1
|
Bird RP. Vitamin D and cancer. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:92-159. [PMID: 38777419 DOI: 10.1016/bs.afnr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The role of vitamin D in the prevention of chronic diseases including cancer, has received a great deal of attention during the past few decades. The term "Cancer" represents multiple disease states with varying biological complexities. The strongest link between vitamin D and cancer is provided by ecological and studies like observational, in preclinical models. It is apparent that vitamin D exerts diverse biological responses in a tissue specific manner. Moreover, several human factors could affect bioactivity of vitamin D. The mechanism(s) underlying vitamin D initiated anti-carcinogenic effects are diverse and includes changes at the muti-system levels. The oncogenic environment could easily corrupt the traditional role of vitamin D or could ensure resistance to vitamin D mediated responses. Several researchers have identified gaps in our knowledge pertaining to the role of vitamin D in cancer. Further areas are identified to solidify the role of vitamin D in cancer control strategies.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
2
|
van Driel M, Muñoz A, van Leeuwen JP. Overview of vitamin D actions in cancer. FELDMAN AND PIKE'S VITAMIN D 2024:679-718. [DOI: 10.1016/b978-0-323-91338-6.00034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Yuan C, Sato K, Hollis BW, Zhang S, Niedzwiecki D, Ou FS, Chang IW, O'Neil BH, Innocenti F, Lenz HJ, Blanke CD, Goldberg RM, Venook AP, Mayer RJ, Fuchs CS, Meyerhardt JA, Ng K. Plasma 25-Hydroxyvitamin D Levels and Survival in Patients with Advanced or Metastatic Colorectal Cancer: Findings from CALGB/SWOG 80405 (Alliance). Clin Cancer Res 2019; 25:7497-7505. [PMID: 31548349 DOI: 10.1158/1078-0432.ccr-19-0877] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/09/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Previous studies have suggested that higher circulating 25-hydroxyvitamin D [25(OH)D] levels are associated with decreased colorectal cancer risk and improved survival. However, the influence of vitamin D status on disease progression and patient survival remains largely unknown for patients with advanced or metastatic colorectal cancer. EXPERIMENTAL DESIGN We prospectively collected blood samples in 1,041 patients with previously untreated advanced or metastatic colorectal cancer participating in a randomized phase III clinical trial of first-line chemotherapy plus biologic therapy. We examined the association of baseline plasma 25(OH)D levels with overall survival (OS) and progression-free survival (PFS). Cox proportional hazards models were used to calculate hazard ratios (HRs) and confidence intervals (CIs), adjusted for prognostic factors and confounders. RESULTS At study entry, 63% of patients were vitamin D deficient (<20 ng/mL) and 31% were vitamin D insufficient (20-<30 ng/mL). Higher 25(OH)D levels were associated with an improvement in OS and PFS (P trend = 0.0009 and 0.03, respectively). Compared with patients in the bottom quintile of 25(OH)D (≤10.8 ng/mL), those in the top quintile (≥24.1 ng/mL) had a multivariable-adjusted HR of 0.66 (95% CI, 0.53-0.83) for OS and 0.81 (95% CI, 0.66-1.00) for PFS. The improved survival associated with higher 25(OH)D levels was consistent across patient subgroups of prognostic patient and tumor characteristics. CONCLUSIONS In this large cohort of patients with advanced or metastatic colorectal cancer, higher plasma 25(OH)D levels were associated with improved OS and PFS. Clinical trials assessing the benefit of vitamin D supplementation in patients with colorectal cancer are warranted.
Collapse
Affiliation(s)
- Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Kaori Sato
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Bruce W Hollis
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Sui Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Fang-Shu Ou
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota
| | - I-Wen Chang
- Southeast Clinical Oncology Research (SCOR) Consortium, Winston-Salem, North Carolina
| | - Bert H O'Neil
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Federico Innocenti
- Eshelman School of Pharmacy and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Charles D Blanke
- SWOG Group Chair's Office/Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | | | - Alan P Venook
- Department of Medicine, University of California San Francisco (UCSF) School of Medicine, San Francisco, California
| | - Robert J Mayer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center and Smilow Cancer Hospital, New Haven, Connecticut
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Ng K, Nimeiri HS, McCleary NJ, Abrams TA, Yurgelun MB, Cleary JM, Rubinson DA, Schrag D, Miksad R, Bullock AJ, Allen J, Zuckerman D, Chan E, Chan JA, Wolpin BM, Constantine M, Weckstein DJ, Faggen MA, Thomas CA, Kournioti C, Yuan C, Ganser C, Wilkinson B, Mackintosh C, Zheng H, Hollis BW, Meyerhardt JA, Fuchs CS. Effect of High-Dose vs Standard-Dose Vitamin D3 Supplementation on Progression-Free Survival Among Patients With Advanced or Metastatic Colorectal Cancer: The SUNSHINE Randomized Clinical Trial. JAMA 2019; 321:1370-1379. [PMID: 30964527 PMCID: PMC6459117 DOI: 10.1001/jama.2019.2402] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE In observational studies, higher plasma 25-hydroxyvitamin D (25[OH]D) levels have been associated with improved survival in metastatic colorectal cancer (CRC). OBJECTIVE To determine if high-dose vitamin D3 added to standard chemotherapy improves outcomes in patients with metastatic CRC. DESIGN, SETTING, AND PARTICIPANTS Double-blind phase 2 randomized clinical trial of 139 patients with advanced or metastatic CRC conducted at 11 US academic and community cancer centers from March 2012 through November 2016 (database lock: September 2018). INTERVENTIONS mFOLFOX6 plus bevacizumab chemotherapy every 2 weeks and either high-dose vitamin D3 (n = 69) or standard-dose vitamin D3 (n = 70) daily until disease progression, intolerable toxicity, or withdrawal of consent. MAIN OUTCOMES AND MEASURES The primary end point was progression-free survival (PFS) assessed by the log-rank test and a supportive Cox proportional hazards model. Testing was 1-sided. Secondary end points included tumor objective response rate (ORR), overall survival (OS), and change in plasma 25(OH)D level. RESULTS Among 139 patients (mean age, 56 years; 60 [43%] women) who completed or discontinued chemotherapy and vitamin D3 (median follow-up, 22.9 months), the median PFS for high-dose vitamin D3 was 13.0 months (95% CI, 10.1 to 14.7; 49 PFS events) vs 11.0 months (95% CI, 9.5 to 14.0; 62 PFS events) for standard-dose vitamin D3 (log-rank P = .07); multivariable hazard ratio for PFS or death was 0.64 (1-sided 95% CI, 0 to 0.90; P = .02). There were no significant differences between high-dose and standard-dose vitamin D3 for tumor ORR (58% vs 63%, respectively; difference, -5% [95% CI, -20% to 100%], P = .27) or OS (median, 24.3 months vs 24.3 months; log-rank P = .43). The median 25(OH)D level at baseline for high-dose vitamin D3 was 16.1 ng/mL vs 18.7 ng/mL for standard-dose vitamin D3 (difference, -2.6 ng/mL [95% CI, -6.6 to 1.4], P = .30); at first restaging, 32.0 ng/mL vs 18.7 ng/mL (difference, 12.8 ng/mL [95% CI, 9.0 to 16.6], P < .001); at second restaging, 35.2 ng/mL vs 18.5 ng/mL (difference, 16.7 ng/mL [95% CI, 10.9 to 22.5], P < .001); and at treatment discontinuation, 34.8 ng/mL vs 18.7 ng/mL (difference, 16.2 ng/mL [95% CI, 9.9 to 22.4], P < .001). The most common grade 3 and higher adverse events for chemotherapy plus high-dose vs standard-dose vitamin D3 were neutropenia (n = 24 [35%] vs n = 21 [31%], respectively) and hypertension (n = 9 [13%] vs n = 11 [16%]). CONCLUSIONS AND RELEVANCE Among patients with metastatic CRC, addition of high-dose vitamin D3, vs standard-dose vitamin D3, to standard chemotherapy resulted in a difference in median PFS that was not statistically significant, but with a significantly improved supportive hazard ratio. These findings warrant further evaluation in a larger multicenter randomized clinical trial. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01516216.
Collapse
Affiliation(s)
- Kimmie Ng
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Halla S. Nimeiri
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | | - Rebecca Miksad
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Dan Zuckerman
- St Luke’s Mountain States Tumor Institute, Boise, Idaho
| | - Emily Chan
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | | | | | - Chen Yuan
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | - Hui Zheng
- Massachusetts General Hospital, Boston
| | | | | | | |
Collapse
|
5
|
Hutchinson PE, Halsall JA, Popovici S, Papadogeorgakis E, Osborne JE, Powley IR, Dasari D, Saldanha G, Pringle JH. Compromised vitamin D receptor signalling in malignant melanoma is associated with tumour progression and mitogen-activated protein kinase activity. Melanoma Res 2018; 28:410-422. [PMID: 30004989 DOI: 10.1097/cmr.0000000000000475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aims of this study were to investigate, in cutaneous malignant melanoma (MM), the integrity of nuclear vitamin D receptor (VDR) signalling, as implied by VDR subcellular location; to investigate the relationship between VDR and tumour progression and the inhibitory effect on VDR by mitogen-activated protein kinase (MAPK) overactivity. Archived tissue from 34 benign melanocytic naevi, 149 MMs and 44 matched metastases were stained by immunohistochemistry for VDR and a subset of primary MMs were stained for phosphorylated-extracellular signal-regulated kinase as a marker of MAPK activity. MM cell lines were investigated to show the subcellular location of VDR and cell viability in response to ligand±MAPK inhibitor. Benign melanocytic naevi showed mainly a strong nuclear VDR staining in contrast to MM where decreased nuclear and emergent cytoplasmic VDRs were associated with malignant progression in terms of dermal invasion and metastasis. MMs that retained exclusive nuclear VDR at the tumour base did not metastasize, a potentially important prognostic indicator. Decreased nuclear VDR correlated with increased cytoplasmic staining, suggesting the failure of nuclear entry as a primary cause of defective VDR signalling in MM. The histological subset analysis and MM cell line studies confirmed the inhibitory effect of MAPK activity on VDR signalling, but the pattern of VDR subcellular localization suggested failure of VDR nuclear entry as a primary effect of MAPK activity rather than direct inhibition of VDR-regulated transcription. Furthermore, high MAPK activity in tumours expressing cytoplasmic VDR was associated with worsened prognosis.
Collapse
Affiliation(s)
- Peter E Hutchinson
- Department of Dermatology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - John A Halsall
- Leicester Cancer Research Centre, University of Leicester
| | | | | | - Joy E Osborne
- Department of Dermatology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Ian R Powley
- Leicester Cancer Research Centre, University of Leicester
| | - Deepthi Dasari
- Leicester Cancer Research Centre, University of Leicester
| | | | | |
Collapse
|
6
|
Jusu S, Presley JF, Williams C, Das SK, Jean-Claude B, Kremer R. Examination of VDR/RXR/DRIP205 Interaction, Intranuclear Localization, and DNA Binding in Ras-Transformed Keratinocytes and Its Implication for Designing Optimal Vitamin D Therapy in Cancer. Endocrinology 2018; 159:1303-1327. [PMID: 29300860 DOI: 10.1210/en.2017-03098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022]
Abstract
Retinoid X receptor (RXR) occupies a central position within the nuclear receptor superfamily, serving as an obligatory partner to numerous other nuclear receptors, including vitamin D receptor (VDR). In the current study, we examined whether phosphorylation of RXRα at serine 260 affects VDR/RXR and VDR interacting protein (DRIP) 205 coactivator recruitment, interactions, and binding of the VDR/human RXRα (hRXRα)/DRIP205 complex to chromatin. Serine 260 is a critical amino acid on the hRXRα that is located in close spatial proximity to regions of coactivator and corepressor interactions. Using fluorescence resonance energy transfer and immunofluorescence studies, we showed that the physical interaction between hRXRα and DRIP205 coactivator was impaired in human keratinocytes with the ras oncogene (HPK1Aras) or transfected with the wild-type hRXRα. Furthermore, the nuclear colocalization of VDR/DRIP205, hRXRα/DRIP205, and VDR/hRXRα/DRIP205 complex binding to chromatin is impaired in the HPK1Aras cells when compared with the normal human keratinocytes (HPK1A cells). However, transfection with the nonphosphorylatable hRXRα (S260A) mutant or treatment with the mitogen-activated protein kinase (MAPK) inhibitor UO126 rescued their nuclear localization, interaction, and binding of the complex to chromatin in the HPK1Aras cells. In summary, we have demonstrated, using highly specific intracellular tagging methods in live and fixed cells, important alterations of the vitamin D signaling system in cancer cells in which the ras-raf-MAPK system is activated, suggesting that specific inhibition of this commonly activated pathway could be targeted therapeutically to enhance vitamin D efficacy.
Collapse
Affiliation(s)
- Sylvester Jusu
- Department of Medicine and Calcium Research Laboratory, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | - Sanjoy Kumar Das
- Drug Discovery Core, Research Institute-McGill University Health Centre, Montreal, Quebec H3A 3J1, Canada
| | - Bertrand Jean-Claude
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
- Drug Discovery Core, Research Institute-McGill University Health Centre, Montreal, Quebec H3A 3J1, Canada
| | - Richard Kremer
- Department of Medicine and Calcium Research Laboratory, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
7
|
DeSmet ML, Fleet JC. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression. J Steroid Biochem Mol Biol 2017; 173:194-201. [PMID: 28104492 PMCID: PMC5511787 DOI: 10.1016/j.jsbmb.2017.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023]
Abstract
High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH)2D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH)2D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH)2D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH)2D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention.
Collapse
Affiliation(s)
- Marsha L DeSmet
- Purdue University Interdisciplinary Life Science Ph.D. Program, West Lafayette, IN, United States; Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| | - James C Fleet
- Purdue University Interdisciplinary Life Science Ph.D. Program, West Lafayette, IN, United States; Purdue University Center for Cancer Research, West Lafayette, IN, United States; Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
8
|
Jusu S, Presley JF, Kremer R. Phosphorylation of Human Retinoid X Receptor α at Serine 260 Impairs Its Subcellular Localization, Receptor Interaction, Nuclear Mobility, and 1α,25-Dihydroxyvitamin D3-dependent DNA Binding in Ras-transformed Keratinocytes. J Biol Chem 2017; 292:1490-1509. [PMID: 27852823 PMCID: PMC5270490 DOI: 10.1074/jbc.m116.758185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/14/2016] [Indexed: 11/06/2022] Open
Abstract
Human retinoid X receptor α (hRXRα) plays a critical role in DNA binding and transcriptional activity through heterodimeric association with several members of the nuclear receptor superfamily, including the human vitamin D receptor (hVDR). We previously showed that hRXRα phosphorylation at serine 260 through the Ras-Raf-MAPK ERK1/2 activation is responsible for resistance to the growth inhibitory effects of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), the biologically active metabolite of vitamin D3 To further investigate the mechanism of this resistance, we studied intranuclear dynamics of hVDR and hRXRα-tagged constructs in living cells together with endogenous and tagged protein in fixed cells. We find that hVDR-, hRXRα-, and hVDR-hRXRα complex accumulate in the nucleus in 1α,25(OH)2D3-treated HPK1A cells but to a lesser extent in HPK1ARas-treated cells. Also, by using fluorescence resonance energy transfer (FRET), we demonstrate increased interaction of the hVDR-hRXRα complex in 1α,25(OH)2D3-treated HPK1A but not HPK1ARas cells. In HPK1ARas cells, 1α,25(OH)2D3-induced nuclear localization and interaction of hRXRα are restored when cells are treated with the MEK1/2 inhibitor UO126 or following transfection of the non-phosphorylatable hRXRα Ala-260 mutant. Finally, we demonstrate using fluorescence loss in photobleaching and quantitative co-localization with chromatin that RXR immobilization and co-localization with chromatin are significantly increased in 1α,25(OH)2D3-treated HPK1ARas cells transfected with the non-phosphorylatable hRXRα Ala-260 mutant. This suggests that hRXRα phosphorylation significantly disrupts its nuclear localization, interaction with VDR, intra-nuclear trafficking, and binding to chromatin of the hVDR-hRXR complex.
Collapse
Affiliation(s)
- Sylvester Jusu
- From the Department of Medicine, Calcium Research Laboratory, Royal Victoria Hospital, McGill University, Montreal, Quebec H4A 3J1
- the Department of Medicine, Experimental Therapeutics and Metabolism Program, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - John F Presley
- the Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, and
| | - Richard Kremer
- From the Department of Medicine, Calcium Research Laboratory, Royal Victoria Hospital, McGill University, Montreal, Quebec H4A 3J1,
- the Department of Medicine, Experimental Therapeutics and Metabolism Program, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
9
|
Meyer MB, Benkusky NA, Pike JW. 1,25-Dihydroxyvitamin D3 induced histone profiles guide discovery of VDR action sites. J Steroid Biochem Mol Biol 2014; 144 Pt A:19-21. [PMID: 24041718 PMCID: PMC3954960 DOI: 10.1016/j.jsbmb.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
The chromatin environment dictates activity throughout the genome. Post-translational modification of the N-terminal tails of histone proteins allow nucleosomes to shift, the chromatin to relax and genes to become activated. Histone modification events and markers will change in response to environmental stimuli; therefore they present a method for identification of sites of transcription factor activity. 1,25-Dihydroxyvitamin D3 induces the vitamin D receptor (VDR) to bind to DNA and activate transcription. These actions alter the chromatin environment and can be detected by increases or decreases in the histone modifications. In fact, in genomic loci with multiple enhancers, selective modulation of those enhancers after vitamin D3 stimulation can be readily detected by histone modifications. We provide an example of these actions on the Mmp13 gene locus where VDR binds selectively to an enhancer 10kb upstream of the transcriptional start site. This binding event is accompanied by an enhancer-selective increase in histone 3 lysine 9 acetylation (H3K9Ac). ChIP-seq analysis of histone modifications requires less genomic material than transcription factor ChIP-seq, thus proving advantageous to in vivo assays with limited cellular material. Therefore, histone modification activity alone may be used as a guide for discovering sites of VDR action for further biochemical analysis. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Mark B Meyer
- University of Wisconsin at Madison, Madison, WI 53706, USA.
| | | | - J Wesley Pike
- University of Wisconsin at Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Welsh J. Vitamin D metabolism in mammary gland and breast cancer. Mol Cell Endocrinol 2011; 347:55-60. [PMID: 21669251 DOI: 10.1016/j.mce.2011.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 12/19/2022]
Abstract
1α,25-Dihydroxycholecalciferol (1,25D) mediates growth inhibition and terminal differentiation in mammary epithelial cells via interaction with the vitamin D receptor (VDR). This review focuses on the concept that cells in the mammary gland express the vitamin D metabolizing enzyme CYP27B1 which converts the circulating vitamin D metabolite 25D to the active metabolite 1,25D. In support of this concept, CYP27B1 is developmentally regulated in mouse mammary gland, with highest levels found during pregnancy and lactation. In addition, human mammary cells cultured from normal breast tissue express VDR, CYP27B1 and the megalin-cubilin complex that facilitates internalization of 25D complexed with the vitamin D binding protein. When incubated with physiological concentrations of 25D, human mammary cells synthesize 1,25D in sufficient quantities to mediate growth inhibition. However, emerging evidence suggests that deregulation of VDR and CYP27B1 occurs during cancer development and contributes to abrogation of the tumor suppressive effects triggered by 25D.
Collapse
Affiliation(s)
- JoEllen Welsh
- University at Albany Cancer Research Center, Rensselaer, NY 12144, USA.
| |
Collapse
|
11
|
1α, 25-Dihydroxyvitamin D regulates hypoxia-inducible factor-1α in untransformed and Harvey-ras transfected breast epithelial cells. Cancer Lett 2010; 298:159-66. [PMID: 20655141 DOI: 10.1016/j.canlet.2010.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to determine the mechanism by which 1α, 25-dihydroxyvitamin D (1,25(OH)(2)D) alters hypoxia-inducible factor-1α (HIF-1α) protein in untransformed and Harvey-ras (H-ras) oncogene transfected MCF10A breast epithelial cells. Treatment with 1,25(OH)(2)D (10nM) increased both mRNA (2.55±0.6-fold vs. vehicle, p=0.03) and protein levels (2.37±0.3-fold vs. vehicle, p<0.0001) of HIF-1α in MCF10A cells in 12h, which remained elevated at 24h. However, in H-ras transfected MCF10A cells, 1,25(OH)(2)D treatment increased HIF-1α protein level (2.08±0.38-fold vs. vehicle, p=0.05) at 12h, with no change in mRNA level and HIF-1α protein level returned to baseline after 24h. A transcription inhibitor prevented the 1,25(OH)(2)D induction of HIF-1α protein and mRNA levels in MCF10A cells, but failed to alter the induction of HIF-1α protein level in H-ras transfected MCF10A cells. On the other hand, inhibition of proteasomal degradation prevented the 1,25(OH)(2)D-induced HIF-1α protein level in H-ras transfected MCF10A but not in MCF10A cells. These results support that 1,25(OH)(2)D regulates HIF-1α protein level via transcriptional regulation in MCF10A cells in contrast to through proteosomal degradation with the presence of H-ras oncogene in MCF10A cells.
Collapse
|
12
|
Kanakamani J, Tomar N, Kaushal E, Tandon N, Goswami R. Presence of a deletion mutation (c.716delA) in the ligand binding domain of the vitamin D receptor in an Indian patient with vitamin D-dependent rickets type II. Calcif Tissue Int 2010; 86:33-41. [PMID: 19921089 DOI: 10.1007/s00223-009-9310-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
Vitamin D-dependent rickets type II (VDDR-type II) is a rare disorder caused by mutations in the vitamin D receptor (VDR) gene. Here, we describe a patient with VDDR-type II with severe alopecia and rickets. She had hypocalcemia, hypophosphatemia, secondary hyperparathyroidism, and elevated serum alkaline phosphatase and 1,25-dihydroxyvitamin D(3). Sequence analysis of the lymphocyte VDR cDNA revealed deletion mutation c.716delA. Sequence analysis of her genomic DNA fragment amplified from exon 6 of the VDR gene incorporating this mutation confirmed the presence of the mutation in homozygous form. This frameshift mutation in the ligand binding domain (LBD) resulted in premature termination (p.Lys240Argfs) of the VDR protein. The mutant protein contained 246 amino acids, with 239 normal amino acids at the N terminus, followed by seven changed amino acids resulting in complete loss of its LBD. The mutant VDR protein showed evidence of 50% reduced binding with VDR response elements on electrophoretic mobility assay in comparison to the wild-type VDR protein. She was treated with high-dose calcium infusion and oral phosphate. After 18 months of treatment, she gained 6 cm of height, serum calcium and phosphorus improved, alkaline phosphatase levels decreased, and intact PTH normalized. Radiologically, there were signs of healing of rickets. Her parents and one of her siblings had the same c.716delA mutation in heterozygous form. Despite the complete absence of LBD, the rickets showed signs of healing with intravenous calcium.
Collapse
Affiliation(s)
- Jeyaraman Kanakamani
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India.
| | | | | | | | | |
Collapse
|
13
|
Taber LM, Adams LS, Teegarden D. Mechanisms of nuclear vitamin D receptor resistance in Harvey-ras-transfected cells. J Nutr Biochem 2009; 20:629-37. [PMID: 18829283 PMCID: PMC2757168 DOI: 10.1016/j.jnutbio.2008.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/28/2008] [Accepted: 06/05/2008] [Indexed: 11/15/2022]
Abstract
The hormone 1,25 dihydroxyvitamin D (1,25(OH)(2)D) binds to the nuclear vitamin D receptor (nVDR), which heterodimerizes with retinoid X receptor alpha (RXRalpha), and this complex interacts with specific response elements [vitamin D response elements (VDREs)] to regulate gene transcription. Previous results show a significant reduction in 1,25(OH)(2)D-induced nVDR transcriptional activity in fibroblast (C3H10T1/2) cells transfected with the Harvey ras gene (ras cells) compared with parental cells. The purpose of this study was to investigate the mechanisms by which the H-ras gene interferes with nVDR transcriptional activity. Similar to the ras cells, transcriptional activity of the nVDR was reduced following induction of the H-ras gene for 9 days. The ras cells expressed similar protein levels of RXRalpha with the parent cells, and overexpression of the wild-type RXRalpha plasmid did not restore 1,25(OH)(2)D-mediated nVDR activity in ras cells. Inhibiting activation of extracellular signal-regulated kinase (ERK1/2) had no effect on nVDR activity in ras cells. Furthermore, the binding of nVDR to VDREs was reduced in 1,25(OH)(2)D-treated ras cells. In addition, neither treatment of ras cells with an inhibitor (ketoconazole) of the 1,25(OH)(2)D degradative enzyme, 24-hydroxylase, nor the protein kinase C inhibitors, bisindoylmaleimide I and Gö 6976, had an effect on nVDR activity. In contrast, inhibition of phosphatidylinositol 3-kinase (PI3K) with LY294002 resulted in a 1.6-fold significant increase in the nVDR activity in the ras cells. Taken together, these results indicate that PI3K may, at least in part, mediate the suppression of the 1,25(OH)(2)D regulation of nVDR transcriptional activity by the H-ras gene, leading to reduced ability to associate with response elements.
Collapse
Affiliation(s)
- Laura M. Taber
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| | | | - Dorothy Teegarden
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Kemmis CM, Welsh J. Mammary epithelial cell transformation is associated with deregulation of the vitamin D pathway. J Cell Biochem 2008; 105:980-8. [PMID: 18767073 PMCID: PMC2859445 DOI: 10.1002/jcb.21896] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The vitamin D endocrine system mediates anti-proliferative and pro-differentiating signaling in multiple epithelial tissues, including mammary gland and breast tumors. The vitamin D metabolite 1alpha,25(OH)2D3 mediates growth inhibitory signaling via activation of the vitamin D receptor (VDR), a ligand dependent transcription factor. 1alpha,25(OH)(2)D3 is synthesized from 25(OH)D3 (the major circulating form of the vitamin) by the mitochondrial enzyme CYP27b1 in renal and other tissues. Human mammary epithelial (HME) cells express VDR and CYP27b1 and undergo growth inhibition when exposed to physiological concentrations of 25(OH)D3, suggesting that autocrine or paracrine vitamin D signaling contributes to maintenance of differentiation and quiescence in the mammary epithelium. In the current studies we tested the hypothesis that cancer cells would exhibit reduced sensitivity to vitamin D mediated negative growth regulation. We used a series of progressively transformed HME cell lines expressing known oncogenic manipulations to study the effects of transformation per se on the vitamin D pathway. We report that mRNA and protein levels of VDR and CYP27b1 were reduced greater than 70% upon stable introduction of known oncogenes (SV40 T antigens and H-rasV12) into HME cells. Oncogenic transformation was also associated with reduced 1alpha,25(OH)2D3 synthesis, and cellular sensitivity to growth inhibition by 1alpha,25(OH)2D3 and 25(OH)D3 was decreased approximately 100-fold in transformed cells. These studies provide evidence that disruption of the vitamin D signaling pathway occurs early in the cancer development process.
Collapse
Affiliation(s)
- Carly M Kemmis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
15
|
Macoritto M, Nguyen-Yamamoto L, Huang DC, Samuel S, Yang XF, Wang TT, White JH, Kremer R. Phosphorylation of the human retinoid X receptor alpha at serine 260 impairs coactivator(s) recruitment and induces hormone resistance to multiple ligands. J Biol Chem 2007; 283:4943-56. [PMID: 18003614 DOI: 10.1074/jbc.m707517200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoid X receptor alpha (RXRalpha) is a member of the nuclear receptor superfamily that regulates transcription of target genes through heterodimerization with several partners, including peroxisome proliferator-activated receptor, retinoic acid receptor, thyroid receptor, and vitamin D receptor (VDR). We have shown previously that signaling through VDR.RXRalpha heterodimers was attenuated in ras-transformed keratinocytes due to phosphorylation of serine 260 of the RXRalpha via the activated Ras-Raf-MAPK cascade in these cells. In this study we demonstrate that phosphorylation at serine 260, a site located in the omega loop-AF-2 interacting domain of RXRalpha, inhibits signaling through several heterodimeric partners of the RXRalpha. The inhibition of signaling results in reduced transactivational response to ligand presentation and the reduced physiological response of growth inhibition not only of 1,25-dihydroxyvitamin D3 but also of retinoic acid receptor alpha ligands and LG1069 (an RXRalpha ligand). This partial resistance to ligands could be reversed by inhibition of MAPK activity or by overexpression of a non-phosphorylable RXRalpha mutant at serine 260 (RXRalpha Ser-260-->Ala). Importantly, phosphorylation of RXRalpha at serine 260 impaired the recruitment of DRIP205 and other coactivators to the VDR.RXRalpha complex. Chromatin immunoprecipitation and pulldown assays further demonstrated that coactivator recruitment to the VDR.RXR complex could be restored by treatment with a MAPK inhibitor. Our data suggest that phosphorylation at serine 260 plays a critical role in inducing hormone resistance of RXRalpha-mediated signaling likely through structural changes in the H1-H3 omega loop-AF2 coactivator(s) interacting domain.
Collapse
|
16
|
Peehl DM, Feldman D. Interaction of nuclear receptor ligands with the Vitamin D signaling pathway in prostate cancer. J Steroid Biochem Mol Biol 2004; 92:307-15. [PMID: 15663994 DOI: 10.1016/j.jsbmb.2004.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of hormonal ligands and/or the nuclear receptors that mediate their actions have been targeted for prostate cancer therapy. Androgens, the ligands for the androgen receptor (AR), are critical for the growth of prostate cancer. Inhibition of androgen production has been the mainstay of treatment for advanced prostate cancer for decades. Other more recently tested targets include retinoid receptors (RAR and RXR), glucocorticoid receptors (GR), estrogen receptors (ER) and peroxisome proliferator-activated receptors (PPAR). Calcitriol, acting through the Vitamin D receptor (VDR), has many tumor suppressive activities in the prostate, including inhibition of proliferation, induction of apoptosis and/or differentiation, and reduction of cellular invasion. Because of these properties, calcitriol and its less hypercalcemic analogs are being evaluated as agents to prevent or treat prostate cancer. Androgens, retinoids, glucocorticoids, estrogens and agonists of PPAR directly or indirectly impact Vitamin D signaling pathways, and vice versa. In order to design the most effective strategies to use calcitriol to prevent or treat prostate cancer, the interactions of other nuclear receptors and their ligands with the Vitamin D signaling pathway need to be considered.
Collapse
Affiliation(s)
- Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
17
|
Narayanan R, Sepulveda VAT, Falzon M, Weigel NL. The functional consequences of cross-talk between the vitamin D receptor and ERK signaling pathways are cell-specific. J Biol Chem 2004; 279:47298-310. [PMID: 15331595 DOI: 10.1074/jbc.m404101200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The actions of the active metabolite of 1,25-(OH)2D3 (1,25-D) are mediated primarily by the vitamin D receptor (VDR), a member of the nuclear receptor family of ligand-activated transcription factors. Although their ligands cause transcriptional activation, many of the ligands also rapidly activate cellular signaling pathways through mechanisms that have not been fully elucidated. We find that 1,25-D causes a rapid, but sustained activation of ERK (extracellular signal-regulated kinase) in bone cell lines. However, the effect of ERK activation on VDR transcriptional activity was cell line-specific. Inhibition of ERK activation by the MEK inhibitor, U0126, stimulated VDR activity in MC3T3-E1 cells, but inhibited the activity in MG-63 cells as well as in HeLa cells. VDR is not a known target of ERK. We found that the ERK target responsible for reduced VDR activity in MC3T3-E1 cells is RXRalpha. MC3T3-E1 cells express lower levels of RXRbeta and RXRgamma than either HeLa or MG-63 cells. Although overexpression of RXRalpha in MC3T3-E1 cells increased VDR activity, U0126 further enhanced the activity. In contrast, overexpression of RXRgamma stimulated VDR activity but abrogated the stimulation by U0126. Thus, although 1,25-D treatment activates ERK in many cell types, subsequently inducing changes independent of VDR, the effects of treatment with 1,25-D on the transcriptional activity of VDR are RXR isoform-specific. In cells in which RXRalpha is the VDR partner, the transcriptional activation of VDR by 1,25-D is attenuated by the concomitant activation of ERK. In cells utilizing RXRgamma, ERK activation enhances VDR transcriptional activity.
Collapse
Affiliation(s)
- Ramesh Narayanan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
18
|
Stedman L, Nickel KP, Castillo SS, Andrade J, Burgess JR, Teegarden D. 1,25-dihydroxyvitamin D inhibits vitamin E succinate-induced apoptosis in C3H10T1/2 cells but not Harvey ras-transfected cells. Nutr Cancer 2003; 45:93-100. [PMID: 12791509 DOI: 10.1207/s15327914nc4501_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In this study, the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on regulation of apoptosis was compared in control C3H10T1/2 mouse fibroblast cells and those transfected with the Harvey ras oncogene. A known apoptotic stimulator, vitamin E succinate (VES), reduced cell number in a time- and dose-dependent manner in both cell types. In an assay for viable cells, there were significantly more C3H10T1/2 cells cotreated with VES and 1,25(OH)2D3 (-5.0 +/- 10.5% of vehicle-treated controls) compared to VES alone treated cells (-60.8 +/- 5.6%). In contrast, 1,25(OH)2D3 did not change the percentage of viable cells following treatment by VES in ras-transfected cells [-67.3 +/- 7.5%, VES alone compared to 57.3 +/-v 15.7% with VES and 1,25(OH)2D3 ]. Further studies confirmed that 1,25(OH)2D3 inhibited VES-mediated apoptosis (1.27 +/- 0.34-fold over vehicle control) compared to VES treatment alone (2.29 +/- 0.56-fold increase) in C3H10T1/2 cells, but not in ras-transfected cells [3.07 +/- 0.43-fold increase, VES treatment alone; 3.64 +/- 0.42-fold increase, VES and 1,25(OH)2D3]. Both C3H10T1/2 and ras-transfected cells treated with VES had increased concentrations of cellular VES with very little change in a-tocopherol, indicating that the cells took up VES intact. In addition, both cell lines contained similar levels of nuclear vitamin D receptor (VDR); however, the ras-transfected cells had reduced VDRE transcriptional activity. In conclusion, VES exerts its effect intact and 1,25(OH)2D3 preferentially protects C3H10T1/2 cells, whereas ras-transformed cells were not protected from VES-mediated apoptosis.
Collapse
Affiliation(s)
- Lynn Stedman
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
19
|
Gascon-Barré M, Demers C, Mirshahi A, Néron S, Zalzal S, Nanci A. The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology 2003; 37:1034-42. [PMID: 12717384 DOI: 10.1053/jhep.2003.50176] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is generally considered negative for the vitamin D nuclear receptor (VDR(n)), even though several studies have shown significant effects of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) on liver cell physiology. The low abundance of VDR(n) in the liver led us to propose that hepatocytes (the largest hepatic cell population) were most likely negative for the receptor, whereas the small hepatic sinusoidal and ductular cell populations that contain cell types known to express VDR(n) in other tissues should express the receptor. Using freshly isolated cells from normal livers as well as biliary and epithelial hepatic cell lines, our data show that the human, rat, and mouse hepatocytes express very low VDR(n) messenger RNA (mRNA) and protein levels. In contrast, sinusoidal endothelial, Kupffer, and stellate cells of normal rat livers as well as the mouse biliary cell line BDC and rat hepatic neonatal epithelial SD6 cells clearly expressed both VDR(n) mRNA and protein. In addition, specimens of human hepatocarcinoma as well as intrahepatic colon adenocarcinoma metastases were also found to express the VDR(n) gene transcript. Kupffer, stellate, and endothelial cells responded to 1,25(OH)(2)D(3) by a significant increase in the CYP24, indicating that the VDR(n) is fully functional in these cells. In conclusion, selective hepatic cell populations are targets for the vitamin D endocrine/paracrine/intracrine system.
Collapse
Affiliation(s)
- Marielle Gascon-Barré
- Centre de Recherche, Hôpital Saint-Luc, Centre Hospitalier de l'Université de Montréal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Barsony J, Prufer K. Vitamin D receptor and retinoid X receptor interactions in motion. VITAMINS AND HORMONES 2003; 65:345-76. [PMID: 12481554 DOI: 10.1016/s0083-6729(02)65071-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin D receptor (VDR) and retinoid X receptor (RXR) are members of the nuclear receptor superfamily and they bind target DNA sequences as heterodimers to regulate transcription. This article surveys the latest findings regarding the roles of dimerizing RXR in VDR function and emphasizes potential areas for future developments. We first highlight the importance of dimerization with RXR for both the ligand-independent (hair growth) and ligand-dependent functions of VDR (calcium homeostasis, bone development and mineralization, control of cell growth and differentiation). Emerging information regarding the regulatory control of dimerization based on biochemical, structural, and genetic studies is then presented. Finally, the main focus of this article is a new dynamic perspective of dimerization functions, based on recent research with fluorescent protein chimeras in living cells by microscopy. These studies revealed that both VDR and RXR constantly shuttle between the cytoplasm and the nucleus and between subnuclear compartments, and showed the transient nature of receptor--DNA and receptor--coregulator interactions. Because RXR dimerizes with most of the nuclear receptors, regulation of receptor dynamics by RXR has a broad significance.
Collapse
Affiliation(s)
- J Barsony
- Laboratory of Cell Biochemistry and Biology, National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
21
|
Qi X, Pramanik R, Wang J, Schultz RM, Maitra RK, Han J, DeLuca HF, Chen G. The p38 and JNK pathways cooperate to trans-activate vitamin D receptor via c-Jun/AP-1 and sensitize human breast cancer cells to vitamin D(3)-induced growth inhibition. J Biol Chem 2002; 277:25884-92. [PMID: 11983707 DOI: 10.1074/jbc.m203039200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The signaling connection between mitogen-activated protein kinases(MAPKs) and nuclear steroid receptors is complex and remains mostly unexplored. Here we report that stress-activated protein kinases p38 and JNK trans-activate nuclear steroid vitamin D receptor (VDR) gene and increase vitamin D(3)-dependent growth inhibition in human breast cancer cells. Activation of p38 and JNK by an active MAPK kinase 6 stimulates VDR promoter activity independently of the ligand vitamin D(3) and estrogen receptor expression. Moreover, stimulation of the endogenous stress pathways by adenovirus-mediated delivery of recombinant MAPK kinase 6 also activates VDR and sensitizes MCF-7 cells to vitamin D(3)-dependent growth inhibition. Both the p38 and JNK MAPK pathways and the downstream transcription factor c-Jun/AP-1 are required for the VDR stimulation, as revealed by application of their dominant negatives, the specific p38 inhibitor SB203580, and site-directed mutagenesis of the AP-1 element in the VDR promoter. The essential role of the p38 and JNK stress pathways in up-regulation of VDR expression is further confirmed by using the chemical stimulator arsenite. These results establish a signaling connection between the stress MAPK pathways and steroid hormone receptor VDR expression and thereby offer new insights into regulation of cell growth by the MAPK pathways through regulation of vitamin D(3)/VDR activity.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Radiation Oncology, Loyola University of Chicago, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ylikomi T, Laaksi I, Lou YR, Martikainen P, Miettinen S, Pennanen P, Purmonen S, Syvälä H, Vienonen A, Tuohimaa P. Antiproliferative action of vitamin D. VITAMINS AND HORMONES 2002; 64:357-406. [PMID: 11898396 DOI: 10.1016/s0083-6729(02)64010-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the past few years, it has become apparent that vitamin D may play an important role in malignant transformation. Epidemiological studies suggest that low vitamin D serum concentration increases especially the risk of hormone-related cancers. Experimentally, vitamin D suppresses the proliferation of normal and malignant cells and induces differentiation and apoptosis. In the present review we discuss the mechanisms whereby vitamin D regulates cell proliferation and whether it could be used in prevention and treatment of hyperproliferative disorders like cancers.
Collapse
Affiliation(s)
- Timo Ylikomi
- Graduate School of Biomedicine, Department of Cell Biology, 33014 University of Tampere, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Solomon C, Macoritto M, Gao XL, White JH, Kremer R. The unique tryptophan residue of the vitamin D receptor is critical for ligand binding and transcriptional activation. J Bone Miner Res 2001; 16:39-45. [PMID: 11149488 DOI: 10.1359/jbmr.2001.16.1.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The human vitamin D receptor (hVDR) is a member of the nuclear receptor superfamily of transcriptional regulators. Here we show that tryptophan 286 of the hVDR is critical for ligand binding and transactivation of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] target genes. Two mutants of the hVDR were produced, W286A and W286F, in which the tryptophan was replaced with an alanine or a phenylalanine, respectively. The W286A mutant did not bind 1,25(OH)2D3, interact with steroid receptor coactivator 1 (SRC-1) in vitro, or activate transcription. Moreover, the W286A receptor did not heterodimerize in a ligand-dependent manner with the human retinoid X receptor alpha (hRXRalpha). Although the W286F receptor heterodimerized with hRXRalpha, interacted with SRC-1, and bound 1,25(OH)2D3, its capacity to transactivate was attenuated severely. Thus, tryptophan 286 of hVDR plays an important role in specific 1,25(OH)2D3 ligand interaction and subsequently in hVDR/RXR interaction, SRC-1 binding, and ligand-dependent transactivation of 1,25(OH)2D3 target genes. These results identify the first amino acid that is absolutely required for ligand binding in the VDR and further define the structure-function relationship of 1,25(OH)2D3 interaction with its receptor.
Collapse
Affiliation(s)
- C Solomon
- Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
24
|
Solomon C, Kremer R, White JH, Rhim JS. Vitamin D resistance in RAS-transformed keratinocytes: mechanism and reversal strategies. Radiat Res 2001; 155:156-162. [PMID: 11121228 DOI: 10.1667/0033-7587(2001)155[0156:vdrirt]2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Human retinoid X receptor alpha (hRXRalpha) plays a critical role in DNA binding and transcriptional activity through its heterodimeric association with several members of the nuclear receptor superfamily, including the vitamin D receptor (VDR). Several cancer cell lines derived from different tissues have been shown to be resistant to the growth-inhibitory action of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], the biologically active metabolite of vitamin D(3). Here we show that in RAS-transformed keratinocytes, Ser260 of hRXRalpha is phosphorylated through the RAS-RAF-MAP kinase cascade. This phosphorylation event results in the inhibition of vitamin D signaling via VDR/hRXRalpha heterodimers. Strategies to reverse this resistance include the use of the MAP kinase inhibitor, PD098059, and a non-phosphorylatable hRXRalpha mutant, Ala260, which completely abolishes RXR phosphorylation and restores the function of both 1,25(OH)(2)D(3) and a specific RXR ligand, LG1069 (4-[1-(5,6,7,8-tetrahydro-3,5,5,8,8-pentamethyl-2-naphtalenyl)ethenyl]-benzoic acid). In addition, we show that a vitamin D analog with low calcemic activity (EB1089) is more potent than 1,25(OH)(2)D(3) in inhibiting cancer cell growth in this system. Targeted therapy with selective analogs such as EB1089, in combination with the inhibition of phosphorylation of the RXR, could play a critical role in the development of strategies for cancer treatment.
Collapse
MESH Headings
- Cell Division/drug effects
- Cell Transformation, Neoplastic
- Dimerization
- Drug Resistance
- Genes, ras
- Humans
- Keratinocytes/drug effects
- Keratinocytes/enzymology
- Keratinocytes/metabolism
- MAP Kinase Signaling System/physiology
- Mitogen-Activated Protein Kinases/metabolism
- Phosphorylation
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Receptors, Calcitriol/physiology
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Melatonin
- Signal Transduction/physiology
- Vitamin D/antagonists & inhibitors
- Vitamin D/pharmacology
Collapse
Affiliation(s)
- C Solomon
- Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, H3A 1A1, Canada
| | | | | | | |
Collapse
|
25
|
Goltzman D, White J, Kremer R. Studies of the effects of 1,25-dihydroxyvitamin D on skeletal and calcium homeostasis and on inhibition of tumor cell growth. J Steroid Biochem Mol Biol 2001; 76:43-7. [PMID: 11384862 DOI: 10.1016/s0960-0760(00)00146-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vitamin D, parathyroid hormone (PTH), and parathyroid hormone-related peptide (PTHrP) are major regulators of calcium metabolism and vitamin D can also reduce the growth of normal cells and tumor cells. PTHrP and PTH act via a common membrane receptor (PTHR). The mouse PTHR is regulated by a kidney-selective upstream promoter P(1) and ubiquitous downstream promoter P(2). In vitro and in vivo 1,25(OH)(2)D can inhibit PTHR expression in bone but not cartilage by downregulating transcription via P(2). Gene transcription of PTHrP per se can also be downregulated by 1,25(OH)(2)D and by low calcemic vitamin D analogs. This inhibitory effect may reduce the hypercalcemia caused by overproduction of PTHrP by tumor cells. In a malignant keratinoctye cell line, phosphorylation of the retinoid X receptor alpha occurs through the activated Ras-MAP kinase pathway and results in attenuated trans-activation by the vitamin D receptor, its heterodimeric partner. This decreases the growth-inhibitory efficacy of 1,25(OH)(2)D. Studies of the capacity of vitamin D to alter PTHrP production and action and of its anti-proliferative effects can, therefore, shed important light on basic mechanisms controlling these events, and may also have major implications for clinical medicine and therapeutics.
Collapse
Affiliation(s)
- D Goltzman
- Calcium Research Lab., McGill University Health Centre, Rm. H 4.67, 687 Pine Avenue West, Quebec, H3A 1A1, Montreal, Canada
| | | | | |
Collapse
|
26
|
Dwivedi PP, Omdahl JL, Kola I, Hume DA, May BK. Regulation of rat cytochrome P450C24 (CYP24) gene expression. Evidence for functional cooperation of Ras-activated Ets transcription factors with the vitamin D receptor in 1,25-dihydroxyvitamin D(3)-mediated induction. J Biol Chem 2000; 275:47-55. [PMID: 10617584 DOI: 10.1074/jbc.275.1.47] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription of the rat CYP24 gene is induced by 1, 25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) through two vitamin D response elements (VDREs). A functional Ras-dependent Ets-binding site (EBS) was located downstream from the proximal VDRE and was critical to 1,25(OH)(2)D(3)-mediated induction. Cotransfection of Ets-1 and Ets-2 stimulated induction, which was lost when the EBS was mutated. Multiple nuclear-protein complexes from COS-1 cells bound to the EBS in which three complexes were immunologically related to Ets-1. Transcriptional synergy was observed between the proximal VDRE and adjacent EBS as was the attendant formation of a ternary complex between vitamin D receptor- retinoid X receptor (VDR. RXR) and Ets-1. In the absence of 1,25-(OH)(2)D(3) or in the presence of an inactive proximal VDRE, the EBS failed to respond to exogenous Ets-1. However, Ets-1 increased basal expression when cotransfected with a mutant VDR. The inductive action of 1, 25-(OH)(2)D(3) was substantially increased by Ras, which was ablated by mutagenesis of the EBS or by expression of a mutated Ets-1 protein (T38A). EBS contribution to hormone induction was prevented by manumycin A, an inhibitor of Ras farnesylation. A fundamental role was established for transcriptional cooperation between Ras-activated Ets proteins and the VDR.RXR complex in mediating 1, 25-(OH)(2)D(3) action on the CYP24 promoter.
Collapse
Affiliation(s)
- P P Dwivedi
- Department of Biochemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
27
|
Li J, Finch RA, Sartorelli AC. Role of vitamin D3 receptor in the synergistic differentiation of WEHI-3B leukemia cells by vitamin D3 and retinoic acid. Exp Cell Res 1999; 249:279-90. [PMID: 10366427 DOI: 10.1006/excr.1999.4475] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
WEHI-3B D- cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D- cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARalpha and RXRalpha, was measured. No VDR was detected in untreated WEHI-3B D- cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARalpha and RXRalpha were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D- cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1, 25-(OH)2D3.
Collapse
Affiliation(s)
- J Li
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | | | | |
Collapse
|
28
|
Solomon C, White JH, Kremer R. Mitogen-activated protein kinase inhibits 1,25-dihydroxyvitamin D3-dependent signal transduction by phosphorylating human retinoid X receptor alpha. J Clin Invest 1999; 103:1729-35. [PMID: 10377179 PMCID: PMC408392 DOI: 10.1172/jci6871] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human retinoid X receptor alpha (hRXR alpha) is a member of the nuclear receptor family of transcriptional regulators. It regulates transcription through its association with several heterodimeric partners, including the vitamin D3 receptor (VDR). Signaling through the VDR is essential for normal calcium homeostasis and has been shown to inhibit the proliferation of cancer cells derived from a number of tissues. Here we show that phosphorylation of hRXR alpha in ras-transformed human keratinocytes through the activated Ras-Raf-mitogen-activated protein kinase (Ras-Raf-MAP kinase) pathway results in attenuated transactivation by the VDR and resistance to the growth inhibitory action of 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] and RXR-specific agonist LG1069 (4-[1-(5,6,7, 8-tetrahydro-3,5,5,8,8-pentamethyl-2-naphthalenyl) ethenyl]-benzoic acid). Phosphorylation of hRXR alpha occurs at serine 260, a consensus MAP kinase site. Inhibition of MAP kinase activity or point mutagenesis of serine 260 of hRXR alpha reverses the observed resistance to 1,25(OH)2D3 and LG1069. Thus, hRXR alpha is a downstream target of MAP kinase, and its phosphorylation may play an important role in malignant transformation.
Collapse
Affiliation(s)
- C Solomon
- Department of Medicine, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|