1
|
Aderibigbe O, Wood LB, Margulies SS. Cyclosporine A Accelerates Neurorecovery Transcriptional Trajectory in a Swine Model of Diffuse Traumatic Brain Injury. Int J Mol Sci 2025; 26:3531. [PMID: 40331981 PMCID: PMC12026708 DOI: 10.3390/ijms26083531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Mild traumatic brain injury (mTBI) is a leading cause of morbidity in children with both short- and long-term neurological, cognitive, cerebrovascular, and emotional deficits. These deficits have been attributed to ongoing pathophysiological cascades that occur acutely and persist post-injury. Given our limited understanding of the transcriptional changes associated with these pathophysiological cascades, we studied formalin-fixed paraffin-embedded (FFPE) tissues from the frontal cortex (FC) and the hippocampus + amygdala (H&A) regions of swine (N = 40) after a sagittal rapid non-impact head rotation (RNR). We then sequenced RNA to define transcriptional changes at 1 day and 1 week after injury and investigated the protective influence of cyclosporine A (CsA) treatment. Differentially expressed genes (DEGs) were classified into five temporal patterns (Early, Transient, Persistent, Intensified, Delayed, or Late). DEGs were more abundant at 1 week than 1 day. Shared significant gene ontology annotations in both regions included terms associated with neuronal distress at 1 day and neurorecovery at 1 week. CsA (20 mg/kg/day) infused for 1 day (beginning at 6 h after injury) accelerated 466 DEGs in the FC and 2794 DEGs in the H&A, such that the CsA-treated transcriptional profile was associated with neurorecovery. Overall, our data reveal the effects of anatomic region and elapsed time on gene expression post-mTBI and motivate future studies of CsA treatment.
Collapse
Affiliation(s)
- Oluwagbemisola Aderibigbe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| | - Levi B. Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan S. Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| |
Collapse
|
2
|
Tsai CY, Lee CY, Chen JH, Chiang CK. Chronic Antibody-Mediated Rejection and Plasma Cell ER Stress: Opportunities and Challenges with Calcineurin Inhibitors. Int J Mol Sci 2025; 26:2711. [PMID: 40141353 PMCID: PMC11943340 DOI: 10.3390/ijms26062711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic alloantibody-mediated rejection (cAMR) remains a major challenge in transplant immunology, with no FDA-approved targeted therapies currently available. Despite advancements in cellular immunosuppression, effective strategies to mitigate alloantibody-mediated rejection are still lacking. This review provides a comprehensive overview of transplant rejection with a particular focus on the pathophysiology and therapeutic landscape of cAMR. We highlight the role of plasma cell-driven alloantibody production and its susceptibility to endoplasmic reticulum (ER) stress, a pathway with potential for therapeutic intervention. Special attention is given to calcineurin inhibitors (CNIs), which, beyond their well-established T-cell inhibitory effects, exhibit differential impacts on ER stress and plasma cell viability. By delineating the mechanistic differences between cyclosporine and tacrolimus in regulating ER stress responses, we propose potential therapeutic implications for optimizing cAMR management. This review underscores the need for innovative strategies targeting plasma cell biology to improve long-term transplant outcomes.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (C.-Y.T.); (J.-H.C.)
- Department of Medical Research, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei 100225, Taiwan;
- Organ Transplant Center, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jia-Huang Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (C.-Y.T.); (J.-H.C.)
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (C.-Y.T.); (J.-H.C.)
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
3
|
Hart KA, Kimura S. Pharmacologic Interventions to Immunologic and Immune-Mediated Conditions in Horses. Vet Clin North Am Equine Pract 2024; 40:307-339. [PMID: 38852015 DOI: 10.1016/j.cveq.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
Immunomodulators can stimulate, suppress, or regulate one or many aspects of the immune response. Use of a variety of immunostimulants, immunosuppressors, and anti-inflammatory drugs are described in horses, but the evidence supporting their efficacy is variable. Corticosteroids and nonsteroidal anti-inflammatory drugs are the best characterized immunomodulators in horses, but further study is needed to fully define their ideal dosing protocols and indications and to characterize the efficacy of other immunomodulators in equine medicine.
Collapse
Affiliation(s)
- Kelsey A Hart
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, 2200 College Station Road, Athens, GA 30602, USA.
| | - Shune Kimura
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, 2200 College Station Road, Athens, GA 30602, USA
| |
Collapse
|
4
|
Abderahmene A, Khalij Y, Moussa A, Ammar M, Ellouz A, Amor D, Abbes H, Ganouni MR, Sahtout W, Chouchene S, Omezzine A, Zellama D, Bouslama A. The pharmacogenetics of tacrolimus in renal transplant patients: association with tremors, new-onset diabetes and other clinical events. THE PHARMACOGENOMICS JOURNAL 2024; 24:3. [PMID: 38253626 DOI: 10.1038/s41397-024-00323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Our study is the first study to investigate the effect of SNPs in CYP3A5, CYP3A4, ABCB1 and POR genes on the incidence of tremors, nephrotoxicity, and diabetes mellitus. A total of 223 renal transplant patients receiving tacrolimus and mycophenolate mofetil (MMF) were recruited. Both adults and children patients participated in the study. Genotyping was performed using PROFLEX-PCR followed by RFLP. MPA and tacrolimus plasma concentrations were measured by immunoassay. The AUC0-12h of MMF was estimated by a Bayesian method. We found a statistically significant association between the CYP3A5*3 and CYP3A4*1B genotypes and the tacrolimus exposure. We found a lower occurrence of nephrotoxicity (p = 0.03), tremor (p = 0.01), and new-onset diabetes (p = 0.002) associated with CYP3A5*1 allele. The CYP3A4*1B allele was significantly associated with a lower occurrence of new-onset diabetes (p = 0.026). The CYP3A5*1 allele was significantly associated with an increased risk of acute and chronic rejection (p = 0.03 and p < 0.001, respectively). Our results support the usefulness of tacrolimus pharmacokinetics in pre-kidney transplant assessments.
Collapse
Affiliation(s)
- Amani Abderahmene
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia.
| | - Yassine Khalij
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Amira Moussa
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Meriam Ammar
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Amel Ellouz
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Dorra Amor
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Houwaida Abbes
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Mohamed Rayen Ganouni
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Wissal Sahtout
- Nephrology Department, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
| | - Saoussen Chouchene
- Hematology Department, Fattouma Bourguiba University Hospital, 5000, Monastir, Tunisia
| | - Asma Omezzine
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Dorsaf Zellama
- Nephrology Department, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
| | - Ali Bouslama
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| |
Collapse
|
5
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Tserunyan V, Finley SD. A systems and computational biology perspective on advancing CAR therapy. Semin Cancer Biol 2023; 94:34-49. [PMID: 37263529 PMCID: PMC10529846 DOI: 10.1016/j.semcancer.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
In the recent decades, chimeric antigen receptor (CAR) therapy signaled a new revolutionary approach to cancer treatment. This method seeks to engineer immune cells expressing an artificially designed receptor, which would endue those cells with the ability to recognize and eliminate tumor cells. While some CAR therapies received FDA approval and others are subject to clinical trials, many aspects of their workings remain elusive. Techniques of systems and computational biology have been frequently employed to explain the operating principles of CAR therapy and suggest further design improvements. In this review, we sought to provide a comprehensive account of those efforts. Specifically, we discuss various computational models of CAR therapy ranging in scale from organismal to molecular. Then, we describe the molecular and functional properties of costimulatory domains frequently incorporated in CAR structure. Finally, we describe the signaling cascades by which those costimulatory domains elicit cellular response against the target. We hope that this comprehensive summary of computational and experimental studies will further motivate the use of systems approaches in advancing CAR therapy.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Niu W, Zheng X, Li Z, Wu Z, Zhong M, Qiu X. Donor and recipient polymorphisms of MAPK signaling pathway genes influence post-transplant liver function in Chinese liver transplant patients taking tacrolimus. Gene X 2023; 857:147190. [PMID: 36632909 DOI: 10.1016/j.gene.2023.147190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Tacrolimus (TAC) is an immunosuppressive drug that is widely used for patients who underwent liver transplantation. In addition to inhibiting the action of calcineurin, TAC also exerts its immunosuppressive effects by interfering with mitogen activated protein kinase (MAPK) pathway. In this study, we investigated the impact of both recipient and donor genetic polymorphisms of MAPK kinase kinase (MAP3K) genes on clinical events in Han Chinese liver transplantation recipients taking TAC. Fifty-seven tag SNPs of 11 genes (MEKK1, MEKK2, MEKK4, MLK1, MLK3, ASK1, TAO1, TAO2, Tpl2, TAK1 and ZAK1) in the MAPK pathway were detected by MALDI-TOF MS assay in 175 TAC-treated liver transplant recipients. The associations of SNPs with incidence of acute rejection, TAC-induced acute nephrotoxicity, and post-transplantation liver and kidney function were explored using Kaplan-Meier survival analysis, Cox-proportional hazard model and linear mixed model, respectively. For the sites significantly associated with clinical events, the dual-luciferase reporter gene system was used to perform preliminary function verification. The results showed that (1) Donor-recipient combinational (D-R) MEKK1 rs62355944 and D-R MLK1 rs8006424 genotypes were significant influence factors of post-transplantation γ-glutamyl transpeptidase (GGT) level (P < 0.0001); (2) D-R MLK1 rs8006424 genotypes were found to significantly affect the alkaline phosphatase (ALP) level after transplantation (P < 0.0001). The results of the dual luciferase reporter gene system demonstrated that the luciferase activity of the pGL3-rs8006424A was significantly higher than that of pGL3-rs8006424G (3.47 ± 0.10 vs 2.97 ± 0.08, P = 0.002). Therefore, MEKK1 rs62355944 and MLK1 rs8006424 might serve as biomarkers to predict post-transplant liver function in liver transplant patients.
Collapse
Affiliation(s)
- Wanjie Niu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ziran Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhuo Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
8
|
Mo X, Chen X, Zeng H, Zheng W, Ieong C, Li H, Huang Q, Xu Z, Yang J, Liang Q, Liang H, Gao X, Huang M, Li J. Tacrolimus in the treatment of childhood nephrotic syndrome: Machine learning detects novel biomarkers and predicts efficacy. Pharmacotherapy 2023; 43:43-52. [PMID: 36521865 DOI: 10.1002/phar.2749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
STUDY OBJECTIVE The pharmacokinetics and pharmacodynamics of tacrolimus (TAC) vary greatly among individuals, hindering its precise utilization. Moreover, effective models for the early prediction of TAC efficacy in patients with nephrotic syndrome (NS) are lacking. We aimed to identify key factors affecting TAC efficacy and develop efficacy prediction models for childhood NS using machine learning algorithms. DESIGN This was an observational cohort study of patients with pediatric refractory NS. SETTING Guangzhou Women and Children's Medical Center between June 2013 and December 2018. PATIENTS 203 patients with pediatric refractory NS were used for model generation and 35 patients were used for model validation. INTERVENTION All patients regularly received double immunosuppressive therapy comprising TAC and low-dose prednisone or methylprednisolone. In this observational cohort study of 203 pediatric patients with refractory NS, clinical and genetic variables, including single-nucleotide polymorphism (SNPs), were identified. TAC efficacy was evaluated 3 months after administration according to two different evaluation criteria: response or non-response (Group 1) and complete remission, partial remission, or non-remission (Group 2). MEASUREMENTS Logistic regression, extremely random trees, gradient boosting decision trees, random forest, and extreme gradient boosting algorithms were used to develop and validate the models. Prediction models were validated among a cohort of 35 patients with NS. MAIN RESULTS The random forest models performed best in both groups, and the area under the receiver operating characteristics curve of these two models was 80.7% (Group 1) and 80.3% (Group 2). These prediction models included urine erythrocyte count before administration, steroid types, and eight SNPs (ITGB4 rs2290460, TRPC6 rs3824934, CTGF rs9399005, IL13 rs20541, NFKBIA rs8904, NFKBIA rs8016947, MAP3K11 rs7946115, and SMARCAL1 rs11886806). CONCLUSIONS Two pre-administration models with good predictive performance for TAC response of patients with NS were developed and validated using machine learning algorithms. These accurate models could assist clinicians in predicting TAC efficacy in pediatric patients with NS before utilization to avoid treatment failure or adverse effects.
Collapse
Affiliation(s)
- Xiaolan Mo
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiujuan Chen
- Department of Medical Big Data Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huasong Zeng
- Division of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zheng
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chifong Ieong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huixian Li
- Department of Medical Big Data Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiongbo Huang
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zichuan Xu
- Division of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinlian Yang
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qianying Liang
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiying Liang
- Department of Medical Big Data Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xia Gao
- Division of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiali Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Padjasek M, Qasem B, Cisło-Pakuluk A, Marycz K. Cyclosporine A Delivery Platform for Veterinary Ophthalmology—A New Concept for Advanced Ophthalmology. Biomolecules 2022; 12:biom12101525. [PMID: 36291734 PMCID: PMC9599649 DOI: 10.3390/biom12101525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclosporine A (CsA) is a selective and reversible immunosuppressant agent that is widely used as a medication for a wide spectrum of diseases in humans such as graft versus host disease, non-infectious uveitis, rheumatoid arthritis, psoriasis, and atopic dermatitis. Furthermore, the CsA is used to treat keratoconjunctivitis sicca, chronic superficial keratitis, immune-mediated keratitis and equine recurrent uveitis in animals. The selective activity of Cyclosporine A (CsA) was demonstrated to be an immunomodulation characteristic of T-lymphocyte proliferation and inhibits cytokine gene expression. Moreover, the lipophilic characteristics with poor bioavailability and low solubility in water, besides the side effects, force the need to develop new formulations and devices that will provide adequate penetration into the anterior and posterior segments of the eye. This review aims to summarize the effectiveness and safety of cyclosporine A delivery platforms in veterinary ophthalmology.
Collapse
|
10
|
Choi JO, Ham JH, Hwang SS. RNA Metabolism in T Lymphocytes. Immune Netw 2022; 22:e39. [PMID: 36381959 PMCID: PMC9634142 DOI: 10.4110/in.2022.22.e39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.
Collapse
Affiliation(s)
- Jin Ouk Choi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Hyeon Ham
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Seok Hwang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea.,Chronic Intractable Disease Systems Medicine Research Center, Institute of Genetic Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
11
|
Upadhyai P, Shenoy PU, Banjan B, Albeshr MF, Mahboob S, Manzoor I, Das R. Exome-Wide Association Study Reveals Host Genetic Variants Likely Associated with the Severity of COVID-19 in Patients of European Ancestry. Life (Basel) 2022; 12:1300. [PMID: 36143338 PMCID: PMC9504138 DOI: 10.3390/life12091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Host genetic variability plays a pivotal role in modulating COVID-19 clinical outcomes. Despite the functional relevance of protein-coding regions, rare variants located here are less likely to completely explain the considerable numbers of acutely affected COVID-19 patients worldwide. Using an exome-wide association approach, with individuals of European descent, we sought to identify common coding variants linked with variation in COVID-19 severity. Herein, cohort 1 compared non-hospitalized (controls) and hospitalized (cases) individuals, and in cohort 2, hospitalized subjects requiring respiratory support (cases) were compared to those not requiring it (controls). 229 and 111 variants differed significantly between cases and controls in cohorts 1 and 2, respectively. This included FBXO34, CNTN2, and TMCC2 previously linked with COVID-19 severity using association studies. Overall, we report SNPs in 26 known and 12 novel candidate genes with strong molecular evidence implicating them in the pathophysiology of life-threatening COVID-19 and post-recovery sequelae. Of these few notable known genes include, HLA-DQB1, AHSG, ALOX5AP, MUC5AC, SMPD1, SPG7, SPEG,GAS6, and SERPINA12. These results enhance our understanding of the pathomechanisms underlying the COVID-19 clinical spectrum and may be exploited to prioritize biomarkers for predicting disease severity, as well as to improve treatment strategies in individuals of European ancestry.
Collapse
Affiliation(s)
- Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Pooja U. Shenoy
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Bhavya Banjan
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohammed F. Albeshr
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Irfan Manzoor
- Department of Biology, The College of Arts and Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
12
|
Jesus JBD, Sena CBCD, Macchi BDM, do Nascimento JLM. Cyclosporin A as an Alternative Neuroimmune Strategy to Control Neurites and Recover Neuronal Tissues in Leprosy. Neuroimmunomodulation 2022; 29:15-20. [PMID: 34350891 DOI: 10.1159/000517993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/21/2020] [Indexed: 11/19/2022] Open
Abstract
Leprosy, also known as Hansen's disease, continues to have a substantial impact on infectious diseases throughout the world. Leprosy is a chronic granulomatous infection caused by Mycobacterium leprae and shows a wide clinical and immunopathological spectrum related to the immune response of the host. This disease affects the skin and other internal organs with a predilection to infect Schwann cells, which play an active role during axonal degeneration, affecting peripheral nerves and promoting neurological damage. This chronic inflammation influences immune function, leading to neuroimmune disorders. Leprosy is also associated with neuroimmune reactions, including type 1 (reverse) and type 2 (erythema nodosum leprosum) reactions, which are immune-mediated inflammatory complications that can occur during the disease and appear to worsen dramatically; these complications are the main concerns of patients. The reactions may induce neuritis and neuropathic pain that progressively worsen with irreversible deformity and disabilities responsible for the immunopathological damage and glial/neuronal death. However, the neuronal damage is not always associated with the reactional episode. Also, the efficacy in the treatment of reactions remains low because of the nonexistence of a specific treatment and missing informations about the immunopathogenesis of the reactional episode. There is increasing evidence that peripheral neuron dysfunction strongly depends on the activity of neurotrophins. The most important neurotrophin in leprosy is nerve growth factor (NGF), which is decreased in the course of leprosy, as well as the presence of autoantibodies against NGF in all clinical forms of leprosy and neuroimmune reactions. The levels of autoantibodies against NGF are decreased by the immunomodulatory activity of cyclosporin A, which mainly controls pain and improves motor function and sensitivity. Therefore, the suppression of anti-NGF and the regulation of NGF levels can be attractive targets for immunomodulatory treatment and for controlling the neuroimmune reactions of leprosy, although further studies are needed to clarify this point.
Collapse
Affiliation(s)
- Jessica Batista de Jesus
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Chubert Bernardo Castro de Sena
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT - NIM), Rio de Janeiro, Brazil
| | - Barbarella de Matos Macchi
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT - NIM), Rio de Janeiro, Brazil
| | - José Luiz Martins do Nascimento
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT - NIM), Rio de Janeiro, Brazil
- Graduation Program in Pharmaceutical Science, Federal University of Amapá, Macapá, Brazil
| |
Collapse
|
13
|
Yu L, Yu C, Dong H, Mu Y, Zhang R, Zhang Q, Liang W, Li W, Wang X, Zhang L. Recent Developments About the Pathogenesis of Dry Eye Disease: Based on Immune Inflammatory Mechanisms. Front Pharmacol 2021; 12:732887. [PMID: 34421626 PMCID: PMC8375318 DOI: 10.3389/fphar.2021.732887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Dry eye disease is a common and frequently occurring ophthalmology with complex and diverse causes, and its incidence is on the upward trend. The pathogenesis of DED is still completely clear. However, the immune response based on inflammation has been recognized as the core basis of this disease. In this review, we will systematically review the previous research on the treatment of DED in immune inflammation, analyze the latest views and research hotspots, and provide reference for the prevention and treatment of DED.
Collapse
Affiliation(s)
- Lifei Yu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunjing Yu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - He Dong
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanan Mu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiaosi Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Liang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenjia Li
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Liang L, Lin R, Xie Y, Lin H, Shao F, Rui W, Chen H. The Role of Cyclophilins in Inflammatory Bowel Disease and Colorectal Cancer. Int J Biol Sci 2021; 17:2548-2560. [PMID: 34326693 PMCID: PMC8315013 DOI: 10.7150/ijbs.58671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclophilins (Cyps) is a kind of ubiquitous protein family in organisms, which has biological functions such as promoting intracellular protein folding and participating in the pathological processes of inflammation and tumor. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are two common intestinal diseases, but the etiology and pathogenesis of these two diseases are still unclear. IBD and CRC are closely associated, IBD has always been considered as one of the main risks of CRC. However, the role of Cyps in these two related intestinal diseases is rarely studied and reported. In this review, the expression of CypA, CypB and CypD in IBD, especially ulcerative colitis (UC), and CRC, their relationship with the development of these two intestinal diseases, as well as the possible pathogenesis, were briefly summarized, so as to provide modest reference for clinical researches and treatments in future.
Collapse
Affiliation(s)
- Lifang Liang
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Rongxiao Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Ying Xie
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Huaqing Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wen Rui
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| |
Collapse
|
15
|
Zhang M, Miura T, Suzuki S, Chiyotanda M, Tanaka S, Sugiyama K, Kawashima H, Hirano T. Vitamin K2 Suppresses Proliferation and Inflammatory Cytokine Production in Mitogen-Activated Lymphocytes of Atopic Dermatitis Patients through the Inhibition of Mitogen-Activated Protein Kinases. Biol Pharm Bull 2021; 44:7-17. [PMID: 33390552 DOI: 10.1248/bpb.b20-00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitamin K2 is suggested to have a suppressive effect on the peripheral blood mononuclear cells (PBMCs) of pediatric atopic dermatitis patients. We examined the molecular targets of vitamin K2 to suppress proliferation and cytokine production in T-cell mitogen-activated PBMCs of atopic dermatitis patients from the viewpoint of mitogen-activated protein kinase signaling molecules. The study population included 16 pediatric vitamin K2 patients and 21 healthy subjects. The effect of vitamin K2 on concanavalin A-activated PBMC proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell counting assays. T-helper (Th)1/Th2/Th17 cytokine profiles in plasma and PBMC-culture supernatants were analyzed by a cytometric beads array assay. Mitogen-activated protein kinase signaling molecules in concanavalin A-activated PBMCs were examined by enzyme-linked immunosorbent assay (ELISA) assays. At 10-100 µM, vitamin K2 significantly suppressed the proliferation of mitogen-activated PBMCs derived from atopic dermatitis patients and healthy subjects (p < 0.05). The interleukin (IL)-10 concentrations in plasma and the PBMC culture supernatants of atopic dermatitis patients were significantly higher than those of healthy subjects (p < 0.05). The IL-2 concentrations in the culture supernatants of atopic dermatitis PBMCs were significantly lower than those of healthy PBMCs (p < 0.05). Vitamin K2 significantly inhibited the IL-17A, IL-10, and tumor necrosis factor α (TNF-α) production (p < 0.05), and increased the IL-2 production (p < 0.01) in the culture supernatant of atopic dermatitis PBMCs. At 10-100 µM, vitamin K2 markedly decreased the of Mek1, extracellular signal-regulated kinases (ERK)1/2 mitogen-activated protein kinase, and SAPK/c-Jun N-terminal kinase (JNK) expression in atopic dermatitis PBMCs (p < 0.05). Vitamin K2 is suggested to attenuate activated T-cell immunity in atopic dermatitis patients through the inhibition of mitogen-activated protein kinase-Mek1-ERK1/2 and SAPK/JNK signaling pathways.
Collapse
Affiliation(s)
- Meiyu Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Experimental Research Center, China Academy of Chinese Medical Sciences
| | - Taro Miura
- Department of Pediatrics, Tokyo Medical University Hachioji Medical Center
| | - Shunsuke Suzuki
- Department of Pediatrics, Tokyo Medical University Hachioji Medical Center
| | - Masako Chiyotanda
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Kentaro Sugiyama
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
16
|
Periman LM, Mah FS, Karpecki PM. A Review of the Mechanism of Action of Cyclosporine A: The Role of Cyclosporine A in Dry Eye Disease and Recent Formulation Developments. Clin Ophthalmol 2020; 14:4187-4200. [PMID: 33299295 PMCID: PMC7719434 DOI: 10.2147/opth.s279051] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disease of the ocular surface and tear film that has gained awareness as a public health problem. Characteristics of DED include tear film instability, hyperosmolarity, and ocular surface inflammation, which can occur independently or may be a sequela of numerous ocular diseases, ocular surgery or contact lens wear. Much has been learned about the impact of the disease to help affected individuals who report symptoms of poor vision, pain, and tearing. Recently, new research highlights the importance of the role of ocular surface inflammation and damage in DED-leading to a vicious cycle of inflammation as well as loss of tear film homeostasis. DED immunopathophysiology is characterized by four stages: initiation, amplification, recruitment, and re-initiation. Cyclosporine is proven to be a valuable ophthalmic therapeutic for DED through its immunomodulatory actions and regulation of the adaptive immune response. Cyclosporine mechanism of action is well described in the published literature and the myriad of benefits in all four stages lend a broad-based immunomodulatory function particularly suitable for addressing DED. Furthermore, cyclosporine has unique goblet cell density improvement capabilities as well as anti-apoptotic properties. Topical formulations of cyclosporine are centered around addressing the highly lipophilic nature of the molecule. The poor aqueous solubility of cyclosporine traditionally presented technical challenges in drug delivery to the ocular surface. Newer formulations such as cationic emulsions and nanomicellar aqueous solutions address formulation, tissue concentration, and drug delivery challenges.
Collapse
|
17
|
Sauerhering L, Kupke A, Meier L, Dietzel E, Hoppe J, Gruber AD, Gattenloehner S, Witte B, Fink L, Hofmann N, Zimmermann T, Goesmann A, Nist A, Stiewe T, Becker S, Herold S, Peteranderl C. Cyclophilin inhibitors restrict Middle East respiratory syndrome coronavirus via interferon-λ in vitro and in mice. Eur Respir J 2020; 56:13993003.01826-2019. [PMID: 32616594 PMCID: PMC7331652 DOI: 10.1183/13993003.01826-2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/03/2020] [Indexed: 01/08/2023]
Abstract
While severe coronavirus infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), cause lung injury with high mortality rates, protective treatment strategies are not approved for clinical use. We elucidated the molecular mechanisms by which the cyclophilin inhibitors cyclosporin A (CsA) and alisporivir (ALV) restrict MERS-CoV to validate their suitability as readily available therapy in MERS-CoV infection. Calu-3 cells and primary human alveolar epithelial cells (hAECs) were infected with MERS-CoV and treated with CsA or ALV or inhibitors targeting cyclophilin inhibitor-regulated molecules including calcineurin, nuclear factor of activated T-cells (NFATs) or mitogen-activated protein kinases. Novel CsA-induced pathways were identified by RNA sequencing and manipulated by gene knockdown or neutralising antibodies. Viral replication was quantified by quantitative real-time PCR and 50% tissue culture infective dose. Data were validated in a murine MERS-CoV infection model. Both CsA and ALV reduced MERS-CoV titres and viral RNA replication in Calu-3 cells and hAECs, improving epithelial integrity. While neither calcineurin nor NFAT inhibition reduced MERS-CoV propagation, blockade of c-Jun N-terminal kinase diminished infectious viral particle release but not RNA accumulation. Importantly, CsA induced interferon regulatory factor 1 (IRF1), a pronounced type III interferon (IFNλ) response and expression of antiviral genes. Downregulation of IRF1 or IFNλ increased MERS-CoV propagation in the presence of CsA. Importantly, oral application of CsA reduced MERS-CoV replication in vivo, correlating with elevated lung IFNλ levels and improved outcome. We provide evidence that cyclophilin inhibitors efficiently decrease MERS-CoV replication in vitro and in vivo via upregulation of inflammatory antiviral cell responses, in particular IFNλ. CsA might therefore represent a promising candidate for treating MERS-CoV infection. The cyclophilin inhibitors cyclosporin A and alisporivir activate host innate immunity by induction of interferon-λ via activation of IRF1 in human lung epithelial cells and in vivo, resulting in a significant inhibition of MERS-CoVhttps://bit.ly/37gzIBH
Collapse
Affiliation(s)
- Lucie Sauerhering
- Institute of Virology, Philipps University of Marburg, Member of the German Center for Infection Research (DZIF), TTU Emerging Infections, Marburg, Germany
| | - Alexandra Kupke
- Institute of Virology, Philipps University of Marburg, Member of the German Center for Infection Research (DZIF), TTU Emerging Infections, Marburg, Germany
| | - Lars Meier
- Institute of Virology, Philipps University of Marburg, Member of the German Center for Infection Research (DZIF), TTU Emerging Infections, Marburg, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps University of Marburg, Member of the German Center for Infection Research (DZIF), TTU Emerging Infections, Marburg, Germany
| | - Judith Hoppe
- Dept of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Achim D Gruber
- Dept of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | | | - Biruta Witte
- Dept of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Ludger Fink
- Institut für Pathologie und Zytologie, Wetzlar, Germany
| | - Nina Hofmann
- Bioinformatics and System Biology, University of Giessen, Giessen, Germany
| | - Tobias Zimmermann
- Bioinformatics and System Biology, University of Giessen, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and System Biology, University of Giessen, Giessen, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University of Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University of Marburg, Marburg, Germany.,Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Member of the German Center for Infection Research (DZIF), TTU Emerging Infections, Marburg, Germany.,Equal contribution
| | - Susanne Herold
- Dept of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Equal contribution
| | - Christin Peteranderl
- Dept of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Equal contribution
| |
Collapse
|
18
|
Affiliation(s)
- Sofia Waissbluth
- Department of Otolaryngology, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Cortez MA, Masrorpour F, Ivan C, Zhang J, Younes AI, Lu Y, Estecio MR, Barsoumian HB, Menon H, Caetano MDS, Ramapriyan R, Schoenhals JE, Wang X, Skoulidis F, Wasley MD, Calin G, Hwu P, Welsh JW. Bone morphogenetic protein 7 promotes resistance to immunotherapy. Nat Commun 2020; 11:4840. [PMID: 32973129 PMCID: PMC7519103 DOI: 10.1038/s41467-020-18617-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
Immunotherapies revolutionized cancer treatment by harnessing the immune system to target cancer cells. However, most patients are resistant to immunotherapies and the mechanisms underlying this resistant is still poorly understood. Here, we report that overexpression of BMP7, a member of the TGFB superfamily, represents a mechanism for resistance to anti-PD1 therapy in preclinical models and in patients with disease progression while on immunotherapies. BMP7 secreted by tumor cells acts on macrophages and CD4+ T cells in the tumor microenvironment, inhibiting MAPK14 expression and impairing pro-inflammatory responses. Knockdown of BMP7 or its neutralization via follistatin in combination with anti-PD1 re-sensitizes resistant tumors to immunotherapies. Thus, we identify the BMP7 signaling pathway as a potential immunotherapeutic target in cancer. The mechanisms underlying resistance to immunotherapy are still poorly understood. Here, the authors show that BMP7, a molecule part of the TGF-beta superfamily, suppresses proinflammatory antitumor responses and may represent a target for overcoming resistance to PD1 inhibitors.
Collapse
Affiliation(s)
- Maria Angelica Cortez
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Fatemeh Masrorpour
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed I Younes
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- Epigenetic and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos R Estecio
- Epigenetic and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hampartsoum B Barsoumian
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hari Menon
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mauricio da Silva Caetano
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rishab Ramapriyan
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan E Schoenhals
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaohong Wang
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ferdinandos Skoulidis
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark D Wasley
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Calin
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James W Welsh
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK Signaling in Stem Cell Self-Renewal and Differentiation. Int J Mol Sci 2020; 21:E2613. [PMID: 32283767 PMCID: PMC7177258 DOI: 10.3390/ijms21072613] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
C-JUN N-terminal kinases (JNKs), which belong to the mitogen-activated protein kinase (MAPK) family, are evolutionarily conserved kinases that mediate cell responses to various types of extracellular stress insults. They regulate physiological processes such as embryonic development and tissue regeneration, playing roles in cell proliferation and programmed cell death. JNK signaling is also involved in tumorigenesis and progression of several types of malignancies. Recent studies have shown that JNK signaling has crucial roles in regulating the traits of cancer stem cells (CSCs). Here we describe the functions of the JNK signaling pathway in self-renewal and differentiation, which are essential features of various types of stem cells, such as embryonic, induced pluripotent, and adult tissue-specific stem cells. We also review current knowledge of JNK signaling in CSCs and discuss its role in maintaining the CSC phenotype. A better understanding of JNK signaling as an essential regulator of stemness may provide a basis for the development of regenerative medicine and new therapeutic strategies against malignant tumors.
Collapse
Affiliation(s)
- Takashi Semba
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel Sammons
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Broen JCA, van Laar JM. Mycophenolate mofetil, azathioprine and tacrolimus: mechanisms in rheumatology. Nat Rev Rheumatol 2020; 16:167-178. [PMID: 32055040 DOI: 10.1038/s41584-020-0374-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 02/08/2023]
Abstract
The introduction of biologic DMARDs into rheumatology has resulted in a substantial reduction of the burden of many rheumatic diseases. In the slipstream of the success achieved with these biologic DMARDs, some conventional immunosuppressive drugs have also found use in new indications. Notably, mycophenolate mofetil, azathioprine and tacrolimus have made their way from solid organ transplantation drugs to become useful assets in rheumatology practice. Mycophenolate mofetil and azathioprine inhibit the purine pathway and subsequently diminish cell proliferation. Both drugs have a pivotal role in the treatment of various rheumatic diseases, including lupus nephritis. Tacrolimus inhibits lymphocyte activation by inhibiting the calcineurin pathway. Mycophenolate mofetil and tacrolimus are, among other indications, increasingly being recognized as useful drugs in the treatment of interstitial lung disease in systemic rheumatic diseases and skin fibrosis in systemic sclerosis. A broad array of trials with mycophenolate mofetil, azathioprine and/or tacrolimus are ongoing within the field of rheumatology that might provide further novel avenues for the use of these drugs. In this Review, we discuss the historical perspective, pharmacodynamics, clinical indications and novel avenues for mycophenolate mofetil, azathioprine and tacrolimus in rheumatology.
Collapse
Affiliation(s)
- Jasper C A Broen
- Regional Rheumatology Center, Máxima Medical Center, Eindhoven and Veldhoven, Eindhoven, the Netherlands
| | - Jacob M van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Wu B, Tong J, Ran Z. Tacrolimus Therapy in Steroid-Refractory Ulcerative Colitis: A Review. Inflamm Bowel Dis 2020; 26:24-32. [PMID: 30980713 DOI: 10.1093/ibd/izz068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Indexed: 12/25/2022]
Abstract
Inflammatory bowel diseases are known for a chronic inflammatory process of the gastrointestinal tract and include Crohn's disease and ulcerative colitis (UC). Patients who are dependent on or resistant to corticosteroids account for about 20% of severe UC patients. Tacrolimus is a calcineurin inhibitor that has recently been used in the treatment of steroid-refractory ulcerative colitis. Tacrolimus has been demonstrated to have remarkable therapeutic efficacy in UC patients, without increased risk of severe adverse effects such as induction of remission and maintenance therapy. This article reviews the mechanism of action, pharmacogenetics, efficacy, and safety of tacrolimus for patients with steroid-refractory ulcerative colitis.
Collapse
Affiliation(s)
- Biyu Wu
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Jinglu Tong
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Zhihua Ran
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
23
|
Patel D, Wairkar S. Recent advances in cyclosporine drug delivery: challenges and opportunities. Drug Deliv Transl Res 2019; 9:1067-1081. [DOI: 10.1007/s13346-019-00650-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front Endocrinol (Lausanne) 2019; 10:198. [PMID: 30984115 PMCID: PMC6449726 DOI: 10.3389/fendo.2019.00198] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Pregnancy involves a complex interplay between maternal neuroendocrine and immunological systems in order to establish and sustain a growing fetus. It is thought that the uterus at pregnancy transitions from quiescent to laboring state in response to interactions between maternal and fetal systems at least partly via altered neuroendocrine signaling. Progesterone (P4) is a vital hormone in maternal reproductive tissues and immune cells during pregnancy. As such, P4 is widely used in clinical interventions to improve the chance of embryo implantation, as well as reduce the risk of miscarriage and premature labor. Here we review research to date that focus on the pathways through which P4 mediates its actions on both the maternal reproductive and immune system. We will dissect the role of P4 as a modulator of inflammation, both systemic and intrinsic to the uterus, during human pregnancy and labor.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Pei F. Lai
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Hu S, Chen CW, Chen ST, Tsui KH, Tang TK, Cheng HT, Hwang GS, Yu JW, Li YC, Wang PS, Wang SW. Inhibitory effect of berberine on interleukin-2 secretion from PHA-treated lymphocytic Jurkat cells. Int Immunopharmacol 2018; 66:267-273. [PMID: 30502647 DOI: 10.1016/j.intimp.2018.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Berberine is an isoquinoline alkaloid isolated from herb plants, such as Cortex phellodendri (Huangbai) and Rhizoma coptidis (Huanglian). Huanglian and Huangbai have been used as "heat-removing" agents. In addition, berberine has been reported to exert anti-inflammatory effect both in vivo and in vitro, where mitogen-activated protein kinase (MAPK) and cyclooxygenase-2 (COX-2) expressions are critically implicated. We herein tested the hypothesis that berberine exerts an anti-inflammatory effect through MAPK and COX-2 signaling pathway in T-cell acute lymphoblastic leukemia (T-ALL). In Jurkat cells, we found that PHA exposure caused elevation on interleukin-2 (IL-2) production in a time-dependent manner. PHA-stimulated reactions were steeply suppressed by berberine, such as IL-2 mRNA expression and protein secretion. However, berberine did not exert any cytotoxic effect at doses of 40 μg/ml. In addition, the possible molecular mechanism of anti-inflammation effect of berberine could be the inhibition of PHA-evoked phosphorylation of p38, since c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinase (ERK) expressions did not alter. Consistent with above results, berberine inhibition on PHA-induced IL-2 secretion could be reversed by treatment of SB203580, a specific inhibitor of p38-MAPK. Interestingly, upregulation of PHA-induced COX-2 expression was also observed following berberine treatment of Jurkat cells. Furthermore, flow cytometry analysis showed berberine-induced cell cycle arrest at G1 phase after PHA stimulation and decreased percentage of G2/M phase. In conclusion, our study demonstrated that the anti-inflammatory effect of berberine largely potentially results from its ability to attenuate p38 MAPK expression, and does not exclude a positive action of berberine on cell cycle arrest. These results provide an innovative medicine strategy to against or treat T-ALL patients.
Collapse
Affiliation(s)
- Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chien-Wei Chen
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | - Ke-Hung Tsui
- Department of Urology, Division of Geriatric Urology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan, Republic of China; Bioinformation Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Tswen-Kei Tang
- Department of Nursing, National Quemoy University, Kinmen County, Taiwan, Republic of China
| | - Hao-Tsai Cheng
- Division of Gastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan, Republic of China; Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Guey-Shyang Hwang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China; Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
| | - Ju-Wen Yu
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Yi-Chieh Li
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Paulus S Wang
- Medical Center of Aging Research, China Medical University Hospital, Taichung, Taiwan, Republic of China; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan, Republic of China; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.
| | - Shyi-Wu Wang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan, Republic of China.
| |
Collapse
|
26
|
Jakhar R, Sharma C, Paul S, Kang SC. Immunosuppressive potential of astemizole against LPS activated T cell proliferation and cytokine secretion in RAW macrophages, zebrafish larvae and mouse splenocytes by modulating MAPK signaling pathway. Int Immunopharmacol 2018; 65:268-278. [PMID: 30359933 DOI: 10.1016/j.intimp.2018.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
In this study, the immunomodulatory effects of astemizole (AST) against lipopolysaccharide (LPS) mediated T cell proliferation and induction of inflammation in RAW macrophages (in vitro), and zebrafish larvae (in vivo) were determined. AST significantly suppressed the phagocytic activity of macrophages (3.303 ± 0.115) and inhibited lysosomal enzyme secretion (13.27 ± 2.52) induced by LPS (100 ng/ml). Moreover, AST subdued the morphological deformities such as yolk sac edema (YSE) and spinal curvature curving (SC) by inhibiting ROS generation in zebrafish larvae 24 h after microinjection of LPS (0.5 mg/ml). AST was also shown to inhibit the production of the major cytokines TNF-α (150.8 ± 0.6), IL-1β (276.5 ± 1.6), and PGE2 (194.6 ± 0.6) pg/ml in RAW macrophages. It also subdued the ROS induced iNOS and COX-2 generated in response to LPS mediated immune dysfunctions in zebrafish larvae. These results suggested the immunosuppression effect of AST. Furthermore, induction of immune-suppression due to AST resulted in significant down-regulation of innate immunity directed by MAPK (p38, ERK and JNK), which was found to be associated with decreased production of acute inflammatory mediators both in vitro and in vivo. To confirm its activity, splenocytes were prepared using BALB/c mice and a mitogen activated splenocyte proliferation assay was also performed. Our findings suggest that AST has the ability to inhibit T cell proliferation and cytokine secretion both in vitro and in vivo by interfering with MAPK signaling pathway. Taken together, our results showed the potential of AST as a countermeasure to immune dysfunction and suggest its use as immunosuppressant compound in inflammatory disease.
Collapse
Affiliation(s)
- Rekha Jakhar
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Chanchal Sharma
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Souren Paul
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
27
|
Bendickova K, Tidu F, Fric J. Calcineurin-NFAT signalling in myeloid leucocytes: new prospects and pitfalls in immunosuppressive therapy. EMBO Mol Med 2018; 9:990-999. [PMID: 28606994 PMCID: PMC5538425 DOI: 10.15252/emmm.201707698] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Myeloid leucocytes mediate host protection against infection and critically regulate inflammatory responses in body tissues. Pattern recognition receptor signalling is crucial for myeloid cell responses to pathogens, but growing evidence suggests an equally potent role for Calcineurin–NFAT signalling in control of myeloid cell function. All major subsets of myeloid leucocytes employ Calcineurin–NFAT signalling during immune responses to pathogens and/or tissue damage, but the influence this pathway exerts on pathogen clearance and host susceptibility to infection is not fully understood. Recent data from experimental models indicate that Calcineurin‐NFAT signalling is essential for infection control, and calcineurin inhibitors used in transplantation medicine (including cyclosporine A and tacrolimus) are now being tested for efficacy in a diverse range of inflammatory conditions and autoimmune pathologies. Efforts to repurpose calcineurin inhibitor drugs for new therapeutic applications may yield rapid improvements in clinical outcomes, but the potential impact of these compounds on myeloid cell function in treated patients is largely unknown. Here we discuss Calcineurin–NFAT control of myeloid leucocyte function in the context of recent therapeutic developments and ongoing clinical studies.
Collapse
Affiliation(s)
- Kamila Bendickova
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Federico Tidu
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Fric
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
28
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
29
|
Kannegieter NM, Hesselink DA, Dieterich M, de Graav GN, Kraaijeveld R, Baan CC. Differential T Cell Signaling Pathway Activation by Tacrolimus and Belatacept after Kidney Transplantation: Post Hoc Analysis of a Randomised-Controlled Trial. Sci Rep 2017; 7:15135. [PMID: 29123208 PMCID: PMC5680251 DOI: 10.1038/s41598-017-15542-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Pharmacokinetic immunosuppressive drug monitoring poorly correlates with clinical outcomes after solid organ transplantation. A promising method for pharmacodynamic monitoring of tacrolimus (TAC) in T cell subsets of transplant recipients might be the measurement of (phosphorylated) p38MAPK, ERK1/2 and Akt (activated downstream of the T cell receptor) by phospho-specific flow cytometry. Here, blood samples from n = 40 kidney transplant recipients (treated with either TAC-based or belatacept (BELA)-based immunosuppressive drug therapy) were monitored before and throughout the first year after transplantation. After transplantation and in unstimulated samples, p-p38MAPK and p-Akt were inhibited in CD8+ T cells and p-ERK in CD4+ T cells but only in patients who received TAC-based therapy. After activation with PMA/ionomycin, p-p38MAPK and p-AKT were significantly inhibited in CD4+ and CD8+ T cells when TAC was given, compared to pre-transplantation. Eleven BELA-treated patients had a biopsy-proven acute rejection, which was associated with higher p-ERK levels in both CD4+ and CD8+ T cells compared to patients without rejection. In conclusion, phospho-specific flow cytometry is a promising tool to pharmacodynamically monitor TAC-based therapy. In contrast to TAC-based therapy, BELA-based immunosuppression does not inhibit key T cell activation pathways which may contribute to the high rejection incidence among BELA-treated transplant recipients.
Collapse
Affiliation(s)
- Nynke M Kannegieter
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gretchen N de Graav
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Xiang QD, Yu Q, Wang H, Zhao MM, Liu SY, Nie SP, Xie MY. Immunomodulatory Activity of Ganoderma atrum Polysaccharide on Purified T Lymphocytes through Ca 2+/CaN and Mitogen-Activated Protein Kinase Pathway Based on RNA Sequencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5306-5315. [PMID: 28608696 DOI: 10.1021/acs.jafc.7b01763] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Our previous study has demonstrated that Ganoderma atrum polysaccharide (PSG-1) has immunomodulatory activity on spleen lymphocytes. However, how PSG-1 exerts its effect on purified lymphocytes is still obscure. Thus, this study aimed to investigate the immunomodulatory activity of PSG-1 on purified T lymphocytes and further elucidate the underlying mechanism based on RNA sequencing (RNA-seq). Our results showed that PSG-1 promoted T lymphocytes proliferation and increased the production of IL-2, IFN-γ, and IL-12. Meanwhile, RNA-seq analysis found 394 differentially expressed genes. KEGG pathway analysis identified 20 significant canonical pathways and seven biological functions. Furthermore, PSG-1 elevated intracellular Ca2+ concentration and calcineurin (CaN) activity and raised the p-ERK, p-JNK, and p-p38 expression levels. T lymphocytes proliferation and the production of IL-2, IFN-γ, and IL-12 were decreased by the inhibitors of calcium channel and mitogen-activated protein kinases (MAPKs). These results indicated that PSG-1 possesses immunomodulatory activity on purified T lymphocytes, in which Ca2+/CaN and MAPK pathways play essential roles.
Collapse
Affiliation(s)
- Quan-Dan Xiang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | - Hui Wang
- Institute of Life Science & College of Life Sciences, Nanchang University , Nanchang 330031, China
| | - Ming-Ming Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | - Shi-Yu Liu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| |
Collapse
|
31
|
Salvador-Bernáldez M, Mateus SB, Del Barco Barrantes I, Arthur SC, Martínez-A C, Nebreda AR, Salvador JM. p38α regulates cytokine-induced IFNγ secretion via the Mnk1/eIF4E pathway in Th1 cells. Immunol Cell Biol 2017; 95:814-823. [PMID: 28611474 DOI: 10.1038/icb.2017.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 01/01/2023]
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway is involved in the regulation of immune and inflammatory processes. We used p38α-conditional, p38β-deficient and p38α/β double-null mouse models to address the role of these two p38 MAPK in CD4+ T cells, and found that p38α deficiency causes these cells to hyperproliferate. Our studies indicate that both p38α and p38β are dispensable for T helper cell type 1 (Th1) differentiation but, by controlling interferon (IFN)γ and tumor necrosis factor (TNF)α production, are critical for normal Th1 effector function. We found that both p38α and p38β modulate T-cell receptor-induced IFNγ and TNFα production, whereas only p38α regulates cytokine-induced IFNγ production. The lack of p38α and p38β did not affect transcription and mRNA stability of Ifng. However, the absence of p38α in Th1 cells resulted in a decreased MNK1 phosphorylation after cytokine activation, and MNK1 inhibition blocked IFNγ production. Our results indicate that p38α regulates IFNγ secretion through the activation of the MNK1/eIF4E pathway of translation initiation and identify specific functions for p38α and p38β in T-cell proliferation.
Collapse
Affiliation(s)
| | - Sara B Mateus
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Iván Del Barco Barrantes
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Simon C Arthur
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Pg. LLuis Companys 23, Barcelona, Spain
| | - Jesús M Salvador
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
32
|
Recruitment of calcineurin to the TCR positively regulates T cell activation. Nat Immunol 2016; 18:196-204. [PMID: 27941787 DOI: 10.1038/ni.3640] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
Abstract
Calcineurin is a phosphatase whose primary targets in T cells are NFAT transcription factors, and inhibition of calcineurin activity by treatment with cyclosporin A (CsA) or FK506 is a cornerstone of immunosuppressive therapies. Here we found that calcineurin was recruited to the T cell antigen receptor (TCR) signaling complex, where it reversed inhibitory phosphorylation of the tyrosine kinase Lck on Ser59 (LckS59). Loss of calcineurin activity impaired phosphorylation of Tyr493 of the tyrosine kinase ZAP-70 (ZAP-70Y493), as well as some downstream pathways in a manner consistent with signaling in cells expressing LckS59A (Lck that cannot be phosphorylated) or LckS59E (a phosphomimetic mutant). Notably, CsA inhibited integrin-LFA-1-dependent and NFAT-independent adhesion of T cells to the intercellular adhesion molecule ICAM-1, with little effect on cells expressing mutant Lck. These results provide new understanding of how widely used immunosuppressive drugs interfere with essential processes in the immune response.
Collapse
|
33
|
Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev 2016; 29:2054-66. [PMID: 26443849 PMCID: PMC4604346 DOI: 10.1101/gad.267245.115] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, Martinez et al. find a positive feedback loop in the JNK signaling pathway through the alternative splicing of MKK7, identify the RNA-binding protein CELF2 as a major regulator of MKK7 splicing, and show that ∼25% of T-cell receptor-mediated alternative splicing events are dependent on JNK signaling. This study provides insight into a novel paradigm for the reciprocal interplay of signaling and splicing. Alternative splicing is prevalent among genes encoding signaling molecules; however, the functional consequence of differential isoform expression remains largely unknown. Here we demonstrate that, in response to T-cell activation, the Jun kinase (JNK) kinase MAP kinase kinase 7 (MKK7) is alternatively spliced to favor an isoform that lacks exon 2. This isoform restores a JNK-docking site within MKK7 that is disrupted in the larger isoform. Consistently, we show that skipping of MKK7 exon 2 enhances JNK pathway activity, as indicated by c-Jun phosphorylation and up-regulation of TNF-α. Moreover, this splicing event is itself dependent on JNK signaling. Thus, MKK7 alternative splicing represents a positive feedback loop through which JNK promotes its own signaling. We further show that repression of MKK7 exon 2 is dependent on the presence of flanking sequences and the JNK-induced expression of the RNA-binding protein CELF2, which binds to these regulatory elements. Finally, we found that ∼25% of T-cell receptor-mediated alternative splicing events are dependent on JNK signaling. Strikingly, these JNK-dependent events are also significantly enriched for responsiveness to CELF2. Together, our data demonstrate a widespread role for the JNK–CELF2 axis in controlling splicing during T-cell activation, including a specific role in propagating JNK signaling.
Collapse
|
34
|
Fayaz SM, Rajanikant GK. Modelling the molecular mechanism of protein-protein interactions and their inhibition: CypD-p53 case study. Mol Divers 2015; 19:931-43. [PMID: 26170095 DOI: 10.1007/s11030-015-9612-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/01/2015] [Indexed: 02/06/2023]
Abstract
Cyclophilin D (CypD) is an important regulatory protein involved in mitochondrial membrane permeability transition and cell death. Further, the mitochondrial CypD-p53 axis is an important contributor to necroptosis, a form of programmed necrosis, involved in various cardiovascular and neurological disorders. The CypD ligand, Cyclosporin A (CsA), was identified as an inhibitor of this interaction. In this study, using computational methods, we have attempted to model the CypD-p53 interaction in order to delineate their mode of binding and also to disclose the molecular mechanism, by means of which CsA interferes with this interaction. It was observed that p53 binds at the CsA-binding site of CypD. The knowledge obtained from this modelling was employed to identify novel CypD inhibitors through structure-based methods. Further, the identified compounds were tested by a similar strategy, adopted during the modelling process. This strategy could be applied to study the mechanism of protein-protein interaction (PPI) inhibition and to identify novel PPI inhibitors.
Collapse
Affiliation(s)
- S M Fayaz
- School of Biotechnology, National Institute of Technology Calicut, Calicut, 673601, India
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, 673601, India.
| |
Collapse
|
35
|
So JK, Hamstra A, Calame A, Hamann CR, Jacob SE. Another Great Imitator: Allergic Contact Dermatitis Differential Diagnosis, Clues to Diagnosis, Histopathology, and Treatment. CURRENT TREATMENT OPTIONS IN ALLERGY 2015. [DOI: 10.1007/s40521-015-0064-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Wu YJ, Wu YH, Mo ST, Hsiao HW, He YW, Lai MZ. Cellular FLIP Inhibits Myeloid Cell Activation by Suppressing Selective Innate Signaling. THE JOURNAL OF IMMUNOLOGY 2015; 195:2612-23. [PMID: 26238491 DOI: 10.4049/jimmunol.1402944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/08/2015] [Indexed: 11/19/2022]
Abstract
Cellular FLIP (c-FLIP) specifically inhibits caspase-8 and suppresses death receptor-induced apoptosis. c-FLIP has also been reported to transmit activation signals. In this study, we report a novel function of c-FLIP involving inhibition of myeloid cell activation through antagonizing the selective innate signaling pathway. We found that conditional knockout of c-FLIP in dendritic cells (DCs) led to neutrophilia and splenomegaly. Peripheral DC populations, including CD11b(+) conventional DCs (cDCs), CD8(+) cDCs, and plasmacytoid DCs, were not affected by c-FLIP deficiency. We also found that c-FLIP knockout cDCs, plasmacytoid DCs, and bone marrow-derived DCs (BMDCs) displayed enhanced production of TNF-α, IL-2, or G-CSF in response to stimulation of TLR4, TLR2, and dectin-1. Consistent with the ability of c-FLIP to inhibit the activation of p38 MAPK, the enhanced activation of c-FLIP-deficient BMDCs could be partly linked to an elevated activation of p38 MAPK after engagement of innate receptors. Increased activation was also found in c-FLIP(+/-) macrophages. Additionally, the increased activation in c-FLIP-deficient DCs was independent of caspase-8. Our results reveal a novel inhibitory role of c-FLIP in myeloid cell activation and demonstrate the unexpected anti-inflammatory activity of c-FLIP. Additionally, our observations suggest that cancer therapy targeting c-FLIP downregulation may facilitate DC activation and increase T cell immunity.
Collapse
Affiliation(s)
- Yu-Jung Wu
- Institute of Immunology, National Taiwan University, Taipei 10051, Taiwan, Republic of China; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Yung-Hsuan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Shu-Ting Mo
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Huey-Wen Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Ming-Zong Lai
- Institute of Immunology, National Taiwan University, Taipei 10051, Taiwan, Republic of China; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| |
Collapse
|
37
|
Nath PR, Isakov N. Insights into peptidyl-prolyl cis–trans isomerase structure and function in immunocytes. Immunol Lett 2015; 163:120-31. [DOI: 10.1016/j.imlet.2014.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022]
|
38
|
Feng J, Wu Y, Yang Y, Jiang W, Hu S, Li Y, Yang Y. Humulus scandens Exhibits Immunosuppressive Effects in Vitro and in Vivo by Suppressing CD4+ T Cell Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:921-34. [DOI: 10.1142/s0192415x1450058x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Humulus scandens, rich in flavonoids, is a traditional Chinese medicine. It is widely used in China to treat tuberculosis, dysentery and chronic colitis. In this study, the major active faction of Humulus scandens (H.S) was prepared. Then, its immunosuppressive effects and underlying mechanisms on T cell activation were investigated in vitro and in vivo. Results showed that H.S significantly inhibited the proliferation of splenocytes induced by concanavalin A, lipopolysaccharides, and mixed-lymphocyte reaction in vitro. Additionally, H.S could dramatically suppress the proliferation and interferon-γ (IFN-γ) production from T cells stimulated by anti-CD3 and anti-CD28. Flow cytometric results confirmed that H.S could suppress the differentiation of IFN-γ-producing type 1 helper T cells (Th1). Furthermore, using ovalbumin immunization-induced T cell reaction and CD4+ T-cell-mediated delayed type hypersensitivity reaction, H.S the immunosuppressive effects of H.S was also demonstrated in vivo. Western blot results showed that H.S could impede the activation of both Erk1/2 and P38 in primary T cells triggered by anti-CD3/28. Collectively, the active fraction of H.S showed promising immunosuppressive activities both in vitro and in vivo.
Collapse
Affiliation(s)
- Jinjin Feng
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yingchun Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yang Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Weiqi Jiang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Shaoping Hu
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yifu Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
39
|
|
40
|
Hirata Y, Sugie A, Matsuda A, Matsuda S, Koyasu S. TAK1-JNK axis mediates survival signal through Mcl1 stabilization in activated T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4621-6. [PMID: 23547112 DOI: 10.4049/jimmunol.1202809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TAK1, a member of MAPK kinase kinase (MAPKK-K) family, can activate JNK, p38 MAPK, and NF-κB signaling pathways. Although targeted gene disruption studies have demonstrated that TAK1 plays a critical role in T cell functions, precise functions of downstream mediators remain elusive. We used the chemical compound LL-Z1640-2, which preferentially suppressed MAPK activation but not NF-κB signal downstream of TAK1. LL-Z1640-2 blocked TCR-induced T cell proliferation and activation, confirming that a TAK1-mediated MAPK signal is essential for T cell activation. LL-Z1640-2 induced apoptosis of activated mouse splenic T cells in a caspase- and caspase-activated DNase-dependent manner. TAK1-JNK pathway, which is activated downstream of IL-2R, induced the phosphorylation of antiapoptotic protein Mcl1 in activated T cells, resulting in the stabilization of Mcl1 protein. Our data uncover that among signal transduction pathways downstream of TAK1, JNK mediates a survival program through Mcl1 stabilization downstream of IL-2R in activated T cells and that blockade of TAK1-JNK pathway can eliminate activated T cells by apoptosis.
Collapse
Affiliation(s)
- Yasuko Hirata
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
41
|
Singh RS, Walia AK. Microbial lectins and their prospective mitogenic potential. Crit Rev Microbiol 2012; 40:329-47. [DOI: 10.3109/1040841x.2012.733680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Mavropoulos A, Orfanidou T, Liaskos C, Smyk DS, Billinis C, Blank M, Rigopoulou EI, Bogdanos DP. p38 mitogen-activated protein kinase (p38 MAPK)-mediated autoimmunity: lessons to learn from ANCA vasculitis and pemphigus vulgaris. Autoimmun Rev 2012. [PMID: 23207287 DOI: 10.1016/j.autrev.2012.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Evidence is beginning to accumulate that p38 mitogen activated protein kinase (p38 MAPK) signaling pathway plays an important role in the regulation of cellular and humoral autoimmune responses. The exact mechanisms and the degree by which the p38 MAPK pathway participates in the immune-mediated induction of diseases have started to emerge. This review discusses the recent advances in the molecular dissection of the p38 MAPK pathway and the findings generated by reports investigating its role in the pathogenesis of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and autoimmune hepatitis. Application of newly-developed protocols based on sensitive flow cytometric detection has proven to be a useful tool in the investigation of the phosphorylation of p38 MAPK within different peripheral blood mononuclear cell populations and may help us to better understand the enigmatic role of this signaling cascade in the induction of autoimmunity as well as its role in immunosuppressive-induced remission. Special attention is paid to reported data proposing a specific role for autoantibody-induced activation of p38 MAPK-mediated immunopathology in the pathogenesis of autoimmune blistering diseases and anti-neutrophilic antibody-mediated vasculitides.
Collapse
Affiliation(s)
- Athanasios Mavropoulos
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London SE5 9RS, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Benslimane N, Hassan GS, Yacoub D, Mourad W. Requirement of transmembrane domain for CD154 association to lipid rafts and subsequent biological events. PLoS One 2012; 7:e43070. [PMID: 22905203 PMCID: PMC3419174 DOI: 10.1371/journal.pone.0043070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/16/2012] [Indexed: 12/22/2022] Open
Abstract
Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.
Collapse
Affiliation(s)
- Nadir Benslimane
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
| | - Ghada S. Hassan
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
| | - Daniel Yacoub
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
| | - Walid Mourad
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Hôpital Saint-Luc, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
44
|
Chan ASL, Pang H, Yip ECH, Tam YK, Wong YH. The Aqueous Extract of Radix Glycyrrhizae Stimulates Mitogen-Activated Protein Kinases and Nuclear Factor-κB in Jurkat T-Cells and THP-1 Monocytic Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 34:263-78. [PMID: 16552837 DOI: 10.1142/s0192415x06003813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radix Glycyrrhizae (RG) is a medicinal herb extensively utilized in numerous Chinese medical formulae for coordinating the actions of various components in the recipes and strengthening the body functions. In this report, we demonstrate that the aqueous extract of Radix Glycyrrhizae is capable of stimulating the c-Jun N-terminal kinase and p38 subgroups of mitogen-activated protein kinases (MAPKs), and the nuclear factor-κB ( NF κ B ) in Jurkat T-lymphocytes. The activation magnitudes of MAPKs and NF κ B were dose-dependent ( EC 50 ≈ 1 mg/ml ) and time-dependent (maximal around 15–30 minutes). Stimulations of MAPKs and NF κ B were not associated with changes in intracellular Ca 2+ mobilization. Similar activation profiles of MAPK and NF κ B were obtained from THP-1 monocytes treated with the extract. In terms of chemotactic activity, the SDF-induced chemotaxis of Jurkat cells and THP-1 cells were inhibited by RG extract at 1–10 mg/ml, while a lower RG concentration (0.1–0.3 mg/ml) potentiated the SDF-induced chemotaxis for the former, but not the latter cell type. Given the fact that MAPKs and NF κ B are important signaling intermediates for lymphocyte activities, our results suggest that Radix Glycyrrhizae may contain active constituents capable of modulating immuno-responses through various intracellular signaling pathways.
Collapse
Affiliation(s)
- Anthony S L Chan
- Department of Biochemistry, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
45
|
Arora P, Dilbaghi N, Chaudhury A. Opportunistic invasive fungal pathogen Macrophomina phaseolina prognosis from immunocompromised humans to potential mitogenic RBL with an exceptional and novel antitumor and cytotoxic effect. Eur J Clin Microbiol Infect Dis 2011; 31:101-7. [DOI: 10.1007/s10096-011-1275-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
|
46
|
Serti E, Doumba PP, Thyphronitis G, Tsitoura P, Katsarou K, Foka P, Konstandoulakis MM, Koskinas J, Mavromara P, Georgopoulou U. Modulation of IL-2 expression after uptake of hepatitis C virus non-enveloped capsid-like particles: the role of p38 kinase. Cell Mol Life Sci 2011; 68:505-22. [PMID: 20680391 PMCID: PMC11114540 DOI: 10.1007/s00018-010-0466-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/28/2010] [Accepted: 07/09/2010] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) has been shown to actively replicate in cells of the immune system, altering both their function and cytokine expression. Naked nucleocapsids have been reported in the serum of infected patients. We investigated interference of recombinant non-enveloped capsid-like particles with signaling pathways in T cells. HCV non-enveloped particles (HCVne) internalization was verified in Jurkat and Hut 78 T cells, as well as primary human peripheral blood and intrahepatic mononuclear cells. HCVne uptake leads to activation of the MAPKs-p38 signaling pathway. Using specific phosphoantibodies, signaling pathways inhibitors, and chemical agents, it was demonstrated that p38 activation in T cells correlated with IL-2 transcriptional activation and was accompanied by a parallel increase of IL-2 cytokine secretion. c-fos and egr-1, two transcription factors, essential for IL-2 promoter activity, were also found to be elevated. We propose that HCVne uptake by T lymphocytes results in increased MAPKs-p38 activity and IL-2 expression, thus altering the host immune response.
Collapse
Affiliation(s)
- Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Polyxeni P. Doumba
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - George Thyphronitis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Panagiota Tsitoura
- Present Address: Insect Molecular Genetics and Biotechnology Group, Institute of Biology, NCSR Demokritos, Athens, Greece
| | | | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Manousos M. Konstandoulakis
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - John Koskinas
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
47
|
Lee J, Lim KT. Plant-originated glycoprotein (36 kDa) suppresses interleukin-4 and -10 in bisphenol A-stimulated primary cultured mouse lymphocytes. Drug Chem Toxicol 2011; 33:421-9. [PMID: 20553123 DOI: 10.3109/01480541003739229] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bisphenol A (BPA) is one of the estrogen mimic environmental hormones and a chemical used for the wrapping foods, toy products for children, biomedical equipment, and machines. It can exert toxic effects, such as occurring allergy-related diseases. This study demonstrates that glycoprotein isolated from Rhus verniciflua Stokes (RVS glycoprotein) has an inhibitory activity of T-helper type 2 (Th2) cytokines [Interleukin (IL)-4 and -10]. First, it was shown that RVS glycoprotein inhibits the proliferation of lymphocytes and scavenges intracellular reactive oxygen species (ROS). Then, the activities of mitogen-activated protein kinase (MAPK), GATA-binding protein-3 (GATA-3), t-box expressed in T-cells (T-bet), and Th2 cell-related cytokine (IL-4 and -10) were evaluated in BPA (50 microM)-stimulated primary cultured mouse lymphocytes, using immunoblot analysis and reverse-transcription polymerase chain reaction (RT-PCR). The results showed that the RVS glycoprotein (50 microg/mL) inhibited the proliferation of lymphocytes, intracellular ROS, and activity of p38 MAPK dose dependently. In the transcriptional factors for the oriented differentiation of T-helper cells, the RVS glycoprotein (50 microg/mL) significantly suppressed the GATA-3, whereas it enhanced T-bet. Also, the RVS glycoprotein (100 microg/mL) significantly attenuated Th2-related cytokines (IL-4 and -10). Taken together, the results obtained from this study suggest that the RVS glycoprotein may help in preventing allergy-related immune dysfunction, such as that produced by BPA.
Collapse
Affiliation(s)
- Jin Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, Gwang-ju, South Korea
| | | |
Collapse
|
48
|
Advancements in anti-inflammatory therapy for dry eye syndrome. ACTA ACUST UNITED AC 2010; 80:555-66. [PMID: 19801339 DOI: 10.1016/j.optm.2009.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 01/09/2009] [Accepted: 02/04/2009] [Indexed: 11/20/2022]
Abstract
PURPOSE The goal of this literature review is to discuss recent discoveries in the pathophysiology of dry eye and the subsequent evolution of diagnostic and management techniques. The mechanisms of various anti-inflammatory treatments are reviewed, and the efficacy of common pharmacologic agents is assessed. Anti-inflammatory therapy is evaluated in terms of its primary indications, target population, and utility within a clinical setting. METHODS The Medline PubMed database and the World Wide Web were searched for current information regarding dry eye prevalence, pathogenesis, diagnosis, and management. After an analysis of the literature, major concepts were integrated to generate an updated portrayal of the status of dry eye syndrome. RESULTS Inflammation appears to play a key role in perpetuating and sustaining dry eye. Discoveries of inflammatory markers found within the corneal and conjunctival epithelium of dry eye patients have triggered recent advancements in therapy. Pharmacologic anti-inflammatory therapy for dry eye includes 2 major categories: corticosteroids and immunomodulatory agents. Fatty acid and androgen supplementation and oral antibiotics have also shown promise in dry eye therapy because of their anti-inflammatory effects. CONCLUSIONS Anti-inflammatory pharmacologic agents have shown great success in patients with moderate to severe dry eye when compared with alternative treatment modalities. A deeper understanding of the link between inflammation and dry eye validates the utilization of anti-inflammatory therapy in everyday optometric practice.
Collapse
|
49
|
El Fakhry Y, Alturaihi H, Diallo D, Merhi Y, Mourad W. Critical role of lipid rafts in CD154-mediated T cell signaling. Eur J Immunol 2010; 40:770-9. [PMID: 20039299 DOI: 10.1002/eji.200939646] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although signal pathways triggered via the CD40 molecule are well characterized, those induced via CD154 are less known. This study demonstrates that engagement of CD154 in Jurkat D1.1 cells with soluble CD40 leads to PKC alpha and delta activation, calcium mobilization, and phosphorylation of the Map kinases ERK1/2 and p38. Such response is accompanied by significant recruitment of CD154 into lipid rafts. Disruption of lipid rafts integrity with nystatin or methyl beta-cyclodextrin abrogated PKCalpha PKCdelta and p38 phosphorylation, but had no effect on ERK1/2 phosphorylation. Inhibition of PKC activation completely abolished p38 phosphorylation but had no effect on ERK1/2 phosphorylation, suggesting that localization of CD154 within lipid rafts is an absolute requirement for CD154-induced PKCalpha- and PKCdelta-dependent p38 phosphorylation. Furthermore, CD154 acts as co-stimulator for the production of IL-2 in an APC-superantigen-T-cell activation model. The results obtained demonstrate for the first time, that lipid rafts are of immunological relevance for CD154-triggered signals, and reinforce the importance of CD154 in T-cell activation.
Collapse
Affiliation(s)
- Youssef El Fakhry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Hôpital Saint Luc, Montréal, Que., Canada H2X 1P1
| | | | | | | | | |
Collapse
|
50
|
Muirhead KEA, Borger E, Aitken L, Conway SJ, Gunn-Moore FJ. The consequences of mitochondrial amyloid beta-peptide in Alzheimer's disease. Biochem J 2010; 426:255-70. [PMID: 20175748 DOI: 10.1042/bj20091941] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Abeta (amyloid-beta peptide) has long been associated with Alzheimer's disease, originally in the form of extracellular plaques. However, in the present paper we review the growing evidence for the role of soluble intracellular Abeta in the disease progression, with particular reference to Abeta found within the mitochondria. Once inside the cell, Abeta is able to interact with a number of targets, including the mitochondrial proteins ABAD (amyloid-binding alcohol dehydrogenase) and CypD (cyclophilin D), which is a component of the mitochondrial permeability transition pore. Interference with the normal functions of these proteins results in disruption of cell homoeostasis and ultimately cell death. The present review explores the possible mechanisms by which cell death occurs, considering the evidence presented on a molecular, cellular and in vivo level.
Collapse
Affiliation(s)
- Kirsty E A Muirhead
- School of Biology, Bute Medical Building, University of St Andrews, Westburn Lane, St Andrews, Fife KY16 9TS, UK.
| | | | | | | | | |
Collapse
|