1
|
Broughton SE, Dhagat U, Hercus TR, Nero TL, Grimbaldeston MA, Bonder CS, Lopez AF, Parker MW. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev 2013; 250:277-302. [PMID: 23046136 DOI: 10.1111/j.1600-065x.2012.01164.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 are members of a discrete family of cytokines that regulates the growth, differentiation, migration and effector function activities of many hematopoietic cells and immunocytes. These cytokines are involved in normal responses to infectious agents, bridging innate and adaptive immunity. However, in certain cases, the overexpression of these cytokines or their receptors can lead to excessive or aberrant initiation of signaling resulting in pathological conditions, with chronic inflammatory diseases and myeloid leukemias the most notable examples. Recent crystal structures of the GM-CSF receptor ternary complex and the IL-5 binary complex have revealed new paradigms of cytokine receptor activation. Together with a wealth of associated structure-function studies, they have significantly enhanced our understanding of how these receptors recognize cytokines and initiate signals across cell membranes. Importantly, these structures provide opportunities for structure-based approaches for the discovery of novel and disease-specific therapeutics. In addition, recent biochemical evidence has suggested that the GM-CSF/IL-3/IL-5 receptor family is capable of interacting productively with other membrane proteins at the cell surface. Such interactions may afford additional or unique biological activities and might be harnessed for selective modulation of the function of these receptors in disease.
Collapse
|
2
|
Kusano S, Kukimoto-Niino M, Hino N, Ohsawa N, Ikutani M, Takaki S, Sakamoto K, Hara-Yokoyama M, Shirouzu M, Takatsu K, Yokoyama S. Structural basis of interleukin-5 dimer recognition by its α receptor. Protein Sci 2012; 21:850-64. [PMID: 22528658 DOI: 10.1002/pro.2072] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/22/2012] [Indexed: 11/08/2022]
Abstract
Interleukin-5 (IL-5), a major hematopoietin, stimulates eosinophil proliferation, migration, and activation, which have been implicated in the pathogenesis of allergic inflammatory diseases, such as asthma. The specific IL-5 receptor (IL-5R) consists of the IL-5 receptor α subunit (IL-5RA) and the common receptor β subunit (βc). IL-5 binding to IL-5R on target cells induces rapid tyrosine phosphorylation and activation of various cellular proteins, including JAK1/JAK2 and STAT1/STAT5. Here, we report the crystal structure of dimeric IL-5 in complex with the IL-5RA extracellular domains. The structure revealed that IL-5RA sandwiches the IL-5 homodimer by three tandem domains, arranged in a "wrench-like" architecture. This association mode was confirmed for human cells expressing IL-5 and the full-length IL-5RA by applying expanded genetic code technology: protein photo-cross-linking experiments revealed that the two proteins interact with each other in vivo in the same manner as that in the crystal structure. Furthermore, a comparison with the previously reported, partial GM-CSF•GM-CSFRA•βc structure enabled us to propose complete structural models for the IL-5 and GM-CSF receptor complexes, and to identify the residues conferring the cytokine-specificities of IL-5RA and GM-CSFRA.
Collapse
Affiliation(s)
- Seisuke Kusano
- RIKEN Systems and Structural Biology Center, Tsurumi-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bhattacharya M, Pillalamari U, Sarkhel S, Ishino T, Urbina C, Jameson B, Chaiken I. Recruitment pharmacophore for interleukin 5 receptor alpha antagonism. Biopolymers 2007; 88:83-93. [PMID: 17041908 DOI: 10.1002/bip.20612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-5 receptor alpha is a therapeutic target for hypereosinophilic diseases including allergic inflammations and asthma. The cyclic peptide AF17121 (Ac-VDE[CWRIIASHTWFC]AEE-CONH(2)) has been identified as a submicromolar inhibitor of interleukin 5 (IL5)-interleukin 5 receptor alpha (IL5Ralpha) interaction from a random peptide screen. However, this inhibitor has limitations as a drug lead because of its relatively large size. We used chemical synthesis of peptides with natural and non-natural amino acids along with kinetic binding and cell proliferation competition assays to expand definition of structural elements in the peptide that are important for receptor antagonism and to elucidate the underlying pharmacophore. We found that the specific steric array of hydrogen bonding groups in the Arg 6 guanido side chain is critical for receptor inhibition. We also investigated noncharged structural elements in AF17121. Screening a set of five hydrophobic residues showed that peptide function is strongly sensitive to variations in several of these residues, most prominently Ile 7 and Trp 13. We postulate that presentation of charged, hydrogen bonding and hydrophobic structural elements within the disulfide-constrained peptide drives IL5Ralpha recruitment by AF17121. We hypothesize from these results and previous receptor mutagenesis studies that Arg 6 recruitment of IL5Ralpha occurs through hydrogen bonding as well as charge-charge interactions with Asp 55 in site one of domain 1 of IL5Ralpha, and that this interaction is complemented by additional charged and hydrophobic interactions around the Asp 55 locus. Scaffolding a limited set of structural elements in the inhibitor pharmacophore may be useful for small molecule antagonist design inspired by the peptide.
Collapse
Affiliation(s)
- Madhushree Bhattacharya
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Ishino T, Robertson N, Chaiken I. Cytokine recognition by human interleukin 5 receptor. VITAMINS AND HORMONES 2005; 71:321-44. [PMID: 16112273 DOI: 10.1016/s0083-6729(05)71011-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The activation of interleukin 5 (IL-5) receptor is a dynamic process that depends on specific interaction of IL-5 with IL-5 receptor alpha, the formation of oligomeric receptor complexes with receptor beta, and the initiation of cytoplasmic phosphorylation events. These steps culminate in the triggering of a cellular response. Important advances have been made recently in understanding the molecular mechanisms of cytokine recognition, receptor assembly, and signal triggering. Cytokine recognition can be envisioned by relating structure to function in IL-5 and IL-5 receptor alpha. A pair of charge-complementary regions plays an essential role in the specific interaction between IL-5 receptor alpha and IL-5. Moreover, peptide library methodology has led to the discovery of IL-5 receptor alpha antagonists that mimic key elements in IL-5 receptor recognition. Because IL-5 has been implicated in the pathology of eosinophil-related inflammatory diseases, revealing the key recognition elements of IL-5, IL-5 mimetic peptides, and IL-5 receptor alpha could help drive the design of new compounds for therapeutic treatment against allergic inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Tetsuya Ishino
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|
5
|
Aytuna AS, Gursoy A, Keskin O. Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 2005; 21:2850-5. [PMID: 15855251 DOI: 10.1093/bioinformatics/bti443] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Elucidation of the full network of protein-protein interactions is crucial for understanding of the principles of biological systems and processes. Thus, there is a need for in silico methods for predicting interactions. We present a novel algorithm for automated prediction of protein-protein interactions that employs a unique bottom-up approach combining structure and sequence conservation in protein interfaces. RESULTS Running the algorithm on a template dataset of 67 interfaces and a sequentially non-redundant dataset of 6170 protein structures, 62 616 potential interactions are predicted. These interactions are compared with the ones in two publicly available interaction databases (Database of Interacting Proteins and Biomolecular Interaction Network Database) and also the Protein Data Bank. A significant number of predictions are verified in these databases. The unverified ones may correspond to (1) interactions that are not covered in these databases but known in literature, (2) unknown interactions that actually occur in nature and (3) interactions that do not occur naturally but may possibly be realized synthetically in laboratory conditions. Some unverified interactions, supported significantly with studies found in the literature, are discussed. AVAILABILITY http://gordion.hpc.eng.ku.edu.tr/prism CONTACT agursoy@ku.edu.tr; okeskin@ku.edu.tr.
Collapse
Affiliation(s)
- A Selim Aytuna
- Koc University, Center for Computational Biology and Bioinformatics, College of Engineering, Rumelifeneri Yolu 34450 Sariyer, Istanbul, Turkey
| | | | | |
Collapse
|
6
|
Ruchala P, Varadi G, Ishino T, Scibek J, Bhattacharya M, Urbina C, Ryk DV, Uings I, Chaiken I. Cyclic peptide interleukin 5 antagonists mimic CD turn recognition epitope for receptor ? Biopolymers 2004; 73:556-68. [PMID: 15048779 DOI: 10.1002/bip.20001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cyclic peptide AF17121 (Ac-VDECWRIIASHTWFCAEE) that inhibits interleukin 5 (IL-5) function and IL-5 receptor alpha-chain (IL-5Ralpha) binding has been derived from recombinant random peptide library screening and follow-up synthetic variation. To better understand the structural basis of its antagonist activity, AF17121 and a series of analogs of the parent peptide were prepared by solid phase peptide synthesis. Sequence variation was focused on the charged residues Asp(2), Glu(3), Arg(6), Glu(17), and Glu(18). Two of those residues, Glu(3) and Arg(6), form an EXXR motif that was found to be common among library-derived IL-5 antagonists. The E and R in the EXXR motif have a proximity similar to charged residues in a previously identified receptor alpha binding region, the beta-strand between the C- and D-helices of human IL-5. Optical biosensor interaction kinetics and cell proliferation assays were used to evaluate the antagonist activities of the purified synthetic peptides, by measuring competition with the highly active single chain IL-5. Analogs in which acidic residues (Asp(2), Glu(3), Glu(17), and Glu(18)) were replaced individually by Ala retained substantial competition activity, with multiple replacements in these residues leading to fractional loss of potency at most. In contrast, R6A analogs had strongly reduced competition activity. The results reveal that the arginine residue is crucial for the IL-5Ralpha binding of AF17121, while the acidic residues are not essential though likely complex-stabilizing particularly in the Asp(2)-Glu(3) region. By CD, AF17121 exhibited mostly disordered structure with evidence for a small beta-sheet content, and replacement of the arginine had no influence on the observed secondary structure of the peptides. The dominance of Arg(6) in AF17121 activity corresponds to previous findings of dominance of the positive charge balance in the antiparallel beta-sheet of IL-5 composed of (88)EERRR(92) in one strand of the CD turn region of IL-5 and with Arg(32) in the neighboring beta-strand. These results argue that AF17121 and related library-derived peptides function by mimicking the CD turn receptor alpha recognition epitope in IL-5 and open the way to small molecule antagonist design.
Collapse
Affiliation(s)
- Piotr Ruchala
- Department of Medicine, University of Pennsylvania, 522 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ishino T, Pasut G, Scibek J, Chaiken I. Kinetic interaction analysis of human interleukin 5 receptor alpha mutants reveals a unique binding topology and charge distribution for cytokine recognition. J Biol Chem 2003; 279:9547-56. [PMID: 14662768 DOI: 10.1074/jbc.m309327200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human interleukin 5 receptor alpha (IL5Ralpha) comprises three fibronectin type III domains (D1, D2, and D3) in the extracellular region. Previous results have indicated that residues in the D1D2 domains are crucial for high affinity interaction with human interleukin 5 (IL5). Yet, it is the D2D3 domains that have sequence homology with the classic cytokine recognition motif that is generally assumed to be the minimum cytokine-recognizing unit. In the present study, we used kinetic interaction analysis of alanine-scanning mutational variants of IL5Ralpha to define the residues involved in IL5 recognition. Soluble forms of IL5Ralpha variants were expressed in S2 cells, selectively captured via their C-terminal V5 tag by anti-V5 tag antibody immobilized onto the sensor chip and examined for IL5 interaction by using a sandwich surface plasmon resonance biosensor method. Marked effects on the interaction kinetics were observed not only in D1 (Asp(55), Asp(56), and Glu(58)) and D2 (Lys(186) and Arg(188)) domains, but also in the D3 (Arg(297)) domain. Modeling of the tertiary structure of IL5Ralpha indicated that these binding residues fell into two clusters. The first cluster consists of D1 domain residues that form a negatively charged patch, whereas the second cluster consists of residues that form a positively charged patch at the interface of D2 and D3 domains. These results suggest that the IL5 x IL5Ralpha system adopts a unique binding topology, in which the cytokine is recognized by a D2D3 tandem domain combined with a D1 domain, to form an extended cytokine recognition interface.
Collapse
Affiliation(s)
- Tetsuya Ishino
- Biochemistry Department and A. J. Drexel Institute of Basic and Applied Protein Science, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, USA
| | | | | | | |
Collapse
|
8
|
Halperin I, Wolfson H, Nussinov R. SiteLight: binding-site prediction using phage display libraries. Protein Sci 2003; 12:1344-59. [PMID: 12824481 PMCID: PMC2323941 DOI: 10.1110/ps.0237103] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Revised: 04/03/2003] [Accepted: 04/17/2003] [Indexed: 10/27/2022]
Abstract
Phage display enables the presentation of a large number of peptides on the surface of phage particles. Such libraries can be tested for binding to target molecules of interest by means of affinity selection. Here we present SiteLight, a novel computational tool for binding site prediction using phage display libraries. SiteLight is an algorithm that maps the 1D peptide library onto a three-dimensional (3D) protein surface. It is applicable to complexes made up of a protein Template and any type of molecule termed Target. Given the three-dimensional structure of a Template and a collection of sequences derived from biopanning against the Target, the Template interaction site with the Target is predicted. We have created a large diverse data set for assessing the ability of SiteLight to correctly predict binding sites. SiteLight predictive mapping enables discrimination between the binding and nonbinding parts of the surface. This prediction can be used to effectively reduce the surface by 75% without excluding the binding site. In 63% of the cases we have tested, there is at least one binding site prediction that overlaps the interface by at least 50%. These results suggest the applicability of phage display libraries for automated binding site prediction on three-dimensional structures. For most effective binding site prediction we propose using a random phage display library twice, to scan both binding partners of a given complex. The derived peptides are mapped to the other binding partner (now used as a Template). Here, the surface of each partner is reduced by 75%, focusing their relative positions with respect to each other significantly. Such information can be utilized to improve docking algorithms and scoring functions.
Collapse
Affiliation(s)
- Inbal Halperin
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and
| | - Haim Wolfson
- School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruth Nussinov
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and
- Laboratory of Experimental and Computational Biology, Intramural Research Support Program, SAIC, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
9
|
Chaiken I. Revealing and utilizing receptor recognition mechanisms in a high-throughput world. J Cell Biochem 2002; Suppl 37:126-35. [PMID: 11842438 DOI: 10.1002/jcb.10079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent genomic mapping promises to identify essentially all of the proteins that underpin normal and aberrant biology in humans. What genomics leaves undone is to determine how these proteins interact and integrate into molecular pathways in health and disease. Specific molecular interactions provide the fundamental mechanism for selectivity in virtually every aspect of biological structure and function. The convergence of structural and mutational studies makes it possible to define what parts of a protein are important for recognition. Still, knowing what is important does not necessarily foretell how binding epitopes actually function. We have applied the approach of epitope randomization on phage to explore how structural elements in such receptor recruitment systems as interleukin-5 (IL-5) and HIV-1 function in receptor recognition. This work has led in the IL-5 case to differentiation of recognition and activation epitopes, and this in turn has potential to help in the design of non-activating mimetics that could stimulate development of therapeutic antagonists for allergic inflammations such as asthma. Whether it is possible to differentiate recognition and activation in designing inhibitors in cases such as HIV-1 cell attachment and infection remains a tantalizing, but unsolved goal at present. Overall, these studies portray advances as well as limitations in the effort to decipher protein recognition mechanisms and utilize the wisdom gained for mechanism-based antagonist design in an increasingly high throughput world stimulated by the advent of genomics and proteomics.
Collapse
Affiliation(s)
- I Chaiken
- University of Pennsylvania, 909 Stellar Chance Labs, 422 Curie Drive, Philadelphia, Pennsylvania 19104-6100, USA.
| |
Collapse
|
10
|
Li C, Plugariu CG, Bajgier J, White JR, Liefer KM, Wu SJ, Chaiken I. Coiled coil miniprotein randomization on phage leads to charge pattern mimicry of the receptor recognition determinant of interleukin 5. J Mol Recognit 2002; 15:33-43. [PMID: 11870920 DOI: 10.1002/jmr.558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phage display was used to identify sequences that mimic structural determinants in interleukin5 (IL5) for IL5 receptor recognition. A coiled coil stem loop (CCSL) miniprotein scaffold library was constructed with its turn region randomized and panned for binding variants against human IL5 receptor alpha chain (IL5Ralpha). Competition enzyme-linked immunosorbent assays identified CCSL-phage selectants for which binding to IL5Ralpha was competed by IL5. The most frequently selected and IL5-competed CCSL-phage contain charged residues Arg and Glu in their turn sequences, in this regard resembling a beta strand sequence in the 'CD turn' region, of IL5, that has been proposed to present a key determinant for IL5 receptor alpha chain recognition. The most dominant CCSL-phage selectant sequence, PVEGRV, contains a negative/positive charge pattern similar to that seen in the original CD turn. To test the relatedness of CCSL-phage selectant sequences to the IL5 receptor recognition epitope, PVEGRV was grafted into the sequence 87--92 of a monomeric IL5. The resulting IL5 variant, [(87)PVEGRV(92)]GM1, was able to bind to IL5Ralpha in biosensor assays, to elicit TF-1 cell proliferation and to induce STAT5 phosphorylation in TF-1 cells. The results help discern sequence patterns in the IL5 CD turn region which are key in driving receptor recognition and demonstrate the utility of CCSL miniprotein scaffold phage display to identify local IL5 mimetic sequence arrangements that may ultimately lead to IL5 antagonists.
Collapse
Affiliation(s)
- Chuanzhao Li
- Department of Medicine, University of Pennsylvania School of Medicine, 909 Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Li C, Dowd CS, Zhang W, Chaiken IM. Phage randomization in a charybdotoxin scaffold leads to CD4-mimetic recognition motifs that bind HIV-1 envelope through non-aromatic sequences. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 57:507-18. [PMID: 11437954 DOI: 10.1046/j.1397-002x.2001.00876.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Binding of HIV-1 gp120 to T-cell receptor CD4 initiates conformational changes in the viral envelope that trigger viral entry into host cells. Phage epitope randomization of a beta-turn loop of a charybdotoxin-based miniprotein scaffold was used to identify peptides that can bind gp120 and block the gp120-CD4 interaction. We describe here the display of the charybdotoxin scaffold on the filamentous phage fUSE5, its use to construct a beta-turn library, and miniprotein sequences identified through library panning with immobilized Env gp120. Competition enzyme-linked immunosorbent assay (ELISA) identified high-frequency phage selectants for which specific gp120 binding was competed by sCD4. Several of these selectants contain hydrophobic residues in place of the Phe that occurs in the gp120-binding beta-turns of both CD4 and previously identified scorpion toxin CD4 mimetics. One of these selectants, denoted TXM[24GQTL27], contains GQTL in place of the CD4 beta-turn sequence 40QGSF43. TXM[24GQTL27] peptide was prepared using solid-phase chemical synthesis, its binding to gp120 demonstrated by optical biosensor kinetics analysis and its affinity for the CD4 binding site of gp120 confirmed by competition ELISA. The results demonstrate that aromatic-less loop-containing CD4 recognition mimetics can be formed with detectable envelope protein binding within a beta-turn of the charybdotoxin miniprotein scaffold. The results of this work establish a methodology for phage display of a charybdotoxin miniprotein scaffold and point to the potential value of phage-based epitope randomization of this miniprotein for identifying novel CD4 mimetics. The latter are potentially useful in deconvoluting structural determinants of CD4-HIV envelope recognition and possibly in designing antagonists of viral entry.
Collapse
Affiliation(s)
- C Li
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
12
|
Dowd CS, Zhang W, Li C, Chaiken IM. From receptor recognition mechanisms to bioinspired mimetic antagonists in HIV-1/cell docking. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 753:327-35. [PMID: 11334348 DOI: 10.1016/s0378-4347(00)00567-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the ways in which two or more proteins interact may give insight into underlying binding and activation mechanisms in biology, methods for protein separation and structure-based antagonism. This review describes ways in which protein recognition has been explored in our laboratory for the HIV-1/cell entry process. Initial contact between an HIV-1 virion particle and a human cell occurs between gp120 (an HIV-1 envelope protein) and CD4 (a human extracellular signaling protein). This interaction leads to a sequence of events which includes a conformational change in gp120, fusion of the HIV-1 and cellular membranes and eventual infection of the cell. Using an optical biosensor and a reporter antibody, we have been able to measure the conformational change in gp120 that occurs upon CD4 binding. We also have used this biosensor system to characterize CD4 mimetics, obtained by peptide synthesis in miniprotein scaffolds. Phage display techniques have been employed to identify novel miniprotein sequences. The combination of biosensor interaction kinetics analysis and phage display provides a useful approach for understanding the recognition mechanisms involved in the HIV/cell docking process. This approach may also be useful in investigating other protein complexes of importance in health and disease.
Collapse
Affiliation(s)
- C S Dowd
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104-6100, USA
| | | | | | | |
Collapse
|
13
|
Zabeau L, Van der Heyden J, Broekaert D, Verhee A, Vandekerckhove J, Wu SJ, Chaiken I, Heinrich P, Behrmann I, Tavernier J. Neutralizing monoclonal antibodies can potentiate IL-5 signaling. Eur J Immunol 2001; 31:1087-97. [PMID: 11298333 DOI: 10.1002/1521-4141(200104)31:4<1087::aid-immu1087>3.0.co;2-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL-5 is a major determinant in the survival, differentiation and effector-functions of eosinophils. It mediates its effect upon binding and activation of a membrane bound receptor (R), composed of a ligand-specific alpha-chain and a beta-chain, shared with the receptors for IL-3 and granulocyte-macrophage colony-stimulating factor. We have generated and mapped the epitopes of three monoclonal antibodies (mAb) directed against this cytokine: the strong neutralizing mAb 5A5 and 1E1, and the very weak neutralizing mAb H30. We found that H30 as well as 5A5 can increase proliferation above the level induced by human (h)IL-5 alone, in a JAK-2-dependent manner, and at every sub-optimal hIL-5 concentration analyzed. This effect is dependent on mAb-mediated cross-linking of IL-5R complexes, and is only observed on cell lines expressing a hybrid human/mouse IL-5Ralpha-chain. We discuss these findings in view of the stoichiometric and topological requirements for an activated IL-5R. Since humanized anti-IL-5 mAb are currently in clinical testing, our findings imply that such mAb should be carefully evaluated for their potentiating effects.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Cell Division/drug effects
- Cell Line
- Dose-Response Relationship, Immunologic
- Drug Synergism
- Epitope Mapping
- Epitopes/immunology
- Humans
- Hybrid Cells/drug effects
- Hybrid Cells/metabolism
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/pharmacology
- Interleukin-5/chemistry
- Interleukin-5/immunology
- Interleukin-5/pharmacology
- Janus Kinase 2
- Mice
- Models, Biological
- Models, Molecular
- Neutralization Tests
- Protein Conformation
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Rats
- Receptor Aggregation/drug effects
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-5
- Signal Transduction/drug effects
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L Zabeau
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research (VIB09), Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The application of surface plasmon resonance biosensors in life sciences and pharmaceutical research continues to increase. This review provides a comprehensive list of the commercial 1999 SPR biosensor literature and highlights emerging applications that are of general interest to users of the technology. Given the variability in the quality of published biosensor data, we present some general guidelines to help increase confidence in the results reported from biosensor analyses.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
15
|
Abstract
Receptor activation by the haematopoietic growth factor proteins interleukin 5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF) leads to phosphorylation of JAK2 as a key trigger of signal transduction. JAB has recently been identified as a regulator of JAK2 phosphorylation and activity by binding phosphorylated JAK2 and inducing its degradation. As part of our effort to define molecular recognition networks that lead to signalling, we investigated the effect of JAB on both JAK2 phosphorylation and JAK2 interaction state that ensue upon IL-5 stimulation in recombinant 293T cells cotransfected 293T cells with IL-5R alpha, beta c and hJAK2 either with or without JAB. Without JAB, stimulation with wild-type and re-engineered single chain (sc) IL-5 induced a time-dependent phosphorylation of JAK2. In the presence of JAB cotransfection, no phospho-JAK2 was observed, and JAB was observed co-immunoprecipitated with non-phosphorylated JAK2. The time dependence of JAB co-immunoprecipitation correlated with the time dependence of JAK2 phosphorylation when JAB was absent. Since JAB has already been shown to bind JAK2 via a phosphorylated tyrosine, the current data suggest that JAB binds to phosphorylated JAK2, enhances JAK2 dephosphorylation and remains associated in a complex, with dephosphorylated JAK2, that may be a precursor leading to irreversible JAK2 degradation.
Collapse
Affiliation(s)
- S Zahn
- Department of Medicine, University of Pennsylvania, 909 Stellar Chance Labs, 422 Curie Blvd., Philadelphia, PA, 19104-6100, USA
| | | | | | | |
Collapse
|
16
|
Wu SJ, Tambyraja R, Zhang W, Zahn S, Godillot AP, Chaiken I. Epitope randomization redefines the functional role of glutamic acid 110 in interleukin-5 receptor activation. J Biol Chem 2000; 275:7351-8. [PMID: 10702307 DOI: 10.1074/jbc.275.10.7351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sequence randomization through functional phage display of single chain human interleukin (IL)-5 was used to investigate the limits of replaceability of the Glu(110) residues that form a part of the receptor-binding epitope. Mutational analysis revealed unexpected affinity for IL-5 receptor alpha chain with variants containing E110W or E110Y. Escherichia coli-expressed Glu(110) variants containing E110W in the otherwise sequence-intact N-terminal half, including a variant with an E110A replacement in the sequence-disabled C-terminal half, were shown by their CD spectra to be folded into secondary structures similar to that of single chain human IL-5 (scIL-5). Biosensor kinetics analysis revealed that (E110W/A5)scIL-5 and (E110W/A6)scIL-5 had receptor alpha chain binding affinities similar to that of (wt/A5)scIL-5. However, (E110W/A6)scIL-5 had a significantly reduced bioactivity in TF-1 cell proliferation compared with both (wt/A5)scIL-5 and (E110W/A5)scIL-5, and this activity reduction was disproportionately greater than the much smaller effect of Glu(110) mutation on receptor binding affinity. The marked and disproportionate decrease in TF-1 proliferation observed with (E110W/A6)scIL-5 suggests a role for Glu(110) in the biological activity mediated by the signal transducing receptor betac subunit of the IL-5 receptor. This is also consistent with the lack of stimulation of JAK2 phosphorylation by the (E110W/A6)scIL-5 mutant in recombinant 293T cells, as compared with the concentration-dependent stimulation seen for scIL-5. The results reveal the dispensability of charge in the Glu(110) locus of IL-5 for receptor alpha chain binding and, in contrast, its heretofore underappreciated importance for receptor activation.
Collapse
Affiliation(s)
- S J Wu
- Department of Medicine, University of Pennsylvania School of Medicine, 909 Stellar Chance Laboratories, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|