1
|
Dementia-related Bri2 BRICHOS is a versatile molecular chaperone that efficiently inhibits Aβ42 toxicity in Drosophila. Biochem J 2016; 473:3683-3704. [PMID: 27514716 DOI: 10.1042/bcj20160277] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/11/2016] [Indexed: 11/17/2022]
Abstract
Formation of fibrils of the amyloid-β peptide (Aβ) is suggested to play a central role in neurodegeneration in Alzheimer's disease (AD), for which no effective treatment exists. The BRICHOS domain is a part of several disease-related proproteins, the most studied ones being Bri2 associated with familial dementia and prosurfactant protein C (proSP-C) associated with lung amyloid. BRICHOS from proSP-C has been found to be an efficient inhibitor of Aβ aggregation and toxicity, but its lung-specific expression makes it unsuited to target in AD. Bri2 is expressed in the brain, affects processing of Aβ precursor protein, and increased levels of Bri2 are found in AD brain, but the specific role of its BRICHOS domain has not been studied in vivo Here, we find that transgenic expression of the Bri2 BRICHOS domain in the Drosophila central nervous system (CNS) or eyes efficiently inhibits Aβ42 toxicity. In the presence of Bri2 BRICHOS, Aβ42 is diffusely distributed throughout the mushroom bodies, a brain region involved in learning and memory, whereas Aβ42 expressed alone or together with proSP-C BRICHOS forms punctuate deposits outside the mushroom bodies. Recombinant Bri2 BRICHOS domain efficiently prevents Aβ42-induced reduction in γ-oscillations in hippocampal slices. Finally, Bri2 BRICHOS inhibits several steps in the Aβ42 fibrillation pathway and prevents aggregation of heat-denatured proteins, indicating that it is a more versatile chaperone than proSP-C BRICHOS. These findings suggest that Bri2 BRICHOS can be a physiologically relevant chaperone for Aβ in the CNS and needs to be further investigated for its potential in AD treatment.
Collapse
|
2
|
Abstract
Here, we describe a set of assays, using mitochondrial citrate synthase as a model substrate, which are suitable to test for chaperone function of proteins in vitro. Additionally, these assays distinguish between the ability of suppressing the aggregation of diverse substrate proteins by stable interaction (holdase function) and the ability to assist the refolding of substrate proteins (foldase function).
Collapse
Affiliation(s)
- Martin Haslbeck
- Munich Center for Integrated Protein Science (CIPSM) and Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany,
| | | |
Collapse
|
3
|
Rudolph B, Gebendorfer KM, Buchner J, Winter J. Evolution of Escherichia coli for growth at high temperatures. J Biol Chem 2010; 285:19029-34. [PMID: 20406805 DOI: 10.1074/jbc.m110.103374] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evolution depends on the acquisition of genomic mutations that increase cellular fitness. Here, we evolved Escherichia coli MG1655 cells to grow at extreme temperatures. We obtained a maximum growth temperature of 48.5 degrees C, which was not increased further upon continuous cultivation at this temperature for >600 generations. Despite a permanently induced heat shock response in thermoresistant cells, only exquisitely high GroEL/GroES levels are essential for growth at 48.5 degrees C. They depend on the presence of lysyl-tRNA-synthetase, LysU, because deletion of lysU rendered thermoresistant cells thermosensitive. Our data suggest that GroEL/GroES are especially required for the folding of mutated proteins generated during evolution. GroEL/GroES therefore appear as mediators of evolution of extremely heat-resistant E. coli cells.
Collapse
Affiliation(s)
- Birgit Rudolph
- Department Chemie, Technische Universität München, Center for Integrated Protein Science Munich, 85747 Garching, Germany
| | | | | | | |
Collapse
|
4
|
Hirtreiter AM, Calloni G, Forner F, Scheibe B, Puype M, Vandekerckhove J, Mann M, Hartl FU, Hayer-Hartl M. Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Mol Microbiol 2009; 74:1152-68. [PMID: 19843217 DOI: 10.1111/j.1365-2958.2009.06924.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chaperonins are macromolecular machines that assist in protein folding. The archaeon Methanosarcina mazei has acquired numerous bacterial genes by horizontal gene transfer. As a result, both the bacterial group I chaperonin, GroEL, and the archaeal group II chaperonin, thermosome, coexist. A proteome-wide analysis of chaperonin interactors was performed to determine the differential substrate specificity of GroEL and thermosome. At least 13% of soluble M. mazei proteins interact with chaperonins, with the two systems having partially overlapping substrate sets. Remarkably, chaperonin selectivity is independent of phylogenetic origin and is determined by distinct structural and biochemical features of proteins. GroEL prefers well-conserved proteins with complex alpha/beta domains. In contrast, thermosome substrates comprise a group of faster-evolving proteins and contain a much wider range of different domain folds, including small all-alpha and all-beta modules, and a greater number of large multidomain proteins. Thus, the group II chaperonins may have facilitated the evolution of the highly complex proteomes characteristic of eukaryotic cells.
Collapse
Affiliation(s)
- Angela M Hirtreiter
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Patra AK, Udgaonkar JB. GroEL Can Unfold Late Intermediates Populated on the Folding Pathways of Monellin. J Mol Biol 2009; 389:759-75. [DOI: 10.1016/j.jmb.2009.04.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/10/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
|
6
|
Chaperone function in organic co-solvents: experimental characterization and modeling of a hyperthermophilic chaperone subunit from Methanocaldococcus jannaschii. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:368-78. [PMID: 18154740 DOI: 10.1016/j.bbapap.2007.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 10/25/2007] [Accepted: 11/16/2007] [Indexed: 11/21/2022]
Abstract
Molecular chaperones play a central role in maintaining protein structure within a cell. Previously, we determined that the gene encoding a molecular chaperone, a thermosome, from the hyperthermophilic archaeon Methanocaldococcus jannaschii is upregulated upon lethal heat shock. We have recombinantly expressed this thermosome (rTHS) and show here that it is both stable and fully functional in aqueous solutions containing water-miscible organic co-solvents. Based on circular dichroism the secondary structure of rTHS was not affected by one-hour exposures to a variety of co-solvents including 30% v/v acetonitrile (ACN) and 50% methanol (MeOH). By contrast, the secondary structure of a mesophilic homologue, GroEL/GroES (GroE), was substantially disrupted. rTHS reduced the aggregation of ovalbumin and citrate synthase in 30% ACN, assisted refolding of citrate synthase upon solvent-inactivation, and stabilized citrate synthase and glutamate dehydrogenase in the direct presence of co-solvents. Apparent total turnover numbers of these enzymes in denaturing solutions increased by up to 2.5-fold in the presence of rTHS. Mechanistic models are proposed to help ascertain specific conditions that could enhance or limit organic solvent-induced chaperone activity. These models suggest that thermodynamic stability and the reversibility of enzyme unfolding play key roles in the effectiveness of enzyme recovery by rTHS.
Collapse
|
7
|
Haslbeck M, Miess A, Stromer T, Walter S, Buchner J. Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 2005; 280:23861-8. [PMID: 15843375 DOI: 10.1074/jbc.m502697200] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In all organisms studied, elevated temperatures induce the expression of a variety of stress proteins, among them small Hsps (sHsp). sHsps are chaperones that prevent the unspecific aggregation of proteins by forming stable complexes with unfolded polypeptides. Reactivation of captured proteins requires the assistance of other ATP-dependent chaperones. How sHsps and ATP-dependent chaperones work together is poorly understood. Here, we analyzed the interplay of chaperones present in the cytosol of Saccharomyces cerevisiae. Specifically, we characterized the influence of Hsp104 and Ssa1 on the disassembly of Hsp26 x substrate complexes in vitro and in vivo. We show that recovery of proteins from aggregates in the cell requires the chaperones to work together with defined but overlapping functions. During reactivation, proteins are transferred from a stable complex with Hsp26 to Hsp104 and Hsp70. The need for ATP-dependent chaperones depends on the type of sHsp x substrate complex. Although Ssa1 is able to release substrate proteins from soluble Hsp26 x substrate complexes, Hsp104 is essential to dissociate substrate proteins from aggregates with incorporated sHsps. Our results are consistent with a model of several interrelated defense lines against protein aggregation.
Collapse
Affiliation(s)
- Martin Haslbeck
- Department Chemie, Technische Universität München, D-85747 Garching, Germany
| | | | | | | | | |
Collapse
|
8
|
Mishra R, Seckler R, Bhat R. Efficient refolding of aggregation-prone citrate synthase by polyol osmolytes: how well are protein folding and stability aspects coupled? J Biol Chem 2005; 280:15553-60. [PMID: 15695514 DOI: 10.1074/jbc.m410947200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient refolding of proteins and prevention of their aggregation during folding are of vital importance in recombinant protein production and in finding cures for several diseases. We have used citrate synthase (CS) as a model to understand the mechanism of aggregation during refolding and its prevention using several known structure-stabilizing cosolvent additives of the polyol series. Interestingly, no parallel correlation between the folding effect and the general stabilizing effect exerted by polyols was observed. Although increasing concentrations of polyols increased protein stability in general, the refolding yields for CS decreased at higher polyol concentrations, with erythritol reducing the folding yields at all concentrations tested. Among the various polyols used, glycerol was the most effective in enhancing the CS refolding yield, and a complete recovery of enzymatic activity was obtained at 7 m glycerol and 10 mug/ml protein, a result superior to the action of the molecular chaperones GroEL and GroES in vitro. A good correlation between the refolding yields and the suppression of protein aggregation by glycerol was observed, with no aggregation detected at 7 m. The polyols prevented the aggregation of CS depending on the number of hydroxyl groups in them. Stopped-flow fluorescence kinetics experiments suggested that polyols, including glycerol, act very early in the refolding process, as no fast and slow phases were detectable. The results conclusively demonstrate that both the thermodynamic and kinetic aspects are critical in the folding process and that all structure-stabilizing molecules need not always help in productive folding to the native state. These findings are important for the rational design of small molecules for efficient refolding of various aggregation-prone proteins of commercial and medical relevance.
Collapse
Affiliation(s)
- Rajesh Mishra
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
9
|
Haslbeck M, Schuster I, Grallert H. GroE-dependent expression and purification of pig heart mitochondrial citrate synthase in Escherichia coli. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 786:127-36. [PMID: 12651008 DOI: 10.1016/s1570-0232(02)00716-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Citrate synthase (CS) is a dimeric, mitochondrial protein, composed of two identical subunits (M(r) 48969 each). The nuclear-encoded alpha-helical protein is imported into mitochondria post-translationally where it catalyses the first step of the citric cycle. Furthermore, the pathway of thermal unfolding as well as the folding pathway was studied extensively, making CS a well-suited substrate protein for studying chaperone function. In chaperone research the quality of the substrate proteins is essential to guaranty the reproducibility of the results. In this context, we here describe the GroE-enhanced recombinant expression and purification of CS. CS was expressed in E. coli by using an arabinose regulated T7 promotor. Under standard expression conditions only insoluble, inactive CS was detected. Interestingly, the expression of soluble and active CS was possible when GroEL/GroES was co-expressed. Furthermore, a shift to lower expression temperatures increased the amount of soluble, active CS. We describe for the first time, the purification of CS in soluble and active form by following a CiPP strategy (capture, intermediate purification, polishing). After the initial capturing step on DEAE-Sephacel the protein was further purified on a Q-Sepharose column. After these two steps of anion-exchange chromatography a final size-exclusion chromatography step on a Superdex 75-pg column yields CS with a purity over 99%. Using this expression and purification strategy 1 mg CS per g E. coli wet weight were purified.
Collapse
Affiliation(s)
- Martin Haslbeck
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany.
| | | | | |
Collapse
|
10
|
Saibil HR, Horwich AL, Fenton WA. Allostery and protein substrate conformational change during GroEL/GroES-mediated protein folding. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:45-72. [PMID: 11868280 DOI: 10.1016/s0065-3233(01)59002-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- H R Saibil
- Department of Crystallography, Birkbeck College London, Malet Street, London, WC1E 7HX, UK
| | | | | |
Collapse
|
11
|
|
12
|
Abstract
Proteins are linear polymers synthesized by ribosomes from activated amino acids. The product of this biosynthetic process is a polypeptide chain, which has to adopt the unique three-dimensional structure required for its function in the cell. In 1972, Christian Anfinsen was awarded the Nobel Prize for Chemistry for showing that this folding process is autonomous in that it does not require any additional factors or input of energy. Based on in vitro experiments with purified proteins, it was suggested that the correct three-dimensional structure can form spontaneously in vivo once the newly synthesized protein leaves the ribosome. Furthermore, proteins were assumed to maintain their native conformation until they were degraded by specific enzymes. In the last decade this view of cellular protein folding has changed considerably. It has become clear that a complicated and sophisticated machinery of proteins exists which assists protein folding and allows the functional state of proteins to be maintained under conditions in which they would normally unfold and aggregate. These proteins are collectively called molecular chaperones, because, like their human counterparts, they prevent unwanted interactions between their immature clients. In this review, we discuss the principal features of this peculiar class of proteins, their structure-function relationships, and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Stefan Walter
- Institut für Organische Chemie & Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Deutschland
| | | |
Collapse
|
13
|
Abstract
The strong correlation between protein folding rates and the contact order suggests that folding rates are largely determined by the topology of the native structure. However, for a given topology, there may be several possible low free energy paths to the native state and the path that is chosen (the lowest free energy path) may depend on differences in interaction energies and local free energies of ordering in different parts of the structure. For larger proteins whose folding is assisted by chaperones, such as the Escherichia coli chaperonin GroEL, advances have been made in understanding both the aspects of an unfolded protein that GroEL recognizes and the mode of binding to the chaperonin. The possibility that GroEL can remove non-native proteins from kinetic traps by unfolding them either during polypeptide binding to the chaperonin or during the subsequent ATP-dependent formation of folding-active complexes with the co-chaperonin GroES has also been explored.
Collapse
Affiliation(s)
- V Grantcharova
- Center for Genomics Research, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
14
|
Scherrer S, Iriarte A, Martinez-Carrion M. Stability and release requirements of the complexes of GroEL with two homologous mammalian aminotransferases. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:591-602. [PMID: 11233173 DOI: 10.1023/a:1007102402925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mitochondrial (mAAT) and cytosolic (cAAT) homologous isozymes of aspartate aminotransferase are two relatively large proteins that in their nonnative states interact very differently with GroEL. MgATP alone can increase the rate of GroEL-assisted reactivation of cAAT, yet the presence of GroES is mandatory for mAAT. Addition of an excess of a denatured substrate accelerates reactivation of cAAT in the presence of GroEL, but has no effect on mAAT. These competition studies suggest that the more stringent substrate mAAT forms a thermodynamically stable complex with GroEL, while rebinding affects the slow reactivation kinetics of cAAT with GroEL alone. However, the competitor appears to accelerate the release of cAAT from GroEL, most likely by displacing bound cAAT from the GroEL cavity. Moreover, cAAT, but not mAAT, shows a time-dependent increase in protease resistance while bound to GroEL at low temperature. These results suggest that folding and release of cAAT from GroEL in the absence of cofactors may occur stepwise with certain interactions being broken and reformed until the protein escapes binding. The distinct behavior of these two isozymes most likely results from differences in the structure of the nonnative states that bind to GroEL.
Collapse
Affiliation(s)
- S Scherrer
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 64110-2499, USA
| | | | | |
Collapse
|
15
|
Abstract
The GroE chaperones of Escherichia coli promote the folding of other proteins under conditions where no spontaneous folding occurs. One requirement for this reaction is the trapping of the nonnative protein inside the chaperone complex. Encapsulation may be important to prevent unfavorable intermolecular interactions during folding. We show here that, especially for oligomeric proteins, the timing of encapsulation and release is of critical importance. If this cycle is decelerated, misfolding is observed inside functional chaperone complexes.
Collapse
Affiliation(s)
- H Grallert
- Institut für Organische Chemie and Biochemie, Technische Universität München, 85747 Garching, Germany
| | | | | |
Collapse
|
16
|
Preuss M, Miller AD. The affinity of the GroEL/GroES complex for peptides under conditions of protein folding. FEBS Lett 2000; 466:75-9. [PMID: 10648816 DOI: 10.1016/s0014-5793(99)01748-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The affinity of four short peptides for the Escherichia coli molecular chaperone GroEL was studied in the presence of the co-chaperone GroES and nucleotides. Our data show that binding of GroES to one ring enhances the interaction of the peptides with the opposite GroEL ring, a finding that was related to the structural readjustments in GroEL following GroES binding. We further report that the GroEL/GroES complex has a high affinity for peptides during ATP hydrolysis when protein substrates would undergo repeated cycles of assisted folding. Although we could not determine at which step(s) during the cycle our peptides interacted with GroEL, we propose that successive state changes in GroEL during ATP hydrolysis may create high affinity complexes and ensure maximum efficiency of the chaperone machinery under conditions of protein folding.
Collapse
Affiliation(s)
- M Preuss
- Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, UK
| | | |
Collapse
|