1
|
Mattijssen S, Kerkhofs K, Stephen J, Yang A, Han CG, Tadafumi Y, Iben JR, Mishra S, Sakhawala RM, Ranjan A, Gowda M, Gahl WA, Gu S, Malicdan MC, Maraia RJ. A POLR3B-variant reveals a Pol III transcriptome response dependent on La protein/SSB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.577363. [PMID: 38410490 PMCID: PMC10896340 DOI: 10.1101/2024.02.05.577363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
RNA polymerase III (Pol III, POLR3) synthesizes tRNAs and other small non-coding RNAs. Human POLR3 pathogenic variants cause a range of developmental disorders, recapitulated in part by mouse models, yet some aspects of POLR3 deficiency have not been explored. We characterized a human POLR3B:c.1625A>G;p.(Asn542Ser) disease variant that was found to cause mis-splicing of POLR3B. Genome-edited POLR3B1625A>G HEK293 cells acquired the mis-splicing with decreases in multiple POLR3 subunits and TFIIIB, although display auto-upregulation of the Pol III termination-reinitiation subunit POLR3E. La protein was increased relative to its abundant pre-tRNA ligands which bind via their U(n)U-3'-termini. Assays for cellular transcription revealed greater deficiencies for tRNA genes bearing terminators comprised of 4Ts than of ≥5Ts. La-knockdown decreased Pol III ncRNA expression unlinked to RNA stability. Consistent with these effects, small-RNAseq showed that POLR3B1625A>G and patient fibroblasts express more tRNA fragments (tRFs) derived from pre-tRNA 3'-trailers (tRF-1) than from mature-tRFs, and higher levels of multiple miRNAs, relative to control cells. The data indicate that decreased levels of Pol III transcripts can lead to functional excess of La protein which reshapes small ncRNA profiles revealing new depth in the Pol III system. Finally, patient cell RNA analysis uncovered a strategy for tRF-1/tRF-3 as POLR3-deficiency biomarkers.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kyra Kerkhofs
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Joshi Stephen
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Acong Yang
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702 USA
| | - Chen G. Han
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Yokoyama Tadafumi
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James R. Iben
- Molecular Genetics Core, NICHD, NIH, Bethesda, MD 20892, USA
| | - Saurabh Mishra
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rima M. Sakhawala
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amitabh Ranjan
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mamatha Gowda
- Department of Obstetrics & Gynaecology, Jawaharlal Institute of Post-Graduate Medical Education and Research, Puducherry, India
| | - William A. Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD 20892, USA
| | - Shuo Gu
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702 USA
| | - May C. Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD 20892, USA
| | - Richard J. Maraia
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Verosloff MS, Corcoran WK, Dolberg TB, Bushhouse DZ, Leonard JN, Lucks JB. RNA Sequence and Structure Determinants of Pol III Transcriptional Termination in Human Cells. J Mol Biol 2021; 433:166978. [PMID: 33811918 DOI: 10.1016/j.jmb.2021.166978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/25/2023]
Abstract
The precise mechanism of transcription termination of the eukaryotic RNA polymerase III (Pol III) has been a subject of considerable debate. Although previous studies have clearly shown that multiple uracils at the end of RNA transcripts are required for Pol III termination, the effects of upstream RNA secondary structure in the nascent transcript on transcriptional termination is still unclear. To address this, we developed an in cellulo Pol III transcription termination assay using the recently developed Tornado-Corn RNA aptamer system to create a Pol III-transcribed RNA that produces a detectable fluorescent signal when transcribed in human cells. To study the effects of RNA sequence and structure on Pol III termination, we systematically varied the sequence context upstream of the aptamer and identified sequence characteristics that enhance or diminish termination. For transcription from Pol III type 3 promoters, we found that only poly-U tracts longer than the average length found in the human genome efficiently terminate Pol III transcription without RNA secondary structure elements. We observed that RNA secondary structure elements placed in proximity to shorter poly-U tracts induced termination, and RNA secondary structure by itself was not sufficient to induce termination. For Pol III type 2 promoters, we found that the shorter poly-U tract lengths of 4 uracils were sufficient to induce termination. These findings demonstrate a key role for sequence and structural elements within Pol III-transcribed nascent RNA for efficient transcription termination, and demonstrate a generalizable assay for characterizing Pol III transcription in human cells.
Collapse
Affiliation(s)
- Matthew S Verosloff
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2204 Tech Drive, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
| | - William K Corcoran
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2204 Tech Drive, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
| | - Taylor B Dolberg
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
| | - David Z Bushhouse
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2204 Tech Drive, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
| | - Joshua N Leonard
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Julius B Lucks
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
3
|
Gao Z, Herrera-Carrillo E, Berkhout B. Delineation of the Exact Transcription Termination Signal for Type 3 Polymerase III. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:36-44. [PMID: 29499947 PMCID: PMC5725217 DOI: 10.1016/j.omtn.2017.11.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022]
Abstract
Type 3 Pol III promoters such as U6 are widely used for expression of small RNAs, including short hairpin RNA for RNAi applications and guide RNA in CRISPR genome-editing platforms. RNA polymerase III uses a T-stretch as termination signal, but the exact properties have not been thoroughly investigated. Here, we systematically measured the in vivo termination efficiency and the actual site of termination for different T-stretch signals in three commonly used human Pol III promoters (U6, 7SK, and H1). Both the termination efficiency and the actual termination site depend on the T-stretch signal. The T4 signal acts as minimal terminator, but full termination efficiency is reached only with a T-stretch of ≥6. The termination site within the T-stretch is quite heterogeneous, and consequently small RNAs have a variable U-tail of 1–6 nucleotides. We further report that such variable U-tails can have a significant negative effect on the functionality of the crRNA effector of the CRISPR-AsCpf1 system. We next improved these crRNAs by insertion of the HDV ribozyme to avoid U-tails. This study provides detailed design guidelines for small RNA expression cassettes based on Pol III.
Collapse
Affiliation(s)
- Zongliang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
5
|
Rijal K, Maraia RJ, Arimbasseri AG. A methods review on use of nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 2014; 556:35-50. [PMID: 25447915 DOI: 10.1016/j.gene.2014.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Aneeshkumar G Arimbasseri
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Arimbasseri AG, Rijal K, Maraia RJ. Transcription termination by the eukaryotic RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:318-30. [PMID: 23099421 PMCID: PMC3568203 DOI: 10.1016/j.bbagrm.2012.10.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
RNA polymerase (pol) III transcribes a multitude of tRNA and 5S rRNA genes as well as other small RNA genes distributed through the genome. By being sequence-specific, precise and efficient, transcription termination by pol III not only defines the 3' end of the nascent RNA which directs subsequent association with the stabilizing La protein, it also prevents transcription into downstream DNA and promotes efficient recycling. Each of the RNA polymerases appears to have evolved unique mechanisms to initiate the process of termination in response to different types of termination signals. However, in eukaryotes much less is known about the final stage of termination, destabilization of the elongation complex with release of the RNA and DNA from the polymerase active center. By comparison to pols I and II, pol III exhibits the most direct coupling of the initial and final stages of termination, both of which occur at a short oligo(dT) tract on the non-template strand (dA on the template) of the DNA. While pol III termination is autonomous involving the core subunits C2 and probably C1, it also involves subunits C11, C37 and C53, which act on the pol III catalytic center and exhibit homology to the pol II elongation factor TFIIS and TFIIFα/β respectively. Here we compile knowledge of pol III termination and associate mutations that affect this process with structural elements of the polymerase that illustrate the importance of C53/37 both at its docking site on the pol III lobe and in the active center. The models suggest that some of these features may apply to the other eukaryotic pols. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
7
|
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 2011; 12:187-215. [PMID: 21801021 DOI: 10.1146/annurev-genom-082509-141802] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Human Genetics, University of MIchigan Medical School, Ann Arbor, Michigan 48109-5618, USA.
| | | | | | | |
Collapse
|
8
|
Koval AP, Veniaminova NA, Kramerov DA. Additional box B of RNA polymerase III promoter in SINE B1 can be functional. Gene 2011; 487:113-7. [PMID: 21855615 DOI: 10.1016/j.gene.2011.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/20/2011] [Accepted: 08/03/2011] [Indexed: 11/16/2022]
Abstract
Many genes of small RNAs and short interspersed elements (SINEs) are transcribed by RNA polymerase III due to an internal promoter that is composed of two boxes (A and B) spaced by 30-45bp. Rodent SINE B1 originated from 7SL RNA, and a 29-bp tandem duplication took place in B1 at an early stage of its evolution. As a result of this duplication, an additional box B (named B') located at a distance of 79-82bp from box A arose in SINE B1. Here we have shown that despite the unusually large distance between boxes A and B', they can form an active promoter. In chinchillas, guinea pigs, and other rodents belonging to clade Ctenohystrica, structure of the B' box was well preserved and closely resembles the canonical B box. One may suggest therefore, that box B' can functionally replace box B in those copies of B1 where the latter has lost activity due to mutations.
Collapse
Affiliation(s)
- Anastasia P Koval
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
9
|
Berger A, Strub K. Multiple Roles of Alu-Related Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:119-46. [PMID: 21287136 DOI: 10.1007/978-3-642-16502-3_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Cell Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
10
|
Goodier JL, Mandal PK, Zhang L, Kazazian HH. Discrete subcellular partitioning of human retrotransposon RNAs despite a common mechanism of genome insertion. Hum Mol Genet 2010; 19:1712-25. [PMID: 20147320 DOI: 10.1093/hmg/ddq048] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite the immense significance retrotransposons have had for genome evolution much about their biology is unknown, including the processes of forming their ribonucleoprotein (RNP) particles and transporting them about the cell. Suppression of retrotransposon expression, together with the presence of retrotransposon sequence within numerous mRNAs, makes tracking endogenous L1 RNP particles in cells problematic. We overcame these difficulties by assaying in living and fixed cells tagged-RNPs generated from constructs expressing retrotransposition-competent L1s. In this way, we demonstrate for the first time the subcellular colocalization of L1 RNA and proteins ORF1p and ORF2p, and show their targeting together to cytoplasmic foci. Foci are often associated with markers of cytoplasmic stress granules. Furthermore, mutation analyses reveal that ORF1p can direct L1 RNP distribution within the cell. We also assayed RNA localization of the non-autonomous retrotransposons Alu and SVA. Despite a requirement for the L1 integration machinery, each manifests unique features of subcellular RNA distribution. In nuclei Alu RNA forms small round foci partially associated with marker proteins for coiled bodies, suborganelles involved in the processing of non-coding RNAs. SVA RNA patterning is distinctive, being cytoplasmic but without prominent foci and concentrated in large nuclear aggregates that often ring nucleoli. Such variability predicts significant differences in the life cycles of these elements.
Collapse
Affiliation(s)
- John L Goodier
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
11
|
Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, Weichenrieder O, Devine SE. Active Alu retrotransposons in the human genome. Genes Dev 2008; 18:1875-83. [PMID: 18836035 PMCID: PMC2593586 DOI: 10.1101/gr.081737.108] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/30/2008] [Indexed: 12/16/2022]
Abstract
Alu retrotransposons evolved from 7SL RNA approximately 65 million years ago and underwent several rounds of massive expansion in primate genomes. Consequently, the human genome currently harbors 1.1 million Alu copies. Some of these copies remain actively mobile and continue to produce both genetic variation and diseases by "jumping" to new genomic locations. However, it is unclear how many active Alu copies exist in the human genome and which Alu subfamilies harbor such copies. Here, we present a comprehensive functional analysis of Alu copies across the human genome. We cloned Alu copies from a variety of genomic locations and tested these copies in a plasmid-based mobilization assay. We show that functionally intact core Alu elements are highly abundant and far outnumber all other active transposons in humans. A range of Alu lineages were found to harbor such copies, including all modern AluY subfamilies and most AluS subfamilies. We also identified two major determinants of Alu activity: (1) The primary sequence of a given Alu copy, and (2) the ability of the encoded RNA to interact with SRP9/14 to form RNA/protein (RNP) complexes. We conclude that Alu elements pose the largest transposon-based mutagenic threat to the human genome. On the basis of our data, we have begun to identify Alu copies that are likely to produce genetic variation and diseases in humans.
Collapse
Affiliation(s)
- E. Andrew Bennett
- Genetics and Molecular Biology Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Heiko Keller
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ryan E. Mills
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Steffen Schmidt
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - John V. Moran
- Howard Hughes Medical Institute, Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Scott E. Devine
- Genetics and Molecular Biology Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
12
|
Park JM, Intine RV, Maraia RJ. Mouse and human La proteins differ in kinase substrate activity and activation mechanism for tRNA processing. Gene Expr 2007; 14:71-81. [PMID: 18257391 PMCID: PMC6042041 DOI: 10.3727/105221607783417619] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The La protein interacts with a variety of small RNAs as well as certain growth-associated mRNAs such as Mdm2 mRNA. Human La (hLa) phosphoprotein is so highly conserved that it can replace the tRNA processing function of the fission yeast La protein in vivo. We used this system, which is based on tRNA-mediated suppression (TMS) of ade6-704 in S. pombe, to compare the activities of mouse and human La proteins. Prior studies indicate that hLa is activated by phosphorylation of serine-366 by protein kinase CK2, neutralizing a negative effect of a short basic motif (SBM). First, we report the sequence mapping of the UGA stop codon that requires suppressor tRNA for TMS, to an unexpected site in S. pombe ade6-704. Next, we show that, unlike hLa, native mLa is unexpectedly inactive for TMS, although its intrinsic activity is revealed by deletion of its SBM. We then show that mLa is not phosphorylated by CK2, accounting for the mechanistic difference between mLa and hLa. We found a PKA/PKG target sequence in mLa (S199) that is not present in hLa, and show that PKA/PKG efficiently phosphorylates mLa S199 in vitro. A noteworthy conclusion that comes from this work is that this fission yeast system can be used to gain insight into differences in control mechanisms used by La proteins of different mammalian species. Finally, RNA binding assays indicate that while mutation of mLa S199 has little effect on pre-tRNA binding, it substantially decreases binding to a probe derived from Mdm2 mRNA. In closing, we note that species-specific signaling through La may be relevant to the La-dependent Mdm2 pathways of p53 metabolism and cancer progression in mice and humans.
Collapse
Affiliation(s)
- Jung-Min Park
- Intramural Research Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert V. Intine
- Intramural Research Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J. Maraia
- Intramural Research Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Abstract
The heterogeneous, short RNAs produced from the high, copy, short mobile elements (SINEs) interact with proteins to form RNA-protein (RNP) complexes. In particular, the BC1 RNA, which is transcribed to high levels specifically in brain and testis from one locus of the ID SINE family, exists as a discrete RNP complex. We expressed a series of altered BC1, and other SINE-related RNAs, in several cell lines and tested for the mobility of the resulting RNP complexes in a native PAGE assay to determine which portions of these SINE RNAs contribute to protein binding. When different SINE RNAs were substituted for the BC1 ID sequence, the resulting RNPs exhibited the same mobility as BC1. This indicates that the protein(s) binding to the ID portion of BC1 is not sequence specific and may be more dependent upon the secondary structure of the RNA. It also suggests that all SINE RNAs may bind a similar set of cellular proteins. Deletion of the A-rich region of BC1 RNA has a marked effect on the mobility of the RNP. Rodent cell lines exhibit a slightly different mobility for this shifted complex when compared to human cell lines, reflecting evolutionary differences in one or more of the protein components. On the basis of mobility change observed in RNP complexes when the A-rich region is removed, we decided to examine poly(A) binding protein (PABP) as a candidate member of the RNP. An antibody against the C terminus of PABP is able to immunoprecipitate BC1 RNA, confirming PABP's presence in the BC1 RNP. Given the ubiquitous role of poly(A) regions in the retrotransposition process, these data suggest that PABP may contribute to the SINE retrotransposition process.
Collapse
Affiliation(s)
- Neva West
- Tulane Cancer Center, SL-66, Department of Environmental Health Sciences, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
L1 retrotransposons comprise 17% of the human genome. Although most L1s are inactive, some elements remain capable of retrotransposition. L1 elements have a long evolutionary history dating to the beginnings of eukaryotic existence. Although many aspects of their retrotransposition mechanism remain poorly understood, they likely integrate into genomic DNA by a process called target primed reverse transcription. L1s have shaped mammalian genomes through a number of mechanisms. First, they have greatly expanded the genome both by their own retrotransposition and by providing the machinery necessary for the retrotransposition of other mobile elements, such as Alus. Second, they have shuffled non-L1 sequence throughout the genome by a process termed transduction. Third, they have affected gene expression by a number of mechanisms. For instance, they occasionally insert into genes and cause disease both in humans and in mice. L1 elements have proven useful as phylogenetic markers and may find other practical applications in gene discovery following insertional mutagenesis in mice and in the delivery of therapeutic genes.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
15
|
Abstract
Ubiquitous in eukaryotic cells, the La protein associates with the 3' termini of many newly synthesized small RNAs. RNAs bound by the La protein include all nascent transcripts made by RNA polymerase III as well as certain small RNAs synthesized by other RNA polymerases. Recent genetic and biochemical analyses have revealed that binding by the La protein protects the 3' ends of these RNAs from exonucleases. This La-mediated stabilization is required for the normal pathway of pre-tRNA maturation, facilitates assembly of small RNAs into functional RNA-protein complexes, and contributes to nuclear retention of certain small RNAs. Studies of mutant La proteins have given some insights into how the La protein specifically recognizes its RNA targets. However, many questions remain regarding the molecular mechanisms by which La protein binding influences multiple steps in small RNA biogenesis. This review focuses on the roles of the La protein in small RNA biogenesis and also discusses data that implicate the La protein in the translation of specific mRNAs.
Collapse
Affiliation(s)
- Sandra L Wolin
- Departments of Cell Biology and Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06536, USA.
| | | |
Collapse
|
16
|
Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675-90. [PMID: 11433012 PMCID: PMC55761 DOI: 10.1093/nar/29.13.2675] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3' terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive MSC 2753, Bethesda, MD 20892-2753, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
18
|
Chong SS, Hu P, Hernandez N. Reconstitution of transcription from the human U6 small nuclear RNA promoter with eight recombinant polypeptides and a partially purified RNA polymerase III complex. J Biol Chem 2001; 276:20727-34. [PMID: 11279001 DOI: 10.1074/jbc.m100088200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human U6 small nuclear (sn) RNA core promoter consists of a proximal sequence element, which recruits the multisubunit factor SNAP(c), and a TATA box, which recruits the TATA box-binding protein, TBP. In addition to SNAP(c) and TBP, transcription from the human U6 promoter requires two well defined factors. The first is hB", a human homologue of the B" subunit of yeast TFIIIB generally required for transcription of RNA polymerase III genes, and the second is hBRFU, one of two human homologues of the yeast TFIIIB subunit BRF specifically required for transcription of U6-type RNA polymerase III promoters. Here, we have partially purified and characterized a RNA polymerase III complex that can direct transcription from the human U6 promoter when combined with recombinant SNAP(c), recombinant TBP, recombinant hB", and recombinant hBRFU. These results open the way to reconstitution of U6 transcription from entirely defined components.
Collapse
Affiliation(s)
- S S Chong
- Department of Microbiology and Graduate Program of Molecular and Cellular Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
19
|
Arnaud P, Yukawa Y, Lavie L, Pélissier T, Sugiura M, Deragon JM. Analysis of the SINE S1 Pol III promoter from Brassica; impact of methylation and influence of external sequences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:295-305. [PMID: 11439118 DOI: 10.1046/j.1365-313x.2001.01029.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transcription is an important control point in the transposable element mobilization process. To better understand the regulation of the plant SINE (Short Interspersed Elements) S1, its promoter sequence was studied using an in vitro pol III transcription system derived from tobacco cells. We show that the internal S1 promoter can be functional although upstream external sequences were found to enhance this basal level of transcription. For one putative 'master' locus (na7), three CAA triplets (in positions -12, -7 and -2) and two overlapping TATA motifs (in positions -54 to -43) were important to stimulate transcription. For this locus, two transcription initiation regions were characterized, one centered on position + 1 (first nucleotide of the S1 element) and one centered on position - 19 independently of the internal motifs. The CAA triplets only influence transcription in + 1 and work in association with the internal motifs. We show that methylation can inhibit transcription at the na7 locus. We also observe that S1 RNA is cleaved in a smaller Poly (A) minus product by a process analogous to the maturation of mammalian SINEs.
Collapse
Affiliation(s)
- P Arnaud
- CNRS UMR6547 and GDR2157, Biomove, Université Blaise Pascal Clermont-Ferrand II, 63177 Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
Maraia RJ, Intine RV. Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function. Mol Cell Biol 2001; 21:367-79. [PMID: 11134326 PMCID: PMC86573 DOI: 10.1128/mcb.21.2.367-379.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
21
|
Alemán C, Roy-Engel AM, Shaikh TH, Deininger PL. Cis-acting influences on Alu RNA levels. Nucleic Acids Res 2000; 28:4755-61. [PMID: 11095687 PMCID: PMC115182 DOI: 10.1093/nar/28.23.4755] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human short interspersed repeated element (SINE), Alu, amplifies through a poorly understood RNA-mediated mechanism, termed retroposition. There are over one million copies of Alu per haploid human genome. The copies show some internal variations in sequence and are very heterogeneous in chromosomal environment. However, very few Alu elements actively amplify. The amplification rate has decreased greatly in the last 40 million years. Factors influencing Alu transcription would directly affect an element's retroposition capability. Therefore, we evaluated several features that might influence expression from individual Alu elements. The influence of various internal sequence variations and 3' unique flanks on full-length Alu RNA steady-state levels was determined. Alu subfamily diagnostic mutations do not significantly alter the amount of Alu RNA observed. However, sequences containing random mutations throughout the right half of selected genomic Alu elements altered Alu RNA steady-state levels in cultured cells. In addition, sequence variations at the 3' unique end of the transcript also significantly altered the Alu RNA levels. In general, sequence mutations and 3' end sequences contribute to Alu RNA levels, suggesting that the master Alu element(s) have a multitude of individual differences that collectively gives them a selective advantage over other Alu elements.
Collapse
Affiliation(s)
- C Alemán
- Tulane Cancer Center, SL-66, and Department of Environmental Health Sciences, Tulane University-Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
22
|
Hamada M, Sakulich AL, Koduru SB, Maraia RJ. Transcription termination by RNA polymerase III in fission yeast. A genetic and biochemically tractable model system. J Biol Chem 2000; 275:29076-81. [PMID: 10843998 DOI: 10.1074/jbc.m003980200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order for RNA polymerase (pol) III to produce a sufficient quantity of RNAs of appropriate structure, initiation, termination, and reinitiation must be accurate and efficient. Termination-associated factors have been shown to facilitate reinitiation and regulate transcription in some species. Suppressor tRNA genes that differ in the dT(n) termination signal were examined for function in Schizosaccharomyces pombe. We also developed an S. pombe extract that is active for tRNA transcription that is described here for the first time. The ability of this tRNA gene to be transcribed in extracts from different species allowed us to compare termination in three model systems. Although human pol III terminates efficiently at 4 dTs and S. pombe at 5 dTs, Saccharomyces cerevisiae pol III requires 6 dTs to direct comparable but lower termination efficiency and also appears qualitatively distinct. Interestingly, this pattern of sensitivity to a minimal dT(n) termination signal was found to correlate with the sensitivity to alpha-amanitin, as S. pombe was intermediate between human and S. cerevisiae pols III. The results establish that the pols III of S. cerevisiae, S. pombe, and human exhibit distinctive properties and that termination occurs in S. pombe in a manner that is functionally more similar to human than is S. cerevisiae.
Collapse
Affiliation(s)
- M Hamada
- Laboratory of Molecular Growth Regulation, NICHHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | |
Collapse
|