1
|
Zhao X, Li WF, Wang Y, Ma ZH, Yang SJ, Zhou Q, Mao J, Chen BH. Elevated CO 2 concentration promotes photosynthesis of grape (Vitis vinifera L. cv. 'Pinot noir') plantlet in vitro by regulating RbcS and Rca revealed by proteomic and transcriptomic profiles. BMC PLANT BIOLOGY 2019; 19:42. [PMID: 30696402 PMCID: PMC6352424 DOI: 10.1186/s12870-019-1644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/10/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant photosynthesis can be improved by elevated CO2 concentration (eCO2). In vitro growth under CO2 enriched environment can lead to greater biomass accumulation than the conventional in micropropagation. However, little is know about how eCO2 promotes transformation of grape plantlets in vitro from heterotrophic to autotrophic. In addition, how photosynthesis-related genes and their proteins are expressed under eCO2 and the mechanisms of how eCO2 regulates RbcS, Rca and their proteins have not been reported. RESULTS Grape (Vitis vinifera L. cv. 'Pinot Noir') plantlets in vitro were cultured with 2% sucrose designated as control (CK), with eCO2 (1000 μmol·mol- 1) as C0, with both 2% sucrose and eCO2 as Cs. Here, transcriptomic and proteomic profiles associated with photosynthesis and growth in leaves of V. vinifera at different CO2 concentration were analyzed. A total of 1814 genes (465 up-regulated and 1349 down-regulated) and 172 proteins (80 up-regulated and 97 down-regulated) were significantly differentially expressed in eCO2 compared to CK. Photosynthesis-antenna, photosynthesis and metabolism pathways were enriched based on GO and KEGG. Simultaneously, 9, 6 and 48 proteins were involved in the three pathways, respectively. The leaf area, plantlet height, qP, ΦPSII and ETR increased under eCO2, whereas Fv/Fm and NPQ decreased. Changes of these physiological indexes are related to the function of DEPs. After combined analysis of proteomic and transcriptomic, the results make clear that eCO2 have different effects on gene transcription and translation. RbcS was not correlated with its mRNA level, suggesting that the change in the amount of RbcS is regulated at their transcript levels by eCO2. However, Rca was negatively correlated with its mRNA level, it is suggested that the change in the amount of its corresponding protein is regulated at their translation levels by eCO2. CONCLUSIONS Transcriptomic, proteomic and physiological analysis were used to evaluate eCO2 effects on photosynthesis. The eCO2 triggered the RbcS and Rca up-regulated, thus promoting photosynthesis and then advancing transformation of grape plantlets from heterotrophic to autotrophic. This research will helpful to understand the influence of eCO2 on plant growth and promote reveal the mechanism of plant transformation from heterotrophic to autotrophic.
Collapse
Affiliation(s)
- Xin Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ying Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Shi-Jin Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
2
|
Colina-Tenorio L, Dautant A, Miranda-Astudillo H, Giraud MF, González-Halphen D. The Peripheral Stalk of Rotary ATPases. Front Physiol 2018; 9:1243. [PMID: 30233414 PMCID: PMC6131620 DOI: 10.3389/fphys.2018.01243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved.
Collapse
Affiliation(s)
- Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alain Dautant
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, InBios, PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Noji H, Ueno H, McMillan DGG. Catalytic robustness and torque generation of the F 1-ATPase. Biophys Rev 2017; 9:103-118. [PMID: 28424741 PMCID: PMC5380711 DOI: 10.1007/s12551-017-0262-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
The F1-ATPase is the catalytic portion of the FoF1 ATP synthase and acts as a rotary molecular motor when it hydrolyzes ATP. Two decades have passed since the single-molecule rotation assay of F1-ATPase was established. Although several fundamental issues remain elusive, basic properties of F-type ATPases as motor proteins have been well characterized, and a large part of the reaction scheme has been revealed by the combination of extensive structural, biochemical, biophysical, and theoretical studies. This review is intended to provide a concise summary of the fundamental features of F1-ATPases, by use of the well-described model F1 from the thermophilic Bacillus PS3 (TF1). In the last part of this review, we focus on the robustness of the rotary catalysis of F1-ATPase to provide a perspective on the re-designing of novel molecular machines.
Collapse
Affiliation(s)
- Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| | - Duncan G. G. McMillan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| |
Collapse
|
4
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
5
|
Linking structural features from mitochondrial and bacterial F-type ATP synthases to their distinct mechanisms of ATPase inhibition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:94-102. [DOI: 10.1016/j.pbiomolbio.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023]
|
6
|
Assembly of the Escherichia coli FoF1 ATP synthase involves distinct subcomplex formation. Biochem Soc Trans 2014; 41:1288-93. [PMID: 24059521 DOI: 10.1042/bst20130096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ATP synthase (FoF1) of Escherichia coli couples the translocation of protons across the cytoplasmic membrane by Fo to ATP synthesis or hydrolysis in F1. Whereas good knowledge of the nanostructure and the rotary mechanism of the ATP synthase is at hand, the assembly pathway of the 22 polypeptide chains present in a stoichiometry of ab2c10α3β3γδϵ has so far not received sufficient attention. In our studies, mutants that synthesize different sets of FoF1 subunits allowed the characterization of individually formed stable subcomplexes. Furthermore, the development of a time-delayed in vivo assembly system enabled the subsequent synthesis of particular missing subunits to allow the formation of functional ATP synthase complexes. These observations form the basis for a model that describes the assembly pathway of the E. coli ATP synthase from pre-formed subcomplexes, thereby avoiding membrane proton permeability by a concomitant assembly of the open H+-translocating unit within a coupled FoF1 complex.
Collapse
|
7
|
Gajadeera CS, Weber J. Escherichia coli F1Fo-ATP synthase with a b/δ fusion protein allows analysis of the function of the individual b subunits. J Biol Chem 2013; 288:26441-7. [PMID: 23893411 DOI: 10.1074/jbc.m113.503722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The "stator stalk" of F1Fo-ATP synthase is essential for rotational catalysis as it connects the nonrotating portions of the enzyme. In Escherichia coli, the stator stalk consists of two (identical) b subunits and the δ subunit. In mycobacteria, one of the b subunits and the δ subunit are replaced by a b/δ fusion protein; the remaining b subunit is of the shorter b' type. In the present study, it is shown that it is possible to generate a functional E. coli ATP synthase containing a b/δ fusion protein. This construct allowed the analysis of the roles of the individual b subunits. The full-length b subunit (which in this case is covalently linked to δ in the fusion protein) is responsible for connecting the stalk to the catalytic F1 subcomplex. It is not required for interaction with the membrane-embedded Fo subcomplex, as its transmembrane helix can be removed. Attachment to Fo is the function of the other b subunit which in turn has only a minor (if any at all) role in binding to δ. Also in E. coli the second b subunit can be shortened to a b' type.
Collapse
Affiliation(s)
- Chathurada S Gajadeera
- From the Department of Chemistry and Biochemistry and the Center for Chemical Biology, Texas Tech University, Lubbock, Texas 79409 and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | | |
Collapse
|
8
|
Hilbers F, Eggers R, Pradela K, Friedrich K, Herkenhoff-Hesselmann B, Becker E, Deckers-Hebestreit G. Subunit δ is the key player for assembly of the H(+)-translocating unit of Escherichia coli F(O)F1 ATP synthase. J Biol Chem 2013; 288:25880-25894. [PMID: 23864656 DOI: 10.1074/jbc.m113.484675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP synthase (F(O)F1) of Escherichia coli couples the translocation of protons across the cytoplasmic membrane to the synthesis or hydrolysis of ATP. This nanomotor is composed of the rotor c10γε and the stator ab2α3β3δ. To study the assembly of this multimeric enzyme complex consisting of membrane-integral as well as peripheral hydrophilic subunits, we combined nearest neighbor analyses by intermolecular disulfide bond formation or purification of partially assembled F(O)F1 complexes by affinity chromatography with the use of mutants synthesizing different sets of F(O)F1 subunits. Together with a time-delayed in vivo assembly system, the results demonstrate that F(O)F1 is assembled in a modular way via subcomplexes, thereby preventing the formation of a functional H(+)-translocating unit as intermediate product. Surprisingly, during the biogenesis of F(O)F1, F1 subunit δ is the key player in generating stable F(O). Subunit δ serves as clamp between ab2 and c10α3β3γε and guarantees that the open H(+) channel is concomitantly assembled within coupled F(O)F1 to maintain the low membrane proton permeability essential for viability, a general prerequisite for the assembly of multimeric H(+)-translocating enzymes.
Collapse
Affiliation(s)
- Florian Hilbers
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Ruth Eggers
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Kamila Pradela
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Kathleen Friedrich
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | | | - Elisabeth Becker
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Gabriele Deckers-Hebestreit
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany.
| |
Collapse
|
9
|
Brandt K, Maiwald S, Herkenhoff-Hesselmann B, Gnirß K, Greie JC, Dunn SD, Deckers-Hebestreit G. Individual interactions of the b subunits within the stator of the Escherichia coli ATP synthase. J Biol Chem 2013; 288:24465-79. [PMID: 23846684 DOI: 10.1074/jbc.m113.465633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Karsten Brandt
- Department of Microbiology, University of Osnabrück, 49069 Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
AbstractThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
|
11
|
Price CE, Driessen AJM. Biogenesis of membrane bound respiratory complexes in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:748-66. [PMID: 20138092 DOI: 10.1016/j.bbamcr.2010.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 11/19/2022]
Abstract
Escherichia coli is one of the preferred bacteria for studies on the energetics and regulation of respiration. Respiratory chains consist of primary dehydrogenases and terminal reductases or oxidases linked by quinones. In order to assemble this complex arrangement of protein complexes, synthesis of the subunits occurs in the cytoplasm followed by assembly in the cytoplasm and/or membrane, the incorporation of metal or organic cofactors and the anchoring of the complex to the membrane. In the case of exported metalloproteins, synthesis, assembly and incorporation of metal cofactors must be completed before translocation across the cytoplasmic membrane. Coordination data on these processes is, however, scarce. In this review, we discuss the various processes that respiratory proteins must undergo for correct assembly and functional coupling to the electron transport chain in E. coli. Targeting to and translocation across the membrane together with cofactor synthesis and insertion are discussed in a general manner followed by a review of the coordinated biogenesis of individual respiratory enzyme complexes. Lastly, we address the supramolecular organization of respiratory enzymes into supercomplexes and their localization to specialized domains in the membrane.
Collapse
Affiliation(s)
- Claire E Price
- Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
12
|
The structure of the membrane extrinsic region of bovine ATP synthase. Proc Natl Acad Sci U S A 2009; 106:21597-601. [PMID: 19995987 DOI: 10.1073/pnas.0910365106] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the complex between bovine mitochondrial F(1)-ATPase and a stator subcomplex has been determined at a resolution of 3.2 A. The resolved region of the stator contains residues 122-207 of subunit b; residues 5-25 and 35-57 of F(6); 3 segments of subunit d from residues 30-40, 65-74, and 85-91; and residues 1-146 and 169-189 of the oligomycin sensitivity conferral protein (OSCP). The stator subcomplex represents its membrane distal part, and its structure has been augmented with an earlier structure of a subcomplex containing residues 79-183, 3-123, and 5-70 of subunits b, d, and F(6), respectively, which extends to the surface of the inner membrane of the mitochondrion. The N-terminal domain of the OSCP links the stator with F(1)-ATPase via alpha-helical interactions with the N-terminal region of subunit alpha(E). Its C-terminal domain makes extensive helix-helix interactions with the C-terminal alpha-helix of subunit b from residues 190-207. Subunit b extends as a continuous 160-A long alpha-helix from residue 188 back to residue 79 near to the surface of the inner mitochondrial membrane. This helix appears to be stiffened by other alpha-helices in subunits d and F(6), but the structure can bend inward toward the F(1) domain around residue 146 of subunit b. The linker region between the 2 domains of the OSCP also appears to be flexible, enabling the stator to adjust its shape as it passes over the changing profile of the F(1) domain during a catalytic cycle. The structure of the membrane extrinsic part of bovine ATP synthase is now complete.
Collapse
|
13
|
Abstract
The ATP synthase from Escherichia coli is a prototype of the ATP synthases that are found in many bacteria, in the mitochondria of eukaryotes, and in the chloroplasts of plants. It contains eight different types of subunits that have traditionally been divided into F(1), a water-soluble catalytic sector, and F(o), a membrane-bound ion transporting sector. In the current rotary model for ATP synthesis, the subunits can be divided into rotor and stator subunits. Several lines of evidence indicate that epsilon is one of the three rotor subunits, which rotate through 360 degrees. The three-dimensional structure of epsilon is known and its interactions with other subunits have been explored by several approaches. In light of recent work by our group and that of others, the role of epsilon in the ATP synthase from E. coli is discussed.
Collapse
Affiliation(s)
- S B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA.
| |
Collapse
|
14
|
Boyle GM, Roucou X, Nagley P, Devenish RJ, Prescott M. Modulation at a distance of proton conductance through the Saccharomyces cerevisiae mitochondrial F1F0-ATP synthase by variants of the oligomycin sensitivity-conferring protein containing substitutions near the C-terminus. J Bioenerg Biomembr 2009; 32:595-607. [PMID: 15254373 DOI: 10.1023/a:1005674628249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have sought to elucidate how the oligomycin sensitivity-conferring protein (OSCP) of the mitochondrial F(1)F(0)-ATP synthase (mtATPase) can influence proton channel function. Variants of OSCP, from the yeast Saccharomyces cerevisiae, having amino acid substitutions at a strictly conserved residue (Gly166) were expressed in place of normal OSCP. Cells expressing the OSCP variants were able to grow on nonfermentable substrates, albeit with some increase in generation time. Moreover, these strains exhibited increased sensitivity to oligomycin, suggestive of modification in functional interactions between the F(1) and F(0) sectors mediated by OSCP. Bioenergetic analysis of mitochondria from cells expressing OSCP variants indicated an increased respiratory rate under conditions of no net ATP synthesis. Using specific inhibitors of mtATPase, in conjunction with measurement of changes in mitochondrial transmembrane potential, it was revealed that this increased respiratory rate was a result of increased proton flux through the F(0) sector. This proton conductance, which is not coupled to phosphorylation, is exquisitely sensitive to inhibition by oligomycin. Nevertheless, the oxidative phosphorylation capacity of these mitochondria from cells expressing OSCP variants was no different to that of the control. These results suggest that the incorporation of OSCP variants into functional ATP synthase complexes can display effects in the control of proton flux through the F(0) sector, most likely mediated through altered protein-protein contacts within the enzyme complex. This conclusion is supported by data indicating impaired stability of solubilized mtATPase complexes that is not, however, reflected in the assembly of functional enzyme complexes in vivo. Given a location for OSCP atop the F(1)-alpha(3)beta(3) hexamer that is distant from the proton channel, then the modulation of proton flux by OSCP must occur "at a distance." We consider how subtle conformational changes in OSCP may be transmitted to F(0).
Collapse
Affiliation(s)
- G M Boyle
- Department of Biochemistry and Molecular Biology, PO Box 13D, Monash University, Victoria, 3800, Australia
| | | | | | | | | |
Collapse
|
15
|
Probing the functional tolerance of the b subunit of Escherichia coli ATP synthase for sequence manipulation through a chimera approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:583-91. [DOI: 10.1016/j.bbabio.2008.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/05/2008] [Accepted: 03/07/2008] [Indexed: 11/19/2022]
|
16
|
Welch AK, Claggett SB, Cain BD. The b (arg36) contributes to efficient coupling in F(1)F (O) ATP synthase in Escherichia coli. J Bioenerg Biomembr 2008; 40:1-8. [PMID: 18204891 DOI: 10.1007/s10863-008-9124-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 11/12/2007] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, the F(1)F(O) ATP synthase b subunits house a conserved arginine in the tether domain at position 36 where the subunit emerges from the membrane. Previous experiments showed that substitution of isoleucine or glutamate result in a loss of enzyme activity. Double mutants have been constructed in an attempt to achieve an intragenic suppressor of the b (arg36-->ile) and the b (arg36-->glu) mutations. The b (arg36-->ile) mutation could not be suppressed. In contrast, the phenotypic defect resulting from the b (arg36-->glu) mutation was largely suppressed in the b (arg36-->glu,glu39-->arg) double mutant. E. coli expressing the b (arg36-->glu,glu39-->arg) subunit grew well on succinate-based medium. F(1)F(O) ATP synthase complexes were more efficiently assembled and ATP driven proton pumping activity was improved. The evidence suggests that efficient coupling in F(1)F(O) ATP synthase is dependent upon a basic amino acid located at the base of the peripheral stalk.
Collapse
Affiliation(s)
- Amanda K Welch
- Department of Biochemistry, University of Florida, 1600 SW Archer Rd., P.O. Box 100245, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
17
|
Kish-Trier E, Briere LAK, Dunn SD, Wilkens S. The stator complex of the A1A0-ATP synthase--structural characterization of the E and H subunits. J Mol Biol 2007; 375:673-85. [PMID: 18036615 DOI: 10.1016/j.jmb.2007.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/10/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Archaeal ATP synthase (A-ATPase) is the functional homolog to the ATP synthase found in bacteria, mitochondria and chloroplasts, but the enzyme is structurally more related to the proton-pumping vacuolar ATPase found in the endomembrane system of eukaryotes. We have cloned, overexpressed and characterized the stator-forming subunits E and H of the A-ATPase from the thermoacidophilic Archaeon, Thermoplasma acidophilum. Size exclusion chromatography, CD, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and NMR spectroscopic experiments indicate that both polypeptides have a tendency to form dimers and higher oligomers in solution. However, when expressed together or reconstituted, the two individual polypeptides interact with high affinity to form a stable heterodimer. Analyses by gel filtration chromatography and analytical ultracentrifugation show the heterodimer to have an elongated shape, and the preparation to be monodisperse. Thermal denaturation analyses by CD and differential scanning calorimetry revealed the more cooperative unfolding transitions of the heterodimer in comparison to those of the individual polypeptides. The data are consistent with the EH heterodimer forming the peripheral stalk(s) in the A-ATPase in a fashion analogous to that of the related vacuolar ATPase.
Collapse
Affiliation(s)
- Erik Kish-Trier
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
18
|
Wood KS, Dunn SD. Role of the Asymmetry of the Homodimeric b2 Stator Stalk in the Interaction with the F1 Sector of Escherichia coli ATP Synthase. J Biol Chem 2007; 282:31920-7. [PMID: 17766239 DOI: 10.1074/jbc.m706259200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The b subunit dimer in the peripheral stator stalk of Escherichia coli ATP synthase is essential for enzyme assembly and the rotational catalytic mechanism. Recent protein chemical evidence revealed the dimerization domain of b to contain a novel two-stranded right-handed coiled coil with offset helices. Here, the existence of this structure in more complete constructs of b containing the C-terminal domain, and therefore capable of binding to the peripheral F1-ATPase, was supported by the more efficient formation of intersubunit disulfide bonds between cysteine residues that are proximal only in the offset arrangement and by the greater thermal stabilities of cross-linked heterodimers trapped in the offset configuration as opposed to homodimers with the helices trapped in-register. F1-ATPase binding analyses revealed the offset heterodimers to bind F1 more tightly than in-register homodimers. Mutations near the C terminus of b were incorporated specifically into either the N-terminally or the C-terminally shifted polypeptide, bN or bC, respectively, to determine the contribution of each position to F1 binding. Deletion of the last four residues of bN substantially weakened F1 binding, whereas the effect of the deletion in bC was modest. Similarly, benzophenone maleimide introduced at the C terminus of bN, but not bC, mediated cross-linking to the delta subunit of F1. These results imply that the polypeptide in the bN position is more important for F1 binding than the one in the bC position and illustrate the significance of the asymmetry of the b dimer in the enzyme.
Collapse
Affiliation(s)
- Kristi S Wood
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
19
|
Claggett SB, Grabar TB, Dunn SD, Cain BD. Functional incorporation of chimeric b subunits into F1Fo ATP synthase. J Bacteriol 2007; 189:5463-71. [PMID: 17526709 PMCID: PMC1951835 DOI: 10.1128/jb.00191-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
F(1)F(o) ATP synthases function by a rotary mechanism. The enzyme's peripheral stalk serves as the stator that holds the F(1) sector and its catalytic sites against the movement of the rotor. In Escherichia coli, the peripheral stalk is a homodimer of identical b subunits, but photosynthetic bacteria have open reading frames for two different b-like subunits thought to form heterodimeric b/b' peripheral stalks. Chimeric b subunit genes have been constructed by substituting sequence from the Thermosynechococcus elongatus b and b' genes in the E. coli uncF gene, encoding the b subunit. The recombinant genes were expressed alone and in combination in the E. coli deletion strain KM2 (Deltab). Although not all of the chimeric subunits were incorporated into F(1)F(o) ATP synthase complexes, plasmids expressing either chimeric b(E39-I86) or b'(E39-I86) were capable of functionally complementing strain KM2 (Deltab). Strains expressing these subunits grew better than cells with smaller chimeric segments, such as those expressing the b'(E39-D53) or b(L54-I86) subunit, indicating intragenic suppression. In general, the chimeric subunits modeled on the T. elongatus b subunit proved to be more stable than the b' subunit in vitro. Coexpression of the b(E39-I86) and b'(E39-I86) subunits in strain KM2 (Deltab) yielded F(1)F(o) complexes containing heterodimeric peripheral stalks composed of both subunits.
Collapse
Affiliation(s)
- Shane B Claggett
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32605, USA
| | | | | | | |
Collapse
|
20
|
Senior AE, Muharemagić A, Wilke-Mounts S. Assembly of the stator in Escherichia coli ATP synthase. Complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. Biochemistry 2006; 45:15893-902. [PMID: 17176112 PMCID: PMC2548287 DOI: 10.1021/bi0619730] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, was competent in nucleotide binding, and had normal N-terminal sequence. In F1 subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiments showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector.
Collapse
Affiliation(s)
- Alan E Senior
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA. alan_senior@ urmc.rochester.edu
| | | | | |
Collapse
|
21
|
Peng G, Bostina M, Radermacher M, Rais I, Karas M, Michel H. Biochemical and electron microscopic characterization of the F1F0 ATP synthase from the hyperthermophilic eubacterium Aquifex aeolicus. FEBS Lett 2006; 580:5934-40. [PMID: 17045990 DOI: 10.1016/j.febslet.2006.09.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/22/2006] [Accepted: 09/23/2006] [Indexed: 01/05/2023]
Abstract
The F(1)F(0) ATP synthase has been purified from the hyperthermophilic eubacterium Aquifex aeolicus and characterized. Its subunits have been identified by MALDI-mass spectrometry through peptide mass fingerprinting and MS/MS. It contains the canonical subunits alpha, beta, gamma, delta and epsilon of F(1) and subunits a and c of F(0). Two versions of the b subunit were found, which show a low sequence homology to each other. Most likely they form a heterodimer. An electron microscopic single particle analysis revealed clear structural details, including two stalks connecting F(1) and F(0). In several orientations the central stalk appears to be tilted and/or kinked. It is unclear whether there is a direct connection between the peripheral stalk and the delta subunit.
Collapse
Affiliation(s)
- Guohong Peng
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Del Rizzo PA, Bi Y, Dunn SD. ATP synthase b subunit dimerization domain: a right-handed coiled coil with offset helices. J Mol Biol 2006; 364:735-46. [PMID: 17028022 DOI: 10.1016/j.jmb.2006.09.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/06/2006] [Accepted: 09/08/2006] [Indexed: 11/29/2022]
Abstract
The dimerization domain of Escherichia coli ATP synthase b subunit forms an atypical parallel two-stranded coiled coil. Sequence analysis reveals an 11-residue abcdefghijk repeat characteristic of right-handed coiled coils, but no other naturally occurring parallel dimeric structure of this class has been identified. The arrangement of the helices was studied by their propensity to form interhelix disulfide linkages and analysis of the stability and shape of disulfide-linked dimers. Disulfides formed preferentially between cysteine residues in an a position of one helix and either of the adjacent h positions of the partner. Such heterodimers were far more stable to thermal denaturation than homodimers and, on the basis of gel-filtration chromatography studies, were similar in shape to both non-covalent dimers and dimers linked through flexible Gly(1-3)Cys C-terminal extensions. The results indicate a right-handed coiled-coil structure with intrinsic asymmetry, the two helices being offset rather than in register. A function for the right-handed coiled coil in rotational catalysis is proposed.
Collapse
Affiliation(s)
- Paul A Del Rizzo
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | | | | |
Collapse
|
23
|
Walker JE, Dickson VK. The peripheral stalk of the mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:286-96. [PMID: 16697972 DOI: 10.1016/j.bbabio.2006.01.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 01/04/2006] [Indexed: 12/23/2022]
Abstract
The peripheral stalk of F-ATPases is an essential component of these enzymes. It extends from the membrane distal point of the F1 catalytic domain along the surface of the F1 domain with subunit a in the membrane domain. Then, it reaches down some 45 A to the membrane surface, and traverses the membrane, where it is associated with the a-subunit. Its role is to act as a stator to hold the catalytic alpha3beta3 subcomplex and the a-subunit static relative to the rotary element of the enzyme, which consists of the c-ring in the membrane and the attached central stalk. The central stalk extends up about 45 A from the membrane surface and then penetrates into the alpha3beta3 subcomplex along its central axis. The mitochondrial peripheral stalk is an assembly of single copies of the oligomycin sensitivity conferral protein (the OSCP) and subunits b, d and F6. In the F-ATPase in Escherichia coli, its composition is simpler, and it consists of a single copy of the delta-subunit with two copies of subunit b. In some bacteria and in chloroplasts, the two copies of subunit b are replaced by single copies of the related proteins b and b' (known as subunits I and II in chloroplasts). As summarized in this review, considerable progress has been made towards establishing the structure and biophysical properties of the peripheral stalk in both the mitochondrial and bacterial enzymes. However, key issues are unresolved, and so our understanding of the role of the peripheral stalk and the mechanism of synthesis of ATP are incomplete.
Collapse
Affiliation(s)
- John E Walker
- The Medical Research Council Dunn Human Nutrition Unit, The Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| | | |
Collapse
|
24
|
Weber J. ATP synthase: subunit-subunit interactions in the stator stalk. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1162-70. [PMID: 16730323 PMCID: PMC1785291 DOI: 10.1016/j.bbabio.2006.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 03/20/2006] [Accepted: 04/05/2006] [Indexed: 11/20/2022]
Abstract
In ATP synthase, proton translocation through the Fo subcomplex and ATP synthesis/hydrolysis in the F1 subcomplex are coupled by subunit rotation. The static, non-rotating portions of F1 and Fo are attached to each other via the peripheral "stator stalk", which has to withstand elastic strain during subunit rotation. In Escherichia coli, the stator stalk consists of subunits b2delta; in other organisms, it has three or four different subunits. Recent advances in this area include affinity measurements between individual components of the stator stalk as well as a detailed analysis of the interaction between subunit delta (or its mitochondrial counterpart, the oligomycin-sensitivity conferring protein, OSCP) and F1. The current status of our knowledge of the structure of the stator stalk and of the interactions between its subunits will be discussed in this review.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| |
Collapse
|
25
|
Cipriano DJ, Wood KS, Bi Y, Dunn SD. Mutations in the dimerization domain of the b subunit from the Escherichia coli ATP synthase. Deletions disrupt function but not enzyme assembly. J Biol Chem 2006; 281:12408-13. [PMID: 16531410 DOI: 10.1074/jbc.m513368200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The b subunit dimer of Escherichia coli ATP synthase serves essential roles as an assembly factor for the enzyme and as a stator during rotational catalysis. To investigate the functional importance of its coiled coil dimerization domain, a series of internal deletions including each individual residue between Lys-100 and Ala-105 (b(deltaK100)-b(deltaA105)), b(deltaK100-A103), and b(deltaK100-Q106) as well as a control b(K100A) missense mutation were prepared. All of the mutants supported assembly of ATP synthase, but all single-residue deletions failed to support growth on acetate, indicating a severe defect in oxidative phosphorylation, and b(deltaK100-Q106) displayed moderately reduced growth. The membrane-bound ATPase activities of these strains showed a related reduction in sensitivity to dicyclohexylcarbodiimide, indicative of uncoupling. Analysis of dimerization of the soluble constructs of b(deltaK100) and the multiple-residue deletions by sedimentation equilibrium revealed reduced dimerization compared with wild type for all deletions, with b(deltaK100-Q106) most severely affected. In cross-linking studies it was found that F1-ATPase can mediate the dimerization of some soluble b constructs but did not mediate dimerization of b(deltaK100) and b(deltaK100-Q106); these two forms also were defective in F1 binding analyses. We conclude that defective dimerization of soluble b constructs severely affects F1 binding in vitro, yet allows assembly of ATP synthase in vivo. The highly uncoupled nature of enzymes with single-residue deletions in b indicates that the b subunit serves an active function in energy coupling rather than just holding on to the F1 sector. This function is proposed to depend on proper, specific interactions between the b subunits and F1.
Collapse
Affiliation(s)
- Daniel J Cipriano
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
26
|
Bhatt D, Cole SP, Grabar TB, Claggett SB, Cain BD. Manipulating the length of the b subunit F1 binding domain in F1F0 ATP synthase from Escherichia coli. J Bioenerg Biomembr 2005; 37:67-74. [PMID: 15906151 DOI: 10.1007/s10863-005-4129-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
The peripheral stalk of F(1)F(0) ATP synthase is composed of a parallel homodimer of b subunits that extends across the cytoplasmic membrane in F(0) to the top of the F(1) sector. The stalk serves as the stator necessary for holding F(1) against movement of the rotor. A series of insertions and deletions have been engineered into the hydrophilic domain that interacts with F(1). Only the hydrophobic segment from val-121 to ala-132 and the extreme carboxyl terminus proved to be highly sensitive to mutation. Deletions in either site apparently abolished enzyme function as a result of defects is assembly of the F(1)F(0) complex. Other mutations manipulating the length of the sequence between these two areas had only limited effects on enzyme function. Expression of a b subunit with insertions with as few as two amino acids into the hydrophobic segment also resulted in loss of F(1)F(0) ATP synthase. However, a fully defective b subunit with seven additional amino acids could be stabilized in a heterodimeric peripheral stalk within a functional F(1)F(0) complex by a normal b subunit.
Collapse
Affiliation(s)
- Deepa Bhatt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32605, USA
| | | | | | | | | |
Collapse
|
27
|
Wilkens S, Borchardt D, Weber J, Senior AE. Structural Characterization of the Interaction of the δ and α Subunits of the Escherichia coli F1F0-ATP Synthase by NMR Spectroscopy,. Biochemistry 2005; 44:11786-94. [PMID: 16128580 DOI: 10.1021/bi0510678] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical point of interaction between F(1) and F(0) in the bacterial F(1)F(0)-ATP synthase is formed by the alpha and delta subunits. Previous work has shown that the N-terminal domain (residues 3-105) of the delta subunit forms a 6 alpha-helix bundle [Wilkens, S., Dunn, S. D., Chandler, J., Dahlquist, F. W., and Capaldi, R. A. (1997) Nat. Struct. Biol. 4, 198-201] and that the majority of the binding energy between delta and F(1) is provided by the interaction between the N-terminal 22 residues of the alpha- and N-terminal domain of the delta subunit [Weber, J., Muharemagic, A., Wilke-Mounts, S., and Senior, A. E. (2003) J. Biol. Chem. 278, 13623-13626]. We have now analyzed a 1:1 complex of the delta-subunit N-terminal domain and a peptide comprising the N-terminal 22 residues of the alpha subunit by heteronuclear protein NMR spectroscopy. A comparison of the chemical-shift values of delta-subunit residues with and without alpha N-terminal peptide bound indicates that the binding interface on the N-terminal domain of the delta subunit is formed by alpha helices I and V. NOE cross-peak patterns in 2D (12)C/(12)C-filtered NOESY spectra of the (13)C-labeled delta-subunit N-terminal domain in complex with unlabeled peptide verify that residues 8-18 in the alpha-subunit N-terminal peptide are folded as an alpha helix when bound to delta N-terminal domain. On the basis of intermolecular contacts observed in (12)C/(13)C-filtered NOESY experiments, we describe structural details of the interaction of the delta-subunit N-terminal domain with the alpha-subunit N-terminal alpha helix.
Collapse
Affiliation(s)
- Stephan Wilkens
- Departments of Biochemistry, University of California at Riverside, Riverside, California 92521, USA.
| | | | | | | |
Collapse
|
28
|
Rubinstein JL, Dickson VK, Runswick MJ, Walker JE. ATP synthase from Saccharomyces cerevisiae: location of subunit h in the peripheral stalk region. J Mol Biol 2005; 345:513-20. [PMID: 15581895 DOI: 10.1016/j.jmb.2004.10.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 10/18/2004] [Indexed: 11/26/2022]
Abstract
Subunit h is a component of the peripheral stalk region of ATP synthase from Saccharomyces cerevisiae. It is weakly homologous to subunit F6 in the bovine enzyme, and F6 can replace the function of subunit h in a yeast strain from which the gene for subunit h has been deleted. The removal of subunit h (or F6) uncouples ATP synthesis from the proton motive force. A biotinylation signal has been introduced following the C terminus of subunit h. It becomes biotinylated in vivo, and allows avidin to be bound quantitatively to the purified enzyme complex in vitro. By electron microscopy of the ATP synthase-avidin complex in negative stain and by subsequent image analysis, the C terminus of subunit h has been located in a region of the peripheral stalk that is close to the Fo membrane domain of ATP synthase. Models of the peripheral stalk are proposed that are consistent with this location and with reconstitution experiments conducted with isolated peripheral stalk subunits.
Collapse
Affiliation(s)
- John L Rubinstein
- The MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|
29
|
Abstract
The F-, V-, and A-adenosine triphosphatases (ATPases) represent a family of evolutionarily related ion pumps found in every living cell. They either function to synthesize adenosine triphosphate (ATP) at the expense of an ion gradient or they act as primary ion pumps establishing transmembrane ion motive force at the expense of ATP hydrolysis. The A-, F-, and V-ATPases are rotary motor enzymes. Synthesis or hydrolysis of ATP taking place in the three catalytic sites of the membrane extrinsic domain is coupled to ion translocation across the single ion channel in the membrane-bound domain via rotation of a central part of the complex with respect to a static portion of the enzyme. This chapter reviews recent progress in the structure determination of several members of the family of F-, A-, and V-ATPases and our current understanding of the rotary mechanism of energy coupling.
Collapse
Affiliation(s)
- Stephan Wilkens
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, USA
| |
Collapse
|
30
|
Motz C, Hornung T, Kersten M, McLachlin DT, Dunn SD, Wise JG, Vogel PD. The subunit b dimer of the FOF1-ATP synthase: interaction with F1-ATPase as deduced by site-specific spin-labeling. J Biol Chem 2004; 279:49074-81. [PMID: 15339903 DOI: 10.1074/jbc.m404543200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used site-specific spin-labeling of single cysteine mutations within a water-soluble mutant of subunit b of the ATP synthase and employed electron spin resonance (ESR) spectroscopy to obtain information about the binding interactions of the b dimer with F1-ATPase. Interaction of b2 with a delta-depleted F1 (F1-delta) was also studied. The cysteine mutations used for spin-labeling were distributed throughout the cytosolic domain of the b subunit. In addition, each position between residues 101 and 114 of b was individually mutated to cysteine. All mutants were modified with a cysteine-reactive spin label. The room temperature ESR spectra of spin-labeled b2 in the presence of F1 or F1-delta when compared with the spectra of free b2 indicate a tight binding interaction between b2 and F1. The data suggest that b2 packs tightly to F1 between residues 80 and the C terminus but that there are segments of b2 within that region where packing interactions are quite loose. Two-dimensional gel electrophoresis confirmed binding of the modified b mutants to F1-ATPase as well as to F1-delta. Subsequent addition of delta to F1-delta.b2 complex resulted in changes in the ESR spectra, indicating different binding interactions of b to F1 in the presence or absence of delta. The data also suggest that the reconstitution of the ATP synthase is not ordered with respect to these subunits. Additional spectral components observed in b preparations that were spin-labeled between amino acid position 101 and 114 are indicative of either two populations of b subunits with different packing interactions or to helical bending within this region.
Collapse
Affiliation(s)
- Christian Motz
- Department of Biological Sciences, Southern Methodist University, Dallas Texas 75275, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Inoue T, Wilkens S, Forgac M. Subunit structure, function, and arrangement in the yeast and coated vesicle V-ATPases. J Bioenerg Biomembr 2004; 35:291-9. [PMID: 14635775 DOI: 10.1023/a:1025720713747] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The vacuolar (H+)-ATPases (or V-ATPases) are ATP-dependent proton pumps that function both to acidify intracellular compartments and to transport protons across the plasma membrane. Acidification of intracellular compartments is important for such processes as receptor-mediated endocytosis, intracellular trafficking, protein processing, and coupled transport. Plasma membrane V-ATPases function in renal acidification, bone resorption, pH homeostasis, and, possibly, tumor metastasis. This review will focus on work from our laboratories on the V-ATPases from mammalian clathrin-coated vesicles and from yeast. The V-ATPases are composed of two domains. The peripheral V1 domain has a molecular mass of 640 kDa and is composed of eight different subunits (subunits A-H) of molecular mass 70-13 kDa. The integral V0 domain, which has a molecular mass of 260 kDa, is composed of five different subunits (subunits a, d, c, c', and c'') of molecular mass 100-17 kDa. The V1 domain is responsible for ATP hydrolysis whereas the V0 domain is responsible for proton transport. Using a variety of techniques, including cysteine-mediated crosslinking and electron microscopy, we have defined both the overall shape of the V-ATPase and the V0 domain as well as the location of various subunits within the complex. We have employed site-directed and random mutagenesis to identify subunits and residues involved in nucleotide binding and hydrolysis, proton translocation, and the coupling of these two processes. We have also investigated the mechanism of regulation of the V-ATPase by reversible dissociation and the role of different subunits in this process.
Collapse
Affiliation(s)
- Takao Inoue
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
32
|
Hardy AW, Grabar TB, Bhatt D, Cain BD. Mutagenesis studies of the F1F0 ATP synthase b subunit membrane domain. J Bioenerg Biomembr 2004; 35:389-97. [PMID: 14740887 DOI: 10.1023/a:1027363012727] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A homodimer of b subunits constitutes the peripheral stalk linking the F1 and F0 sectors of the Escherichia coli ATP synthase. Each b subunit has a single-membrane domain. The constraints on the membrane domain have been studied by systematic mutagenesis. Replacement of a segment proximal to the cytoplasmic side of the membrane had minimal impact on F1F0 ATP synthase. However, multiple substitutions on the periplasmic side resulted in defects in assembly of the enzyme complex. These mutants had insufficient oxidative phosphorylation to support growth, and biochemical studies showed little F1F0 ATPase and no detectable ATP-driven proton pumping activity. Expression of the b(N2A,T6A,Q10A) subunit was also oxidative phosphorylation deficient, but the b(N2A,T6A,Q10A) protein was incorporated into an F1F0 complex. Single amino acid substitutions had minimal reductions in F1F0 ATP synthase function. The evidence suggests that the b subunit membrane domain has several sites of interaction contributing to assembly of F0, and that these interactions are strongest on the periplasmic side of the bilayer.
Collapse
Affiliation(s)
- Andrew W Hardy
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
33
|
Grabar TB, Cain BD. Genetic complementation between mutant b subunits in F1F0 ATP synthase. J Biol Chem 2004; 279:31205-11. [PMID: 15159387 DOI: 10.1074/jbc.m404420200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, a parallel homodimer of identical b subunits constitutes the peripheral stalk of F(1)F(0) ATP synthase. Although the two b subunits have long been viewed as a single functional unit, the asymmetric nature of the enzyme complex suggested that the functional roles of each b subunit should not necessarily be considered equivalent. Previous mutagenesis studies of the peripheral stalk suffered from the fact that mutations in the uncF(b) gene affected both of the b subunits. We developed a system to express and study F(1)F(0) ATP synthase complexes containing two different b subunits. Two mutations already known to inactivate the F(1)F(0) ATP synthase complex have been studied using this experimental system. An evolutionarily conserved arginine, b(Arg-36), was known to be crucial for F(1)F(0) ATP synthase function, and the last four C-terminal amino acids had been shown to be important for enzyme assembly. Experiments expressing one of the mutants with a wild type b subunit demonstrated the presence of heterodimers in F(1)F(0) ATP synthase complexes. Activity assays suggested that the heterodimeric F(1)F(0) complexes were functional. When the two defective b subunits were expressed together and in the absence of any wild type b subunit, an active F(1)F(0) ATP synthase complex was assembled. This mutual complementation between fully defective b subunits indicated that each of the two b subunits makes a unique contribution to the functions of the peripheral stalk, such that one mutant b subunit is making up for what the other is lacking.
Collapse
Affiliation(s)
- Tammy Bohannon Grabar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
34
|
Diez M, Börsch M, Zimmermann B, Turina P, Dunn SD, Gräber P. Binding of the b-subunit in the ATP synthase from Escherichia coli. Biochemistry 2004; 43:1054-64. [PMID: 14744151 DOI: 10.1021/bi0357098] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rotary mechanism of ATP synthase requires a strong binding within stator subunits. In this work we studied the binding affinity of the b-subunit to F(1)-ATPase of Escherichia coli. The dimerization of the truncated b-subunit without amino acids 1-33, b(34-156)T62C, was investigated by analytical ultracentrifugation, resulting in a dissociation constant of 1.8 microM. The binding of b-subunit monomeric and dimeric forms to the isolated F(1) part was investigated by fluorescence correlation spectroscopy and steady-state fluorescence. The mutants b(34-156)T62C and EF(1)-gammaT106C were labeled with several fluorophores. Fluorescence correlation spectroscopy was used to measure translational diffusion times of the labeled b-subunit, labeled F(1), and a mixture of the labeled b-subunit with unlabeled F(1). Data analysis revealed a dissociation constant of 0.2 nM of the F(1)b(2) complex, yielding a Gibbs free energy of binding of DeltaG(o)= -55 kJ mol(-1). In steady-state fluorescence resonance energy transfer (FRET) measurements it was found that binding of the b-subunit to EF(1)-gammaT106C-Alexa488 resulted in a fluorescence decrease of one-third of the initial FRET donor fluorescence intensity. The decrease of fluorescence was measured as a function of b-concentration, and data were described by a model including equilibria for dimerization of the b-subunit and binding of b and b(2) to F(1). For a quantitative description of fluorescence decrease we used two different models: the binding of the first and the second b-subunit causes the same fluorescence decrease (model 1) or only the binding of the first b-subunit causes fluorescence decrease (model 2). Data evaluation revealed a dissociation constant for the F(1)b(2) complex of 0.6 nM (model 1) or 14 nM (model 2), giving DeltaG(o)= -52 kJ mol(-1) and DeltaG(o)= -45 kJ mol(-1), respectively. The maximal DeltaG observed for ATP synthesis in cells is approximately DeltaG= 55 kJ mol(-1). Therefore, the binding energy of the b-subunit seems to be too low for models in which the free energy for ATP synthesis is accumulated in the elastic strain between rotor and stator subunits and then transduced to the catalytic site in one single step. Models in which energy transduction takes place in at least two steps are favored.
Collapse
Affiliation(s)
- Manuel Diez
- Institut für Physikalische Chemie der Universität Freiburg, Albertstrasse 23a, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Weber J, Wilke-Mounts S, Nadanaciva S, Senior AE. Quantitative determination of direct binding of b subunit to F1 in Escherichia coli F1F0-ATP synthase. J Biol Chem 2004; 279:11253-8. [PMID: 14722065 DOI: 10.1074/jbc.m312576200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stator in F(1)F(0)-ATP synthase resists strain generated by rotor torque. In Escherichia coli, the b(2)delta subunit complex comprises the stator, bound to subunit a in F(0) and to the alpha(3)beta(3) hexagon of F(1). To quantitatively characterize binding of b subunit to the F(1) alpha(3)beta(3) hexagon, we developed fluorimetric assays in which wild-type F(1), or F(1) enzymes containing introduced Trp residues, were titrated with a soluble portion of the b subunit (b(ST34-156)). With five different F(1) enzymes, K(d)(b(ST34-156)) ranged from 91 to 157 nm. Binding was strongly Mg(2+)-dependent; in EDTA buffer, K(d)(b(ST34-156)) was increased to 1.25 microm. The addition of the cytoplasmic portion of the b subunit increases the affinity of binding of delta subunit to delta-depleted F(1). The apparent K(d)(b(ST34-156)) for this effect was increased from 150 nm in Mg(2+) buffer to 1.36 microm in EDTA buffer. This work demonstrates quantitatively how binding of the cytoplasmic portion of the b subunit directly to F(1) contributes to stator resistance and emphasizes the importance of Mg(2+) in stator interactions.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
36
|
Kawasaki-Nishi S, Nishi T, Forgac M. Interacting helical surfaces of the transmembrane segments of subunits a and c' of the yeast V-ATPase defined by disulfide-mediated cross-linking. J Biol Chem 2003; 278:41908-13. [PMID: 12917411 DOI: 10.1074/jbc.m308026200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proton translocation by the vacuolar (H+)-ATPase (or V-ATPase) has been shown by mutagenesis to be dependent upon charged residues present within transmembrane segments of subunit a as well as the three proteolipid subunits (c, c', and c"). Interaction between R735 in TM7 of subunit a and the glutamic acid residue in the middle of TM4 of subunits c and c' or TM2 of subunit c" has been proposed to be essential for proton release to the luminal compartment. In order to determine whether the helical face of TM7 of subunit a containing R735 is capable of interacting with the helical face of TM4 of subunit c' containing the essential glutamic acid residue (Glu-145), cysteine-mediated cross-linking between these subunits in yeast has been performed. Cys-less forms of subunits a and c' as well as forms containing unique cysteine residues were constructed, introduced together into a strain disrupted in both endogenous subunits, and tested for growth at neutral pH, for assembly competence and for cross-linking in the presence of cupric-phenanthroline by SDS-PAGE and Western blot analysis. Four different cysteine mutants of subunit a were each tested pairwise with ten different unique cysteine mutants of subunit c'. Strong cross-linking was observed for the pairs aS728C/c'I142C, aA731C/c'E145C, aA738C/c'F143C, aA738C/c'L147C, and aL739C/c'L147C. Partial cross-linking was observed for an additional 13 of 40 pairs analyzed. When arrayed on a helical wheel diagram, the results suggest that the helical face of TM7 of subunit a containing Arg-735 interacts with the helical face of TM4 of subunit c' centered on Val-146 and bounded by Glu-145 and Leu-147. The results are consistent with a possible rotational flexibility of one or both of these transmembrane segments as well as some flexibility of movement perpendicular to the membrane.
Collapse
Affiliation(s)
- Shoko Kawasaki-Nishi
- Department of Physiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
37
|
Abstract
In Escherichia coli the peripheral stalk of F1F0-ATP synthase consists of a parallel dimer of identical b subunits. However, the length of the two b subunits need not be fixed. This led us to ask whether it is possible for two b subunits of unequal length to dimerize in a functional enzyme complex. A two-plasmid expression system has been developed that directs production of b subunits of unequal lengths in the same cell. Two b subunits differing in length have been expressed with either a histidine or V5 epitope tag to facilitate nickel-affinity resin purification (Ni-resin) and Western blot analysis. The epitope tags did not materially affect enzyme function. The system allowed us to determine whether the different b subunits segregate to form homodimers or, conversely, whether a heterodimer consisting of both the shortened and lengthened b subunits can occur in an intact enzyme complex. Experiments expressing different b subunits lengthened and shortened by up to 7 amino acids were detected in the same enzyme complex. The V5-tagged b subunit shortened by 7 amino acids (b Delta 7-V5) was detected in Ni-resin-purified membrane preparations only when coexpressed with a histidine-tagged b subunit in the same cell. The results demonstrate that the enzyme complex can tolerate a size difference between the two b subunits of up to 14 amino acids. Moreover, the experiments demonstrated the feasibility of constructing enzyme complexes with non-identical b subunits that will be valuable for research requiring specific chemical modification of a single b subunit.
Collapse
Affiliation(s)
- Tammy Bohannon Grabar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
38
|
Stalz WD, Greie JC, Deckers-Hebestreit G, Altendorf K. Direct interaction of subunits a and b of the F0 complex of Escherichia coli ATP synthase by forming an ab2 subcomplex. J Biol Chem 2003; 278:27068-71. [PMID: 12724321 DOI: 10.1074/jbc.m302027200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The addition of a His6 tag to the N terminus of subunit a of the F0 complex of the Escherichia coli ATP synthase allowed the purification of an ab2 subcomplex after solubilization of membranes with n-dodecyl-beta-d-maltoside and subsequent nickel-nitrilotriacetic acid affinity chromatography. After co-reconstitution of the ab2 subcomplex with purified subunit c, passive proton translocation rates as well as coupled ATPase activities after binding of F1 were measured that were comparable with those of wild type F0. The interaction between subunits a and b, which has been shown to be stoichiometric and functional, is not triggered by any cross-linking reagent and therefore reflects subunit interactions occurring within the F0 complex in vivo.
Collapse
Affiliation(s)
- Wolf-Dieter Stalz
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069 Osnabrück, Germany
| | | | | | | |
Collapse
|
39
|
Abstract
The vacuolar H(+)-ATPases (or V-ATPases) are a family of ATP-dependent proton pumps responsible for acidification of intracellular compartments and, in certain cases, proton transport across the plasma membrane of eukaryotic cells. They are multisubunit complexes composed of a peripheral domain (V(1)) responsible for ATP hydrolysis and an integral domain (V(0)) responsible for proton translocation. Based upon their structural similarity to the F(1)F(0) ATP synthases, the V-ATPases are thought to operate by a rotary mechanism in which ATP hydrolysis in V(1) drives rotation of a ring of proteolipid subunits in V(0). This review is focused on the current structural knowledge of the V-ATPases as it relates to the mechanism of ATP-driven proton translocation.
Collapse
Affiliation(s)
- Shoko Kawasaki-Nishi
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | |
Collapse
|
40
|
Shao E, Nishi T, Kawasaki-Nishi S, Forgac M. Mutational analysis of the non-homologous region of subunit A of the yeast V-ATPase. J Biol Chem 2003; 278:12985-91. [PMID: 12569096 DOI: 10.1074/jbc.m212096200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit A is the catalytic nucleotide binding subunit of the vacuolar proton-translocating ATPase (or V-ATPase) and is homologous to subunit beta of the F(1)F(0) ATP synthase (or F-ATPase). Amino acid sequence alignment of these subunits reveals a 90-amino acid insert in subunit A (termed the non-homologous region) that is absent from subunit beta. To investigate the functional role of this region, site-directed mutagenesis has been performed on the VMA1 gene that encodes subunit A in yeast. Substitutions were performed on 13 amino acid residues within this region that are conserved in all available A subunit sequences. Most of the 18 mutations introduced showed normal assembly of the V-ATPase. Of these, one (R219K) greatly reduced both proton transport and ATPase activity. By contrast, the P217V mutant showed significantly reduced ATPase activity but higher than normal levels of proton transport, suggesting an increase in coupling efficiency. Two other mutations in the same region (P223V and P233V) showed decreased coupling efficiency, suggesting that changes in the non-homologous region can alter coupling of proton transport and ATP hydrolysis. It was previously shown that the V-ATPase must possess at least 5-10% activity relative to wild type to undergo in vivo dissociation in response to glucose withdrawal. However, four of the mutations studied (G150A, D157E, P177V, and P223V) were partially or completely blocked in dissociation despite having greater than 30% of wild type levels of activity. These results suggest that changes in the non-homologous region can also alter in vivo dissociation of the V-ATPase independent of effects on activity.
Collapse
Affiliation(s)
- Elim Shao
- Department of Physiology, Tufts University School of Medicine, Boston Massachusetts 02111, USA
| | | | | | | |
Collapse
|
41
|
Weber J, Wilke-Mounts S, Senior AE. Identification of the F1-binding surface on the delta-subunit of ATP synthase. J Biol Chem 2003; 278:13409-16. [PMID: 12556473 DOI: 10.1074/jbc.m212037200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stator function in ATP synthase was studied by a combined mutagenesis and fluorescence approach. Specifically, binding of delta-subunit to delta-depleted F(1) was studied. A plausible binding surface on delta-subunit was identified from conservation of amino acid sequence and the high resolution NMR structure. Specific mutations aimed at modulating binding were introduced onto this surface. Affinity of binding of wild-type and mutant delta-subunits to delta-depleted F(1) was determined quantitatively using the fluorescence signals of natural delta-Trp-28, inserted delta-Trp-11, or inserted delta-Trp-79. The results demonstrate that helices 1 and 5 in the N-terminal domain of the delta-subunit provide the F(1)-binding surface of delta. Unexpectedly, mutations that impaired binding between F(1) and delta were found to not necessarily impair ATP synthase activity. Further investigation revealed that inclusion of the soluble cytoplasmic domain of the b subunit substantially enhanced affinity of binding of delta-subunit to F(1). The new data show that the stator is "overengineered" to resist rotor torque during catalysis.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
42
|
Arata Y, Baleja JD, Forgac M. Localization of subunits D, E, and G in the yeast V-ATPase complex using cysteine-mediated cross-linking to subunit B. Biochemistry 2002; 41:11301-7. [PMID: 12220197 DOI: 10.1021/bi0262449] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a combination of cysteine mutagenesis and covalent cross-linking, we have identified subunits in close proximity to specific sites within subunit B of the vacuolar (H(+))-ATPase (V-ATPase) of yeast. Unique cysteine residues were introduced into subunit B by site-directed mutagenesis, and the resultant V-ATPase complexes were reacted with the bifunctional, photoactivatable maleimide reagent 4-(N-maleimido)benzophenone (MBP) followed by irradiation. Cross-linked products were identified by Western blot using subunit-specific antibodies. Introduction of cysteine residues at positions Glu(106) and Asp(199) led to cross-linking of subunits B and E, at positions Asp(341) and Ala(424) to cross-linking of subunits B and D, and at positions Ala(15) and Lys(45) to cross-linking of subunits B and G. Using a molecular model of subunit B constructed on the basis of sequence homology between the V- and F-ATPases, the X-ray coordinates of the F(1)-ATPase, and energy minimization, Glu(106), Asp(199), Ala(15), and Lys(45) are all predicted to be located on the outer surface of the complex, with Ala(15) and Lys(45) located near the top of the complex furthest from the membrane. By contrast, Asp(341) and Ala(424) are predicted to face the interior of the A(3)B(3) hexamer. These results suggest that subunits E and G form part of a peripheral stalk connecting the V(1) and V(0) domains whereas subunit D forms part of a central stalk. Subunit D is thus the most likely homologue to the gamma subunit of F(1), which undergoes rotation during ATP hydrolysis and serves an essential function in rotary catalysis.
Collapse
Affiliation(s)
- Yoichiro Arata
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
43
|
Wehrle F, Kaim G, Dimroth P. Molecular mechanism of the ATP synthase's F(o) motor probed by mutational analyses of subunit a. J Mol Biol 2002; 322:369-81. [PMID: 12217697 DOI: 10.1016/s0022-2836(02)00731-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The most prominent residue of subunit a of the F(1)F(o) ATP synthase is a universally conserved arginine (aR227 in Propionigenium modestum), which was reported to permit no substitution with retention of ATP synthesis or H(+)-coupled ATP hydrolysis activity. We show here that ATP synthases with R227K or R227H mutations in the P.modestum a subunit catalyse ATP-driven Na(+) transport above or below pH 8.0, respectively. Reconstituted F(o) with either mutation catalysed 22Na(+)(out)/Na(+)(in) exchange with similar pH profiles as found in ATP-driven Na(+) transport. ATP synthase with an aR227A substitution catalysed Na(+)-dependent ATP hydrolysis, which was completely inhibited by dicyclohexylcarbodiimide, but not coupled to Na(+) transport. This suggests that in the mutant the dissociation of Na(+) becomes more difficult and that the alkali ions remain therefore permanently bound to the c subunit sites. The reconstituted mutant enzyme was also able to synthesise ATP in the presence of a membrane potential, which stopped at elevated external Na(+) concentrations. These observations reinforce the importance of aR227 to facilitate the dissociation of Na(+) from approaching rotor sites. This task of aR227 was corroborated by other results with the aR227A mutant: (i) after reconstitution into liposomes, F(o) with the aR227A mutation did not catalyse 22Na(+)(out)/Na(+)(in) exchange at high internal sodium concentrations, and (ii) at a constant (Delta)pNa(+), 22Na(+) uptake was inhibited at elevated internal Na(+) concentrations. Hence, in mutant aR227A, sodium ions can only dissociate from their rotor sites into a reservoir of low sodium ion concentration, whereas in the wild-type the positively charged aR227 allows the dissociation of Na(+) even into compartments of high Na(+) concentration.
Collapse
Affiliation(s)
- Franziska Wehrle
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland
| | | | | |
Collapse
|
44
|
Rubinstein J, Walker J. ATP synthase from Saccharomyces cerevisiae: location of the OSCP subunit in the peripheral stalk region. J Mol Biol 2002; 321:613-9. [PMID: 12206777 DOI: 10.1016/s0022-2836(02)00671-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biotinylation signal has been fused to the C terminus of the oligomycin sensitivity conferral protein (OSCP) of the ATP synthase complex from Saccharomyces cerevisiae. The signal is biotinylated in vivo and the biotinylated complex binds avidin in vitro. By electron microscopy of negatively stained particles of the ATP synthase-avidin complex, the bound avidin has been localised close to the F(1) domain. The images were subjected to multi-reference alignment and classification. Because of the presence of a flexible linker between the OSCP and the biotinylation signal, the class-averages differ in the position of the avidin relative to the F(1) domain. These positions lie on an arc, and its centre indicates the position of the C terminus of the OSCP on the surface of the F(1) domain. Since the N-terminal region of the OSCP is known to interact with the N-terminal regions of alpha-subunits, which are on top of the F(1) domain distal from the F(o) membrane domain, the OSCP extends almost 10nm along the surface of F(1) down towards F(o) where it interacts with the C terminus of the b subunit, which extends up from F(o). The labelling technique has also allowed a reliable 2D projection map to be developed for the intact ATP synthase from S.cerevisiae. The map reveals a marked asymmetry in the F(o) part of the complex that can be attributed to subunits in the F(o) domain.
Collapse
Affiliation(s)
- John Rubinstein
- MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
45
|
Vonck J, von Nidda TK, Meier T, Matthey U, Mills DJ, Kühlbrandt W, Dimroth P. Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. J Mol Biol 2002; 321:307-16. [PMID: 12144787 DOI: 10.1016/s0022-2836(02)00597-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sodium ion-translocating F(1)F(0) ATP synthase from the bacterium Ilyobacter tartaricus contains a remarkably stable rotor ring composed of 11 c subunits. The rotor ring was isolated, crystallised in two dimensions and analysed by electron cryo-microscopy. Here, we present an alpha-carbon model of the c-subunit ring. Each monomeric c subunit of 89 amino acid residues folds into a helical hairpin consisting of two membrane-spanning helices and a cytoplasmic loop. The 11 N-terminal helices are closely spaced within an inner ring surrounding a cavity of approximately 17A (1.7 nm). The tight helix packing leaves no space for side-chains and is accounted for by a highly conserved motif of four glycine residues in the inner, N-terminal helix. Each inner helix is connected by a clearly visible loop to an outer C-terminal helix. The outer helix has a kink near the position of the ion-binding site residue Glu65 in the centre of the membrane and another kink near the C terminus. Two helices from the outer ring and one from the inner ring form the ion-binding site in the middle of the membrane and a potential access channel from the binding site to the cytoplasmic surface. Three possible inter-subunit ion-bridges are likely to account for the remarkable temperature stability of I.tartaricus c-rings compared to those of other organisms.
Collapse
Affiliation(s)
- Janet Vonck
- Max-Planck-Institute of Biophysics, Heinrich-Hoffmann-Str. 7, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Weber J, Wilke-Mounts S, Senior AE. Quantitative determination of binding affinity of delta-subunit in Escherichia coli F1-ATPase: effects of mutation, Mg2+, and pH on Kd. J Biol Chem 2002; 277:18390-6. [PMID: 11864990 DOI: 10.1074/jbc.m201047200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the stator function in ATP synthase, a fluorimetric assay has been devised for quantitative determination of binding affinity of delta-subunit to Escherichia coli F(1)-ATPase. The signal used is that of the natural tryptophan at residue delta28, which is enhanced by 50% upon binding of delta-subunit to alpha(3)beta(3)gammaepsilon complex. K(d) for delta binding is 1.4 nm, which is energetically equivalent (50.2 kJ/mol) to that required to resist the rotor strain. Only one site for delta binding was detected. The deltaW28L mutation increased K(d) to 4.6 nm, equivalent to a loss of 2.9 kJ/mol binding energy. While this was insufficient to cause detectable functional impairment, it did facilitate preparation of delta-depleted F(1). The alphaG29D mutation reduced K(d) to 26 nm, equivalent to a loss of 7.2 kJ/mol binding energy. This mutation did cause serious functional impairment, referable to interruption of binding of delta to F(1). Results with the two mutants illuminate how finely balanced is the stator resistance function. delta' fragment, consisting of residues delta1-134, bound with the same K(d) as intact delta, showing that, at least in absence of F(o) subunits, the C-terminal domain of delta contributes zero binding energy. Mg(2+) ions had a strong effect on increasing delta binding affinity, supporting the possibility of bridging metal ion involvement in stator function. High pH environment greatly reduced delta binding affinity, suggesting the involvement of protonatable side-chains in the binding site.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
47
|
Revington M, Dunn SD, Shaw GS. Folding and stability of the b subunit of the F(1)F(0) ATP synthase. Protein Sci 2002; 11:1227-38. [PMID: 11967379 PMCID: PMC2373557 DOI: 10.1110/ps.3200102] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The F(1)F(0) ATP synthase is a reversible molecular motor that employs a rotary catalytic cycle to couple a chemiosmotic membrane potential to the formation/hydrolysis of ATP. The multisubunit enzyme contains two copies of the b subunit that form a homodimer as part of a narrow, peripheral stalk structure that connects the membrane (F(0)) and soluble (F(1)) sectors. The three-dimensional structure of the b subunit is unknown making the nature of any interactions or conformational changes within the F(1)F(0) complex difficult to interpret. We have used circular dichroism and analytical ultracentrifugation analyses of a series of N- and C-terminal truncated b proteins to investigate its stability and structure. Thermal denaturation of the b constructs exhibited distinct two-state, cooperative unfolding with T(m) values between 30 and 40 degrees C. CD spectra for the region comprising residues 53-122 (b(53-122)) showed theta;(222)/theta;(208) = 0.99, which reduced to 0.92 in the presence of the hydrophobic solvent trifluoroethanol. Thermodynamic parameters for b(53-122) (DeltaG, DeltaH and DeltaC(p)) were similar to those reported for several nonideal, coiled-coil proteins. Together these results are most consistent with a noncanonical and unstable parallel coiled-coil at the interface of the b dimer.
Collapse
Affiliation(s)
- Matthew Revington
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | | | | |
Collapse
|
48
|
Wehrle F, Appoldt Y, Kaim G, Dimroth P. Reconstitution of Fo of the sodium ion translocating ATP synthase of Propionigenium modestum from its heterologously expressed and purified subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2567-73. [PMID: 12027895 DOI: 10.1046/j.1432-1033.2002.02923.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The atpB and atpF genes of Propionigenium modestum were cloned as His-tag fusion constructs and expressed in Escherichia coli. Both recombinant subunits a and b were purified via Ni(2+) chelate affinity chromatography. A functionally active Fo complex was reassembled in vitro from subunits a, b and c, and incorporated into liposomes. The F(o) liposomes catalysed (22)Na(+) uptake in response to an inside negative potassium diffusion potential, and the uptake was prevented by modification of the c subunits with N,N'-dicyclohexylcarbodiimide (DCCD). In the absence of a membrane potential the Fo complexes catalysed (22)Na(+)(out)/Na(+)(in)-exchange. After F(1) addition the F(1)F(o) complex was formed and the holoenzyme catalysed ATP synthesis, ATP dependent Na(+) pumping, and ATP hydrolysis, which was inhibited by DCCD. Functional F(o) hybrids were reconstituted with recombinant subunits a and b from P. modestum and c(11) from Ilyobacter tartaricus. These Fo hybrids had Na(+) translocation activities that were not distinguishable from that of P. modestum F(o).
Collapse
Affiliation(s)
- Franziska Wehrle
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | |
Collapse
|
49
|
Arata Y, Baleja JD, Forgac M. Cysteine-directed cross-linking to subunit B suggests that subunit E forms part of the peripheral stalk of the vacuolar H+-ATPase. J Biol Chem 2002; 277:3357-63. [PMID: 11724797 DOI: 10.1074/jbc.m109967200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have employed a combination of site-directed mutagenesis and covalent cross-linking to identify subunits in close proximity to subunit B in the vacuolar H(+)-ATPase (V-ATPase) complex. Unique cysteine residues were introduced into a Cys-less form of subunit B, and the V-ATPase complex in isolated vacuolar membranes from each mutant strain was reacted with the bifunctional, photoactivable maleimide reagent 4-(N-maleimido)benzophenone. Photoactivation resulted in cross-linking of the unique sulfhydryl groups on subunit B with other subunits in the complex. Four of the eight mutants constructed containing a unique cysteine residue at Ala(15), Lys(45), Glu(494), or Thr(501) resulted in the formation of cross-linked products, which were recognized by Western blot analysis using antibodies against both subunits B and E. These products had a molecular mass of 84 kDa, consistent with a cross-linked product of subunits B and E. Molecular modeling of subunit B places Ala(15) and Lys(45) near the top of the V(1) structure (i.e. farthest from the membrane), whereas Glu(494) and Thr(501) are predicted to reside near the bottom of V(1), with all four residues predicted to be oriented toward the external surface of the complex. A model incorporating these and previous data is presented in which subunit E exists in an extended conformation on the outer surface of the A(3)B(3) hexamer that forms the core of the V(1) domain. This location for subunit E suggests that this subunit forms part of the peripheral stalk of the V-ATPase that links the V(1) and V(0) domains.
Collapse
Affiliation(s)
- Yoichiro Arata
- Departments of Physiology and Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
50
|
Dunn SD, Kellner E, Lill H. Specific heterodimer formation by the cytoplasmic domains of the b and b' subunits of cyanobacterial ATP synthase. Biochemistry 2001; 40:187-92. [PMID: 11141070 DOI: 10.1021/bi001821j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The soluble domains of the b and b' subunits of the ATP synthase of the cyanobacterium Synechocystis PCC 6803 were expressed with His tags attached to their N-termini. Following purification, the polypeptides were characterized by chemical cross-linking, analytical ultracentrifugation, and circular dichroism spectroscopy. Treatment of a mixture of the soluble b and b' domains with a chemical cross-linking agent led to substantial formation of cross-linked dimers, whereas similar treatment of either domain by itself resulted in only trace formation of cross-linked species. The molecular weights of the domains of b and b' in solution at 20 degrees C, measured by sedimentation equilibrium, were 17 800+/-700 and 16 300+/-400, respectively, compared to calculated polypeptide molecular weights of 16 635 and 15 422, whereas a mixture of b and b' gave a molecular weight of 29 800+/-800. The sedimentation coefficient of an equimolar mixture was 1.73+/-0.03. The circular dichroism spectra of the individual polypeptides indicated helical contents in the range of 40-50%; the spectrum of the mixture revealed changes indicative of coiled-coil formation and a helical content of 60%. The results indicate that the cytosolic domains of the b and b' subunits exist individually as monomers but form a highly extended heterodimer when they are mixed together.
Collapse
Affiliation(s)
- S D Dunn
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | | | | |
Collapse
|