1
|
Khandelwal H, Mutyala S, Kim M, Kong DS, Kim JR. Whole-cell redox biosensor for triclosan detection: Integrating spectrophotometric and electrochemical detection. Bioelectrochemistry 2025; 164:108921. [PMID: 39904301 DOI: 10.1016/j.bioelechem.2025.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Organic pollutants like bisphenol, acetaminophen, and triclosan, widely used in healthcare products, pose environmental risks and act as endocrine disruptors. These pollutants can alter the intracellular redox balance, making engineered whole-cell redox biosensors valuable for their detection. This study utilized the SoxRS regulatory system in bacteria, which responds to oxidative stress through NADP+/NADPH levels by modulating gene expression of SoxS through the SoxS promoter (pSoxS). A plasmid containing SoxR-pSoxS and the LacZ reporter gene was constructed and introduced into E. coli BL21 (ΔLacZ SoxRS+). The LacZ gene enabled dual detection using O-nitrophenyl-β-galactopyranoside (ONPG) for spectrophotometric detection or p-aminophenyl β-D-galactopyranoside (PAPG) for electrochemical detection. The whole-cell pRUSL12 redox biosensor was activated by redox inducers such as pyocyanin and methyl viologen, measurable via β-galactosidase assays. Among pollutants tested, triclosan specifically repressed SoxR:pSoxS::lacZ activity in the presence of pyocyanin or methyl viologen. Optimization identified pyocyanin as the more effective inducer for triclosan detection, with the biosensor capable of detecting triclosan in the 100-400 µg/L range. These redox-based biosensors offer a powerful tool for monitoring metabolic redox changes and identifying specific organic pollutants in the environment.
Collapse
Affiliation(s)
- Himanshu Khandelwal
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da Seul Kong
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environmental Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Pourshaban-Shahrestani A, Rezazadeh A, Hassan J. Zebrafish as a model for assessing biocide toxicity: A comprehensive review. Toxicol Rep 2025; 14:101980. [PMID: 40129880 PMCID: PMC11930722 DOI: 10.1016/j.toxrep.2025.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The utilization of biocides in a myriad of products has become a widespread and critical practice in recent years. Among these, quaternary ammonium compounds, polyhexamethylene, parabens, and triclosan are notably prevalent across various industrial applications. However, the incorporation of these biocides raises significant concerns regarding their toxicological profile. Not only do these chemicals pose potential risks to consumers using biocide-containing products, but their environmental discharge also represents a substantial threat to the biosphere. In our meticulous review, we examined approximately 150 articles from esteemed databases including PubMed, MDPI, and Google Scholar, ultimately utilizing at least 88 of these articles to inform our analysis. Our investigation encompassed studies that probe general toxicity, behavioral toxicity, cardiovascular toxicity, and genotoxicity, among other toxicological impacts. With this comprehensive approach, we explore the zebrafish (Danio rerio) as a prominent model organism in toxicology research. This review article aims to synthesize research employing zebrafish to evaluate biocide toxicity and ascertain the suitability of this model for comprehensive analysis of biocidal agents and their associated products.
Collapse
Affiliation(s)
- Ali Pourshaban-Shahrestani
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Rezazadeh
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalal Hassan
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
O'Reilly P, Loiselle G, Darragh R, Slipski C, Bay DC. Reviewing the complexities of bacterial biocide susceptibility and in vitro biocide adaptation methodologies. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:39. [PMID: 40360746 PMCID: PMC12075810 DOI: 10.1038/s44259-025-00108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Abstract
Decreased bacterial susceptibility to biocides raises concerns due to their influences on antibiotic resistance. The lack of standardized breakpoints, established methods, and consistent terminology complicates this research. This review summarizes techniques for studying biocide resistance mechanisms, susceptibility testing, and in-vitro adaptation methods, highlighting their benefits and limitations. Here, the challenges in studying biocide susceptibility and the need for standardized approaches in biocide research are emphasized for commonly studied biocide classes.
Collapse
Affiliation(s)
- Peter O'Reilly
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Genevieve Loiselle
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ryan Darragh
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Carmine Slipski
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Gupta N, Chowdhary S, Roquet-Baneres F, Kremer L, Kumar V. Design, Synthesis, and Anti-Mycobacterial Evaluation of Triclosan-Isoniazid Hybrids. Chem Biodivers 2025; 22:e202401967. [PMID: 39539099 DOI: 10.1002/cbdv.202401967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
A series of Triclosan-based hybrids and their Schiff base derivatives with isoniazid were designed through in silico modeling and synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. These compounds were then evaluated against both Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus (Mab). However, none of the synthesized hybrids exhibited significant growth inhibition, with minimum inhibitory concentration (MIC) values consistently exceeding 100 µg/mL. To further investigate these findings, we conducted mechanistic studies including thermogravimetric analysis (TGA) and UV-vis stability tests. TGA demonstrated thermal stability of the Schiff bases up to 270°C, while UV-vis analysis confirmed their chemical resilience across a wide pH spectrum, showing resistance to hydrolysis under acidic and basic conditions. The lack of observed antimicrobial activity may be attributed to the high lipophilicity of these molecules, as indicated by LogP values exceeding 5, which could limit their bioavailability. These findings suggest that although combining triclosan and isoniazid holds potential, further optimization of this hybrid strategy is necessary to improve efficacy.
Collapse
Affiliation(s)
- Nikita Gupta
- Department of chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shefali Chowdhary
- Department of chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Francoise Roquet-Baneres
- Centre national de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre national de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Vipan Kumar
- Department of chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
5
|
van den Berg SPH, Zoumaro‐Djayoon A, Yang F, Bokinsky G. Exogenous fatty acids inhibit fatty acid synthesis by competing with endogenously generated substrates for phospholipid synthesis in Escherichia coli. FEBS Lett 2025; 599:667-681. [PMID: 39739509 PMCID: PMC11891403 DOI: 10.1002/1873-3468.15092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
Exogenous fatty acids are directly incorporated into bacterial membranes, heavily influencing cell envelope properties, antibiotic susceptibility, and bacterial ecology. Here, we quantify fatty acid biosynthesis metabolites and enzymes of the fatty acid synthesis pathway to determine how exogenous fatty acids inhibit fatty acid synthesis in Escherichia coli. We find that acyl-CoA synthesized from exogenous fatty acids rapidly increases concentrations of long-chain acyl-acyl carrier protein (acyl-ACP), which inhibits fatty acid synthesis initiation. Accumulation of long-chain acyl-ACP is caused by competition with acyl-CoA for phospholipid synthesis enzymes. Furthermore, we find that transcriptional regulation rebalances saturated and unsaturated acyl-ACP while maintaining overall expression levels of fatty acid synthesis enzymes. Rapid feedback inhibition of fatty acid synthesis by exogenous fatty acids thus allows E. coli to benefit from exogenous fatty acids while maintaining fatty acid synthesis capacity. We hypothesize that this indirect feedback mechanism is ubiquitous across bacterial species.
Collapse
Affiliation(s)
- Stefan Pieter Hendrik van den Berg
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
- Present address:
Department of ImmunopathologySanquin Research AmsterdamAmsterdamThe Netherlands
| | - Adja Zoumaro‐Djayoon
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Flora Yang
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
6
|
Spettel K, Bumberger D, Kriz R, Frank S, Loy M, Galazka S, Suchomel M, Lagler H, Makristathis A, Willinger B. In vitro long-term exposure to chlorhexidine or triclosan induces cross-resistance against azoles in Nakaseomyces glabratus. Antimicrob Resist Infect Control 2025; 14:2. [PMID: 39849551 PMCID: PMC11755926 DOI: 10.1186/s13756-024-01511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Topical antiseptics are crucial for preventing infections and reducing transmission of pathogens. However, commonly used antiseptic agents have been reported to cause cross-resistance to other antimicrobials in bacteria, which has not yet been described in yeasts. This study aims to assess the in vitro efficacy of antiseptics against clinical and reference isolates of Candida albicans and Nakaseomyces glabratus, and whether prolonged exposure to antiseptics promotes the development of antifungal (cross)resistance. METHODS A high-throughput approach for in vitro resistance development was established to simultaneously expose 96 C. albicans and N. glabratus isolates to increasing concentrations of a given antiseptic - chlorhexidine, triclosan or octenidine. Susceptibility testing and whole genome sequencing of yeast isolates pre- and post-exposure were performed. RESULTS Long-term exposure to antiseptics does not result in the development of stable resistance to the antiseptics themselves. However, 50 N. glabratus isolates acquired resistance to azole antifungals after long-term exposure to triclosan or chlorhexidine, revealing newly acquired mutations in the PDR1 and PMA1 genes. CONCLUSIONS Chlorhexidine as well as triclosan, but not octenidine, were able to introduce selective pressure promoting resistance to azole antifungals. Although we assessed this phenomenon only in vitro, these findings warrant critical monitoring in clinical settings.
Collapse
Affiliation(s)
- Kathrin Spettel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, 1100, Austria
| | - Dominik Bumberger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Richard Kriz
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, 1100, Austria
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, 1090, Austria
| | - Sarah Frank
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Madita Loy
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Sonia Galazka
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, Vienna, 1220, Austria
| | - Miranda Suchomel
- Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, 1090, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, 1090, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
7
|
Martins A, Judák F, Farkas Z, Szili P, Grézal G, Csörgő B, Czikkely MS, Maharramov E, Daruka L, Spohn R, Balogh D, Daraba A, Juhász S, Vágvölgyi M, Hunyadi A, Cao Y, Sun Z, Li X, Papp B, Pál C. Antibiotic candidates for Gram-positive bacterial infections induce multidrug resistance. Sci Transl Med 2025; 17:eadl2103. [PMID: 39772773 DOI: 10.1126/scitranslmed.adl2103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Several antibiotic candidates are in development against Gram-positive bacterial pathogens, but their long-term utility is unclear. To investigate this issue, we studied the laboratory evolution of resistance to antibiotics that have not yet reached the market. We found that, with the exception of compound SCH79797, antibiotic resistance generally readily evolves in Staphylococcus aureus. Cross-resistance was detected between such candidates and antibiotics currently in clinical use, including vancomycin, daptomycin, and the promising antibiotic candidate teixobactin. These patterns were driven by overlapping molecular mechanisms through mutations in regulatory systems. In particular, teixobactin-resistant bacteria displayed clinically relevant multidrug resistance and retained their virulence in an invertebrate infection model, raising concerns. More generally, we demonstrate that putative resistance mutations against candidate antibiotics are already present in natural bacterial populations. Therefore, antibiotic resistance in nature may evolve readily from the selection of preexisting genetic variants. Our work highlights the importance of predicting future evolution of resistance to antibiotic candidates at an early stage of drug development.
Collapse
Affiliation(s)
- Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
| | - Fanni Judák
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Szeged, Szeged HU-6720, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged HU-6726, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged HU-6722, Hungary
- Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged HU-6722, Hungary
| | - Elvin Maharramov
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged HU-6726, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Dávid Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Andreea Daraba
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Szilvia Juhász
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Cancer Microbiome Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged HU-6728, Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Szeged HU-6720, Hungary
| | - Yihui Cao
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhenquan Sun
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged HU-6726, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| |
Collapse
|
8
|
Kamal MA, Salem HM, Alhotan RA, Hussein EO, Galik B, Saleh AA, Kaoud HA. Unraveling Antimicrobial Resistance Dynamics in Mycoplasma gallisepticum: Insights Into Antibiotic and Disinfectant Interactions. Vet Med Sci 2025; 11:e70181. [PMID: 39792050 PMCID: PMC11720739 DOI: 10.1002/vms3.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/30/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC50, and/or the MIC90. The statistical associations between the MICs of the antibiotics and biocides were investigated using regression model analysis and correlation coefficients. The absence of a cell wall in MG inherently confers resistance to beta-lactams, thereby necessitating the utilization of enrofloxacin, difloxacin, flumequine, oxytetracycline, chlortetracycline, doxycycline, tylosin, tilmicosin, tylvalosin, erythromycin, spiramycin, tiamulin, lincomycin, spectinomycin and dihydrostreptomycin. These antibiotics exhibited MIC50 values of 0.5, 0.5, 0.12, 0.062, 0.12, 0.031, 0.016, 0.016, 0.062, 16, 1, 0.008, 2, 0.5 and 32, respectively. In addition to antibiotics, disinfectants have garnered attention for their contribution to the development of AMR in MG. Notably, formalin, phenol, NADES, Halamid, Virkon-S, MicroSet and SteriSet exhibited MIC50 values of 125, 500, 31.25, 15.63, 15.63, 7.81 and 62.5, respectively. Significant positive correlations and direct associations were identified between various biocides and the development of antibiotic resistance, with coefficients ranging from 0.098 to 1.176. This research highlights the intricate nature of resistance profiles in MG and underscores the necessity for a thorough understanding of antimicrobial interactions. This finding emphasizes the importance of managing emerging AMR stemming from disinfectant misuse in the poultry farms to prevent additional constraints on antibiotic treatment options.
Collapse
Affiliation(s)
- Mohamed A. Kamal
- Department of Veterinary Hygiene and Management, Faculty of Veterinary MedicineCairo UniversityGizaEgypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary MedicineCairo UniversityGizaEgypt
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food & Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
| | | | - Branislav Galik
- Institute of Nutrition and GenomicsSlovak University of Agriculture in NitraNitraSlovakia
| | - Ahmed A. Saleh
- Department of Poultry Production, Faculty of AgricultureKafrelsheikh UniversityKafr El‐SheikhEgypt
| | - Hussein A. Kaoud
- Department of Veterinary Hygiene and Management, Faculty of Veterinary MedicineCairo UniversityGizaEgypt
| |
Collapse
|
9
|
Hoogerland L, van den Berg SPH, Suo Y, Moriuchi YW, Zoumaro-Djayoon A, Geurken E, Yang F, Bruggeman F, Burkart MD, Bokinsky G. A temperature-sensitive metabolic valve and a transcriptional feedback loop drive rapid homeoviscous adaptation in Escherichia coli. Nat Commun 2024; 15:9386. [PMID: 39477942 PMCID: PMC11525553 DOI: 10.1038/s41467-024-53677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
All free-living microorganisms homeostatically maintain the fluidity of their membranes by adapting lipid composition to environmental temperatures. Here, we quantify enzymes and metabolic intermediates of the Escherichia coli fatty acid and phospholipid synthesis pathways, to describe how this organism measures temperature and restores optimal membrane fluidity within a single generation after a temperature shock. A first element of this regulatory system is a temperature-sensitive metabolic valve that allocates flux between the saturated and unsaturated fatty acid synthesis pathways via the branchpoint enzymes FabI and FabB. A second element is a transcription-based negative feedback loop that counteracts the temperature-sensitive valve. The combination of these elements accelerates membrane adaptation by causing a transient overshoot in the synthesis of saturated or unsaturated fatty acids following temperature shocks. This strategy is comparable to increasing the temperature of a water bath by adding water that is excessively hot rather than adding water at the desired temperature. These properties are captured in a mathematical model, which we use to show how hard-wired parameters calibrate the system to generate membrane compositions that maintain constant fluidity across temperatures. We hypothesize that core features of the E. coli system will prove to be ubiquitous features of homeoviscous adaptation systems.
Collapse
Affiliation(s)
- Loles Hoogerland
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Pieter Hendrik van den Berg
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Immunopathology, Sanquin Research Amsterdam, Amsterdam, The Netherlands
| | - Yixing Suo
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Yuta W Moriuchi
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Adja Zoumaro-Djayoon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Esther Geurken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Flora Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Frank Bruggeman
- Systems Biology Lab, AIMMS/ALIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
10
|
Han L, Ren J, Xue Y, Gao J, Fu Q, Shao P, Zhu H, Zhang M, Ding F. Fatty acid synthesis promoted by PA1895-1897 operon delays quorum sensing activation in Pseudomonas aeruginosa. AMB Express 2024; 14:110. [PMID: 39354164 PMCID: PMC11445212 DOI: 10.1186/s13568-024-01758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 10/03/2024] Open
Abstract
PA1895-1897 is a quorum sensing (QS) operon regulated by the anti-activator LuxR homologue QscR in Pseudomonas aeruginosa. We aimed to investigate its impact on bacterial metabolism, and whether it contributes to the delayed QS activation. We performed liquid chromatograph-mass spectrometer-based metabolomics using wildtype PAO1, PA1895-1897-knockout mutant, and mutant with pJN105.PA1895-1897 overexpression vector. The impact of metabolites on QS signaling molecule (3OC12-HSL and C4-HSL) concentrations, pyocyanin production, and QS gene (lasR, lasI, rhlR, and rhlI) expression was examined. Metabolomics analysis found that fatty acid biosynthesis had the highest fold enrichment among all metabolic pathways in PA1895-1897-overexpressed mutants. Among these enriched fatty acids, palmitoleic acid and acetic acid were the predominantly abundant ones that significantly affected by PA1895-1897 operon. When different doses of exogenous palmitoleic acid or acetic acid were added to the cultures of PA1895-1897 knockout mutants, their levels of 3OC12-HSL, C4-HSL, and pyocyanin were decreased in a dose-dependent manner. High doses of palmitoleic acid and acetic acid suppressed the mRNA expression of lasR, rhlR, and rhlI. Inhibition of fatty acid biosynthesis increased the production of 3OC12-HSL, C4-HSL, and pyocyanin in PA1895-1897-overexpressed cultures. Our data suggest that fatty acid synthesis is promoted by PA1895-1897 operon, and contributes the delayed expression of QS phenotypes, furthering the understanding about the regulation of bacterial QS activation.
Collapse
Affiliation(s)
- Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Shao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fengming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
McDonald JB, Wade B, Andrews DM, Van TTH, Moore RJ. Development of tools for the genetic manipulation of Campylobacter and their application to the N-glycosylation system of Campylobacter hepaticus, an emerging pathogen of poultry. mBio 2024; 15:e0110124. [PMID: 39072641 PMCID: PMC11389370 DOI: 10.1128/mbio.01101-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
Various species of campylobacters cause significant disease problems in both humans and animals. The continuing development of tools and methods for genetic and molecular manipulation of campylobacters enables the detailed study of bacterial virulence and disease pathogenesis. Campylobacter hepaticus is an emerging pathogen that causes spotty liver disease (SLD) in poultry. SLD has a significant economic and animal welfare impact as the disease results in elevated mortalities and significant decreases in egg production. Although potential virulence genes of C. hepaticus have been identified, they have not been further studied and characterized, as appropriate genetic tools and methods to transform and perform mutagenesis studies in C. hepaticus have not been available. In this study, the genetic manipulation of C. hepaticus is reported, with the development of novel plasmid vectors, methods for transformation, site-specific mutagenesis, and mutant complementation. These tools were used to delete the pglB gene, an oligosaccharyltransferase, a central enzyme of the N-glycosylation pathway, by allelic exchange. In the mutant strain, N-glycosylation was completely abolished. The tools and methods developed in this study represent innovative approaches that can be applied to further explore important virulence factors of C. hepaticus and other closely related Campylobacter species. IMPORTANCE Spotty liver disease (SLD) of layer chickens, caused by infection with Campylobacter hepaticus, is a significant economic and animal welfare burden on an important food production industry. Currently, SLD is controlled using antibiotics; however, alternative intervention methods are needed due to increased concerns associated with environmental contamination with antibiotics, and the development of antimicrobial resistance in many bacterial pathogens of humans and animals. This study has developed methods that have enabled the genetic manipulation of C. hepaticus. To validate the methods, the pglB gene was inactivated by allelic exchange to produce a C. hepaticus strain that could no longer N-glycosylate proteins. Subsequently, the mutation was complemented by reintroduction of the gene in trans, on a plasmid vector, to demonstrate that the phenotypic changes noted were caused by the mutation of the targeted gene. The tools developed enable ongoing studies to understand other virulence mechanisms of this important emerging pathogen.
Collapse
Affiliation(s)
- Jamieson B McDonald
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Ben Wade
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Daniel M Andrews
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| |
Collapse
|
12
|
Li B, Zhang C, Ma Y, Zhou Y, Gao L, He D, Li M. Physiological and transcriptome level responses of Microcystis aeruginosa and M. viridis to environmental concentrations of triclosan. CHEMOSPHERE 2024; 363:142822. [PMID: 38986778 DOI: 10.1016/j.chemosphere.2024.142822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The toxicity of triclosan (TCS) to various aquatic organisms has been demonstrated at environmental concentrations. However, the effects and mechanisms of TCS on toxic cyanobacteria remains largely unexplored. This study investigated the physiological and molecular variations in two representative toxic Microcystis species (M. aeruginosa and M. viridis) under exposure to TCS for 12 d. Our findings demonstrated that the median effective concentration (EC50) of TCS for both Microcystis species were close to the levels detected in the environment (M. aeruginosa: 9.62 μg L-1; M. viridis: 27.56 μg L-1). An increased level of reactive oxygen species (ROS) was observed in Microcystis, resulting in oxidative damage when exposed to TCS at concentrations ranging from 10 μg L-1 to 50 μg L-1. The photosynthetic activity of Microcystis had a certain degree of recovery capability at low concentrations of TCS. Compared to M. aeruginosa, the higher recovery capability of the photosynthetic system in M. viridis would be mainly attributed to the increased ability for PSII repair and phycobilisome synthesis. Additionally, the synthesis of microcystins in the two species and the release rate in M. viridis significantly increased under 10-50 μg L-1 TCS. At the molecular level, exposure to TCS at EC50 for 12 d induced the dysregulation of genes associated with photosynthesis and antioxidant system. The upregulation of genes associated with microcystin synthesis and nitrogen metabolism further increased the potential risk of microcystin release. Our results revealed the aquatic toxicity and secondary ecological risks of TCS at environmental concentrations, and provided theoretical data with practical reference value for TCS monitoring.
Collapse
Affiliation(s)
- Bingcong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Chengying Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yuxuan Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yun Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
13
|
Melkam A, Sionov RV, Shalish M, Steinberg D. Enhanced Anti-Bacterial Activity of Arachidonic Acid against the Cariogenic Bacterium Streptococcus mutans in Combination with Triclosan and Fluoride. Antibiotics (Basel) 2024; 13:540. [PMID: 38927206 PMCID: PMC11200779 DOI: 10.3390/antibiotics13060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Dental caries is a global health problem that requires better prevention measures. One of the goals is to reduce the prevalence of the cariogenic Gram-positive bacterium Streptococcus mutans. We have recently shown that naturally occurring arachidonic acid (AA) has both anti-bacterial and anti-biofilm activities against this bacterium. An important question is how these activities are affected by other anti-bacterial compounds commonly used in mouthwashes. Here, we studied the combined treatment of AA with chlorhexidine (CHX), cetylpyridinium chloride (CPC), triclosan, and fluoride. Checkerboard microtiter assays were performed to determine the effects on bacterial growth and viability. Biofilms were quantified using the MTT metabolic assay, crystal violet (CV) staining, and live/dead staining with SYTO 9/propidium iodide (PI) visualized by spinning disk confocal microscopy (SDCM). The bacterial morphology and the topography of the biofilms were visualized by high-resolution scanning electron microscopy (HR-SEM). The effect of selected drug combinations on cell viability and membrane potential was investigated by flow cytometry using SYTO 9/PI staining and the potentiometric dye DiOC2(3), respectively. We found that CHX and CPC had an antagonistic effect on AA at certain concentrations, while an additive effect was observed with triclosan and fluoride. This prompted us to investigate the triple treatment of AA, triclosan, and fluoride, which was more effective than either compound alone or the double treatment. We observed an increase in the percentage of PI-positive bacteria, indicating increased bacterial cell death. Only AA caused significant membrane hyperpolarization, which was not significantly enhanced by either triclosan or fluoride. In conclusion, our data suggest that AA can be used together with triclosan and fluoride to improve the efficacy of oral health care.
Collapse
Affiliation(s)
- Avraham Melkam
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Ronit Vogt Sionov
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
| | - Miriam Shalish
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Doron Steinberg
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
| |
Collapse
|
14
|
Wang F. Reproductive endocrine disruption effect and mechanism in male zebrafish after life cycle exposure to environmental relevant triclosan. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106899. [PMID: 38492288 DOI: 10.1016/j.aquatox.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Triclosan (TCS) is a wide-spectrum antibacterial agent that is found in various water environments. It has been reported to have estrogenic effects. However, the impact of TCS exposure on the reproductive system of zebrafish (Danio rerio) throughout their life cycle is not well understood. In this study, zebrafish fertilized eggs were exposed to 0, 10, and 50 μg/L TCS for 120 days. The study investigated the effects of TCS exposure on brain and testis coefficients, the expression of genes related to the hypothalamus-pituitary-gonadal (HPG) axis, hormone levels, vitellogenin (VTG) content, histopathological sections, and performed RNA sequencing of male zebrafish. The results revealed that life cycle TCS exposure had significant effects on zebrafish reproductive parameters. It increased the testis coefficient, while decreasing the brain coefficient. TCS exposure also led to a decrease in mature spermatozoa and altered the expression of genes related to the HPG axis. Furthermore, TCS disrupted the balance of sex hormone levels and increased VTG content of male zebrafish. Transcriptome sequencing analysis indicated that TCS affected reproductive endocrine related pathways, including PPAR signaling pathway, cell cycle, GnRH signaling pathway, steroid biosynthesis, cytokine-cytokine receptor interaction, and steroid hormone biosynthesis. Protein-protein interaction (PPI) network analysis confirmed the enrichment of hub genes in these pathways, including bub1bb, ccnb1, cdc20, cdk1, mcm2, mcm5, mcm6, plk1, and ttk in the brain, as well as fabp1b.1, fabp2, fabp6, ccr7, cxcl11.8, hsd11b2, and hsd3b1 in the testis. This study sheds light on the reproductive endocrine-disrupting mechanisms of life cycle exposure to TCS.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jiqing Road, Yibin District, Luoyang 471022, China.
| |
Collapse
|
15
|
Al-Sawarees DK, Darwish RM, Abu-Zurayk R, Masri MA. Assessing silver nanoparticle and antimicrobial combinations for antibacterial activity and biofilm prevention on surgical sutures. J Appl Microbiol 2024; 135:lxae063. [PMID: 38471695 DOI: 10.1093/jambio/lxae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/28/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
AIMS To evaluate the effect of silver nanoparticles alone and in combination with Triclosan, and trans-cinnamaldehyde against Staphylococcus aureus and Escherichia coli biofilms on sutures to improve patients' outcomes. METHODS AND RESULTS Silver nanoparticles were prepared by chemical method and characterized by UV-visible spectrophotometer and dynamic light scattering. The minimum inhibitory concentration was assessed by the Microdilution assay. The antibiofilm activity was determined using crystal violet assay. A checkerboard assay using the fractional inhibitory concentration index and time-kill curve was used to investigate the synergistic effect of silver nanoparticle combinations. The hemolytic activity was determined using an erythrocyte hemolytic assay. Our results revealed that silver nanoparticles, Triclosan, and trans-cinnamaldehyde (TCA) inhibited S.aureus and E.coli biofilms. Silver nanoparticles with TCA showed a synergistic effect (FICI values 0.35 and 0.45 against S. aureus and E. coli biofilms, respectively), and silver nanoparticles with Triclosan showed complete inhibition of S. aureus biofilm. The hemolytic activity was <2.50% for the combinations.
Collapse
Affiliation(s)
- Diana K Al-Sawarees
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Rula M Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Rund Abu-Zurayk
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Mahmoud Al Masri
- King Hussain Cancer center, Surgery Department, Amman 11941, Jordan
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
16
|
Lahiani M, Gokulan K, Sutherland V, Cunny HC, Cerniglia CE, Khare S. Early Developmental Exposure to Triclosan Impacts Fecal Microbial Populations, IgA and Functional Activities of the Rat Microbiome. J Xenobiot 2024; 14:193-213. [PMID: 38390992 PMCID: PMC10885032 DOI: 10.3390/jox14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 02/24/2024] Open
Abstract
Triclosan (TCS), a broad-spectrum antibacterial chemical, is detected in human urine, breast milk, amniotic fluid, and feces; however, little is known about its impact on the intestinal microbiome and host mucosal immunity during pregnancy and early development. Pregnant female rats were orally gavaged with TCS from gestation day (GD) 6 to postpartum (PP) day 28. Offspring were administered TCS from postnatal day (PND) 12 to 28. Studies were conducted to assess changes in the intestinal microbial population (16S-rRNA sequencing) and functional analysis of microbial genes in animals exposed to TCS during pregnancy (GD18), and at PP7, PP28 and PND28. Microbial abundance was compared with the amounts of TCS excreted in feces and IgA levels in feces. The results reveal that TCS decreases the abundance of Bacteroidetes and Firmicutes with a significant increase in Proteobacteria. At PND28, total Operational Taxonomic Units (OTUs) were higher in females and showed correlation with the levels of TCS and unbound IgA in feces. The significant increase in Proteobacteria in all TCS-treated rats along with the increased abundance in OTUs that belong to pathogenic bacterial communities could serve as a signature of TCS-induced dysbiosis. In conclusion, TCS can perturb the microbiome, the functional activities of the microbiome, and activate mucosal immunity during pregnancy and early development.
Collapse
Affiliation(s)
- Mohamed Lahiani
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Vicki Sutherland
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Helen C Cunny
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
17
|
Douglas EA, Marshall B, Alghamadi A, Joseph EA, Duggan S, Vittorio S, De Luca L, Serpi M, Laabei M. Improved Antibacterial Activity of 1,3,4-Oxadiazole-Based Compounds That Restrict Staphylococcus aureus Growth Independent of LtaS Function. ACS Infect Dis 2023; 9:2141-2159. [PMID: 37828912 PMCID: PMC10644342 DOI: 10.1021/acsinfecdis.3c00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 10/14/2023]
Abstract
The lipoteichoic acid (LTA) biosynthesis pathway has emerged as a promising antimicrobial therapeutic target. Previous studies identified the 1,3,4 oxadiazole compound 1771 as an LTA inhibitor with activity against Gram-positive pathogens. We have succeeded in making six 1771 derivatives and, through subsequent hit validation, identified the incorporation of a pentafluorosulfanyl substituent as central in enhancing activity. Our newly described derivative, compound 13, showed a 16- to 32-fold increase in activity compared to 1771 when tested against a cohort of multidrug-resistant Staphylococcus aureus strains while simultaneously exhibiting an improved toxicity profile against mammalian cells. Molecular techniques were employed in which the assumed target, lipoteichoic acid synthase (LtaS), was both deleted and overexpressed. Neither deletion nor overexpression of LtaS altered 1771 or compound 13 susceptibility; however, overexpression of LtaS increased the MIC of Congo red, a previously identified LtaS inhibitor. These data were further supported by comparing the docking poses of 1771 and derivatives in the LtaS active site, which indicated the possibility of an additional target(s). Finally, we show that both 1771 and compound 13 have activity that is independent of LtaS, extending to cover Gram-negative species if the outer membrane is first permeabilized, challenging the classification that these compounds are strict LtaS inhibitors.
Collapse
Affiliation(s)
| | - Brandon Marshall
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, U.K.
| | - Arwa Alghamadi
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, U.K.
| | - Erin A. Joseph
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, U.K.
| | - Seána Duggan
- Medical
Research Council Centre for Medical Mycology at the University of
Exeter, University of Exeter, Exeter EX4 4DQ, U.K.
| | - Serena Vittorio
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98125, Italy
| | - Laura De Luca
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98125, Italy
| | - Michaela Serpi
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, U.K.
| | - Maisem Laabei
- Department
of Life Sciences, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
18
|
Baig MIR, Kadu P, Bawane P, Nakhate KT, Yele S, Ojha S, Goyal SN. Mechanisms of emerging resistance associated with non-antibiotic antimicrobial agents: a state-of-the-art review. J Antibiot (Tokyo) 2023; 76:629-641. [PMID: 37605076 DOI: 10.1038/s41429-023-00649-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Although the development of resistance by microorganisms to antimicrobial drugs has been recognized as a global public health concern, the contribution of various non-antibiotic antimicrobial agents to the development of antimicrobial resistance (AMR) remains largely neglected. The present review discusses various chemical substances and factors other than typical antibiotics, such as preservatives, disinfectants, biocides, heavy metals and improper chemical sterilization that contribute to the development of AMR. Furthermore, it encompasses the mechanisms like co-resistance and co-selection, horizontal gene transfer, changes in the composition and permeability of cell membrane, efflux pumps, transposons, biofilm formation and enzymatic degradation of antimicrobial chemicals which underlie the development of resistance to various non-antibiotic antimicrobial agents. In addition, the review addresses the resistance-associated changes that develops in microorganisms due to these agents, which ultimately contribute to the development of resistance to antibiotics. In order to prevent the indiscriminate use of chemical substances and create novel therapeutic agents to halt resistance development, a more holistic scientific approach might provide diversified views on crucial factors contributing to the persistence and spread of AMR. The review illustrates the common and less explored mechanisms contributing directly or indirectly to the development of AMR by non-antimicrobial agents that are commonly used.
Collapse
Affiliation(s)
- Mirza Ilyas Rahim Baig
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, 400056, India
| | - Pramod Kadu
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, 400056, India.
| | - Pradip Bawane
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Hyderabad, 509301, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| |
Collapse
|
19
|
Graczyk S, Pasławski R, Grzeczka A, Pasławska U, Świeczko-Żurek B, Malisz K, Popat K, Sionkowska A, Golińska P, Rai M. Antimicrobial and Antiproliferative Coatings for Stents in Veterinary Medicine-State of the Art and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6834. [PMID: 37959431 PMCID: PMC10649059 DOI: 10.3390/ma16216834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Microbial colonization in veterinary stents poses a significant and concerning issue in veterinary medicine. Over time, these pathogens, particularly bacteria, can colonize the stent surfaces, leading to various complications. Two weeks following the stent insertion procedure, the colonization becomes observable, with the aggressiveness of bacterial growth directly correlating with the duration of stent placement. Such microbial colonization can result in infections and inflammations, compromising the stent's efficacy and, subsequently, the animal patient's overall well-being. Managing and mitigating the impact of these pathogens on veterinary stents is a crucial challenge that veterinarians and researchers are actively addressing to ensure the successful treatment and recovery of their animal patients. In addition, irritation of the tissue in the form of an inserted stent can lead to overgrowth of granulation tissue, leading to the closure of the stent lumen, as is most often the case in the trachea. Such serious complications after stent placement require improvements in the procedures used to date. In this review, antibacterial or antibiofilm strategies for several stents used in veterinary medicine have been discussed based on the current literature and the perspectives have been drawn. Various coating strategies such as coating with hydrogel, antibiotic, or other antimicrobial agents have been reviewed.
Collapse
Affiliation(s)
- Szymon Graczyk
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Robert Pasławski
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Arkadiusz Grzeczka
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Urszula Pasławska
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Beata Świeczko-Żurek
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (B.Ś.-Ż.); (K.M.)
| | - Klaudia Malisz
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (B.Ś.-Ż.); (K.M.)
| | - Ketul Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| | - Mahendra Rai
- Department of Chemistry, Federal University of Piaui (UFPI), Teresina 64049-550, Brazil;
| |
Collapse
|
20
|
Geraldes C, Tavares L, Gil S, Oliveira M. Biocides in the Hospital Environment: Application and Tolerance Development. Microb Drug Resist 2023; 29:456-476. [PMID: 37643289 DOI: 10.1089/mdr.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Hospital-acquired infections are a rising problem with consequences for patients, hospitals, and health care workers. Biocides can be employed to prevent these infections, contributing to eliminate or reduce microorganisms' concentrations at the hospital environment. These antimicrobials belong to several groups, each with distinct characteristics that need to be taken into account in their selection for specific applications. Moreover, their activity is influenced by many factors, such as compound concentration and the presence of organic matter. This article aims to review some of the chemical biocides available for hospital infection control, as well as the main factors that influence their efficacy and promote susceptibility decreases, with the purpose to contribute for reducing misusage and consequently for preventing the development of resistance to these antimicrobials.
Collapse
Affiliation(s)
- Catarina Geraldes
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Luís Tavares
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Solange Gil
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
- Department of Animal Health, Biological Isolation and Containment Unit (BICU), Veterinary Hospital, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Manuela Oliveira
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
21
|
Wang M, Yang F, Luo H, Jiang Y, Zhuang K, Tan L. Photocuring and Gelatin-Based Antibacterial Hydrogel for Skin Care. Biomacromolecules 2023; 24:4218-4228. [PMID: 37579244 DOI: 10.1021/acs.biomac.3c00536] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The development of moisturizing, antibacterial, and biocompatible multifunctional hydrogels is essential to protect skin and promote skin defects recovery. Gelatin has admired potential to be applied for skin care as a hydrogel in virtue of its hydrophilic biocompatible and biodegradable properties. In this study, triclosan-grafted gelatin and photo-cross-linkable methacrylated gelatin were synthesized and then combined to construct the semi-interpenetrating network and antibacterial hydrogels with the aid of a visible blue light. The antimicrobial test demonstrated that the resulting hydrogel obtained excellent inactivation capacity against E. coli, S. aureus, T. rubrum, and C. albicans with sterilizing rates of 99.998%, 99.998%, 99.19%, and 99.64%, respectively. In addition, the cytotoxicity, hemolysis, skin irritation, and rat skin wound healing experiments proved the good biocompatibility of the hydrogel. Therefore, this investigation sheds light on the development of multifunctional hydrogels in skin care.
Collapse
Affiliation(s)
- Min Wang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Feng Yang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Hao Luo
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yuanzhang Jiang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Kaiwen Zhuang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
West AKR, Bailey CB. Crosstalk between primary and secondary metabolism: Interconnected fatty acid and polyketide biosynthesis in prokaryotes. Bioorg Med Chem Lett 2023; 91:129377. [PMID: 37328038 PMCID: PMC11239236 DOI: 10.1016/j.bmcl.2023.129377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
In primary metabolism, fatty acid synthases (FASs) biosynthesize fatty acids via sequential Claisen-like condensations of malonyl-CoA followed by reductive processing. Likewise, polyketide synthases (PKSs) share biosynthetic logic with FAS which includes utilizing the same precursors and cofactors. However, PKS biosynthesize structurally diverse, complex secondary metabolites, many of which are pharmaceutically relevant. This digest covers examples of interconnected biosynthesis between primary and secondary metabolism in fatty acid and polyketide metabolism. Taken together, further understanding the biosynthetic linkage between polyketide biosynthesis and fatty acid biosynthesis may lead to improved discovery and production of novel drug leads from polyketide metabolites.
Collapse
Affiliation(s)
- Anna-Kay R West
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Constance B Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN 37996, USA; School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia.
| |
Collapse
|
23
|
Davoodi S, Daryaee F, Iuliano JN, Collado JT, He Y, Pollard AC, Gil AA, Aramini JM, Tonge PJ. Evaluating the Impact of the Tyr158 p Ka on the Mechanism and Inhibition of InhA, the Enoyl-ACP Reductase from Mycobacterium tuberculosis. Biochemistry 2023; 62:1943-1952. [PMID: 37270808 PMCID: PMC10329767 DOI: 10.1021/acs.biochem.2c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
InhA, the Mycobacterium tuberculosis enoyl-ACP reductase, is a target for the tuberculosis (TB) drug isoniazid (INH). InhA inhibitors that do not require KatG activation avoid the most common mechanism of INH resistance, and there are continuing efforts to fully elucidate the enzyme mechanism to drive inhibitor discovery. InhA is a member of the short-chain dehydrogenase/reductase superfamily characterized by a conserved active site Tyr, Y158 in InhA. To explore the role of Y158 in the InhA mechanism, this residue has been replaced by fluoroTyr residues that increase the acidity of Y158 up to ∼3200-fold. Replacement of Y158 with 3-fluoroTyr (3-FY) and 3,5-difluoroTyr (3,5-F2Y) has no effect on kcatapp/KMapp nor on the binding of inhibitors to the open form of the enzyme (Kiapp), whereas both kcatapp/KMapp and Kiapp are altered by seven-fold for the 2,3,5-trifluoroTyr variant (2,3,5-F3Y158 InhA). 19F NMR spectroscopy suggests that 2,3,5-F3Y158 is ionized at neutral pH indicating that neither the acidity nor ionization state of residue 158 has a major impact on catalysis or on the binding of substrate-like inhibitors. In contrast, Ki*app is decreased 6- and 35-fold for the binding of the slow-onset inhibitor PT504 to 3,5-F2Y158 and 2,3,5-F3Y158 InhA, respectively, indicating that Y158 stabilizes the closed form of the enzyme adopted by EI*. The residence time of PT504 is reduced ∼four-fold for 2,3,5-F3Y158 InhA compared to wild-type, and thus, the hydrogen bonding interaction of the inhibitor with Y158 is an important factor in the design of InhA inhibitors with increased residence times on the enzyme.
Collapse
Affiliation(s)
- Shabnam Davoodi
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - James N. Iuliano
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jinnette Tolentino Collado
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Yongle He
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Alyssa C. Pollard
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Agnieszka A. Gil
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - James M. Aramini
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Radiology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| |
Collapse
|
24
|
Airola C, Severino A, Porcari S, Fusco W, Mullish BH, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. Future Modulation of Gut Microbiota: From Eubiotics to FMT, Engineered Bacteria, and Phage Therapy. Antibiotics (Basel) 2023; 12:antibiotics12050868. [PMID: 37237771 DOI: 10.3390/antibiotics12050868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of several diseases. Given the importance of the gut microbiota in the preservation of human health, probiotics, prebiotics, synbiotics, and postbiotics have been classically used as strategies to modulate the gut microbiota and achieve beneficial effects for the host. Nonetheless, several molecules not typically included in these categories have demonstrated a role in restoring the equilibrium among the components of the gut microbiota. Among these, rifaximin, as well as other antimicrobial drugs, such as triclosan, or natural compounds (including evodiamine and polyphenols) have common pleiotropic characteristics. On one hand, they suppress the growth of dangerous bacteria while promoting beneficial bacteria in the gut microbiota. On the other hand, they contribute to the regulation of the immune response in the case of dysbiosis by directly influencing the immune system and epithelial cells or by inducing the gut bacteria to produce immune-modulatory compounds, such as short-chain fatty acids. Fecal microbiota transplantation (FMT) has also been investigated as a procedure to restore the equilibrium of the gut microbiota and has shown benefits in many diseases, including inflammatory bowel disease, chronic liver disorders, and extraintestinal autoimmune conditions. One of the most significant limits of the current techniques used to modulate the gut microbiota is the lack of tools that can precisely modulate specific members of complex microbial communities. Novel approaches, including the use of engineered probiotic bacteria or bacteriophage-based therapy, have recently appeared as promising strategies to provide targeted and tailored therapeutic modulation of the gut microbiota, but their role in clinical practice has yet to be clarified. The aim of this review is to discuss the most recently introduced innovations in the field of therapeutic microbiome modulation.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - William Fusco
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London W2 1NY, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
25
|
Carfrae LA, Rachwalski K, French S, Gordzevich R, Seidel L, Tsai CN, Tu MM, MacNair CR, Ovchinnikova OG, Clarke BR, Whitfield C, Brown ED. Inhibiting fatty acid synthesis overcomes colistin resistance. Nat Microbiol 2023:10.1038/s41564-023-01369-z. [PMID: 37127701 DOI: 10.1038/s41564-023-01369-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Treating multidrug-resistant infections has increasingly relied on last-resort antibiotics, including polymyxins, for example colistin. As polymyxins are given routinely, the prevalence of their resistance is on the rise and increases mortality rates of sepsis patients. The global dissemination of plasmid-borne colistin resistance, driven by the emergence of mcr-1, threatens to diminish the therapeutic utility of polymyxins from an already shrinking antibiotic arsenal. Restoring sensitivity to polymyxins using combination therapy with sensitizing drugs is a promising approach to reviving its clinical utility. Here we describe the ability of the biotin biosynthesis inhibitor, MAC13772, to synergize with colistin exclusively against colistin-resistant bacteria. MAC13772 indirectly disrupts fatty acid synthesis (FAS) and restores sensitivity to the last-resort antibiotic, colistin. Accordingly, we found that combinations of colistin and other FAS inhibitors, cerulenin, triclosan and Debio1452-NH3, had broad potential against both chromosomal and plasmid-mediated colistin resistance in chequerboard and lysis assays. Furthermore, combination therapy with colistin and the clinically relevant FabI inhibitor, Debio1452-NH3, showed efficacy against mcr-1 positive Klebsiella pneumoniae and colistin-resistant Escherichia coli systemic infections in mice. Using chemical genomics, lipidomics and transcriptomics, we explored the mechanism of the interaction. We propose that inhibiting FAS restores colistin sensitivity by depleting lipid synthesis, leading to changes in phospholipid composition. In all, this work reveals a surprising link between FAS and colistin resistance.
Collapse
Affiliation(s)
- Lindsey A Carfrae
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth Rachwalski
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shawn French
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Rodion Gordzevich
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Laura Seidel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Caressa N Tsai
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Megan M Tu
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Craig R MacNair
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Eric D Brown
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
26
|
Patel Y, Soni V, Rhee KY, Helmann JD. Mutations in rpoB That Confer Rifampicin Resistance Can Alter Levels of Peptidoglycan Precursors and Affect β-Lactam Susceptibility. mBio 2023; 14:e0316822. [PMID: 36779708 PMCID: PMC10128067 DOI: 10.1128/mbio.03168-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/23/2023] [Indexed: 02/14/2023] Open
Abstract
Bacteria can adapt to stressful conditions through mutations affecting the RNA polymerase core subunits that lead to beneficial changes in transcription. In response to selection with rifampicin (RIF), mutations arise in the RIF resistance-determining region (RRDR) of rpoB that reduce antibiotic binding. These changes can also alter transcription and thereby have pleiotropic effects on bacterial fitness. Here, we studied the evolution of resistance in Bacillus subtilis to the synergistic combination of RIF and the β-lactam cefuroxime (CEF). Two independent evolution experiments led to the recovery of a single rpoB allele (S487L) that was able to confer resistance to RIF and CEF through a single mutation. Two other common RRDR mutations made the cells 32 times more sensitive to CEF (H482Y) or led to only modest CEF resistance (Q469R). The diverse effects of these three mutations on CEF resistance are correlated with differences in the expression of peptidoglycan (PG) synthesis genes and in the levels of two metabolites crucial in regulating PG synthesis, glucosamine-6-phosphate (GlcN-6-P) and UDP-N-acetylglucosamine (UDP-GlcNAc). We conclude that RRDR mutations can have widely varying effects on pathways important for cell wall biosynthesis, and this may restrict the spectrum of mutations that arise during combination therapy. IMPORTANCE Rifampicin (RIF) is one of the most valued drugs in the treatment of tuberculosis. TB treatment relies on a combination therapy and for multidrug-resistant strains may include β-lactams. Mutations in rpoB present a common route for emergence of resistance to RIF. In this study, using B. subtilis as a model, we evaluate the emergence of resistance for the synergistic combination of RIF and the β-lactam cefuroxime (CEF). One clinically relevant rpoB mutation conferred resistance to both RIF and CEF, whereas one other increased CEF sensitivity. We were able to link these CEF sensitivity phenotypes to accumulation of UDP-N-acetylglucosamine (UDP-GlcNAc), which feedback regulates GlmS activity and thereby peptidoglycan synthesis. Further, we found that higher CEF concentrations precluded the emergence of high RIF resistance. Collectively, these results suggest that multidrug treatment regimens may limit the available pathways for the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Vijay Soni
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
27
|
Hasan S, Kayed K, Ghemrawi R, Bataineh NA, Mahgoub RE, Audeh R, Aldulaymi R, Atatreh N, Ghattas MA. Molecular Modelling Study and Antibacterial Evaluation of Diphenylmethane Derivatives as Potential FabI Inhibitors. Molecules 2023; 28:molecules28073000. [PMID: 37049763 PMCID: PMC10095751 DOI: 10.3390/molecules28073000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The need for new antibiotics has become a major worldwide challenge as bacterial strains keep developing resistance to the existing drugs at an alarming rate. Enoyl-acyl carrier protein reductases (FabI) play a crucial role in lipids and fatty acid biosynthesis, which are essential for the integrity of the bacterial cell membrane. Our study aimed to discover small FabI inhibitors in continuation to our previously found hit MN02. The process was initially started by conducting a similarity search to the NCI ligand database using MN02 as a query. Accordingly, ten compounds were chosen for the computational assessment and antimicrobial testing. Most of the compounds showed an antibacterial activity against Gram-positive strains, while RK10 exhibited broad-spectrum activity against both Gram-positive and Gram-negative bacteria. All tested compounds were then docked into the saFabI active site followed by 100 ns MD simulations (Molecular Dynamics) and MM-GBSA (Molecular Mechanics with Generalised Born and Surface Area Solvation) calculations in order to understand their fitting and estimate their binding energies. Interestingly, and in line with the experimental data, RK10 was able to exhibit the best fitting with the target catalytic pocket. To sum up, RK10 is a small compound with leadlike characteristics that can indeed act as a promising candidate for the future development of broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Shaima Hasan
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Kawthar Kayed
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Nezar Al Bataineh
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Radwa E. Mahgoub
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Rola Audeh
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Raghad Aldulaymi
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- Correspondence: ; Tel.: +971-26133275
| |
Collapse
|
28
|
Lin D, Hamilton C, Hobbs J, Miller E, Sutton R. Triclosan and Methyl Triclosan in Prey Fish in a Wastewater-Influenced Estuary. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:620-627. [PMID: 36606659 DOI: 10.1002/etc.5557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
While the antimicrobial ingredient triclosan has been widely monitored in the environment, much less is known about the occurrence and toxicity of its major transformation product, methyl triclosan. An improved method was developed and validated to effectively extract and quantify both contaminants in fish tissue and used to characterize concentrations in small prey fish in areas of San Francisco Bay where exposure to triclosan via municipal wastewater discharges was expected to be highest. Concentrations of triclosan (0.44-57 ng/g wet wt, median 1.9 ng/g wet wt) and methyl triclosan (1.1-200 ng/g wet wt, median 36 ng/g wet wt) in fish tissue decreased linearly with concentrations of nitrate in site water, used as indicators of wastewater influence. The total concentrations of triclosan and methyl triclosan measured in prey fish were below available toxicity thresholds for triclosan, but there are few ecotoxicological studies to evaluate impacts of methyl triclosan. Methyl triclosan represented up to 96% of the total concentrations observed. These results emphasize the importance of monitoring contaminant transformation products, which can be present at higher levels than the parent compound. Environ Toxicol Chem 2023;42:620-627. © 2023 SETAC.
Collapse
Affiliation(s)
- Diana Lin
- San Francisco Estuary Institute, Richmond, California, USA
| | - Coreen Hamilton
- SGS AXYS Analytical Services, Sidney, British Columbia, Canada
| | - James Hobbs
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California, USA
| | - Ezra Miller
- San Francisco Estuary Institute, Richmond, California, USA
| | - Rebecca Sutton
- SGS AXYS Analytical Services, Sidney, British Columbia, Canada
| |
Collapse
|
29
|
Gao Y, Wang J, Liu X, Lang X, Niu H. Fabrication of Durable and Non-leaching Triclosan-based Antibacterial Polypropylene. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
30
|
Do Different Sutures with Triclosan Have Different Antimicrobial Activities? A Pharmacodynamic Approach. Antibiotics (Basel) 2022; 11:antibiotics11091195. [PMID: 36139974 PMCID: PMC9494962 DOI: 10.3390/antibiotics11091195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Three antimicrobial absorbable sutures have different triclosan (TS) loads, triclosan release kinetics and hydrolysis times. This in vitro study aims to analyse and compare their antimicrobial pharmacodynamics. (2) Methods: Time-kill assays were performed with eight triclosan-susceptible microorganisms common in surgical site infections (SSIs) and a segment of each TS. Microbial concentrations were measured at T0, T4, T8 and T24 h. Similar non-triclosan sutures (NTS) were used as controls. Microbial concentrations were plotted and analysed with panel analysis. They were predicted over time with a double-exponential model and four parameters fitted to each TS × microorganism combination. (3) Results: The microbial concentration was associated with the triclosan presence, timeslot and microorganism. It was not associated with the suture material. All combinations shared a common pattern with an early steep concentration reduction from baseline to 4-8 h, followed by a concentration up to a 24-h plateau in most cases with a mild concentration increase. (4) Conclusions: Microorganisms seem to be predominantly killed by contact or near-contact killing with the suture rather than the triclosan concentration in the culture medium. No significant in vitro antimicrobial pharmacodynamic difference between the three TS is identified. Triclosan can reduce the suture microbial colonisation and SSI risk.
Collapse
|
31
|
Zungu PV, Kosgey K, Kumari S, Bux F. Effects of antimicrobials in anammox mediated systems: critical review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1551-1564. [PMID: 36178823 DOI: 10.2166/wst.2022.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Anammox-mediated systems are thought to be cost-effective and efficient technologies for removing nitrogen from wastewater by converting nitrite and ammonium into dinitrogen gas. However, there are inhibitory substances that reduce the effectiveness and efficiency of these processes, preventing their widespread application. Antimicrobial agents are among these substances that have been observed to inhibit anammox-mediated processes. Therefore, this review provides a comprehensive overview of the effects of various antimicrobials on the anammox-based systems with emphasis on the effects in different reactor configurations, sludge types and microbial population of anammox-based systems. In addition, this review also discusses the mechanisms by which nitrifying bacteria are inhibited by the antimicrobials. Gaps in knowledge based on this review as well as future research needs have also been suggested. This review gives a better knowledge of antimicrobial effects on anammox-based systems and provides some guidance on the type of system to use to treat antimicrobial-containing wastewater using anammox-based processes.
Collapse
Affiliation(s)
- Phumza Vuyokazi Zungu
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Kiprotich Kosgey
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| |
Collapse
|
32
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
33
|
Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study. Antibiotics (Basel) 2022; 11:antibiotics11081038. [PMID: 36009907 PMCID: PMC9405319 DOI: 10.3390/antibiotics11081038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb.) enoyl-acyl carrier protein (ACP) reductase (InhA) is validated as a useful target for tuberculosis therapy and is considered an attractive enzyme to drug discovery. This study aimed to identify the novel inhibitor of the InhA enzyme, a potential target of M.tb. involved in the type II fatty acid biosynthesis pathway that controls mycobacterial cell envelope synthesis. We compiled 80 active compounds from Ruta graveolens and citrus plants belonging to the Rutaceae family for pharmacokinetics and molecular docking analyses. The chemical structures of the 80 phytochemicals and the 3D structure of the target protein were retrieved from the PubChem database and RCSB Protein Data Bank, respectively. The evaluation of druglikeness was performed based on Lipinski’s Rule of Five, while the computed phytochemical properties and molecular descriptors were used to predict the ADMET of the compounds. Amongst these, 11 pharmacokinetically-screened compounds were further examined by performing molecular docking analysis with an InhA target using AutoDock 4.2. The docking results showed that gravacridonediol, a major glycosylated natural alkaloid from Ruta graveolens, might possess a promising inhibitory potential against InhA, with a binding energy (B.E.) of −10.80 kcal/mole and inhibition constant (Ki) of 600.24 nM. These contrast those of the known inhibitor triclosan, which has a B.E. of −6.69 kcal/mole and Ki of 12.43 µM. The binding efficiency of gravacridonediol was higher than that of the well-known inhibitor triclosan against the InhA target. The present study shows that the identified natural compound gravacridonediol possesses drug-like properties and also holds promise in inhibiting InhA, a key target enzyme of M.tb.
Collapse
|
34
|
Nabawy A, Makabenta JM, Schmidt-Malan S, Park J, Li CH, Huang R, Fedeli S, Chattopadhyay AN, Patel R, Rotello VM. Dual antimicrobial-loaded biodegradable nanoemulsions for synergistic treatment of wound biofilms. J Control Release 2022; 347:379-388. [PMID: 35550914 PMCID: PMC11060603 DOI: 10.1016/j.jconrel.2022.05.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Wound biofilm infections caused by multidrug-resistant (MDR) bacteria constitute a major threat to public health; acquired resistance combined with resistance associated with the biofilm phenotype makes combatting these infections challenging. Biodegradable polymeric nanoemulsions that encapsulate two hydrophobic antimicrobial agents (eugenol and triclosan) (TE-BNEs) as a strategy to combat chronic wound infections are reported here. The cationic nanoemulsions efficiently penetrate and accumulate in biofilms, synergistically eradicating MDR bacterial biofilms, including persister cells. Notably, the nanoemulsion platform displays excellent biocompatibility and delays emergence of resistance to triclosan. The TE-BNEs are active in an in vivo murine model of mature MDR wound biofilm infections, with 99% bacterial elimination. The efficacy of this system coupled with prevention of emergence of bacterial resistance highlight the potential of this combination platform to treat MDR wound biofilm infections.
Collapse
Affiliation(s)
- Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, United States.
| | - Jessa Marie Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, United States.
| | - Suzannah Schmidt-Malan
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America.
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, United States.
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, United States.
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, United States.
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, United States.
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, United States.
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, United States.
| |
Collapse
|
35
|
Hopf FSM, Roth CD, de Souza EV, Galina L, Czeczot AM, Machado P, Basso LA, Bizarro CV. Bacterial Enoyl-Reductases: The Ever-Growing List of Fabs, Their Mechanisms and Inhibition. Front Microbiol 2022; 13:891610. [PMID: 35814645 PMCID: PMC9260719 DOI: 10.3389/fmicb.2022.891610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Enoyl-ACP reductases (ENRs) are enzymes that catalyze the last step of the elongation cycle during fatty acid synthesis. In recent years, new bacterial ENR types were discovered, some of them with structures and mechanisms that differ from the canonical bacterial FabI enzymes. Here, we briefly review the diversity of structural and catalytic properties of the canonical FabI and the new FabK, FabV, FabL, and novel ENRs identified in a soil metagenome study. We also highlight recent efforts to use the newly discovered Fabs as targets for drug development and consider the complex evolutionary history of this diverse set of bacterial ENRs.
Collapse
Affiliation(s)
- Fernanda S. M. Hopf
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Candida D. Roth
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Eduardo V. de Souza
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Galina
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexia M. Czeczot
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Machado
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiano V. Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Cristiano V. Bizarro,
| |
Collapse
|
36
|
Joyner PM, Tran DP, Zenaidee MA, Loo JA. Characterization of protein-ligand binding interactions of enoyl-ACP reductase (FabI) by native MS reveals allosteric effects of coenzymes and the inhibitor triclosan. Protein Sci 2022; 31:568-579. [PMID: 34882866 PMCID: PMC8862436 DOI: 10.1002/pro.4252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
Abstract
The enzyme enoyl-ACP reductase (also called FabI in bacteria) is an essential member of the fatty acid synthase II pathway in plants and bacteria. This enzyme is the target of the antibacterial drug triclosan and has been the subject of extensive studies for the past 20 years. Despite the large number of reports describing the biochemistry of this enzyme, there have been no studies that provided direct observation of the protein and its various ligands. Here we describe the use of native MS to characterize the protein-ligand interactions of FabI with its coenzymes NAD+ and NADH and with the inhibitor triclosan. Measurements of the gas-phase affinities of the enzyme for these ligands yielded values that are in close agreement with solution-phase affinity measurements. Additionally, FabI is a homotetramer and we were able to measure the affinity of each subunit for each coenzyme, which revealed that both coenzymes exhibit a positive homotropic allosteric effect. An allosteric effect was also observed in association with the inhibitor triclosan. These observations provide new insights into this well-studied enzyme and suggest that there may still be gaps in the existing mechanistic models that explain FabI inhibition.
Collapse
Affiliation(s)
- P. Matthew Joyner
- Natural Science DivisionPepperdine UniversityMalibuCaliforniaUSA
- Department of Chemistry & BiochemistryUniversity of California‐Los AngelesLos AngelesCaliforniaUSA
| | - Denise P. Tran
- Department of Chemistry & BiochemistryUniversity of California‐Los AngelesLos AngelesCaliforniaUSA
- Sydney Mass SpectrometryThe University of Sydney, Charles Perkins CentreCamperdownNew South WalesAustralia
| | - Muhammad A. Zenaidee
- Department of Chemistry & BiochemistryUniversity of California‐Los AngelesLos AngelesCaliforniaUSA
- Australian Proteome Analysis FacilityMacquarie UniversityMacquarieNew South WalesAustralia
| | - Joseph A. Loo
- Department of Chemistry & BiochemistryUniversity of California‐Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
37
|
Daoud FC, Goncalves R, Moore N. How Long Do Implanted Triclosan Sutures Inhibit Staphylococcus aureus in Surgical Conditions? A Pharmacological Model. Pharmaceutics 2022; 14:pharmaceutics14030539. [PMID: 35335916 PMCID: PMC8953209 DOI: 10.3390/pharmaceutics14030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Sutures with triclosan (TS) are used to reduce the risk of surgical site infections (SSI), but most clinical trials are inconclusive. The traceability of SSI risk to antimicrobial activity in operated tissues is needed. (2) Objectives: This study aimed to predict triclosan antistaphylococcal activity in operated tissues. (3) Methods: Three TS were exposed to static water for 30 days, and triclosan release was recorded. Polyglactin TS explanted from sheep seven days after cardiac surgery according to 3Rs provided ex vivo acceleration benchmarks. TS immersion up to 7 days in ethanol-water cosolvency and stirring simulated tissue implantation. Controls were 30-day immersion in static water. The release rate over time was measured and fitted to a predictive function. Antistaphylococcal activity and duration were measured by time-kill analysis with pre-immersed polyglactin TS. (4) Fifteen to 60-fold accelerated in vitro conditions reproduced the benchmarks. The rate prediction with double-exponential decay was validated. The antistaphylococcal activity was bactericidal, with TS pre-immersed for less than 12 h before then S. aureus began to grow. The residual triclosan level was more than 95% and played no detectable role. (5) Conclusions: Polyglactin, poliglecaprone, and polydioxanone TS share similar triclosan release functions with parametric differences. Polyglactin TS is antistaphylococcal in surgical conditions for 4 to 12 h.
Collapse
Affiliation(s)
- Frederic Christopher Daoud
- INSERM U1219, Bordeaux Population Health, Bordeaux University, 146 rue Léo Saignat, CEDEX, F-33076 Bordeaux, France; (R.G.); (N.M.)
- Correspondence: or ; Tel.: +33-(0)6-0300-6898
| | - Ruben Goncalves
- INSERM U1219, Bordeaux Population Health, Bordeaux University, 146 rue Léo Saignat, CEDEX, F-33076 Bordeaux, France; (R.G.); (N.M.)
- CHU de Bordeaux, Laboratoire de Pharmacologie et Toxicologie, Place Amélie Raba Léon, CEDEX, F-33076 Bordeaux, France
| | - Nicholas Moore
- INSERM U1219, Bordeaux Population Health, Bordeaux University, 146 rue Léo Saignat, CEDEX, F-33076 Bordeaux, France; (R.G.); (N.M.)
| |
Collapse
|
38
|
Abstract
Ceragenins are a family of synthetic amphipathic molecules designed to mimic the properties of naturally occurring cationic antimicrobial peptides (CAMPs). Although ceragenins have potent antimicrobial activity, whether their mode of action is similar to that of CAMPs has remained elusive. Here, we reported the results of a comparative study of the bacterial responses to two well-studied CAMPs, LL37 and colistin, and two ceragenins with related structures, CSA13 and CSA131. Using transcriptomic and proteomic analyses, we found that Escherichia coli responded similarly to both CAMPs and ceragenins by inducing a Cpx envelope stress response. However, whereas E. coli exposed to CAMPs increased expression of genes involved in colanic acid biosynthesis, bacteria exposed to ceragenins specifically modulated functions related to phosphate transport, indicating distinct mechanisms of action between these two classes of molecules. Although traditional genetic approaches failed to identify genes that confer high-level resistance to ceragenins, using a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) approach we identified E. coli essential genes that when knocked down modify sensitivity to these molecules. Comparison of the essential gene-antibiotic interactions for each of the CAMPs and ceragenins identified both overlapping and distinct dependencies for their antimicrobial activities. Overall, this study indicated that, while some bacterial responses to ceragenins overlap those induced by naturally occurring CAMPs, these synthetic molecules target the bacterial envelope using a distinctive mode of action. IMPORTANCE The development of novel antibiotics is essential because the current arsenal of antimicrobials will soon be ineffective due to the widespread occurrence of antibiotic resistance. The development of naturally occurring cationic antimicrobial peptides (CAMPs) for therapeutics to combat antibiotic resistance has been hampered by high production costs and protease sensitivity, among other factors. The ceragenins are a family of synthetic CAMP mimics that kill a broad spectrum of bacterial species but are less expensive to produce, resistant to proteolytic degradation, and seemingly resistant to the development of high-level resistance. Determining how ceragenins function may identify new essential biological pathways of bacteria that are less prone to the development of resistance and will further our understanding of the design principles for maximizing the effects of synthetic CAMPs.
Collapse
|
39
|
Mo J, Qi Q, Hao Y, Lei Y, Guo J. Transcriptional response of a green alga (Raphidocelis subcapitata) exposed to triclosan: photosynthetic systems and DNA repair. J Environ Sci (China) 2022; 111:400-411. [PMID: 34949369 DOI: 10.1016/j.jes.2021.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 06/14/2023]
Abstract
Recent studies show that triclosan (TCS) exposure causes reduction in pigments, suppression of photosynthesis, and induction of oxidative stress at the physiological level, resulting in morphological alteration and growth inhibition in algae including Raphidocelis subcapitata (R. subcapitata, a freshwater model green alga). However, the underlying molecular mechanisms remain to be elucidated, especially at environmentally relevant concentrations. The present study uncovered the transcriptional profiles and molecular mechanisms of TCS toxicity in R. subcapitata using next-generation sequencing. The algal growth was drastically inhibited following a 7-day exposure at both 75 and 100 μg/L TCS, but not at 5 μg/L (environmentally realistic level). The transcriptomic analysis shows that molecular signaling pathways including porphyrin and chlorophyll metabolism, photosynthesis - antenna proteins, and photosynthesis were suppressed in all three TCS treatments, and the perturbations of these signaling pathways were exacerbated with increased TCS exposure concentrations. Additionally, signaling of replication-coupled DNA repair was only activated in 100 μg/L TCS treatment. These results indicate that photosynthesis systems were sensitive targets of TCS toxicity in R. subcapitata, which is distinct from the inhibition of lipid synthesis by TCS in bacteria. This study provides novel knowledge on molecular mechanisms of TCS toxicity in R. subcapitata.
Collapse
Affiliation(s)
- Jiezhang Mo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qianju Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yongrong Hao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yuan Lei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
40
|
Craft MK, Waldrop GL. Mechanism of biotin carboxylase inhibition by ethyl 4-[[2-chloro-5-(phenylcarbamoyl)phenyl]sulphonylamino]benzoate. J Enzyme Inhib Med Chem 2021; 37:100-108. [PMID: 34894987 PMCID: PMC8667948 DOI: 10.1080/14756366.2021.1994558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The rise of antibacterial-resistant bacteria is a major problem in the United States of America and around the world. Millions of patients are infected with antimicrobial resistant bacteria each year. Novel antibacterial agents are needed to combat the growing and present crisis. Acetyl-CoA carboxylase (ACC), the multi-subunit complex which catalyses the first committed step in fatty acid synthesis, is a validated target for antibacterial agents. However, there are at present, no commercially available antibiotics that target ACC. Ethyl 4-[[2-chloro-5-(phenylcarbamoyl)phenyl]sulfonylamino]benzoate (SABA1) is a compound that has been shown to have antibacterial properties against Pseudomonas aeruginosa and Escherichia coli. SABA1 inhibits biotin carboxylase (BC), the enzyme that catalyses the first half reaction of ACC. SABA1 inhibits BC via an atypical mechanism. It binds in the biotin binding site in the presence of ADP. SABA1 represents a potentially new class of antibiotics that can be used to combat the antibacterial resistance crisis.
Collapse
Affiliation(s)
- Matthew K Craft
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Grover L Waldrop
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
41
|
Parhi S, Pal S, Das SK, Ghosh P. Strategies toward development of antimicrobial biomaterials for dental healthcare applications. Biotechnol Bioeng 2021; 118:4590-4622. [PMID: 34599764 DOI: 10.1002/bit.27948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Several approaches for elimination of oral pathogens are being explored at the present time since oral diseases remain prevalent affecting approximately 3.5 billion people worldwide. Need for antimicrobial biomaterials in dental healthcare include but is not restricted to designing resin composites and adhesives for prevention of dental caries. Constant efforts are also being made to develop antimicrobial strategies for clearance of endodontic space prior root canal treatment and for treatment of periimplantitis and periodontitis. This article discusses various conventional and nanotechnology-based strategies to achieve antimicrobial efficacy in dental biomaterials. Recent developments in the design and synthesis of antimicrobial peptides and antifouling zwitterionic polymers to effectively lessen the risks of antimicrobial drug resistance are also outlined in this review. Further, the role of contemporary strategies such as use of smart biomaterials, ionic solvent-based biomaterials and quorum quenchers incorporated biomaterials in the elimination of dental pathogens are described in detail. Lastly, we mentioned the approach of using polymers to print custom-made three-dimensional antibacterial dental products via additive manufacturing technologies. This review provides a critical perspective on the chemical, biomimetic, and engineering strategies intended for developing antimicrobial biomaterials that have the potential to substantially improve the dental health.
Collapse
Affiliation(s)
- Shivangi Parhi
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| | - Sreyasi Pal
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India.,Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Paulomi Ghosh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
42
|
Gavilanes-Martínez MA, Coral-Garzón A, Cáceres DH, García AM. Antifungal activity of boric acid, triclosan and zinc oxide against different clinically relevant Candida species. Mycoses 2021; 64:1045-1052. [PMID: 33969547 PMCID: PMC8373697 DOI: 10.1111/myc.13302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The genus Candida includes about 200 different species, but only a few are able to produce disease in humans. The species responsible for the highest proportion of human infections is Candida albicans. However, in the last two decades there has been an increase in the proportion of infections caused by other Candida species, including C. glabrata (Nakaseomyces glabrata), C. parapsilosis, C. tropicalis, C. krusei (Pichia kudriavzevi) and more recently C. auris. Decolonisation of patients has been used as an infection control strategy for bacterial infections, but information about decolonisation products used in clinical practice for Candida and other fungal pathogens is limited. Compounds with antimicrobial activity, such as triclosan (TR), boric acid (BA) and zinc oxide (ZO), are mainly used in personal care products. These products can be used for long periods of time without an abrasive skin effect and are a possible alternative for patient decolonisation in healthcare settings. OBJECTIVE The aim of this study was to evaluate the antifungal activity of boric acid (BA), triclosan (TR) and zinc oxide (ZO), individually and combined, against clinically relevant Candida species. MATERIALS AND METHODS Compounds to be screened for antifungal activity were evaluated at different concentrations, alone, and combined, using a well diffusion assay. The statistical evaluation was performed using analysis of variance (ANOVA) and a post hoc analysis using the multiple comparisons method. RESULTS Individually, BA and TR showed antifungal activity against all Candida species evaluated but ZO did not show any antifungal activity. Mixtures of BA [5%]-TR [0.2%]; BA [5%]-TR [0.3%]; BA [5%]-TR [0.2%]-ZO [8.6%]; and BA [5%]-TR [0.2%]-ZO [25%] yielded the highest antifungal activity. An increased antifungal effect was observed in some mixtures when compared with individual compounds. CONCLUSIONS We demonstrated antifungal activity of BA and TR against multiple Candida species, including against a clade of the emerging healthcare-associated pathogen C. auris. Additionally, this study shows enhancement of the antifungal effect and no antagonism among the mixtures of these compounds. Further research is needed to determine whether these compounds can reduce the burden of Candida on skin.
Collapse
Affiliation(s)
- Marly Alejandra Gavilanes-Martínez
- Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas -CIB, Medellín, Colombia
| | - Alejandra Coral-Garzón
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas -CIB, Medellín, Colombia
| | - Diego H Cáceres
- Mycotic Diseases Branch, Centers for Disease Control and Prevention - CDC, Atlanta, GA, USA
- Department of Medical Microbiology, Radboud University Medical Center and Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Ana María García
- Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas -CIB, Medellín, Colombia
| |
Collapse
|
43
|
Chen B, Han J, Dai H, Jia P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117074. [PMID: 33848900 PMCID: PMC8019131 DOI: 10.1016/j.envpol.2021.117074] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 05/17/2023]
Abstract
During the current pandemic, chemical disinfectants are ubiquitously and routinely used in community environments, especially on common touch surfaces in public settings, as a means of controlling the virus spread. An underappreciated risk in current regulatory guidelines and scholarly discussions, however, is that the persisting input of chemical disinfectants can exacerbate the growth of biocide-tolerant and antibiotic-resistant bacteria on those surfaces and allow their direct transfers to humans. For COVID-19, the most commonly used disinfecting agents are quaternary ammonium compounds, hydrogen peroxide, sodium hypochlorite, and ethanol, which account for two-thirds of the active ingredients in current EPA-approved disinfectant products for the novel coronavirus. Tolerance to each of these compounds, which can be either intrinsic or acquired, has been observed on various bacterial pathogens. Of those, mutations and horizontal gene transfer, upregulation of efflux pumps, membrane alteration, and biofilm formation are the common mechanisms conferring biocide tolerance in bacteria. Further, the linkage between disinfectant use and antibiotic resistance was suggested in laboratory and real-life settings. Evidence showed that substantial bacterial transfers to hands could effectuate from short contacts with surrounding surfaces and further from fingers to lips. While current literature on disinfectant-induced antimicrobial resistance predominantly focuses on municipal wastes and the natural environments, in reality the community and public settings are most severely impacted by intensive and regular chemical disinfecting during COVID-19 and, due to their proximity to humans, biocide-tolerant and antibiotic-resistant bacteria emerged in these environments may pose risks of direct transfers to humans, particularly in densely populated urban communities. Here we highlight these risk factors by reviewing the most pertinent and up-to-date evidence, and provide several feasible strategies to mitigate these risks in the scenario of a prolonging pandemic.
Collapse
Affiliation(s)
- Bo Chen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Environmental Science and Engineering, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Han Dai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Puqi Jia
- Department of Environmental Science and Engineering, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
44
|
Tan Q, Chen J, Chu Y, Liu W, Yang L, Ma L, Zhang Y, Qiu D, Wu Z, He F. Triclosan weakens the nitrification process of activated sludge and increases the risk of the spread of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126085. [PMID: 34492900 DOI: 10.1016/j.jhazmat.2021.126085] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The usage of triclosan (TCS) may rise rapidly due to the COVID-19 pandemic. TCS usually sinks in the activated sludge. However, the effects of TCS in activated sludge remain largely unknown. The changes in nitrogen cycles and the abundances of antibiotic resistance genes (ARGs) caused by TCS were investigated in this study. The addition of 1000 μg/L TCS significantly inhibited nitrification since the ammonia conversion rate and the abundance of nitrification functional genes decreased by 12.14%. The other nitrogen cycle genes involved in nitrogen fixation and denitrification were also suppressed. The microbial community shifted towards tolerance and degradation of phenols. The addition of 100 μg/L TCS remarkably increased the total abundance of ARGs and mobile genetic elements by 33.1%, and notably, the tetracycline and multidrug resistance genes increased by 54.75% and 103.42%, respectively. The co-occurrence network revealed that Flavobacterium might have played a key role in the spread of ARGs. The abundance of this genus increased 92-fold under the addition of 1000 μg/L TCS, indicating that Flavobacterium is potent in the tolerance and degradation of TCS. This work would help to better understand the effects of TCS in activated sludge and provide comprehensive insight into TCS management during the pandemic era.
Collapse
Affiliation(s)
- Qiyang Tan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinmei Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yifan Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lingli Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lin Ma
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
45
|
Khan R, Yee AL, Gilbert JA, Haider A, Jamal SB, Muhammad F. Triclosan-containing sutures: safety and resistance issues need to be addressed prior to generalized use. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01979-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Jayaraman M, Loganathan L, Muthusamy K, Ramadas K. Virtual screening assisted discovery of novel natural products to inhibit the catalytic mechanism of Mycobacterium tuberculosis InhA. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
Knoll KE, Lindeque Z, Adeniji AA, Oosthuizen CB, Lall N, Loots DT. Elucidating the Antimycobacterial Mechanism of Action of Ciprofloxacin Using Metabolomics. Microorganisms 2021; 9:microorganisms9061158. [PMID: 34071153 PMCID: PMC8228629 DOI: 10.3390/microorganisms9061158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
In the interest of developing more effective and safer anti-tuberculosis drugs, we used a GCxGC-TOF-MS metabolomics research approach to investigate and compare the metabolic profiles of Mtb in the presence and absence of ciprofloxacin. The metabolites that best describe the differences between the compared groups were identified as markers characterizing the changes induced by ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle of Mtb. The altered fatty acid, myo-inositol, and triacylglycerol metabolism seen in this group supports previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, as well as the reduction in the glucogenic amino acids specifically, indicate a flux toward DNA (as well as cell wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study further provides insights useful for designing network whole-system strategies for the identification of possible modes of action of various drugs and possibly adaptations by Mtb resulting in resistance.
Collapse
Affiliation(s)
- Kirsten E. Knoll
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Zander Lindeque
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Adetomiwa A. Adeniji
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Carel B. Oosthuizen
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Du Toit Loots
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
- Correspondence: ; Tel.: +27-(0)18-299-1818
| |
Collapse
|
48
|
Abstract
Antimicrobial resistance is a serious medical threat, particularly given the decreasing rate of discovery of new treatments. Although attempts to find new treatments continue, it has become clear that merely discovering new antimicrobials, even if they are new classes, will be insufficient. It is essential that new strategies be aggressively pursued. Toward that end, the search for treatments that can mitigate bacterial virulence and tilt the balance of host-pathogen interactions in favor of the host has become increasingly popular. In this review, we will discuss recent progress in this field, with a special focus on synthetic small molecule antivirulents that have been identified from high-throughput screens and on treatments that are effective against the opportunistic human pathogen Pseudomonas aeruginosa.
Collapse
|
49
|
Calvelo VY, Crisante D, Elliot M, Nodwell JR. The ARC2 response in Streptomcyes coelicolor requires the global regulatory genes afsR and afsS. MICROBIOLOGY-SGM 2021; 167. [PMID: 33945461 DOI: 10.1099/mic.0.001047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ARC2 is a synthetic compound, related in structure and mechanism to the antibiotic triclosan, that activates the production of many specialized metabolites in the Streptomyces genus of bacteria. In this work, we demonstrate that the addition of ARC2 to Streptomyces coelicolor cultures results in considerable alterations in overall gene expression including most notably the specialized metabolic genes. Using actinorhodin production as a model system, we show that the effect of ARC2 depends on the pleiotropic regulators afsR and afsS but not afsK. We find that the constitutive expression of afsS can bypass the need for afsR but not the reverse, while the constitutive expression of afsK had no effect on actinorhodin production. These data are consistent with a model in which ARC2 activates a cell stress response that depends on AfsR activating the expression of the afsS gene such that AfsS then triggers the production of actinorhodin.
Collapse
Affiliation(s)
- Vanessa Yoon Calvelo
- Department of Biochemistry University of Toronto MaRS Discovery District 661 University Avenue Toronto, Ontario CANADA M5G 1M1, Canada
| | - David Crisante
- Department of Biology McMaster University 1280 Main Street West Hamilton, Ontario CANADA L8S 4K1, Canada
| | - Marie Elliot
- Department of Biology McMaster University 1280 Main Street West Hamilton, Ontario CANADA L8S 4K1, Canada
| | - Justin Rea Nodwell
- Department of Biochemistry University of Toronto MaRS Discovery District 661 University Avenue Toronto, Ontario CANADA M5G 1M1, Canada
| |
Collapse
|
50
|
Leyn SA, Zlamal JE, Kurnasov OV, Li X, Elane M, Myjak L, Godzik M, de Crecy A, Garcia-Alcalde F, Ebeling M, Osterman AL. Experimental evolution in morbidostat reveals converging genomic trajectories on the path to triclosan resistance. Microb Genom 2021; 7. [PMID: 33945454 PMCID: PMC8209735 DOI: 10.1099/mgen.0.000553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the dynamics and mechanisms of acquired drug resistance across major classes of antibiotics and bacterial pathogens is of critical importance for the optimization of current anti-infective therapies and the development of novel ones. To systematically address this challenge, we developed a workflow combining experimental evolution in a morbidostat continuous culturing device with deep genomic sequencing of population samples collected in time series. This approach was applied to the experimental evolution of six populations of Escherichia coli BW25113 towards acquiring resistance to triclosan (TCS), an antibacterial agent in various consumer products. This study revealed the rapid emergence and expansion (up to 100% in each culture within 4 days) of missense mutations in the fabI gene, encoding enoyl-acyl carrier protein reductase, the known TCS molecular target. A follow-up analysis of isolated clones showed that distinct amino acid substitutions increased the drug IC90 in a 3-16-fold range, reflecting their proximity to the TCS-binding site. In contrast to other antibiotics, efflux-upregulating mutations occurred only rarely and with low abundance. Mutations in several other genes were detected at an earlier stage of evolution. Most notably, three distinct amino acid substitutions were mapped in the C-terminal periplasmic domain of CadC protein, an acid stress-responsive transcriptional regulator. While these mutations do not confer robust TCS resistance, they appear to play a certain, yet unknown, role in adaptation to relatively low drug pressure. Overall, the observed evolutionary trajectories suggest that the FabI enzyme is the sole target of TCS (at least up to the ~50 µm level), and amino acid substitutions in the TCS-binding site represent the main mechanism of robust TCS resistance in E. coli. This model study illustrates the potential utility of the established morbidostat-based approach for uncovering resistance mechanisms and target identification for novel drug candidates with yet unknown mechanisms of action.
Collapse
Affiliation(s)
- Semen A Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jaime E Zlamal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Oleg V Kurnasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Xiaoqing Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Marinela Elane
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lourdes Myjak
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mikolaj Godzik
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Fernando Garcia-Alcalde
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|