1
|
Maslowska KH, Makiela‐Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:368-384. [PMID: 30447030 PMCID: PMC6590174 DOI: 10.1002/em.22267] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 05/10/2023]
Abstract
Genomes of all living organisms are constantly threatened by endogenous and exogenous agents that challenge the chemical integrity of DNA. Most bacteria have evolved a coordinated response to DNA damage. In Escherichia coli, this inducible system is termed the SOS response. The SOS global regulatory network consists of multiple factors promoting the integrity of DNA as well as error-prone factors allowing for survival and continuous replication upon extensive DNA damage at the cost of elevated mutagenesis. Due to its mutagenic potential, the SOS response is subject to elaborate regulatory control involving not only transcriptional derepression, but also post-translational activation, and inhibition. This review summarizes current knowledge about the molecular mechanism of the SOS response induction and progression and its consequences for genome stability. Environ. Mol. Mutagen. 60:368-384, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Katarzyna H. Maslowska
- Cancer Research Center of Marseille, CNRS, UMR7258Inserm, U1068; Institut Paoli‐Calmettes, Aix‐Marseille UniversityMarseilleFrance
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
2
|
Tashjian TF, Danilowicz C, Molza AE, Nguyen BH, Prévost C, Prentiss M, Godoy VG. Residues in the fingers domain of the translesion DNA polymerase DinB enable its unique participation in error-prone double-strand break repair. J Biol Chem 2019; 294:7588-7600. [PMID: 30872406 DOI: 10.1074/jbc.ra118.006233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/28/2019] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Escherichia coli translesion DNA polymerase IV (DinB) is one of three enzymes that can bypass potentially deadly DNA lesions on the template strand during DNA replication. Remarkably, however, DinB is the only known translesion DNA polymerase active in RecA-mediated strand exchange during error-prone double-strand break repair. In this process, a single-stranded DNA (ssDNA)-RecA nucleoprotein filament invades homologous dsDNA, pairing the ssDNA with the complementary strand in the dsDNA. When exchange reaches the 3' end of the ssDNA, a DNA polymerase can add nucleotides onto the end, using one strand of dsDNA as a template and displacing the other. It is unknown what makes DinB uniquely capable of participating in this reaction. To explore this topic, we performed molecular modeling of DinB's interactions with the RecA filament during strand exchange, identifying key contacts made with residues in the DinB fingers domain. These residues are highly conserved in DinB, but not in other translesion DNA polymerases. Using a novel FRET-based assay, we found that DinB variants with mutations in these conserved residues are less effective at stabilizing RecA-mediated strand exchange than native DinB. Furthermore, these variants are specifically deficient in strand displacement in the absence of RecA filament. We propose that the amino acid patch of highly conserved residues in DinB-like proteins provides a mechanistic explanation for DinB's function in strand exchange and improves our understanding of recombination by providing evidence that RecA plays a role in facilitating DinB's activity during strand exchange.
Collapse
Affiliation(s)
- Tommy F Tashjian
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Claudia Danilowicz
- the Department of Physics, Harvard University, Cambridge, Massachusetts 02138, and
| | - Anne-Elizabeth Molza
- the Laboratoire de Biochimie Théorique, CNRS UPR9080 and Université Paris Diderot, IBPC, 75005 Paris, France
| | - Brian H Nguyen
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Chantal Prévost
- the Laboratoire de Biochimie Théorique, CNRS UPR9080 and Université Paris Diderot, IBPC, 75005 Paris, France
| | - Mara Prentiss
- the Department of Physics, Harvard University, Cambridge, Massachusetts 02138, and
| | - Veronica G Godoy
- From the Department of Biology, Northeastern University, Boston, Massachusetts 02115,
| |
Collapse
|
3
|
Murison DA, Ollivierre JN, Huang Q, Budil DE, Beuning PJ. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions. PLoS One 2017; 12:e0173388. [PMID: 28273172 PMCID: PMC5342242 DOI: 10.1371/journal.pone.0173388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/14/2017] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7) and UmuD 18 (UmuD Δ1-17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.
Collapse
Affiliation(s)
- David A. Murison
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Jaylene N. Ollivierre
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Qiuying Huang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - David E. Budil
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| |
Collapse
|
4
|
Goodman MF. Better living with hyper-mutation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:421-34. [PMID: 27273795 PMCID: PMC4945469 DOI: 10.1002/em.22023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 05/12/2023]
Abstract
The simplest forms of mutations, base substitutions, typically have negative consequences, aside from their existential role in evolution and fitness. Hypermutations, mutations on steroids, occurring at frequencies of 10(-2) -10(-4) per base pair, straddle a domain between fitness and death, depending on the presence or absence of regulatory constraints. Two facets of hypermutation, one in Escherichia coli involving DNA polymerase V (pol V), the other in humans, involving activation-induced deoxycytidine deaminase (AID) are portrayed. Pol V is induced as part of the DNA-damage-induced SOS regulon, and is responsible for generating the lion's share of mutations when catalyzing translesion DNA synthesis (TLS). Four regulatory mechanisms, temporal, internal, conformational, and spatial, activate pol V to copy damaged DNA and then deactivate it. On the flip side of the coin, SOS-induced pols V, IV, and II mutate undamaged DNA, thus providing genetic diversity heightening long-term survival and evolutionary fitness. Fitness in humans is principally the domain of a remarkably versatile immune system marked by somatic hypermutations (SHM) in immunoglobulin variable (IgV) regions that ensure antibody (Ab) diversity. AID initiates SHM by deaminating C → U, favoring hot WRC (W = A/T, R = A/G) motifs. Since there are large numbers of trinucleotide motif targets throughout IgV, AID must exercise considerable catalytic restraint to avoid attacking such sites repeatedly, which would otherwise compromise diversity. Processive, random, and inefficient AID-catalyzed dC deamination simulates salient features of SHM, yet generates B-cell lymphomas when working at the wrong time in the wrong place. Environ. Mol. Mutagen. 57:421-434, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Myron F. Goodman
- Correspondence to Myron F. Goodman, Department of Biological Sciences, Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089-2910, USA,
| |
Collapse
|
5
|
Gruber AJ, Erdem AL, Sabat G, Karata K, Jaszczur MM, Vo DD, Olsen TM, Woodgate R, Goodman MF, Cox MM. A RecA protein surface required for activation of DNA polymerase V. PLoS Genet 2015; 11:e1005066. [PMID: 25811184 PMCID: PMC4374754 DOI: 10.1371/journal.pgen.1005066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/11/2015] [Indexed: 11/25/2022] Open
Abstract
DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3'-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3'-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA'2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis.
Collapse
Affiliation(s)
- Angela J Gruber
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aysen L Erdem
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kiyonobu Karata
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Malgorzata M Jaszczur
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Dan D Vo
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Tayla M Olsen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
6
|
Antibiotic resistance acquired through a DNA damage-inducible response in Acinetobacter baumannii. J Bacteriol 2013; 195:1335-45. [PMID: 23316046 DOI: 10.1128/jb.02176-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen that survives desiccation and quickly acquires resistance to multiple antibiotics. Escherichia coli gains antibiotic resistances by expressing genes involved in a global response to DNA damage. Therefore, we asked whether A. baumannii does the same through a yet undetermined DNA damage response akin to the E. coli paradigm. We found that recA and all of the multiple error-prone DNA polymerase V (Pol V) genes, those organized as umuDC operons and unlinked, are induced upon DNA damage in a RecA-mediated fashion. Consequently, we found that the frequency of rifampin-resistant (Rif(r)) mutants is dramatically increased upon UV treatment, alkylation damage, and desiccation, also in a RecA-mediated manner. However, in the recA insertion knockout strain, in which we could measure the recA transcript, we found that recA was induced by DNA damage, while uvrA and one of the unlinked umuC genes were somewhat derepressed in the absence of DNA damage. Thus, the mechanism regulating the A. baumannii DNA damage response is likely different from that in E. coli. Notably, it appears that the number of DNA Pol V genes may directly contribute to desiccation-induced mutagenesis. Sequences of the rpoB gene from desiccation-induced Rif(r) mutants showed a signature that was consistent with E. coli DNA polymerase V-generated base-pair substitutions and that matched that of sequenced A. baumannii clinical Rif(r) isolates. These data strongly support an A. baumannii DNA damage-inducible response that directly contributes to antibiotic resistance acquisition, particularly in hospitals where A. baumannii desiccates and tenaciously survives on equipment and surfaces.
Collapse
|
7
|
A single residue unique to DinB-like proteins limits formation of the polymerase IV multiprotein complex in Escherichia coli. J Bacteriol 2013; 195:1179-93. [PMID: 23292773 DOI: 10.1128/jb.01349-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The activity of DinB is governed by the formation of a multiprotein complex (MPC) with RecA and UmuD. We identified two highly conserved surface residues in DinB, cysteine 66 (C66) and proline 67 (P67). Mapping on the DinB tertiary structure suggests these are noncatalytic, and multiple-sequence alignments indicate that they are unique among DinB-like proteins. To investigate the role of the C66-containing surface in MPC formation, we constructed the dinB(C66A) derivative. We found that DinB(C66A) copurifies with its interacting partners, RecA and UmuD, to a greater extent than DinB. Notably, copurification of RecA with DinB is somewhat enhanced in the absence of UmuD and is further increased for DinB(C66A). In vitro pulldown assays also indicate that DinB(C66A) binds RecA and UmuD better than DinB. We note that the increased affinity of DinB(C66A) for UmuD is RecA dependent. Thus, the C66-containing binding surface appears to be critical to modulate interaction with UmuD, and particularly with RecA. Expression of dinB(C66A) from the chromosome resulted in detectable differences in dinB-dependent lesion bypass fidelity and homologous recombination. Study of this DinB derivative has revealed a key surface on DinB, which appears to modulate the strength of MPC binding, and has suggested a binding order of RecA and UmuD to DinB. These findings will ultimately permit the manipulation of these enzymes to deter bacterial antibiotic resistance acquisition and to gain insights into cancer development in humans.
Collapse
|
8
|
Kuban W, Vaisman A, McDonald JP, Karata K, Yang W, Goodman MF, Woodgate R. Escherichia coli UmuC active site mutants: effects on translesion DNA synthesis, mutagenesis and cell survival. DNA Repair (Amst) 2012; 11:726-32. [PMID: 22784977 DOI: 10.1016/j.dnarep.2012.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/17/2022]
Abstract
Escherichia coli polymerase V (pol V/UmuD(2)'C) is a low-fidelity DNA polymerase that has recently been shown to avidly incorporate ribonucleotides (rNTPs) into undamaged DNA. The fidelity and sugar selectivity of pol V can be modified by missense mutations around the "steric gate" of UmuC. Here, we analyze the ability of three steric gate mutants of UmuC to facilitate translesion DNA synthesis (TLS) of a cyclobutane pyrimidine dimer (CPD) in vitro, and to promote UV-induced mutagenesis and cell survival in vivo. The pol V (UmuC_F10L) mutant discriminates against rNTP and incorrect dNTP incorporation much better than wild-type pol V and although exhibiting a reduced ability to bypass a CPD in vitro, does so with high-fidelity and consequently produces minimal UV-induced mutagenesis in vivo. In contrast, pol V (UmuC_Y11A) readily misincorporates both rNTPs and dNTPs during efficient TLS of the CPD in vitro. However, cells expressing umuD'C(Y11A) were considerably more UV-sensitive and exhibited lower levels of UV-induced mutagenesis than cells expressing wild-type umuD'C or umuD'C(Y11F). We propose that the increased UV-sensitivity and reduced UV-mutability of umuD'C(Y11A) is due to excessive incorporation of rNTPs during TLS that are subsequently targeted for repair, rather than an inability to traverse UV-induced lesions.
Collapse
Affiliation(s)
- Wojciech Kuban
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Characterization of Escherichia coli UmuC active-site loops identifies variants that confer UV hypersensitivity. J Bacteriol 2011; 193:5400-11. [PMID: 21784925 DOI: 10.1128/jb.05301-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA is constantly exposed to chemical and environmental mutagens, causing lesions that can stall replication. In order to deal with DNA damage and other stresses, Escherichia coli utilizes the SOS response, which regulates the expression of at least 57 genes, including umuDC. The gene products of umuDC, UmuC and the cleaved form of UmuD, UmuD', form the specialized E. coli Y-family DNA polymerase UmuD'2C, or polymerase V (Pol V). Y-family DNA polymerases are characterized by their specialized ability to copy damaged DNA in a process known as translesion synthesis (TLS) and by their low fidelity on undamaged DNA templates. Y-family polymerases exhibit various specificities for different types of DNA damage. Pol V carries out TLS to bypass abasic sites and thymine-thymine dimers resulting from UV radiation. Using alanine-scanning mutagenesis, we probed the roles of two active-site loops composed of residues 31 to 38 and 50 to 54 in Pol V activity by assaying the function of single-alanine variants in UV-induced mutagenesis and for their ability to confer resistance to UV radiation. We find that mutations of the N-terminal residues of loop 1, N32, N33, and D34, confer hypersensitivity to UV radiation and to 4-nitroquinoline-N-oxide and significantly reduce Pol V-dependent UV-induced mutagenesis. Furthermore, mutating residues 32, 33, or 34 diminishes Pol V-dependent inhibition of recombination, suggesting that these mutations may disrupt an interaction of UmuC with RecA, which could also contribute to the UV hypersensitivity of cells expressing these variants.
Collapse
|
10
|
Budzowska M, Kanaar R. Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 2008; 53:17-31. [PMID: 19034694 DOI: 10.1007/s12013-008-9039-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2008] [Indexed: 12/31/2022]
Abstract
During every S phase, cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. Given the large size of mammalian genomes and the required precision of DNA replication, genome duplication requires highly fine-tuned corrective and quality control processes. A major threat to the accuracy and efficiency of DNA synthesis is the presence of DNA lesions, caused by both endogenous and exogenous damaging agents. Replicative DNA polymerases, which carry out the bulk of DNA synthesis, evolved to do their job extremely precisely and efficiently. However, they are unable to use damaged DNA as a template and, consequently, are stopped at most DNA lesions. Failure to restart such stalled replication forks can result in major chromosomal aberrations and lead to cell dysfunction or death. Therefore, a well-coordinated response to replication perturbation is essential for cell survival and fitness. Here we review how this response involves activating checkpoint signaling and the use of specialized pathways promoting replication restart. Checkpoint signaling adjusts cell cycle progression to the emergency situation and thus gives cells more time to deal with the damage. Replication restart is mediated by two pathways. Homologous recombination uses homologous DNA sequence to repair or bypass the lesion and is therefore mainly error free. Error-prone translesion synthesis employs specialized, low fidelity polymerases to bypass the damage.
Collapse
Affiliation(s)
- Magda Budzowska
- Department of Cell Biology & Genetics, Cancer Genomics Center, Rotterdam, The Netherlands
| | | |
Collapse
|
11
|
Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 2008; 43:289-318. [PMID: 18937104 PMCID: PMC2583361 DOI: 10.1080/10409230802341296] [Citation(s) in RCA: 426] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present. These proteins have often been described as inert, protective DNA coatings. Continuing research is demonstrating a far more complex role of SSB that includes the organization and/or mobilization of all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other proteins that include key components of the elaborate systems involved in every aspect of DNA metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe the energetics of interactions with SSB, and highlight the roles of SSB in the process of recombination. Similar themes to those highlighted in this review are evident in all biological systems.
Collapse
Affiliation(s)
- Robert D Shereda
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
12
|
Delmas S, Matic I. Interplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases. Proc Natl Acad Sci U S A 2006; 103:4564-9. [PMID: 16537389 PMCID: PMC1450211 DOI: 10.1073/pnas.0509012103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination (HR) and translesion synthesis (TLS) are two pathways involved in the tolerance of lesions that block the replicative DNA polymerase. However, whereas TLS is frequently error-prone and, therefore, can be deleterious, HR is generally error-free. Furthermore, because the recombination enzymes and alternative DNA polymerases that perform TLS may use the same substrate, their coordination might be important to assure cell fitness and survival. This study aimed to determine whether and how these pathways are coordinated in Escherichia coli cells by using conjugational replication and recombination as a model system. The role of the three alternative DNA polymerases that are regulated by the SOS system was tested in DNA polymerase III holoenzyme-proficient and -deficient mutants. When PolIII is inactive, the alternative DNA polymerases copy DNA in the following order: PolII, PolIV, and PolV. The observed hierarchy corresponds to the selective constraints imposed on the genes coding for alternative DNA polymerases observed in natural populations of E. coli, suggesting that this hierarchy depends on the frequency of specific damages encountered during the evolutionary history of E. coli. We also found that DNA replication and HR are in competition and that they can precede each other. Our results suggest that there is probably not an active choice of which pathway to use, but, rather, the nature and concentration of lesions that lead to formation of ssDNA and the level of SOS induction that they engender might determine the outcome of the competition between HR and alternative DNA polymerases.
Collapse
Affiliation(s)
- Stéphane Delmas
- Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médecine “Necker-Enfants Malades” Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Ivan Matic
- Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médecine “Necker-Enfants Malades” Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Pavlov YI, Shcherbakova PV, Rogozin IB. Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:41-132. [PMID: 17178465 DOI: 10.1016/s0074-7696(06)55002-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functioning of the eukaryotic genome depends on efficient and accurate DNA replication and repair. The process of replication is complicated by the ongoing decomposition of DNA and damage of the genome by endogenous and exogenous factors. DNA damage can alter base coding potential resulting in mutations, or block DNA replication, which can lead to double-strand breaks (DSB) and to subsequent chromosome loss. Replication is coordinated with DNA repair systems that operate in cells to remove or tolerate DNA lesions. DNA polymerases can serve as sensors in the cell cycle checkpoint pathways that delay cell division until damaged DNA is repaired and replication is completed. Eukaryotic DNA template-dependent DNA polymerases have different properties adapted to perform an amazingly wide spectrum of DNA transactions. In this review, we discuss the structure, the mechanism, and the evolutionary relationships of DNA polymerases and their possible functions in the replication of intact and damaged chromosomes, DNA damage repair, and recombination.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Departments of Biochemistry and Molecular Biology, and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|
14
|
Lee AM, Singleton SF. Inhibition of the Escherichia coli RecA protein: zinc(II), copper(II) and mercury(II) trap RecA as inactive aggregates. J Inorg Biochem 2004; 98:1981-6. [PMID: 15522426 DOI: 10.1016/j.jinorgbio.2004.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 08/24/2004] [Accepted: 08/27/2004] [Indexed: 01/08/2023]
Abstract
In bacteria, the RecA protein plays important roles in a number of DNA recombination and repair processes, including homologous recombination, SOS induction and recombinational DNA repair. We have explored the idea that the Escherichia coli RecA protein's functions could be controlled by small molecules. We investigated the 2:1 complex of zinc(II) with 1,4-dithio-l-threitol (l-DTT) that inhibits the E. coli rho transcription terminator, which is a hexameric ATP motor protein and is structurally homologous to RecA. We found that both the complex and ZnCl(2) inhibit the single-stranded DNA-dependent ATPase activity of RecA at sub-millimolar concentrations. Investigation of a variety of metal dications (0.4 mM final concentration) determined that zinc(II), copper(II) and mercury(II) all induce the precipitation of RecA, while the dichloride salts of calcium, manganese, barium, cobalt, and nickel do not. The inhibition of RecA activity by Zn(II), Cu(II) and Hg(II) results from the metal-dependent initiation of RecA aggregation. These observations may have implications for the design of biophysical experiments requiring solid-phase RecA protein, for a more complete understanding of metal toxicities, and for the design of metal-chelate inhibitors of prokaryotic DNA repair.
Collapse
Affiliation(s)
- Andrew M Lee
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | |
Collapse
|
15
|
Fujii S, Gasser V, Fuchs RP. The biochemical requirements of DNA polymerase V-mediated translesion synthesis revisited. J Mol Biol 2004; 341:405-17. [PMID: 15276832 DOI: 10.1016/j.jmb.2004.06.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/04/2004] [Accepted: 06/08/2004] [Indexed: 11/29/2022]
Abstract
In addition to replicative DNA polymerases, cells contain specialized DNA polymerases involved in processes such as lesion tolerance, mutagenesis and immunoglobulin diversity. In Escherichia coli, DNA polymerase V (Pol V), encoded by the umuDC locus, is involved in translesion synthesis (TLS) and mutagenesis. Genetic studies have established that mutagenesis requires both UmuC and a proteolytic product of UmuD (UmuD'). In addition, RecA protein and the replication processivity factor, the beta-clamp, were genetically found to be essential co-factors for mutagenesis. Here, we have reconstituted Pol V-mediated bypass of three common replication-blocking lesions, namely the two major UV-induced lesions and a guanine adduct formed by a chemical carcinogen (G-AAF) under conditions that fulfil these in vivo requirements. Two co-factors are essential for efficient Pol V-mediated lesion bypass: (i) a DNA substrate onto which the beta-clamp is stably loaded; and (ii) an extended single-stranded RecA/ATP filament assembled downstream from the lesion site. For efficient bypass, Pol V needs to interact simultaneously with the beta-clamp and the 3' tip of the RecA filament. Formation of an extended RecA/ATP filament and stable loading of the beta-clamp are best achieved on long single-stranded circular DNA templates. In contrast to previously published data, the single-stranded DNA-binding protein (SSB) is not absolutely required for Pol V-mediated lesion bypass provided ATP, instead of ATPgammaS, activates the RecA filament. Further discrepancies with the existing literature are explainable by the use of either inadequate DNA substrates or a UmuC fusion protein instead of native Pol V.
Collapse
Affiliation(s)
- Shingo Fujii
- UPR 9003 du CNRS, Cancerogenese et Mutagenese Moleculaire et Structurale, 67400 Strasbourg, France
| | | | | |
Collapse
|
16
|
Sommer S, Becherel OJ, Coste G, Bailone A, Fuchs RPP. Altered translesion synthesis in E. coli Pol V mutants selected for increased recombination inhibition. DNA Repair (Amst) 2004; 2:1361-9. [PMID: 14642565 DOI: 10.1016/j.dnarep.2003.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Replication of damaged DNA, also termed as translesion synthesis (TLS), involves specialized DNA polymerases that bypass DNA lesions. In Escherichia coli, although TLS can involve one or a combination of DNA polymerases depending on the nature of the lesion, it generally requires the Pol V DNA polymerase (formed by two SOS proteins, UmuD' and UmuC) and the RecA protein. In addition to being an essential component of translesion DNA synthesis, Pol V is also an antagonist of RecA-mediated recombination. We have recently isolated umuD' and umuC mutants on the basis of their increased capacity to inhibit homologous recombination. Despite the capacity of these mutants to form a Pol V complex and to interact with the RecA polymer, most of them exhibit a defect in TLS. Here, we further characterize the TLS activity of these Pol V mutants in vivo by measuring the extent of error-free and mutagenic bypass at a single (6-4)TT lesion located in double stranded plasmid DNA. TLS is markedly decreased in most Pol V mutants that we analyzed (8/9) with the exception of one UmuC mutant (F287L) that exhibits wild-type bypass activity. Somewhat unexpectedly, Pol V mutants that are partially deficient in TLS are more severely affected in mutagenic bypass compared to error-free synthesis. The defect in bypass activity of the Pol V mutant polymerases is discussed in light of the location of the respective mutations in the 3D structure of UmuD' and the DinB/UmuC homologous protein Dpo4 of Sulfolobus solfataricus.
Collapse
Affiliation(s)
- Suzanne Sommer
- Institut de Génétique et Microbiologie, Bât. 409, Université Paris-Sud, F-91405, Orsay, France.
| | | | | | | | | |
Collapse
|
17
|
Stohl EA, Brockman JP, Burkle KL, Morimatsu K, Kowalczykowski SC, Seifert HS. Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 2003; 278:2278-85. [PMID: 12427742 DOI: 10.1074/jbc.m210496200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli the RecA protein plays a pivotal role in homologous recombination, DNA repair, and SOS repair and mutagenesis. A gene designated recX (or oraA) is present directly downstream of recA in E. coli; however, the function of RecX is unknown. In this work we demonstrated interaction of RecX and RecA in a yeast two-hybrid assay. In vitro, substoichiometric amounts of RecX strongly inhibited both RecA-mediated DNA strand exchange and RecA ATPase activity. In vivo, we showed that recX is under control of the LexA repressor and is up-regulated in response to DNA damage. A loss-of-function mutation in recX resulted in decreased resistance to UV irradiation; however, overexpression of RecX in trans resulted in a greater decrease in UV resistance. Overexpression of RecX inhibited induction of two din (damage-inducible) genes and cleavage of the UmuD and LexA repressor proteins; however, recX inactivation had no effect on any of these processes. Cells overexpressing RecX showed decreased levels of P1 transduction, whereas recX mutation had no effect on P1 transduction frequency. Our combined in vitro and in vivo data indicate that RecX can inhibit both RecA recombinase and coprotease activities.
Collapse
Affiliation(s)
- Elizabeth A Stohl
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
18
|
Berdichevsky A, Izhar L, Livneh Z. Error-free recombinational repair predominates over mutagenic translesion replication in E. coli. Mol Cell 2002; 10:917-24. [PMID: 12419234 DOI: 10.1016/s1097-2765(02)00679-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tolerance mechanisms are important in the ability of cells to cope with DNA damage. In E. coli, the two main damage tolerance mechanisms are recombinational repair (RR) and translesion replication (TLR). Here we show that RR effectively repairs gaps opposite DNA lesions. When both mechanisms are functional, RR predominates over TLR, being responsible for 86% of the repair events. This predominance of RR is determined by the high concentration of RecA present under SOS conditions, which causes a differential inhibition of TLR. Further inhibition of TLR is caused by the RecA-catalyzed strand exchange reaction of RR. This molecular hierarchy in the tolerance of DNA lesions ensures that the nonmutagenic RR predominates over the mutagenic TLR, thereby contributing to genetic stability.
Collapse
Affiliation(s)
- Ala Berdichevsky
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | |
Collapse
|
19
|
Ferentz AE, Walker GC, Wagner G. Converting a DNA damage checkpoint effector (UmuD2C) into a lesion bypass polymerase (UmuD'2C). EMBO J 2001; 20:4287-98. [PMID: 11483531 PMCID: PMC149154 DOI: 10.1093/emboj/20.15.4287] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the SOS response of Escherichia coli to DNA damage, the umuDC operon is induced, producing the trimeric protein complexes UmuD2C, a DNA damage checkpoint effector, and UmuD'2C (DNA polymerase V), which carries out translesion synthesis, the basis of 'SOS mutagenesis'. UmuD'2, the homodimeric component of DNA pol V, is produced from UmuD by RecA-facilitated self-cleavage, which removes the 24 N-terminal residues of UmuD. We report the solution structure of UmuD'2 (PDB ID 1I4V) and interactions within UmuD'-UmuD, a heterodimer inactive in translesion synthesis. The overall shape of UmuD'2 in solution differs substantially from the previously reported crystal structure, even though the topologies of the two structures are quite similar. Most significantly, the active site residues S60 and K97 do not point directly at one another in solution as they do in the crystal, suggesting that self-cleavage of UmuD might require RecA to assemble the active site. Structural differences between UmuD'2 and UmuD'- UmuD suggest that UmuD'2C and UmuD2C might achieve their different biological activities through distinct interactions with RecA and DNA pol III.
Collapse
Affiliation(s)
| | - Graham C. Walker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 and
Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Corresponding author e-mail:
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 and
Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Corresponding author e-mail:
| |
Collapse
|
20
|
Sutton MD, Walker GC. Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci U S A 2001; 98:8342-9. [PMID: 11459973 PMCID: PMC37441 DOI: 10.1073/pnas.111036998] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two important and timely questions with respect to DNA replication, DNA recombination, and DNA repair are: (i) what controls which DNA polymerase gains access to a particular primer-terminus, and (ii) what determines whether a DNA polymerase hands off its DNA substrate to either a different DNA polymerase or to a different protein(s) for the completion of the specific biological process? These questions have taken on added importance in light of the fact that the number of known template-dependent DNA polymerases in both eukaryotes and in prokaryotes has grown tremendously in the past two years. Most notably, the current list now includes a completely new family of enzymes that are capable of replicating imperfect DNA templates. This UmuC-DinB-Rad30-Rev1 superfamily of DNA polymerases has members in all three kingdoms of life. Members of this family have recently received a great deal of attention due to the roles they play in translesion DNA synthesis (TLS), the potentially mutagenic replication over DNA lesions that act as potent blocks to continued replication catalyzed by replicative DNA polymerases. Here, we have attempted to summarize our current understanding of the regulation of action of DNA polymerases with respect to their roles in DNA replication, TLS, DNA repair, DNA recombination, and cell cycle progression. In particular, we discuss these issues in the context of the Gram-negative bacterium, Escherichia coli, that contains a DNA polymerase (Pol V) known to participate in most, if not all, of these processes.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
21
|
Yasuda T, Morimatsu K, Kato R, Usukura J, Takahashi M, Ohmori H. Physical interactions between DinI and RecA nucleoprotein filament for the regulation of SOS mutagenesis. EMBO J 2001; 20:1192-202. [PMID: 11230142 PMCID: PMC145485 DOI: 10.1093/emboj/20.5.1192] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli dinI gene is one of the LexA-regulated genes, which are induced upon DNA damage. Its overexpression conferred severe UV sensitivity on wild-type cells and resulted in the inhibition of LexA and UmuD processing, reactions that are normally dependent on activated RecA in a complex with single-stranded (ss)DNA. Here, we study the mechanism by which DinI inhibits the activities of RecA. While DinI neither binds to ssDNA nor prevents the formation of RecA nucleoprotein filament, it binds to active RecA filament, thereby inhibiting its coprotease activity but not the ATPase activity. Furthermore, even under in vitro conditions where UmuD cleavage dependent on RecA-ssDNA-adeno sine-5'-(3-thiotriphosphate) is blocked in the presence of DinI, LexA is cleaved normally. This result, taken together with electron microscopy observations and linear dichroism measurements, indicates that the ternary complex remains intact in the presence of DinI, and that the affinity to the RecA filament decreases in the order LexA, DinI and UmuD. DinI is thus suited to modulating UmuD processing so as to limit SOS mutagenesis.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Institute for Virus Research, Kyoto University, Department of Biology, Graduate School of Science, Osaka University, Nagoya University Postgraduate School of Medicine, Japan and Institut Curie and Centre National de la Recherche Scientifique, France Present address: Cellular Physiology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Division of Biological Sciences, Sections of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA Present address: FRE 2230, CNRS and Universite de Nantes, F44322 Nantes, France Corresponding author e-mail:
| | - Katsumi Morimatsu
- Institute for Virus Research, Kyoto University, Department of Biology, Graduate School of Science, Osaka University, Nagoya University Postgraduate School of Medicine, Japan and Institut Curie and Centre National de la Recherche Scientifique, France Present address: Cellular Physiology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Division of Biological Sciences, Sections of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA Present address: FRE 2230, CNRS and Universite de Nantes, F44322 Nantes, France Corresponding author e-mail:
| | - Ryuichi Kato
- Institute for Virus Research, Kyoto University, Department of Biology, Graduate School of Science, Osaka University, Nagoya University Postgraduate School of Medicine, Japan and Institut Curie and Centre National de la Recherche Scientifique, France Present address: Cellular Physiology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Division of Biological Sciences, Sections of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA Present address: FRE 2230, CNRS and Universite de Nantes, F44322 Nantes, France Corresponding author e-mail:
| | - Jiro Usukura
- Institute for Virus Research, Kyoto University, Department of Biology, Graduate School of Science, Osaka University, Nagoya University Postgraduate School of Medicine, Japan and Institut Curie and Centre National de la Recherche Scientifique, France Present address: Cellular Physiology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Division of Biological Sciences, Sections of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA Present address: FRE 2230, CNRS and Universite de Nantes, F44322 Nantes, France Corresponding author e-mail:
| | - Masayuki Takahashi
- Institute for Virus Research, Kyoto University, Department of Biology, Graduate School of Science, Osaka University, Nagoya University Postgraduate School of Medicine, Japan and Institut Curie and Centre National de la Recherche Scientifique, France Present address: Cellular Physiology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Division of Biological Sciences, Sections of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA Present address: FRE 2230, CNRS and Universite de Nantes, F44322 Nantes, France Corresponding author e-mail:
| | - Haruo Ohmori
- Institute for Virus Research, Kyoto University, Department of Biology, Graduate School of Science, Osaka University, Nagoya University Postgraduate School of Medicine, Japan and Institut Curie and Centre National de la Recherche Scientifique, France Present address: Cellular Physiology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Division of Biological Sciences, Sections of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA Present address: FRE 2230, CNRS and Universite de Nantes, F44322 Nantes, France Corresponding author e-mail:
| |
Collapse
|
22
|
Reuven NB, Arad G, Stasiak AZ, Stasiak A, Livneh Z. Lesion bypass by the Escherichia coli DNA polymerase V requires assembly of a RecA nucleoprotein filament. J Biol Chem 2001; 276:5511-7. [PMID: 11084028 DOI: 10.1074/jbc.m006828200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Translesion replication is carried out in Escherichia coli by the SOS-inducible DNA polymerase V (UmuC), an error-prone polymerase, which is specialized for replicating through lesions in DNA, leading to the formation of mutations. Lesion bypass by pol V requires the SOS-regulated proteins UmuD' and RecA and the single-strand DNA-binding protein (SSB). Using an in vitro assay system for translesion replication based on a gapped plasmid carrying a site-specific synthetic abasic site, we show that the assembly of a RecA nucleoprotein filament is required for lesion bypass by pol V. This is based on the reaction requirements for stoichiometric amounts of RecA and for single-stranded gaps longer than 100 nucleotides and on direct visualization of RecA-DNA filaments by electron microscopy. SSB is likely to facilitate the assembly of the RecA nucleoprotein filament; however, it has at least one additional role in lesion bypass. ATPgammaS, which is known to strongly increase binding of RecA to DNA, caused a drastic inhibition of pol V activity. Lesion bypass does not require stoichiometric binding of UmuD' along RecA filaments. In summary, the RecA nucleoprotein filament, previously known to be required for SOS induction and homologous recombination, is also a critical intermediate in translesion replication.
Collapse
Affiliation(s)
- N B Reuven
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
23
|
Sutton MD, Kim M, Walker GC. Genetic and biochemical characterization of a novel umuD mutation: insights into a mechanism for UmuD self-cleavage. J Bacteriol 2001; 183:347-57. [PMID: 11114935 PMCID: PMC94884 DOI: 10.1128/jb.183.1.347-357.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most translesion DNA synthesis (TLS) in Escherichia coli is dependent upon the products of the umuDC genes, which encode a DNA polymerase, DNA polymerase V, with the unique ability to replicate over a variety of DNA lesions, including cyclobutane dimers and abasic sites. The UmuD protein is activated for its role in TLS by a RecA-single-stranded DNA (ssDNA)-facilitated self-cleavage event that serves to remove its amino-terminal 24 residues to yield UmuD'. We have used site-directed mutagenesis to construct derivatives of UmuD and UmuD' with glycines in place of leucine-101 and arginine-102. These residues are extremely well conserved among the UmuD-like proteins involved in mutagenesis but are poorly conserved among the structurally related LexA-like transcriptional repressor proteins. Based on both the crystal and solution structures of the UmuD' homodimer, these residues are part of a solvent-exposed loop. Our genetic and biochemical characterizations of these mutant UmuD and UmuD' proteins indicate that while leucine-101 and arginine-102 are critical for the RecA-ssDNA-facilitated self-cleavage of UmuD, they serve only a minimal role in enabling TLS. These results, and others, suggest that the interaction of RecA-ssDNA with leucine-101 and arginine-102, together with numerous other contacts between UmuD(2) and the RecA-ssDNA nucleoprotein filaments, serves to realign lysine-97 relative to serine-60, thereby activating UmuD(2) for self-cleavage.
Collapse
Affiliation(s)
- M D Sutton
- Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
24
|
Maliszewska-Tkaczyk M, Jonczyk P, Bialoskorska M, Schaaper RM, Fijalkowska IJ. SOS mutator activity: unequal mutagenesis on leading and lagging strands. Proc Natl Acad Sci U S A 2000; 97:12678-83. [PMID: 11050167 PMCID: PMC18823 DOI: 10.1073/pnas.220424697] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major pathway of mutagenesis in Escherichia coli is mediated by the inducible SOS response. Current models of SOS mutagenesis invoke the interaction of RecA and UmuD'(2)C proteins with a stalled DNA replication complex at sites of DNA lesions or poorly extendable terminal mismatches, resulting in an (error-prone) continuation of DNA synthesis. The precise mechanisms of SOS-mediated lesion bypass or mismatch extension are not known. Here, we have studied mutagenesis on the E. coli chromosome in recA730 strains. In recA730 strains, the SOS system is expressed constitutively, resulting in a spontaneous mutator effect (SOS mutator) because of reduced replication fidelity. We investigated whether during SOS mutator activity replication fidelity might be altered differentially in the leading and lagging strand of replication. Pairs of recA730 strains were constructed differing in the orientation of the lac operon relative to the origin of replication. The strains were also mismatch-repair defective (mutL) to facilitate scoring of replication errors. Within each pair, a given lac sequence is replicated by the leading-strand machinery in one orientation and by the lagging-strand machinery in the other orientation. Measurements of defined lac mutant frequencies in such pairs revealed large differences between the two orientations. Furthermore, in all cases, the frequency bias was the opposite of that seen in normal cells. We suggest that, for the lacZ target used in this study, SOS mutator activity operates with very different efficiency in the two strands. Specifically, the lagging strand of replication appears most susceptible to the SOS mutator effect.
Collapse
Affiliation(s)
- M Maliszewska-Tkaczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- E Egelman
- Dept of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, Virginia, USA.
| |
Collapse
|
26
|
Frank EG, Cheng N, Do CC, Cerritelli ME, Bruck I, Goodman MF, Egelman EH, Woodgate R, Steven AC. Visualization of two binding sites for the Escherichia coli UmuD'(2)C complex (DNA pol V) on RecA-ssDNA filaments. J Mol Biol 2000; 297:585-97. [PMID: 10731413 DOI: 10.1006/jmbi.2000.3591] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heterotrimeric UmuD'(2)C complex of Escherichia coli has recently been shown to possess intrinsic DNA polymerase activity (DNA pol V) that facilitates error-prone translesion DNA synthesis (SOS mutagenesis). When overexpressed in vivo, UmuD'(2)C also inhibits homologous recombination. In both activities, UmuD'(2)C interacts with RecA nucleoprotein filaments. To examine the biochemical and structural basis of these reactions, we have analyzed the ability of the UmuD'(2)C complex to bind to RecA-ssDNA filaments in vitro. As estimated by a gel retardation assay, binding saturates at a stoichiometry of approximately one complex per two RecA monomers. Visualized by cryo-electron microscopy under these conditions, UmuD'(2)C is seen to bind uniformly along the filaments, such that the complexes are completely submerged in the deep helical groove. This mode of binding would impede access to DNA in a RecA filament, thus explaining the ability of UmuD'(2)C to inhibit homologous recombination. At sub-saturating binding, the distribution of UmuD'(2)C complexes along RecA-ssDNA filaments was characterized by immuno-gold labelling with anti-UmuC antibodies. These data revealed preferential binding at filament ends (most likely, at one end). End-specific binding is consistent with genetic models whereby such binding positions the UmuD'(2)C complex (pol V) appropriately for its role in SOS mutagenesis.
Collapse
Affiliation(s)
- E G Frank
- Section on DNA Replication Repair, National Institute of Child Health and Human Development, Bethesda, MD, 20892-2725, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sommer S, Coste G, Bailone A. Specific amino acid changes enhance the anti-recombination activity of the UmuD'C complex. Mol Microbiol 2000; 35:1443-53. [PMID: 10760145 DOI: 10.1046/j.1365-2958.2000.01809.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to being an essential component of trans-lesion synthesis, the UmuD'C complex is an antagonist of RecA-mediated homologous recombination. When constitutively expressed at an elevated concentration, the UmuD'C complex sensitizes recA+ bacteria to DNA damage, whereas it has no effect on bacteria expressing a RecA [UmuR] protein that overcomes recombination inhibition. Using as a genetic screen enhanced cell killing on mitomycin plates, we isolated novel umuD' and umuC mutations that restored mitomycin sensitivity to recA D112G [UmuR] bacteria overproducing the UmuD'C complex. The mutations were named [Rin++] because a characterization in a recA+ as well in a recA D112G background showed that they enhanced UmuD'C-promoted recombination inhibition in two assays, conjugational recombination and recombinational repair of palindrome-containing DNA. The [Rin++] mutations affect five amino acids, G25D, S28T, P29L, E35K, and T95R, in UmuD' and seven, F10L, Y270C, K277E, F287L, F287S, K342Q and F351I, in UmuC. These amino acids might play a key role in the UmuD'C anti-recombination activity. None of the [Rin++] mutations enhanced UmuD'C-promoted mutagenic bypass of UV lesions, in contrast, several lead to a defect in this process. In this study, we discuss a few molecular mechanisms that could account for the recombination and mutagenesis phenotypes of a mutant UmuD'C [Rin++] complex.
Collapse
Affiliation(s)
- S Sommer
- Institut Curie, Bât. 110, Centre Universitaire, F-91405 Orsay, France
| | | | | |
Collapse
|
28
|
Mustard JA, Little JW. Analysis of Escherichia coli RecA interactions with LexA, lambda CI, and UmuD by site-directed mutagenesis of recA. J Bacteriol 2000; 182:1659-70. [PMID: 10692372 PMCID: PMC94464 DOI: 10.1128/jb.182.6.1659-1670.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An early event in the induction of the SOS system of Escherichia coli is RecA-mediated cleavage of the LexA repressor. RecA acts indirectly as a coprotease to stimulate repressor self-cleavage, presumably by forming a complex with LexA. How complex formation leads to cleavage is not known. As an approach to this question, it would be desirable to identify the protein-protein interaction sites on each protein. It was previously proposed that LexA and other cleavable substrates, such as phage lambda CI repressor and E. coli UmuD, bind to a cleft located between two RecA monomers in the crystal structure. To test this model, and to map the interface between RecA and its substrates, we carried out alanine-scanning mutagenesis of RecA. Twenty double mutations were made, and cells carrying them were characterized for RecA-dependent repair functions and for coprotease activity towards LexA, lambda CI, and UmuD. One mutation in the cleft region had partial defects in cleavage of CI and (as expected from previous data) of UmuD. Two mutations in the cleft region conferred constitutive cleavage towards CI but not towards LexA or UmuD. By contrast, no mutations in the cleft region or elsewhere in RecA were found to specifically impair the cleavage of LexA. Our data are consistent with binding of CI and UmuD to the cleft between two RecA monomers but do not provide support for the model in which LexA binds in this cleft.
Collapse
Affiliation(s)
- J A Mustard
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
29
|
Abstract
The utilization of optical biosensors to study molecular interactions continues to expand. In 1998, 384 articles relating to the use of commercial biosensors were published in 130 different journals. While significant strides in new applications and methodology were made, a majority of the biosensor literature is of rather poor quality. Basic information about experimental conditions is often not presented and many publications fail to display the experimental data, bringing into question the credibility of the results. This review provides suggestions on how to collect, analyze and report biosensor data.
Collapse
Affiliation(s)
- D G Myszka
- University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
30
|
Sutton MD, Opperman T, Walker GC. The Escherichia coli SOS mutagenesis proteins UmuD and UmuD' interact physically with the replicative DNA polymerase. Proc Natl Acad Sci U S A 1999; 96:12373-8. [PMID: 10535929 PMCID: PMC22924 DOI: 10.1073/pnas.96.22.12373] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli umuDC operon is induced in response to replication-blocking DNA lesions as part of the SOS response. UmuD protein then undergoes an RecA-facilitated self-cleavage reaction that removes its N-terminal 24 residues to yield UmuD'. UmuD', UmuC, RecA, and some form of the E. coli replicative DNA polymerase, DNA polymerase III holoenzyme, function in translesion synthesis, the potentially mutagenic process of replication over otherwise blocking lesions. Furthermore, it has been proposed that, before cleavage, UmuD together with UmuC acts as a DNA damage checkpoint system that regulates the rate of DNA synthesis in response to DNA damage, thereby allowing time for accurate repair to take place. Here we provide direct evidence that both uncleaved UmuD and UmuD' interact physically with the catalytic, proofreading, and processivity subunits of the E. coli replicative polymerase. Consistent with our model proposing that uncleaved UmuD and UmuD' promote different events, UmuD and UmuD' interact differently with DNA polymerase III: whereas uncleaved UmuD interacts more strongly with beta than it does with alpha, UmuD' interacts more strongly with alpha than it does with beta. We propose that the protein-protein interactions we have characterized are part of a higher-order regulatory system of replication fork management that controls when the umuDC gene products can gain access to the replication fork.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|