of 190 hypothetical genes or pseudogenes, and resulted in the addition of 237 coding sequences and 230 miscellaneous noncoding RNAs and 2 tRNAs. In addition, we further manually examined all 194 pseudogenes in the Ref-seq annotation and directly identified 123 (63%) as coding genes. We then used whole-genome sequencing and high-throughput RNA sequencing to assess mutational adaptations under consecutive subculture or overexpression burden. Whereas no mutations were detected in response to consecutive subculture, overexpression of the human papillomavirus 16 type capsid led to the identification of a mutation (position 1,094,824 within the 3' non-coding region) positioned 19-bp away from the lacI gene in the transcribed RNA, which was not detected at the genomic level by Sanger sequencing. CONCLUSION The ER2566 strain was used by both the general scientific community and the biotechnology industry. Reannotation of the E. coli ER2566 strain not only improved the RefSeq data but uncovered a key site that might be involved in the transcription and translation of genes encoding the lactose operon repressor. We proposed that our pipeline might offer a universal method for the reannotation of other bacterial genomes with high speed and accuracy. This study might facilitate a better understanding of gene function for the ER2566 strain under external burden and provided more clues to engineer bacteria for biotechnological applications.
Collapse
Affiliation(s)
- Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Kaihang Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Tingting Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yue Ma
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yang Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiajia Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Liqin Liu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yuqian Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhibo Kong
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
3
|
Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 2011; 35:68-86. [PMID: 20584082 DOI: 10.1111/j.1574-6976.2010.00236.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters are the best-studied family of substrate-binding protein (SBP)-dependent secondary transporters and are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP of the DctP or TAXI families and two integral membrane proteins of unequal sizes that form the DctQ and DctM protein families, respectively. The SBP component has a structure comprised of two domains connected by a hinge that closes upon substrate binding. In DctP-TRAP transporters, substrate binding is mediated through a conserved and specific arginine/carboxylate interaction in the SBP. While the SBP component has now been relatively well characterized, the membrane components of TRAP transporters are still poorly understood both in terms of their structure and function. We review the expanding repertoire of substrates and physiological roles for experimentally characterized TRAP transporters in bacteria and discuss mechanistic aspects of these transporters using data primarily from the sialic acid-specific TRAP transporter SiaPQM from Haemophilus influenzae, which suggest that TRAP transporters are high-affinity, Na(+)-dependent unidirectional secondary transporters.
Collapse
|
4
|
Coyne S, Courvalin P, Galimand M. Acquisition of multidrug resistance transposon Tn6061 and IS6100-mediated large chromosomal inversions in Pseudomonas aeruginosa clinical isolates. MICROBIOLOGY-SGM 2010; 156:1448-1458. [PMID: 20110294 DOI: 10.1099/mic.0.033639-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is a major human opportunistic pathogen, especially for patients in intensive care units or with cystic fibrosis. Multidrug resistance is a common feature of this species. In a previous study we detected the ant(4')-IIb gene in six multiresistant clinical isolates of P. aeruginosa, and determination of the environment of the gene led to characterization of Tn6061. This 26 586 bp element, a member of the Tn3 family of transposons, carried 10 genes conferring resistance to six drug classes. The ant(4')-IIb sequence was flanked by directly repeated copies of ISCR6 in all but one of the strains studied, consistent with ISCR6-mediated gene acquisition. Tn6061 was chromosomally located in six strains and plasmid-borne in the remaining isolate, suggesting horizontal acquisition. Duplication-insertion of IS6100, that ended Tn6061, was responsible for large chromosomal inversions. Acquisition of Tn6061 and chromosomal inversions are further examples of intricate mechanisms that contribute to the genome plasticity of P. aeruginosa.
Collapse
Affiliation(s)
- Sébastien Coyne
- Institut Pasteur, Unité des Agents Antibactériens, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Patrice Courvalin
- Institut Pasteur, Unité des Agents Antibactériens, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marc Galimand
- Institut Pasteur, Unité des Agents Antibactériens, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
5
|
Kawai M, Nakao K, Uchiyama I, Kobayashi I. How genomes rearrange: genome comparison within bacteria Neisseria suggests roles for mobile elements in formation of complex genome polymorphisms. Gene 2006; 383:52-63. [PMID: 16949772 DOI: 10.1016/j.gene.2006.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 11/15/2022]
Abstract
Comparison of closely related genome sequences can provide a clue as to how macroscopic genome polymorphisms were formed through various events of recombination. However, this approach has been limited to relatively simple polymorphisms such as insertion, deletion and inversion. In the present study, we tried to extend this approach to more complex genome polymorphisms that were observed when four genome sequences of bacterial genus Neisseria were compared. The first polymorphism was an apparent translocation (ab-cd to cd-ba; a region 'ab' was translocated). The second one was a re-ordering of adjacent regions (ab-cd-ef-gh to ef-cd-ab-gh; ab, cd and ef were in reverse order). The third one was a translocation of two adjacent regions with permutation of their order (ab-cd to cd-ab elsewhere in the genome). The fourth one was a genome-wide inversion associated with a genome-specific insertion into the joints (-ab-cd- to -y-ba-x-cd-). We were able to explain their formation by only a few steps of plausible events of recombination that involved linked IS copies and prophages. Our approach would help to reconstruct a history of apparently complex genome polymorphisms in any forms of organisms and to understand genome rearrangements in the natural environments in non-model organisms.
Collapse
Affiliation(s)
- Mikihiko Kawai
- Department of Medical Genome Sciences, Graduate School of Frontier Science, the University of Tokyo, Japan
| | | | | | | |
Collapse
|
6
|
Nie H, Yang F, Zhang X, Yang J, Chen L, Wang J, Xiong Z, Peng J, Sun L, Dong J, Xue Y, Xu X, Chen S, Yao Z, Shen Y, Jin Q. Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a. BMC Genomics 2006; 7:173. [PMID: 16822325 PMCID: PMC1550401 DOI: 10.1186/1471-2164-7-173] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 07/06/2006] [Indexed: 11/27/2022] Open
Abstract
Background Shigella bacteria cause dysentery, which remains a significant threat to public health. Shigella flexneri is the most common species in both developing and developed countries. Five Shigella genomes have been sequenced, revealing dynamic and diverse features. To investigate the intra-species diversity of S. flexneri genomes further, we have sequenced the complete genome of S. flexneri 5b strain 8401 (abbreviated Sf8401) and compared it with S. flexneri 2a (Sf301). Results The Sf8401 chromosome is 4.5-Mb in size, a little smaller than that of Sf301, mainly because the former lacks the SHI-1 pathogenicity island (PAI). Compared with Sf301, there are 6 inversions and one translocation in Sf8401, which are probably mediated by insertion sequences (IS). There are clear differences in the known PAIs between these two genomes. The bacteriophage SfV segment remaining in SHI-O of Sf8401 is clearly larger than the remnants of bacteriophage SfII in Sf301. SHI-1 is absent from Sf8401 but a specific related protein is found next to the pheV locus. SHI-2 is involved in one intra-replichore inversion near the origin of replication, which may change the expression of iut/iuc genes. Moreover, genes related to the glycine-betaine biosynthesis pathway are present only in Sf8401 among the known Shigella genomes. Conclusion Our data show that the two S. flexneri genomes are very similar, which suggests a high level of structural and functional conservation between the two serotypes. The differences reflect different selection pressures during evolution. The ancestor of S. flexneri probably acquired SHI-1 and SHI-2 before SHI-O was integrated and the serotypes diverged. SHI-1 was subsequently deleted from the S. flexneri 5b genome by recombination, but stabilized in the S. flexneri 2a genome. These events may have contributed to the differences in pathogenicity and epidemicity between the two serotypes of S. flexneri.
Collapse
Affiliation(s)
- Huan Nie
- College of Biological Sciences China Agricultural University, Beijing 100094, China
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Fan Yang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Xiaobing Zhang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Jian Yang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Lihong Chen
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Jing Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Zhaohui Xiong
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Junping Peng
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Lilian Sun
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Jie Dong
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Ying Xue
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Xingye Xu
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Shuxia Chen
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
| | - Zhijian Yao
- National Center of Human Genome Research, Beijing 100176, China
| | - Yan Shen
- National Center of Human Genome Research, Beijing 100176, China
| | - Qi Jin
- College of Biological Sciences China Agricultural University, Beijing 100094, China
- State Key Laboratory for Molecular Virology and Genetic Engineering, Beijing 100052, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
7
|
Thomas GH, Southworth T, León-Kempis MR, Leech A, Kelly DJ. Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. MICROBIOLOGY-SGM 2006; 152:187-198. [PMID: 16385129 DOI: 10.1099/mic.0.28334-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are relatively common prokaryotic secondary transporters which comprise an extracytoplasmic solute receptor (ESR) protein and two dissimilar membrane proteins or domains, yet the substrates and physiological functions of only a few of these systems are so far known. In this study, a biophysical approach was used to identify the ligands for the purified Rhodobacter capsulatus RRC01191 and Escherichia coli YiaO proteins, which are members of two phylogenetically distinct families of TRAP-ESRs found in diverse bacteria. In contrast to previous indirect evidence pointing to RRC01191 orthologues being involved in polyol uptake, it was shown that RRC01191 binds pyruvate, 2-oxobutyrate and a broad range of aliphatic monocarboxylic 2-oxoacid anions with varying affinities (K(d) values 0.08-3 muM), consistent with a predicted role in monocarboxylate transport related to branched-chain amino-acid biosynthesis. The E. coli YiaMNO TRAP transporter has previously been proposed to be an l-xylulose uptake system [Plantinga et al. (2004) Mol Membr Biol 21, 51-57], but purified YiaO did not bind l- or d-xylulose as judged by fluorescence spectroscopy, circular dichroism or mass spectrometry. Instead, these techniques showed that a breakdown product of l-ascorbate, 2,3-diketo-l-gulonate (2,3-DKG), binds by a simple one-step mechanism with sub-micromolar affinity. The data provide the first evidence for the existence of ESR-dependent transporters for 2-oxoacids and 2,3-DKG, homologues of which appear to be widespread amongst prokaryotes. The results also underline the utility of direct ESR ligand-binding studies for TRAP transporter characterization.
Collapse
Affiliation(s)
- Gavin H Thomas
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Thomas Southworth
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Maria Rocio León-Kempis
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Andrew Leech
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
8
|
Muramatsu H, Mihara H, Goto M, Miyahara I, Hirotsu K, Kurihara T, Esaki N. A new family of NAD(P)H-dependent oxidoreductases distinct from conventional Rossmann-fold proteins. J Biosci Bioeng 2005; 99:541-7. [PMID: 16233829 DOI: 10.1263/jbb.99.541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/25/2005] [Indexed: 11/17/2022]
Abstract
A new family of NAD(P)H-dependent oxidoreductases is now recognized as a protein family distinct from conventional Rossmann-fold proteins. Numerous putative proteins belonging to the family have been annotated as malate dehydrogenase (MDH) or lactate dehydrogenase (LDH) according to the previous classification as type-2 malate/L-lactate dehydrogenases. However, recent biochemical and genetic studies have revealed that the protein family consists of a wide variety of enzymes with unique catalytic activities other than MDH or LDH activity. Based on their sequence homologies and plausible functions, the family proteins can be grouped into eight clades. This classification would be useful for reliable functional annotation of the new family of NAD(P)H-dependent oxidoreductases.
Collapse
Affiliation(s)
- Hisashi Muramatsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Plantinga TH, van der Does C, Tomkiewicz D, van Keulen G, Konings WN, Driessen AJM. Deletion of the yiaMNO transporter genes affects the growth characteristics of Escherichia coli K-12. Microbiology (Reading) 2005; 151:1683-1689. [PMID: 15870475 DOI: 10.1099/mic.0.27851-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding-protein-dependent secondary transporters make up a unique transport protein family. They use a solute-binding protein in proton-motive-force-driven transport. Only a few systems have been functionally analysed. TheyiaMNOgenes ofEscherichia coliK-12 encode one family member that transports the rare pentosel-xylulose. Its physiological role is unknown, since wild-typeE. coliK-12 does not utilizel-xylulose as sole carbon source. Deletion of theyiaMNOgenes inE. coliK-12 strain MC4100 resulted in remarkable changes in the transition from exponential growth to the stationary phase, high-salt survival and biofilm formation.
Collapse
Affiliation(s)
- Titia H Plantinga
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, PO Box 14, 9750, AA Haren, The Netherlands
| | - Chris van der Does
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, PO Box 14, 9750, AA Haren, The Netherlands
| | - Danuta Tomkiewicz
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, PO Box 14, 9750, AA Haren, The Netherlands
| | - Geertje van Keulen
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, PO Box 14, 9750, AA Haren, The Netherlands
| | - Wil N Konings
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, PO Box 14, 9750, AA Haren, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, PO Box 14, 9750, AA Haren, The Netherlands
| |
Collapse
|
10
|
Wackett LP. Evolution of enzymes for the metabolism of new chemical inputs into the environment. J Biol Chem 2004; 279:41259-62. [PMID: 15187076 DOI: 10.1074/jbc.r400014200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lawrence P Wackett
- Department of Biochemistry, Molecular Biology, and Biophysics and the Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, USA.
| |
Collapse
|
11
|
Forouhar F, Lee I, Benach J, Kulkarni K, Xiao R, Acton TB, Montelione GT, Tong L. A novel NAD-binding protein revealed by the crystal structure of 2,3-diketo-L-gulonate reductase (YiaK). J Biol Chem 2004; 279:13148-55. [PMID: 14718529 DOI: 10.1074/jbc.m313580200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli YiaK catalyzes the reduction of 2,3-diketo-L-gulonate in the presence of NADH. It belongs to a large family of oxidoreductases that is conserved in archaea, bacteria, and eukaryotes but shows no sequence homology to other proteins. We report here the crystal structures at up to 2.0-A resolution of YiaK alone and in complex with NAD-tartrate. YiaK has a new polypeptide backbone fold and a novel mode of recognizing the NAD cofactor. In addition, NAD is bound in an unusual conformation, at the interface of a dimer of the enzyme. The crystallographic analysis unexpectedly revealed the binding of tartrate in the active site. Enzyme kinetics studies confirm that tartrate and the related D-malate are inhibitors of YiaK. In contrast to most other enzymes where substrate binding produces a more closed conformation, the binding of NAD-tartrate to YiaK produces a more open active site. The free enzyme conformation is incompatible with NAD binding. His(44) is likely the catalytic residue of the enzyme.
Collapse
Affiliation(s)
- Farhad Forouhar
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hsu WB, Chen JH. The IS1 elements in Shigella boydii: horizontal transfer, vertical inactivation and target duplication. FEMS Microbiol Lett 2003; 222:289-95. [PMID: 12770720 DOI: 10.1016/s0378-1097(03)00319-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IS1(SB) and its two variants were identified as the major and minor IS1 elements in Shigella boydii. The nucleotide sequences of IS1(SB), IS1(O157:H7) from Escherichia coli O157:H7 and IS1F from E. coli K12 suggest that these IS1 elements had been horizontally transferred among S. boydii and E. coli O157:H7 and K12. The two IS1(SB) variants and IS1(O157:H7) have transposition activities 7- to 86-fold less than that of IS1(SB), whereas IS1F has little transposition activity. Analysis of the flanking sequences of IS1(SB) and its two variants in S. boydii revealed the nature of regional specificity of the target sites and the sequence dependence of 8 and 9 bp target duplications, for which a model is presented.
Collapse
Affiliation(s)
- Wen-Bin Hsu
- Institute of Molecular Biology, National Chung Hsing University, 402, Taichung, Taiwan
| | | |
Collapse
|
13
|
Kresse AU, Dinesh SD, Larbig K, Römling U. Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Mol Microbiol 2003; 47:145-58. [PMID: 12492860 DOI: 10.1046/j.1365-2958.2003.03261.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa chronically colonizing the lungs of cystic fibrosis (CF) patients undergoes fast evolution leading to clonal divergence. More than half of the genotypes of P. aeruginosa clone C isolates exclusively from CF lung infection exhibit large chromosomal inversions (LCIs). To analyse the impact of LCIs, as a novel mechanism of bacterial adaptation, the underlying molecular mechanism was examined. Analysis of inversion breakpoints suggested an IS6100-induced coupled insertion-inversion mechanism. A selective advantage was created by insertion of IS6100 into wbpM, pilB and mutS which leads to common CF phenotypes such as O-antigen and type IV pili deficiency and hypermutability. Speciation in bacteria is accompanied by LCIs. Therefore adaptation by LCIs that allows persistence of P. aeruginosa in the CF lung and species diversification in that new ecological niche can serve as a model for bacterial genome evolution.
Collapse
Affiliation(s)
- Andreas U Kresse
- Research Group 'Clonal Variability', Division of Cell- and Immune Biology, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
14
|
Campos E, Aguilar J, Baldoma L, Badia J. The gene yjfQ encodes the repressor of the yjfR-X regulon (ula), which is involved in L-ascorbate metabolism in Escherichia coli. J Bacteriol 2002; 184:6065-8. [PMID: 12374842 PMCID: PMC135402 DOI: 10.1128/jb.184.21.6065-6068.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in yjfQ allowed us to identify this gene as the regulator of the operon yjfS-X (ula operon), reported to be involved in L-ascorbate metabolism. Inactivation of this gene renders constitutive the expression of the ula operon, indicating that YjfQ acts as a repressor. We also demonstrate that this repressor regulates the nearby yjfR gene, which in this way constitutes a regulon with the ula operon.
Collapse
Affiliation(s)
- Evangelina Campos
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Hunt ML, Boucher DJ, Boyce JD, Adler B. In vivo-expressed genes of Pasteurella multocida. Infect Immun 2001; 69:3004-12. [PMID: 11292718 PMCID: PMC98254 DOI: 10.1128/iai.69.5.3004-3012.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2000] [Accepted: 02/14/2001] [Indexed: 11/20/2022] Open
Abstract
Pasteurella multocida is the causative agent of infectious diseases of economic importance such as fowl cholera, bovine hemorrhagic septicemia, and porcine atrophic rhinitis. However, knowledge of the molecular mechanisms and determinants that P. multocida requires for virulence and pathogenicity is still limited. To address this issue, we developed a genetic expression system, based on the in vivo expression technology approach first described by Mahan et al. (Science 259:686--688, 1993), to identify in vivo-expressed genes of P. multocida. Numerous genes, such as those encoding outer membrane lipoproteins, metabolic and biosynthetic enzymes, and a number of hypothetical proteins, were identified. These may prove to be useful targets for attenuating mutation and/or warrant further investigation for their roles in immunity and/or pathogenesis.
Collapse
Affiliation(s)
- M L Hunt
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
16
|
Abstract
Transposable elements (TEs) promote various chromosomal rearrangements more efficiently, and often more specifically, than other cellular processes(1-3). One explanation of such events is homologous recombination between multiple copies of a TE present in a genome. Although this does occur, strong evidence from a number of TE systems in bacteria, plants and animals suggests that another mechanism - alternative transposition - induces a large proportion of TE-associated chromosomal rearrangements. This paper reviews evidence for alternative transposition from a number of unrelated but structurally similar TEs. The similarities between alternative transposition and V(D)J recombination are also discussed, as is the use of alternative transposition as a genetic tool.
Collapse
Affiliation(s)
- Y H Gray
- Molecular Genetics and Evolution Group, Research School of Biological Sciences, Australian National University, ACT 2601, Canberra, Australia.
| |
Collapse
|
17
|
Ibañez E, Campos E, Baldoma L, Aguilar J, Badia J. Regulation of expression of the yiaKLMNOPQRS operon for carbohydrate utilization in Escherichia coli: involvement of the main transcriptional factors. J Bacteriol 2000; 182:4617-24. [PMID: 10913096 PMCID: PMC94634 DOI: 10.1128/jb.182.16.4617-4624.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yiaKLMNOPQRS (yiaK-S) gene cluster of Escherichia coli is believed to be involved in the utilization of a hitherto unknown carbohydrate which generates the intermediate L-xylulose. Transcription of yiaK-S as a single message from the unique promoter found upstream of yiaK is proven in this study. The 5' end has been located at 60 bp upstream from the ATG. Expression of the yiaK-S operon is controlled in the wild-type strain by a repressor encoded by yiaJ. No inducer molecule of the yiaK-S operon has been identified among over 80 carbohydrate or derivative compounds tested, the system being expressed only in a mutant strain lacking the YiaJ repressor. The lacZ transcriptional fusions in the genetic background of the mutant strain revealed that yiaK-S is modulated by the integration host factor and by the cyclic AMP (cAMP)-cAMP receptor protein (Crp) activator complex. A twofold increase in the induction was observed during anaerobic growth, which was independent of ArcA or Fnr. Gel mobility shift assays showed that the YiaJ repressor binds to a promoter fragment extending from -50 to +121. These studies also showed that the cAMP-Crp complex can bind to two different sites. The lacZ transcriptional fusions of different fragments of the promoter demonstrated that binding of cAMP-Crp to the Crp site 1, centered at -106, is essential for yiaK-S expression. The 5' end of the yiaJ gene was determined, and its promoter region was found to overlap with the divergent yiaK-S promoter. Expression of yiaJ is autogenously regulated and reduced by the binding of Crp-cAMP to the Crp site 1 of the yiaK-S promoter.
Collapse
Affiliation(s)
- E Ibañez
- Department of Biochemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|