1
|
McDowall S, Aung-Htut M, Wilton S, Li D. Antisense oligonucleotides and their applications in rare neurological diseases. Front Neurosci 2024; 18:1414658. [PMID: 39376536 PMCID: PMC11456401 DOI: 10.3389/fnins.2024.1414658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024] Open
Abstract
Rare diseases affect almost 500 million people globally, predominantly impacting children and often leading to significantly impaired quality of life and high treatment costs. While significant contributions have been made to develop effective treatments for those with rare diseases, more rapid drug discovery strategies are needed. Therapeutic antisense oligonucleotides can modulate target gene expression with high specificity through various mechanisms determined by base sequences and chemical modifications; and have shown efficacy in clinical trials for a few rare neurological conditions. Therefore, this review will focus on the applications of antisense oligonucleotides, in particular splice-switching antisense oligomers as promising therapeutics for rare neurological diseases, with key examples of Duchenne muscular dystrophy and spinal muscular atrophy. Challenges and future perspectives in developing antisense therapeutics for rare conditions including target discovery, antisense chemical modifications, animal models for therapeutic validations, and clinical trial designs will also be briefly discussed.
Collapse
Affiliation(s)
- Simon McDowall
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
| | - May Aung-Htut
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Steve Wilton
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Dunhui Li
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
2
|
Dai J, Jiang X, da Silva-Júnior EF, Du S, Liu X, Zhan P. Recent advances in the molecular design and applications of viral RNA-targeting antiviral modalities. Drug Discov Today 2024; 29:104074. [PMID: 38950729 DOI: 10.1016/j.drudis.2024.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Pathogenic viruses are a profound threat to global public health, underscoring the urgent need for the development of efficacious antiviral therapeutics. The advent of RNA-targeting antiviral strategies has marked a significant paradigm shift in the management of viral infections, offering a potent means of control and potential cure. In this review, we delve into the cutting-edge progress in RNA-targeting antiviral agents, encompassing antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), small and bifunctional molecules. We provide an in-depth examination of their strategic molecular design and elucidate the underlying mechanisms of action that confer their antiviral efficacy. By synthesizing recent findings, we shed light on the innovative potential of RNA-targeting approaches and their pivotal role in advancing the frontiers of antiviral drug discovery.
Collapse
Affiliation(s)
- Jiaojiao Dai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Edeildo Ferreira da Silva-Júnior
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970 Alagoas, Maceió, Brazil
| | - Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
3
|
Malakar P, Shukla S, Mondal M, Kar RK, Siddiqui JA. The nexus of long noncoding RNAs, splicing factors, alternative splicing and their modulations. RNA Biol 2024; 21:1-20. [PMID: 38017665 PMCID: PMC10761143 DOI: 10.1080/15476286.2023.2286099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
The process of alternative splicing (AS) is widely deregulated in a variety of cancers. Splicing is dependent upon splicing factors. Recently, several long noncoding RNAs (lncRNAs) have been shown to regulate AS by directly/indirectly interacting with splicing factors. This review focuses on the regulation of AS by lncRNAs through their interaction with splicing factors. AS mis-regulation caused by either mutation in splicing factors or deregulated expression of splicing factors and lncRNAs has been shown to be involved in cancer development and progression, making aberrant splicing, splicing factors and lncRNA suitable targets for cancer therapy. This review also addresses some of the current approaches used to target AS, splicing factors and lncRNAs. Finally, we discuss research challenges, some of the unanswered questions in the field and provide recommendations to advance understanding of the nexus of lncRNAs, AS and splicing factors in cancer.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Rajesh Kumar Kar
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Haque US, Yokota T. Enhancing Antisense Oligonucleotide-Based Therapeutic Delivery with DG9, a Versatile Cell-Penetrating Peptide. Cells 2023; 12:2395. [PMID: 37830609 PMCID: PMC10572411 DOI: 10.3390/cells12192395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Antisense oligonucleotide-based (ASO) therapeutics have emerged as a promising strategy for the treatment of human disorders. Charge-neutral PMOs have promising biological and pharmacological properties for antisense applications. Despite their great potential, the efficient delivery of these therapeutic agents to target cells remains a major obstacle to their widespread use. Cellular uptake of naked PMO is poor. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular uptake and intracellular delivery of oligonucleotide-based drugs. Among these, the DG9 peptide has been identified as a versatile CPP with remarkable potential for enhancing the delivery of ASO-based therapeutics due to its unique structural features. Notably, in the context of phosphorodiamidate morpholino oligomers (PMOs), DG9 has shown promise in enhancing delivery while maintaining a favorable toxicity profile. A few studies have highlighted the potential of DG9-conjugated PMOs in DMD (Duchenne Muscular Dystrophy) and SMA (Spinal Muscular Atrophy), displaying significant exon skipping/inclusion and functional improvements in animal models. The article provides an overview of a detailed understanding of the challenges that ASOs face prior to reaching their targets and continued advances in methods to improve their delivery to target sites and cellular uptake, focusing on DG9, which aims to harness ASOs' full potential in precision medicine.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
5
|
McLoughlin HS, Gundry K, Rainwater O, Schuster KH, Wellik IG, Zalon AJ, Benneyworth MA, Eberly LE, Öz G. Antisense Oligonucleotide Silencing Reverses Abnormal Neurochemistry in Spinocerebellar Ataxia 3 Mice. Ann Neurol 2023; 94:658-671. [PMID: 37243335 PMCID: PMC10543567 DOI: 10.1002/ana.26713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 3 (SCA3) is the most common dominantly inherited ataxia, and biomarkers are needed to noninvasively monitor disease progression and treatment response. Anti-ATXN3 antisense oligonucleotide (ASO) treatment has been shown to mitigate neuropathology and rescue motor phenotypes in SCA3 mice. Here, we investigated whether repeated ASO administration reverses brainstem and cerebellar neurochemical abnormalities by magnetic resonance spectroscopy (MRS). METHODS Symptomatic SCA3 mice received intracerebroventricular treatment of ASO or vehicle and were compared to wild-type vehicle-treated littermates. To quantify neurochemical changes in treated mice, longitudinal 9.4T MRS of cerebellum and brainstem was performed. Acquired magnetic resonance (MR) group means were analyzed by 2-way analysis of variance mixed-effects sex-adjusted analysis with post hoc Sidak correlation for multiple comparisons. Pearson correlations were used to relate SCA3 pathology and behavior. RESULTS MR spectra yielded 15 to 16 neurochemical concentrations in the cerebellum and brainstem. ASO treatment in SCA3 mice resulted in significant total choline rescue and partial reversals of taurine, glutamine, and total N-acetylaspartate across both regions. Some ASO-rescued neurochemicals correlated with reduction in diseased protein and nuclear ATXN3 accumulation. ASO-corrected motor activity correlated with total choline and total N-acetylaspartate levels early in disease. INTERPRETATION SCA3 mouse cerebellar and brainstem neurochemical trends parallel those in patients with SCA3. Decreased total choline may reflect oligodendrocyte abnormalities, decreased total N-acetylaspartate highlights neuronal health disturbances, and high glutamine may indicate gliosis. ASO treatment fully or partially reversed select neurochemical abnormalities in SCA3 mice, indicating the potential for these measures to serve as noninvasive treatment biomarkers in future SCA3 gene silencing trials. ANN NEUROL 2023;94:658-671.
Collapse
Affiliation(s)
| | - Katherine Gundry
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Orion Rainwater
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | | - Isabel G. Wellik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Annie J. Zalon
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Lynn E. Eberly
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Huang LA, Lin C, Yang L. Plumbing mysterious RNAs in "dark genome" for the conquest of human diseases. Mol Ther 2023; 31:1577-1595. [PMID: 37165619 PMCID: PMC10278048 DOI: 10.1016/j.ymthe.2023.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Next-generation sequencing has revealed that less than 2% of transcribed genes are translated into proteins, with a large portion transcribed into noncoding RNAs (ncRNAs). Among these, long noncoding RNAs (lncRNAs) represent the largest group and are pervasively transcribed throughout the genome. Dysfunctions in lncRNAs have been found in various diseases, highlighting their potential as therapeutic, diagnostic, and prognostic targets. However, challenges, such as unknown molecular mechanisms and nonspecific immune responses, and issues of drug specificity and delivery present obstacles in translating lncRNAs into clinical applications. In this review, we summarize recent publications that have explored lncRNA functions in human diseases. We also discuss challenges and future directions for developing lncRNA treatments, aiming to bridge the gap between functional studies and clinical potential and inspire further exploration in the field.
Collapse
Affiliation(s)
- Lisa A Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Zhao Y, Zheng Q, Hong Y, Gao Y, Hu J, Lang M, Zhang H, Zhou Y, Luo H, Zhang X, Sun H, Yan XX, Huang TY, Wang YJ, Xu H, Liu C, Wang X. β 2-Microglobulin coaggregates with Aβ and contributes to amyloid pathology and cognitive deficits in Alzheimer's disease model mice. Nat Neurosci 2023:10.1038/s41593-023-01352-1. [PMID: 37264159 DOI: 10.1038/s41593-023-01352-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Extensive studies indicate that β-amyloid (Aβ) aggregation is pivotal for Alzheimer's disease (AD) progression; however, cumulative evidence suggests that Aβ itself is not sufficient to trigger AD-associated degeneration, and whether other additional pathological factors drive AD pathogenesis remains unclear. Here, we characterize pathogenic aggregates composed of β2-microglobulin (β2M) and Aβ that trigger neurodegeneration in AD. β2M, a component of major histocompatibility complex class I (MHC class I), is upregulated in the brains of individuals with AD and constitutes the amyloid plaque core. Elevation of β2M aggravates amyloid pathology independent of MHC class I, and coaggregation with β2M is essential for Aβ neurotoxicity. B2m genetic ablation abrogates amyloid spreading and cognitive deficits in AD mice. Antisense oligonucleotide- or monoclonal antibody-mediated β2M depletion mitigates AD-associated neuropathology, and inhibition of β2M-Aβ coaggregation with a β2M-based blocking peptide ameliorates amyloid pathology and cognitive deficits in AD mice. Our findings identify β2M as an essential factor for Aβ neurotoxicity and a potential target for treating AD.
Collapse
Affiliation(s)
- Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Maoju Lang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, China
| | - Timothy Y Huang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Huaxi Xu
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, China.
| |
Collapse
|
8
|
Burbano LE, Li M, Jancovski N, Jafar-Nejad P, Richards K, Sedo A, Soriano A, Rollo B, Jia L, Gazina EV, Piltz S, Adikusuma F, Thomas PQ, Kopsidas H, Rigo F, Reid CA, Maljevic S, Petrou S. Antisense oligonucleotide therapy for KCNT1 encephalopathy. JCI Insight 2022; 7:146090. [PMID: 36173683 PMCID: PMC9746904 DOI: 10.1172/jci.insight.146090] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/27/2022] [Indexed: 01/12/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are characterized by pharmaco-resistant seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including gain-of-function variants in KCNT1, which encodes for sodium activated potassium channel protein KNa1.1, have been found to play a major role in the etiology of EIMFS. Here, we test a potential precision therapeutic approach in KCNT1-associated DEE using a gene-silencing antisense oligonucleotide (ASO) approach. We generated a mouse model carrying the KCNT1 p.P924L pathogenic variant; only the homozygous animals presented with the frequent, debilitating seizures and developmental compromise that are seen in patients. After a single intracerebroventricular bolus injection of a Kcnt1 gapmer ASO in symptomatic mice at postnatal day 40, seizure frequency was significantly reduced, behavioral abnormalities improved, and overall survival was extended compared with mice treated with a control ASO (nonhybridizing sequence). ASO administration at neonatal age was also well tolerated and effective in controlling seizures and extending the life span of treated animals. The data presented here provide proof of concept for ASO-based gene silencing as a promising therapeutic approach in KCNT1-associated epilepsies.
Collapse
Affiliation(s)
- Lisseth Estefania Burbano
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Nikola Jancovski
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Kay Richards
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Sedo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Ben Rollo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Linghan Jia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena V. Gazina
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandra Piltz
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Fatwa Adikusuma
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Q. Thomas
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Helen Kopsidas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Christopher A. Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Praxis Precision Medicines, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics. J Control Release 2022; 352:861-878. [PMID: 36397636 DOI: 10.1016/j.jconrel.2022.10.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Cancer, infectious diseases, and metabolic and hereditary genetic disorders are a global health burden affecting millions of people, with contemporary treatments offering limited relief. Antisense technology treats diseases by targeting their causal agents using its ability to alter or inhibit endogenous or malfunctioning genes. Nine antisense oligonucleotide (ASO) drugs that represent four different chemical classes have been approved for the treatment of rare diseases, including nusinersen, the first new oligonucleotide-based drug. Advances in medicinal chemistry, understanding the molecular pathways, and the availability of vast genetic data have resulted in enormous improvements in the therapeutic performance of ASO drugs; however, their susceptibility to degradation in the circulation, rapid renal clearance, and immunostimulatory adverse effects greatly limit their clinical applications. An increasing number of ASO-based therapeutics is being tested in clinical trials. Improvements to the delivery of ASO drugs could potentially change the therapeutic landscape for many conditions in the near future. This review describes the technological advances and developments in drug delivery systems pertaining to ASO therapeutics.
Collapse
|
10
|
Vaillant A. Oligonucleotide-Based Therapies for Chronic HBV Infection: A Primer on Biochemistry, Mechanisms and Antiviral Effects. Viruses 2022; 14:v14092052. [PMID: 36146858 PMCID: PMC9502277 DOI: 10.3390/v14092052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Three types of oligonucleotide-based medicines are under clinical development for the treatment of chronic HBV infection. Antisense oligonucleotides (ASOs) and synthetic interfering RNA (siRNA) are designed to degrade HBV mRNA, and nucleic acid polymers (NAPs) stop the assembly and secretion of HBV subviral particles. Extensive clinical development of ASOs and siRNA for a variety of liver diseases has established a solid understanding of their pharmacodynamics, accumulation in different tissue types in the liver, pharmacological effects, off-target effects and how chemical modifications and delivery approaches affect these parameters. These effects are highly conserved for all ASO and siRNA used in human studies to date. The clinical assessment of several ASO and siRNA compounds in chronic HBV infection in recent years is complicated by the different delivery approaches used. Moreover, these assessments have not considered the large clinical database of ASO/siRNA function in other liver diseases and known off target effects in other viral infections. The goal of this review is to summarize the current understanding of ASO/siRNA/NAP pharmacology and integrate these concepts into current clinical results for these compounds in the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
11
|
Antisense Oligonucleotides and Small Interfering RNA for the Treatment of Dyslipidemias. J Clin Med 2022; 11:jcm11133884. [PMID: 35807171 PMCID: PMC9267663 DOI: 10.3390/jcm11133884] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
The burden of atherosclerotic disease worldwide necessitates implementing the treatment of its risk factors. Among them, hypercholesterolemia has a central role. In addition to conventional small organic compounds and the recently introduced monoclonal antibodies, new technologies are arising such as the antisense oligonucleotides and small interfering RNAs (siRNAs) that operate upstream, blocking the mRNA translation of the proteins specifically involved in lipid metabolism. In this review, we briefly explain the mechanisms of action of these molecules and discuss the difficulties related to their in vivo use as therapeutical agents. We go over the oligonucleotides tested in clinical trials that could potentially revolutionize the care of patients by acting on proteins involved in the lipoprotein metabolism and regulation, namely: angiopoietin-like protein 3 (ANGPTL3); lipoprotein a (Lp(a)); apolipoprotein B (Apo B); apolipoprotein C III (Apo C-III); and proprotein convertase subtilisin–kexin type 9 (PCSK9). Finally, the differences between ASOs and siRNAs, their future possible clinical applications, and the role of Inclisiran, a siRNA direct against PCSK9 to reduce LDL-C, were reviewed in detail.
Collapse
|
12
|
Hill SF, Meisler MH. Antisense Oligonucleotide Therapy for Neurodevelopmental Disorders. Dev Neurosci 2021; 43:247-252. [PMID: 34412058 PMCID: PMC8440367 DOI: 10.1159/000517686] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are short oligonucleotides that can modify gene expression and mRNA splicing in the nervous system. The FDA has approved ASOs for treatment of ten genetic disorders, with many applications currently in the pipeline. We describe the molecular mechanisms of ASO treatment for four neurodevelopmental and neuromuscular disorders. The ASO nusinersen is a general treatment for mutations of SMN1 in spinal muscular atrophy that corrects the splicing defect in the SMN2 gene. Milasen is a patient-specific ASO that rescues splicing of CNL7 in Batten's disease. STK-001 is an ASO that increases expression of the sodium channel gene SCN1A by exclusion of a poison exon. An ASO that reduces the abundance of the SCN8A mRNA is therapeutic in mouse models of developmental and epileptic encephalopathy. These examples demonstrate the variety of mechanisms and range of applications of ASOs for treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sophie F Hill
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Miriam H Meisler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Singh N. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics 2021; 113:3250-3273. [PMID: 34302945 DOI: 10.1016/j.ygeno.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/09/2022]
Abstract
Long non-coding RNAs (lncRNAs) are expressed at lower levels than protein-coding genes but have a crucial role in gene regulation. LncRNA is distinct, they are being transcribed using RNA polymerase II, and their functionality depends on subcellular localization. Depending on their niche, they specifically interact with DNA, RNA, and proteins and modify chromatin function, regulate transcription at various stages, forms nuclear condensation bodies and nucleolar organization. lncRNAs may also change the stability and translation of cytoplasmic mRNAs and hamper signaling pathways. Thus, lncRNAs affect the physio-pathological states and lead to the development of various disorders, immune responses, and cancer. To date, ~40% of lncRNAs have been reported in the nervous system (NS) and are involved in the early development/differentiation of the NS to synaptogenesis. LncRNA expression patterns in the most common adult and pediatric tumor suggest them as potential biomarkers and provide a rationale for targeting them pharmaceutically. Here, we discuss the mechanisms of lncRNA synthesis, localization, and functions in transcriptional, post-transcriptional, and other forms of gene regulation, methods of lncRNA identification, and their potential therapeutic applications in neuro oncological disorders as explained by molecular mechanisms in other malignant disorders.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Department of Centre for Advance Research, King George's Medical University, Lucknow, Uttar Pradesh 226 003, India.
| |
Collapse
|
14
|
Opportunities and challenges for microRNA-targeting therapeutics for epilepsy. Trends Pharmacol Sci 2021; 42:605-616. [PMID: 33992468 DOI: 10.1016/j.tips.2021.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Epilepsy is a common and serious neurological disorder characterised by recurrent spontaneous seizures. Frontline pharmacotherapy includes small-molecule antiseizure drugs that typically target ion channels and neurotransmitter systems, but these fail in 30% of patients and do not prevent either the development or progression of epilepsy. An emerging therapeutic target is microRNA (miRNA), small noncoding RNAs that negatively regulate sets of proteins. Their multitargeting action offers unique advantages for certain forms of epilepsy with complex underlying pathophysiology, such as temporal lobe epilepsy (TLE). miRNA can be inhibited by designed antisense oligonucleotides (ASOs; e.g., antimiRs). Here, we outline the prospects for miRNA-based therapies. We review design considerations for nucleic acid-based approaches and the challenges and next steps in developing therapeutic miRNA-targeting molecules for epilepsy.
Collapse
|
15
|
Litvinchuk A, Huynh TPV, Shi Y, Jackson RJ, Finn MB, Manis M, Francis CM, Tran A, Sullivan PM, Ulrich JD, Hyman BT, Cole T, Holtzman DM. Apolipoprotein E4 Reduction with Antisense Oligonucleotides Decreases Neurodegeneration in a Tauopathy Model. Ann Neurol 2021; 89:952-966. [PMID: 33550655 PMCID: PMC8260038 DOI: 10.1002/ana.26043] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/23/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Apolipoprotein E (ApoE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease, with the ε4 allele increasing risk in a dose-dependent fashion. In addition to ApoE4 playing a crucial role in amyloid-β deposition, recent evidence suggests that it also plays an important role in tau pathology and tau-mediated neurodegeneration. It is not known, however, whether therapeutic reduction of ApoE4 would exert protective effects on tau-mediated neurodegeneration. METHODS Herein, we used antisense oligonucleotides (ASOs) against human APOE to reduce ApoE4 levels in the P301S/ApoE4 mouse model of tauopathy. We treated P301S/ApoE4 mice with ApoE or control ASOs via intracerebroventricular injection at 6 and 7.5 months of age and performed brain pathological assessments at 9 months of age. RESULTS Our results indicate that treatment with ApoE ASOs reduced ApoE4 protein levels by ~50%, significantly protected against tau pathology and associated neurodegeneration, decreased neuroinflammation, and preserved synaptic density. These data were also corroborated by a significant reduction in levels of neurofilament light chain (NfL) protein in plasma of ASO-treated mice. INTERPRETATION We conclude that reducing ApoE4 levels should be explored further as a therapeutic approach for APOE4 carriers with tauopathy including Alzheimer's disease. ANN NEUROL 2021;89:952-966.
Collapse
Affiliation(s)
- Alexandra Litvinchuk
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tien-Phat V. Huynh
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA,Medical Scientist Training Program (MSTP), Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yang Shi
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rosemary J. Jackson
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - Mary Beth Finn
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melissa Manis
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Caroline M. Francis
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ainsley Tran
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick M. Sullivan
- Department of Medicine, Duke University Medical Center, Durham Veterans Health Administration Medical Center’s Geriatric Research, Education and Clinical Center, Durham, NC 27710, USA
| | - Jason D. Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bradley T. Hyman
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - Tracy Cole
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Ct. Carlsbad, CA 92024, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA,Lead Contact
| |
Collapse
|
16
|
Chaudhary S, Singh A, Kumar P, Kaushik M. Strategic targeting of non-small-cell lung cancer utilizing genetic material-based delivery platforms of nanotechnology. J Biochem Mol Toxicol 2021; 35:e22784. [PMID: 33826765 DOI: 10.1002/jbt.22784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Several limitations of conventional cancer treatment such as non-specific targeting, solubility problems, and ineffective entry of chemotherapeutics into cancer cells can be overcome by using nanotechnology targeted drug delivery systems. Some combinations of biomolecules and nanoparticles have proven to be excellent therapeutics for Non-small cell lung cancer (NSCLC) in the last decades. Targeted gene delivery has shown in vivo as well as in vitro promising results with therapeutic efficacy. Gene therapy has shown enhanced transfection efficiency and better targeting potential on several NSCLC cell lines. Still, there are several challenges in nanoparticle-mediated gene therapy, which include stability of biomolecules and nanoparticles during delivery, managing their biodistribution, and reducing the possible cytotoxic effects of the nanoparticles, which need to be solved before clinical trials. Evaluation of therapeutic efficacy of biomolecules and nanoparticle combination in gene therapy must be established to expand the application of nano-gene therapy in cancer treatment.
Collapse
Affiliation(s)
- Swati Chaudhary
- Department of Applied Sciences, Maharaja Surajmal Institute of Technology, GGSIP University, New Delhi, India
| | - Amit Singh
- Department of Chemistry, University of Delhi, Delhi, India.,Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Pankaj Kumar
- Department of Chemistry, University of Delhi, Delhi, India.,Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| |
Collapse
|
17
|
Chen Y, Li Z, Chen X, Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B 2021; 11:340-354. [PMID: 33643816 PMCID: PMC7893121 DOI: 10.1016/j.apsb.2020.10.001] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022] Open
Abstract
Enormous studies have corroborated that long non-coding RNAs (lncRNAs) extensively participate in crucial physiological processes such as metabolism and immunity, and are closely related to the occurrence and development of tumors, cardiovascular diseases, nervous system disorders, nephropathy, and other diseases. The application of lncRNAs as biomarkers or intervention targets can provide new insights into the diagnosis and treatment of diseases. This paper has focused on the emerging research into lncRNAs as pharmacological targets and has reviewed the transition of lncRNAs from the role of disease coding to acting as drug candidates, including the current status and progress in preclinical research. Cutting-edge strategies for lncRNA modulation have been summarized, including the sources of lncRNA-related drugs, such as genetic technology and small-molecule compounds, and related delivery methods. The current progress of clinical trials of lncRNA-targeting drugs is also discussed. This information will form a latest updated reference for research and development of lncRNA-based drugs.
Collapse
Key Words
- AD, Alzheimer's disease
- ANRIL, antisense noncoding RNA gene at the INK4 locus
- ASO, antisense oligonucleotide
- ASncmtRNA
- ASncmtRNA, antisense noncoding mitochondrial RNA
- BCAR4, breast cancer anti-estrogen resistance 4
- BDNF-AS, brain-derived neurotrophic factor antisense
- CASC9, cancer susceptibility candidate 9
- CDK, cyclin dependent kinase 1
- CHRF, cardiac hypertrophy related factor
- CRISPR, clustered regularly interspaced short palindromic repeats
- Clinical trials
- DACH1, dachshund homolog 1
- DANCR, differentiation antagonizing non-protein coding RNA
- DKD, diabetic kidney disease
- DPF, diphenyl furan
- Delivery
- EBF3-AS, early B cell factor 3-antisense
- ENE, element for nuclear expression
- Erbb4-IR, Erb-B2 receptor tyrosine kinase 4-immunoreactivity
- FDA, U.S. Food and Drug Administration
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GAS5, growth arrest specific 5
- Gene therapy
- HISLA, HIF-1α-stabilizing long noncoding RNA
- HOTAIR, HOX transcript antisense intergenic RNA
- HULC, highly upregulated in liver cancer
- LIPCAR, long intergenic noncoding RNA predicting cardiac remodeling
- LNAs, locked nucleic acids
- LncRNAs
- MALAT1, metastasis associated lung adenocarcinoma transcript 1
- MEG3, maternally expressed gene 3
- MHRT, myosin heavy chain associated RNA transcripts
- MM, multiple myeloma
- NEAT1, nuclear enriched abundant transcript 1
- NKILA, NF-kappaB interacting lncRNA
- NPs, nanoparticles
- Norad, non-coding RNA activated by DNA damage
- OIP5-AS1, opa-interacting protein 5 antisense transcript 1
- PD, Parkinson's disease
- PEG, polyethylene glycol
- PNAs, peptide nucleic acids
- PTO, phosphorothioate
- PVT1, plasmacytoma variant translocation 1
- RGD, arginine-glycine-aspartic acid peptide
- RISC, RNA-induced silencing complex
- SALRNA1, senescence associated long non-coding RNA 1
- SNHG1, small nucleolar RNA host gene 1
- Small molecules
- SncmtRNA, sense noncoding mitochondrial RNA
- THRIL, TNF and HNRNPL related immunoregulatory
- TTTY15, testis-specific transcript, Y-linked 15
- TUG1, taurine-upregulated gene 1
- TWIST1, twist family BHLH transcription factor 1
- Targeted drug
- TncRNA, trophoblast-derived noncoding RNA
- Translational medicine
- UCA1, urothelial carcinoma-associated 1
- UTF1, undifferentiated transcription factor 1
- XIST, X-inactive specific transcript
- lincRNA-p21, long intergenic noncoding RNA p21
- lncRNAs, long non-coding RNAs
- mtlncRNA, mitochondrial long noncoding RNA
- pHLIP, pH-low insertion peptide
- sgRNA, single guide RNA
- siRNAs, small interfering RNAs
Collapse
|
18
|
Kajino R, Ueno Y. (S)-5'-C-Aminopropyl-2'-O-methyl nucleosides enhance antisense activity in cultured cells and binding affinity to complementary single-stranded RNA. Bioorg Med Chem 2020; 30:115925. [PMID: 33310631 DOI: 10.1016/j.bmc.2020.115925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Abstract
Antisense oligonucleotides (ASOs) are a promising clinical tool that could be applied for unmet medical needs, but there are several limitations for their therapeutic application. Here, we designed and synthesized (S)-5'-C-aminopropyl-2'-O-methylcytidine, and oligonucleotides containing (S)-5'-C-aminopropyl-2'-O-methyluridine and -methylcytidine. We then investigated the properties of ASOs containing these nucleoside analogs. (S)-5'-C-Aminopropyl modifications enhanced the thermal stability of DNA/RNA duplexes when compared to other commercially available 2'-O-methyl modifications. This suggested that the terminal ammonium cation on the alkyl side chains neutralized the negative charge of the phosphates in the duplex. Additionally, the overall conformation of ASO/RNA duplexes was retained with the modified ASOs. Thus, these duplexes exhibited the ability to elicit RNase H activity. Furthermore, we found that ASOs containing the (S)-5'-C-aminopropyl modification exhibited higher antisense potency than those containing the 2'-O-methyl modification in cultured cells. Therefore, the (S)-5'-C-aminopropyl-2'-O-methyl nucleosides synthesized in this study are promising candidates for developing antisense therapeutics.
Collapse
Affiliation(s)
- Ryohei Kajino
- United Graduate School of Agricultural Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Yoshihito Ueno
- United Graduate School of Agricultural Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan; Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
19
|
Chen S, Sbuh N, Veedu RN. Antisense Oligonucleotides as Potential Therapeutics for Type 2 Diabetes. Nucleic Acid Ther 2020; 31:39-57. [PMID: 33026966 DOI: 10.1089/nat.2020.0891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by persistent hyperglycemia resulting from inefficient signaling and insufficient production of insulin. Conventional management of T2D has largely relied on small molecule-based oral hypoglycemic medicines, which do not halt the progression of the disease due to limited efficacy and induce adverse effects as well. To this end, antisense oligonucleotide has attracted immense attention in developing antidiabetic agents because of their ability to downregulate the expression of disease-causing genes at the RNA and protein level. To date, seven antisense agents have been approved by the United States Food and Drug Administration for therapies of a variety of human maladies, including genetic disorders. Herein, we provide a comprehensive review of antisense molecules developed for suppressing the causative genes believed to be responsible for insulin resistance and hyperglycemia toward preventing and treating T2D.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Nabayet Sbuh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
20
|
Hepatic thrombopoietin gene silencing reduces platelet count and breast cancer progression in transgenic MMTV-PyMT mice. Blood Adv 2020; 3:3080-3091. [PMID: 31648335 DOI: 10.1182/bloodadvances.2019000250] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/20/2019] [Indexed: 11/20/2022] Open
Abstract
In humans, platelet count within the normal range is required for physiological hemostasis, but, adversely, platelets also support pathological thrombosis. Moreover, by releasing growth factors, they may enhance neoplastic proliferation. We hypothesize that platelet count correlates with platelet-dependent pathologies, even within the range of hemostatic competence. Because platelet production is promoted by thrombopoietin signaling through the myeloproliferative leukemia virus oncogene (cMPL), a receptor expressed on megakaryocytes, we evaluated the feasibility of selective targeting of hepatic thrombopoietin production to test this hypothesis. We synthesized murine- and primate-specific antisense oligonucleotides (THPO-ASO) that silence hepatic thrombopoietin gene (THPO) expression without blocking extrahepatic THPO. Repeated doses of THPO-ASO were administered to mice and a baboon, causing a sustained 50% decline in plasma thrombopoietin levels and platelet count within 4 weeks in both species. To investigate whether reducing platelet count within the translationally relevant hemostatic range could alter a neoplastic process, we administered THPO-ASO to 6-week-old transgenic MMTV-PyMT mice that develop early ductal atypia that progresses into cMPL-negative fatal metastatic breast cancer within 2 to 3 months. THPO-ASO treatment increased the average time to euthanasia (primary humane endpoint) at 2 cm3 combined palpable tumor volume. Our results show that THPO-ASO reduced blood platelet count, plasma platelet factor 4, vascular endothelial growth factor, thrombopoietin levels, bone marrow megakaryocyte density, tumor growth rate, proliferation index, vascularization, platelet and macrophage content, and pulmonary metastases vs untreated controls. These findings confirm that sustained and moderate pharmacological platelet count reduction is feasible with THPO-ASO administration and can delay progression of certain platelet-dependent pathological processes within a safe hemostatic platelet count range.
Collapse
|
21
|
Watts LM, Karwatowska-Prokopczuk E, Hurh E, Alexander VJ, Balogh K, O'Dea L, Geary RS, Tsimikas S. Treatment with Volanesorsen, a 2'-O-Methoxyethyl-Modified Antisense Oligonucleotide Targeting APOC3 mRNA, Does Not Affect the QTc Interval in Healthy Volunteers. Nucleic Acid Ther 2020; 30:198-206. [PMID: 32589506 PMCID: PMC7415887 DOI: 10.1089/nat.2019.0837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/07/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to assess the effect of volanesorsen on the corrected QT (QTc) interval. This thorough QT study enrolled 52 healthy male and female subjects who were randomized at a single site in a four-way crossover study. Subjects were randomly assigned to 1 of 12 treatment sequences and crossed over into four treatment periods over the course of which each subject was to receive a single therapeutic dose of volanesorsen as a 300 mg subcutaneous (SC) injection, a single supratherapeutic dose of volanesorsen as 300 mg intravenous (IV) infusion, a single oral (PO) dose of moxifloxacin (positive control), and placebo dose. The study demonstrated that volanesorsen 300 mg SC and 300 mg IV did not have a clinically relevant effect on ΔΔQTcF exceeding 10 ms. The largest mean effect at any postdose time point was 3.0 ms (90% confidence interval [CI]: 0.8-5.2) after SC dosing and 1.8 ms (90% CI -0.4 to 4.0) after IV dosing. Volanesorsen, at the studied therapeutic and supratherapeutic doses, does not have a clinically meaningful effect on the QTc.
Collapse
Affiliation(s)
- Lynnetta M. Watts
- Clinical Development, Ionis Pharmaceutical, Inc, Carlsbad, California, USA
| | | | - Eunju Hurh
- Clinical Development, Akcea Therapeutic, Boston, Massachusetts, USA
| | | | - Kristin Balogh
- Clinical Development, Ionis Pharmaceutical, Inc, Carlsbad, California, USA
| | - Louis O'Dea
- Clinical Development, Akcea Therapeutic, Boston, Massachusetts, USA
| | - Richard S. Geary
- Clinical Development, Ionis Pharmaceutical, Inc, Carlsbad, California, USA
| | - Sotirios Tsimikas
- Clinical Development, Ionis Pharmaceutical, Inc, Carlsbad, California, USA
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, Dodart JC, Nobre RJ, Pereira de Almeida L. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 2020; 143:407-429. [PMID: 31738395 DOI: 10.1093/brain/awz328] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.
Collapse
Affiliation(s)
- Ana C Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês M Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara M Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Sónia P Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Barrett TJ, Wu BG, Revenko AS, MacLeod AR, Segal LN, Berger JS. Antisense oligonucleotide targeting of thrombopoietin represents a novel platelet depletion method to assess the immunomodulatory role of platelets. J Thromb Haemost 2020; 18:1773-1782. [PMID: 32227586 DOI: 10.1111/jth.14808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Platelets are effector cells of the innate and adaptive immune system; however, understanding their role during inflammation-driven pathologies can be challenging due to several drawbacks associated with current platelet depletion methods. The generation of antisense oligonucleotides (ASOs) directed to thrombopoietin (Tpo) mRNA represents a novel method to reduce circulating platelet count. OBJECTIVE To understand if Tpo-targeted ASO treatment represents a viable strategy to specifically reduce platelet count in mice. METHODS Female and male mice were treated with TPO-targeted ASOs and platelet count and function was assessed, in addition to circulating blood cell counts and hematopoietic stem and progenitor cells. The utility of the platelet-depletion strategy was assessed in a murine model of lower airway dysbiosis. RESULTS AND CONCLUSIONS Herein, we describe how in mice, ASO-mediated silencing of hepatic TPO expression reduces platelet, megakaryocyte, and megakaryocyte progenitor count, without altering platelet activity. TPO ASO-mediated platelet depletion can be achieved acutely and sustained chronically in the absence of adverse bleeding. TPO ASO-mediated platelet depletion allows for the reintroduction of new platelets, an advantage over commonly used antibody-mediated depletion strategies. Using a murine model of lung inflammation, we demonstrate that platelet depletion, induced by either TPO ASO or anti-CD42b treatment, reduces the accumulation of inflammatory immune cells, including monocytes and macrophages, in the lung. Altogether, we characterize a new platelet depletion method that can be sustained chronically and allows for the reintroduction of new platelets highlighting the utility of the TPO ASO method to understand the role of platelets during chronic immune-driven pathologies.
Collapse
Affiliation(s)
- Tessa J Barrett
- Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Benjamin G Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, NY, USA
| | | | | | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, NY, USA
| | - Jeffrey S Berger
- Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
24
|
Thayer MB, Humphreys SC, Chung KS, Lade JM, Cook KD, Rock BM. POE Immunoassay: Plate-based oligonucleotide electro-chemiluminescent immunoassay for the quantification of nucleic acids in biological matrices. Sci Rep 2020; 10:10425. [PMID: 32591626 PMCID: PMC7319975 DOI: 10.1038/s41598-020-66829-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Oligonucleotide therapeutics use short interfering RNA (siRNA) or antisense oligonucleotide (ASO) molecules to exploit endogenous systems-neutralizing target RNA to prevent subsequent protein translation. While the potential clinical application is vast, delivery efficiency and extrahepatic targeting is challenging. Bioanalytical assays are important in building understanding of these complex relationships. The literature currently lacks description of robust and sensitive methods to measure siRNA and ASOs in complex biological matrices. Described herein is a non-enzymatic hybridization-based immunoassay that enables quantification of individual siRNA strands (antisense or sense) in serum, urine, bile, and liver and kidney homogenates. Assay utility is also demonstrated in ASOs. The assay improves upon previous works by abolishing enzymatic steps and further incorporating Locked Nucleic Acid (LNA) nucleotide modifications to increase analyte hybridization affinity and improve sensitivity, specificity, and robustness. We report an assay with an ultrasensitive dynamic range of 0.3 to 16,700 pM for siRNA in serum. The assay was submitted to full qualification for accuracy and precision in both serum and tissue matrices and assay performance was assessed with single and mixed analytes. The reliable LNA-hybridization-based approach removes the need for matrix sample extraction, enrichment or amplification steps which may be impeded by more advanced chemical modifications.
Collapse
Affiliation(s)
- Mai B Thayer
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US
| | - Sara C Humphreys
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US
| | - Kyu S Chung
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US
| | - Julie M Lade
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US
| | - Kevin D Cook
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US
| | - Brooke M Rock
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US.
| |
Collapse
|
25
|
Masaki Y, Yamamoto K, Yoshida K, Maruyama A, Tomori T, Iriyama Y, Nakajima H, Kanaki T, Seio K. Modification of oligonucleotides with weak basic residues via the 2'-O-carbamoylethyl linker for improving nuclease resistance without loss of duplex stability and antisense activity. Org Biomol Chem 2020; 17:4835-4842. [PMID: 31033986 DOI: 10.1039/c9ob00668k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the improvement of nuclease resistance, four kinds of new modifications through a carbamoylethyl linker were designed. Among them, the 2'-O-[2-N-{2-(benzimidazol-1-yl)ethyl}carbamoylethyl] modification showed 20-fold longer half-life when treated with a 3' to 5' exonuclease compared to the 2'-O-methoxyethyl (MOE) modification, which is used in approved drugs. In addition, this large modification did not disturb the binding affinity or RNase H-dependent antisense activity. From these findings, it could be concluded that an adequate linker, such as carbamoylethyl in this study, could extend the utility of 2'-O-modification without loss of the properties of nucleic acids. This strategy would be useful for the development of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Yoshiaki Masaki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-16, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lin J, Jo SB, Kim TH, Kim HW, Chew SY. RNA interference in glial cells for nerve injury treatment. J Tissue Eng 2020; 11:2041731420939224. [PMID: 32670539 PMCID: PMC7338726 DOI: 10.1177/2041731420939224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Drivers of RNA interference are potent for manipulating gene and protein levels, which enable the restoration of dysregulated mRNA expression that is commonly associated with injuries and diseases. This review summarizes the potential of targeting neuroglial cells, using RNA interference, to treat nerve injuries sustained in the central nervous system. In addition, the various methods of delivering these RNA interference effectors will be discussed.
Collapse
Affiliation(s)
- Junquan Lin
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
| | - Seung Bin Jo
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Sing Yian Chew
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine,
Nanyang Technological University, Singapore
| |
Collapse
|
27
|
Post N, Yu R, Greenlee S, Gaus H, Hurh E, Matson J, Wang Y. Metabolism and Disposition of Volanesorsen, a 2'- O-(2 methoxyethyl) Antisense Oligonucleotide, Across Species. Drug Metab Dispos 2019; 47:1164-1173. [PMID: 31350288 DOI: 10.1124/dmd.119.087395] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/24/2019] [Indexed: 11/22/2022] Open
Abstract
Volanesorsen (previously known as ISIS 304801) is a 20-nucleotide partially 2'-O-(2-methoxyethyl) (2'-MOE)-modified antisense oligonucleotide (ASO) gapmer, which was recently approved in the European Union as a novel, first-in-class treatment in the reduction of triglyceride levels in patients with familial chylomicronemia syndrome. We characterized the absorption, distribution, metabolism, and excretion characteristics of volanesorsen in mice, rats, monkeys, and humans, in either radiolabeled or nonradiolabeled studies. This also included the characterization of all of the observed ASO metabolite species excreted in urine. Volanesorsen is highly bound to plasma proteins that are similar in mice, monkeys, and humans. In all species, plasma concentrations declined in a multiphasic fashion, characterized by a relatively fast initial distribution phase and then a much slower terminal elimination phase following subcutaneous bolus administration. The plasma metabolite profiles of volanesorsen are similar across species, with volanesorsen as the major component. Various shortened oligonucleotide metabolites (5-19 nucleotides long) were identified in tissues in the multiple-dose mouse and monkey studies, but fewer in the [3H]-volanesorsen rat study, likely due to a lower accumulation of metabolites following a single dose in rats. In urine, all metabolites identified in tissues were observed, consistent with both endo- and exonuclease-mediated metabolism and urinary excretion being the major elimination pathway for volanesorsen and its metabolites. SIGNIFICANCE STATEMENT: We characterized the absorption, distribution, metabolism, and excretion (ADME) of volanesorsen, a partially 2'-MOE-modified antisense oligonucleotide, from mouse to man utilizing novel extraction and quantitation techniques in samples collected from preclinical toxicology studies, a 3H rat ADME study, and a phase 1 clinical trial.
Collapse
Affiliation(s)
- Noah Post
- PK and Clinical Pharmacology (N.P., R.Y., S.G., J.M., Y.W.) and Medicinal Chemistry (H.G.), Ionis Pharmaceuticals, Inc., Carlsbad, California; and PK and Clinical Pharmacology, Akcea Therapeutics, Boston, Massachusetts (E.H.)
| | - Rosie Yu
- PK and Clinical Pharmacology (N.P., R.Y., S.G., J.M., Y.W.) and Medicinal Chemistry (H.G.), Ionis Pharmaceuticals, Inc., Carlsbad, California; and PK and Clinical Pharmacology, Akcea Therapeutics, Boston, Massachusetts (E.H.)
| | - Sarah Greenlee
- PK and Clinical Pharmacology (N.P., R.Y., S.G., J.M., Y.W.) and Medicinal Chemistry (H.G.), Ionis Pharmaceuticals, Inc., Carlsbad, California; and PK and Clinical Pharmacology, Akcea Therapeutics, Boston, Massachusetts (E.H.)
| | - Hans Gaus
- PK and Clinical Pharmacology (N.P., R.Y., S.G., J.M., Y.W.) and Medicinal Chemistry (H.G.), Ionis Pharmaceuticals, Inc., Carlsbad, California; and PK and Clinical Pharmacology, Akcea Therapeutics, Boston, Massachusetts (E.H.)
| | - Eunju Hurh
- PK and Clinical Pharmacology (N.P., R.Y., S.G., J.M., Y.W.) and Medicinal Chemistry (H.G.), Ionis Pharmaceuticals, Inc., Carlsbad, California; and PK and Clinical Pharmacology, Akcea Therapeutics, Boston, Massachusetts (E.H.)
| | - John Matson
- PK and Clinical Pharmacology (N.P., R.Y., S.G., J.M., Y.W.) and Medicinal Chemistry (H.G.), Ionis Pharmaceuticals, Inc., Carlsbad, California; and PK and Clinical Pharmacology, Akcea Therapeutics, Boston, Massachusetts (E.H.)
| | - Yanfeng Wang
- PK and Clinical Pharmacology (N.P., R.Y., S.G., J.M., Y.W.) and Medicinal Chemistry (H.G.), Ionis Pharmaceuticals, Inc., Carlsbad, California; and PK and Clinical Pharmacology, Akcea Therapeutics, Boston, Massachusetts (E.H.)
| |
Collapse
|
28
|
Breuel S, Vorm M, Bräuer AU, Owczarek-Lipska M, Neidhardt J. Combining Engineered U1 snRNA and Antisense Oligonucleotides to Improve the Treatment of a BBS1 Splice Site Mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:123-130. [PMID: 31541798 PMCID: PMC6796732 DOI: 10.1016/j.omtn.2019.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/14/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022]
Abstract
Manipulation of pre-mRNA processing is a promising approach toward overcoming disease-causing mutations and treating human diseases. We show that a combined treatment applying two splice-manipulating technologies improves therapeutic efficacies to correct mutation-induced splice defects. Previously, we identified a family affected by retinitis pigmentosa caused by the homozygous BBS1 splice donor site mutation c.479G > A. The mutation leads to both exon 5 skipping and intron 5 retention. We developed a therapeutic approach applying lentivirus-mediated gene delivery of engineered U1 small nuclear RNA (U1), which resulted in increased levels of correctly spliced BBS1. Herein, we show that the therapeutic effect of the engineered U1 efficiently reverted exon skipping but failed to reduce the intron retention. To complement the engineered U1 treatment, we identified four different antisense oligonucleotides (AONs) that block intron 5 retention in BBS1 transcripts. A treatment using engineered U1 in combination with AONs showed the highest therapeutic efficacy and increased the amount of correctly spliced BBS1 transcripts. We did not detect elevated levels of apoptotic cell death in AON-treated cell lines. In conclusion, engineered U1 or AONs provide efficient therapies with complementary effects and can be combined to increase efficacy of therapeutic approaches to correct splice defects.
Collapse
Affiliation(s)
- Saskia Breuel
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Mariann Vorm
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Anatomy, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, Germany; Joint research training group of the Faculty of Medicine and Health Sciences, University of Oldenburg, Germany and the University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
29
|
Antisense oligonucleotide therapy rescues aggresome formation in a novel spinocerebellar ataxia type 3 human embryonic stem cell line. Stem Cell Res 2019; 39:101504. [PMID: 31374463 DOI: 10.1016/j.scr.2019.101504] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a fatal, late-onset neurodegenerative disorder characterized by selective neuropathology in the brainstem, cerebellum, spinal cord, and substantia nigra. Here we report the first NIH-approved human embryonic stem cell (hESC) line derived from an embryo harboring the SCA3 mutation. Referred to as SCA3-hESC, this line is heterozygous for the mutant polyglutamine-encoding CAG repeat expansion in the ATXN3 gene. We observed relevant molecular hallmarks of the human disease at all differentiation stages from stem cells to cortical neurons, including robust ATXN3 aggregation and altered expression of key components of the protein quality control machinery. In addition, SCA3-hESCs exhibit nuclear accumulation of mutant ATXN3 and form p62-positive aggresomes. Finally, antisense oligonucleotide-mediated reduction of ATXN3 markedly suppressed aggresome formation. The SCA3-hESC line offers a unique and highly relevant human disease model that holds strong potential to advance understanding of SCA3 disease mechanisms and facilitate the evaluation of candidate therapies for SCA3.
Collapse
|
30
|
Ferrone JD, Bhattacharjee G, Revenko AS, Zanardi TA, Warren MS, Derosier FJ, Viney NJ, Pham NC, Kaeser GE, Baker BF, Schneider E, Hughes SG, Monia BP, MacLeod AR. IONIS-PKK Rx a Novel Antisense Inhibitor of Prekallikrein and Bradykinin Production. Nucleic Acid Ther 2019; 29:82-91. [PMID: 30817230 PMCID: PMC6461157 DOI: 10.1089/nat.2018.0754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kallikrein is the key contact system mediator responsible for the conversion of high-molecular-weight kininogen into the inflammatory vasodilator peptide bradykinin, a process regulated by C1-esterase inhibitor (C1-INH). In hereditary angioedema (HAE), genetic mutations result in deficient or dysfunctional C1-INH and dysregulation of the contact system leading to recurrent, sometimes fatal, angioedema attacks. IONIS-PKKRx is a second-generation 2'-O-(2-methoxyethyl)-modified chimeric antisense oligonucleotide, designed to bind and selectively reduce prekallikrein (PKK) mRNA in the liver. IONIS-PKKRx demonstrated dose-dependent reduction of human prekallikrein hepatic mRNA and plasma protein in transgenic mice and dose- and time-dependent reductions of plasma PKK in Cynomolgus monkeys. Similar dose-dependent reductions of plasma PKK levels were observed in healthy human volunteers accompanied by decreases in bradykinin generation capacity with an acceptable safety and tolerability profile. These results highlight a novel and specific approach to target PKK for the treatment of HAE and other diseases involving contact system activation and overproduction of bradykinin.
Collapse
|
31
|
Liu SJ, Lim DA. Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep 2018; 19:embr.201846955. [PMID: 30467236 DOI: 10.15252/embr.201846955] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell biology. The mechanisms by which lncRNAs function are likely numerous, and most are poorly understood. Currently, the mechanisms of functional lncRNAs include those that directly involve the lncRNA transcript, the process of their own transcription and splicing, and even underlying transcriptional regulatory elements within the genomic DNA that encodes the lncRNA As our understanding of lncRNA biology evolves, so have the methods that are utilized to elucidate their functions. In this review, we survey a collection of different methods used to modulate lncRNA expression levels for the assessment of biological function. From RNA-targeted strategies, genetic deletions, to engineered gene regulatory systems, the advantages and caveats of each method will be discussed. Ultimately, the selection of tools will be guided by which potential lncRNA mechanisms are being investigated, and no single method alone will likely be sufficient to reveal the function of any particular lncRNA.
Collapse
Affiliation(s)
- S John Liu
- Department of Neurological Surgery, University of California, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.,San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
32
|
Li D, Mastaglia FL, Fletcher S, Wilton SD. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping. Trends Pharmacol Sci 2018; 39:982-994. [PMID: 30282590 DOI: 10.1016/j.tips.2018.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022]
Abstract
Clinical implementation of two recently approved antisense RNA therapeutics - Exondys51® to treat Duchenne muscular dystrophy (Duchenne MD) and Spinraza® as a treatment for spinal muscular atrophy (SMA) - highlights the therapeutic potential of antisense oligonucleotides (ASOs). As shown in the Duchenne and Becker cases, the identification and specific removal of 'dispensable' exons by exon-skipping ASOs could potentially bypass lethal mutations in other genes and bring clinical benefits to affected individuals carrying amenable mutations. In this review, we discuss the potential of therapeutic alternative splicing, with a particular focus on targeted exon skipping using Duchenne MD as an example, and speculate on new applications for other inherited rare diseases where redundant or dispensable exons may be amenable to exon-skipping ASO intervention as precision medicine.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Comparative Genomics, Murdoch University, Perth 6050, Australia; Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia
| | - Sue Fletcher
- Centre for Comparative Genomics, Murdoch University, Perth 6050, Australia; Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Perth 6050, Australia; Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia.
| |
Collapse
|
33
|
McLoughlin HS, Moore LR, Chopra R, Komlo R, McKenzie M, Blumenstein KG, Zhao H, Kordasiewicz HB, Shakkottai VG, Paulson HL. Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Ann Neurol 2018; 84:64-77. [PMID: 29908063 PMCID: PMC6119475 DOI: 10.1002/ana.25264] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common dominantly inherited ataxia. Despite advances in understanding this CAG repeat/polyglutamine expansion disease, there are still no therapies to alter its progressive fatal course. Here, we investigate whether an antisense oligonucleotide (ASO) targeting the SCA3 disease gene, ATXN3, can prevent molecular, neuropathological, electrophysiological, and behavioral features of the disease in a mouse model of SCA3. METHODS The top ATXN3-targeting ASO from an in vivo screen was injected intracerebroventricularly into early symptomatic transgenic SCA3 mice that express the full human disease gene and recapitulate key disease features. Following a single ASO treatment at 8 weeks of age, mice were evaluated longitudinally for ATXN3 suppression and rescue of disease-associated pathological changes. Mice receiving an additional repeat injection at 21 weeks were evaluated longitudinally up to 29 weeks for motor performance. RESULTS The ATXN3-targeting ASO achieved sustained reduction of polyglutamine-expanded ATXN3 up to 8 weeks after treatment and prevented oligomeric and nuclear accumulation of ATXN3 up to at least 14 weeks after treatment. Longitudinal ASO therapy rescued motor impairment in SCA3 mice, and this rescue was associated with a recovery of defects in Purkinje neuron firing frequency and afterhyperpolarization. INTERPRETATION This preclinical study established efficacy of ATXN3-targeted ASOs as a disease-modifying therapeutic strategy for SCA3. These results support further efforts to develop ASOs for human clinical trials in this polyglutamine disease as well as in other dominantly inherited disorders caused by toxic gain of function. Ann Neurol 2018;83:64-77.
Collapse
Affiliation(s)
| | - Lauren R. Moore
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ravi Chopra
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Robert Komlo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Megan McKenzie
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kate G. Blumenstein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Hien Zhao
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | | | | | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
34
|
DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, Chen G, Shen T, Tran H, Nichols B, Zanardi TA, Kordasiewicz HB, Swayze EE, Bennett CF, Diamond MI, Miller TM. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med 2018; 9:9/374/eaag0481. [PMID: 28123067 DOI: 10.1126/scitranslmed.aag0481] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/13/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022]
Abstract
Accumulation of hyperphosphorylated tau directly correlates with cognitive decline in Alzheimer's disease and other primary tauopathies. One therapeutic strategy may be to reduce total tau expression. We identified antisense oligonucleotides (ASOs) that selectively decreased human tau mRNA and protein in mice expressing mutant P301S human tau. After reduction of human tau in this mouse model of tauopathy, fewer tau inclusions developed, and preexisting phosphorylated tau and Thioflavin S pathology were reversed. The resolution of tau pathology was accompanied by the prevention of hippocampal volume loss, neuronal death, and nesting deficits. In addition, mouse survival was extended, and pathological tau seeding was reversed. In nonhuman primates, tau ASOs distributed throughout the brain and spinal cord and reduced tau mRNA and protein in the brain, spinal cord, and cerebrospinal fluid. These data support investigation of a tau-lowering therapy in human patients who have tau-positive inclusions even after pathological tau deposition has begun.
Collapse
Affiliation(s)
- Sarah L DeVos
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Rebecca L Miller
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kathleen M Schoch
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Brandon B Holmes
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Carey S Kebodeaux
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Amy J Wegener
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Guo Chen
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tao Shen
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Hien Tran
- Ionis Pharmaceuticals, Carlsbad, CA 90201, USA
| | | | | | | | | | | | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Timothy M Miller
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Age-Dependent Effects of apoE Reduction Using Antisense Oligonucleotides in a Model of β-amyloidosis. Neuron 2017; 96:1013-1023.e4. [PMID: 29216448 DOI: 10.1016/j.neuron.2017.11.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/08/2017] [Accepted: 10/16/2017] [Indexed: 11/20/2022]
Abstract
The apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer disease. Previous studies suggest that reduction of apoE levels through genetic manipulation can reduce Aβ pathology. However, it is not clear how reduction of apoE levels after birth would affect amyloid deposition. We utilize an antisense oligonucleotide (ASO) to reduce apoE expression in the brains of APP/PS1-21 mice homozygous for the APOE-ε4 or APOE-ε3 allele. ASO treatment starting after birth led to a significant decrease in Aβ pathology when assessed at 4 months. Interestingly, ASO treatment starting at the onset of amyloid deposition led to an increase in Aβ plaque size and a reduction in plaque-associated neuritic dystrophy with no change in overall plaque load. These results suggest that lowering apoE levels prior to plaque deposition can strongly affect the initiation of Aβ pathology while lowering apoE after Aβ seeding modulates plaque size and toxicity.
Collapse
|
36
|
Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 2017; 14:9-21. [PMID: 29192260 DOI: 10.1038/nrneurol.2017.148] [Citation(s) in RCA: 545] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antisense oligonucleotides (ASOs) were first discovered to influence RNA processing and modulate protein expression over two decades ago; however, progress translating these agents into the clinic has been hampered by inadequate target engagement, insufficient biological activity, and off-target toxic effects. Over the years, novel chemical modifications of ASOs have been employed to address these issues. These modifications, in combination with elucidation of the mechanism of action of ASOs and improved clinical trial design, have provided momentum for the translation of ASO-based strategies into therapies. Many neurological conditions lack an effective treatment; however, as research progressively disentangles the pathogenic mechanisms of these diseases, they provide an ideal platform to test ASO-based strategies. This steady progress reached a pinnacle in the past few years with approvals of ASOs for the treatment of spinal muscular atrophy and Duchenne muscular dystrophy, which represent landmarks in a field in which disease-modifying therapies were virtually non-existent. With the rapid development of improved next-generation ASOs toward clinical application, this technology now holds the potential to have a dramatic effect on the treatment of many neurological conditions in the near future.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
37
|
The role of antisense oligonucleotide therapy against apolipoprotein-CIII in hypertriglyceridemia. ATHEROSCLEROSIS SUPP 2017; 30:19-27. [PMID: 29096837 DOI: 10.1016/j.atherosclerosissup.2017.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased triglyceride levels (higher than ∼1000 mg/dL) are associated with an increased risk for pancreatitis. Apolipoprotein-CIII (apo-CIII) plays a key role in the metabolism of triglycerides and triglyceride-rich lipoproteins. While loss of function mutations in the gene encoding apo-CIII (APOC3) are associated with low triglyceride levels and a decreased risk for cardiovascular disease (CVD), overexpression of APOC3 is associated with hypertriglyceridemia. Although many drugs such as fibrates, statins and omega-3 fatty acids modestly decrease triglyceride levels (and apo-CIII concentrations), there are many patients who still have severe hypertriglyceridemia and are at risk for pancreatitis and potentially CVD. The antisense oligonucleotide (ASO) against APOC3 mRNA volanesorsen (previously called ISIS 304801, ISIS-ApoCIIIRx and IONIS-ApoCIIIRx) robustly decreases both, apo-CIII production and triglyceride concentrations and is being currently evaluated in phase 3 trials. In this narrative review we present the currently available clinical evidence on the efficacy and safety of volanesorsen for the treatment of hypertriglyceridemia.
Collapse
|
38
|
Abstract
The most common dominantly inherited ataxia, spinocerebellar ataxia type 3 (SCA3), is an incurable neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene that encodes an abnormally long polyglutamine tract in the disease protein, ATXN3. Mice lacking ATXN3 are phenotypically normal; hence, disease gene suppression offers a compelling approach to slow the neurodegenerative cascade in SCA3. Here we tested antisense oligonucleotides (ASOs) that target human ATXN3 in two complementary mouse models of SCA3: yeast artificial chromosome (YAC) MJD-Q84.2 (Q84) mice expressing the full-length human ATXN3 gene and cytomegalovirus (CMV) MJD-Q135 (Q135) mice expressing a human ATXN3 cDNA. Intracerebroventricular injection of ASOs resulted in widespread delivery to the most vulnerable brain regions in SCA3. In treated Q84 mice, three of five tested ASOs reduced disease protein levels by >50% in the diencephalon, cerebellum, and cervical spinal cord. Two ASOs also significantly reduced mutant ATXN3 in the mouse forebrain and resulted in no signs of astrogliosis or microgliosis. In Q135 mice expressing a single ATXN3 isoform via a cDNA transgene, ASOs did not result in similar robust ATXN3 silencing. Our results indicate that ASOs targeting full-length human ATXN3 would likely be well tolerated and could lead to a preventative therapy for SCA3.
Collapse
|
39
|
Population pharmacokinetics and pharmacodynamics of IONIS-GCGR Rx, an antisense oligonucleotide for type 2 diabetes mellitus: a red blood cell lifespan model. J Pharmacokinet Pharmacodyn 2017; 44:179-191. [PMID: 28132162 DOI: 10.1007/s10928-017-9505-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
IONIS-GCGRRx (ISIS 449884) is an antisense oligonucleotide inhibitor of the glucagon receptor (GCGR). The objective of this study was to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) of IONIS-GCGRRx via population-based modeling. The observed data were obtained from a Phase 1 (50, 100, 200, 300 and 400 mg) single- and multiple-dose study in healthy volunteers and a Phase 2 (100 and 200 mg) multiple-dose study in T2DM patients. The PK of IONIS GCGRRx was characterized by two primary systemic compartments and three absorption transit compartments with elimination out of the peripheral compartment. The fasting plasma glucose (FPG) PD was an indirect-response model (inhibition of FPG production) linked to the HbA1c PD model which was a semi-mechanistic model capturing RBC maturation dynamics. Stepwise covariate modeling was performed to identify relevant covariates. In the PK model, bodyweight (BW) was the only significant covariate influencing tissue clearance, tissue volume and plasma volume. Plots of parameter-covariate relations indicate the influence of BW is clinically relevant. In the PD models, baseline HbA1c had a positive correlation with I max and baseline FPG had a negative correlation with the glycosylation rate (k gl ). Simulations from the final model showed that the doses tested in the Phase 2 were at or close to the maximum of the dose-response curve and that dose reduction down to 50 mg resulted in minimal effect to efficacy. The model was useful in supporting the decision for dose reduction in a subsequent trial.
Collapse
|
40
|
Oligonucleotide Therapy for Obstructive and Restrictive Respiratory Diseases. Molecules 2017; 22:molecules22010139. [PMID: 28106744 PMCID: PMC6155767 DOI: 10.3390/molecules22010139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 12/21/2022] Open
Abstract
Inhaled oligonucleotide is an emerging therapeutic modality for various common respiratory diseases, including obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD) and restrictive airway diseases like idiopathic pulmonary fibrosis (IPF). The advantage of direct accessibility for oligonucleotide molecules to the lung target sites, bypassing systemic administration, makes this therapeutic approach promising with minimized potential systemic side effects. Asthma, COPD, and IPF are common chronic respiratory diseases, characterized by persistent airway inflammation and dysregulated tissue repair and remodeling, although each individual disease has its unique etiology. Corticosteroids have been widely prescribed for the treatment of asthma, COPD, and IPF. However, the effectiveness of corticosteroids as an anti-inflammatory drug is limited by steroid resistance in severe asthma, the majority of COPD cases, and pulmonary fibrosis. There is an urgent medical need to develop target-specific drugs for the treatment of these respiratory conditions. Oligonucleotide therapies, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), and microRNA (miRNA) are now being evaluated both pre-clinically and clinically as potential therapeutics. The mechanisms of action of ASO and siRNA are highly target mRNA specific, ultimately leading to target protein knockdown. miRNA has both biomarker and therapeutic values, and its knockdown by a miRNA antagonist (antagomir) has a broader but potentially more non-specific biological outcome. This review will compile the current findings of oligonucleotide therapeutic targets, verified in various respiratory disease models and in clinical trials, and evaluate different chemical modification approaches to improve the stability and potency of oligonucleotides for the treatment of respiratory diseases.
Collapse
|
41
|
Geldenhuys WJ, Lin L, Darvesh AS, Sadana P. Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases. Drug Discov Today 2016; 22:352-365. [PMID: 27771332 DOI: 10.1016/j.drudis.2016.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/17/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
Although statins and other pharmacological approaches have improved the management of lipid abnormalities, there exists a need for newer treatment modalities especially for the management of hypertriglyceridemia. Lipoprotein lipase (LPL), by promoting hydrolytic cleavage of the triglyceride core of lipoproteins, is a crucial node in the management of plasma lipid levels. Although LPL expression and activity modulation is observed as a pleiotropic action of some the commonly used lipid lowering drugs, the deliberate development of drugs targeting LPL has not occurred yet. In this review, we present the biology of LPL, highlight the LPL modulation property of currently used drugs and review the novel emerging approaches to target LPL.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Altaf S Darvesh
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Prabodh Sadana
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
42
|
Yu RZ, Gunawan R, Post N, Zanardi T, Hall S, Burkey J, Kim TW, Graham MJ, Prakash TP, Seth PP, Swayze EE, Geary RS, Henry SP, Wang Y. Disposition and Pharmacokinetics of a GalNAc3-Conjugated Antisense Oligonucleotide Targeting Human Lipoprotein (a) in Monkeys. Nucleic Acid Ther 2016; 26:372-380. [PMID: 27500733 DOI: 10.1089/nat.2016.0623] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Triantennary N-acetyl galactosamine (GalNAc3)-conjugated antisense oligonucleotides (ASOs) have greatly improved potency due to receptor-mediated uptake into hepatocyte. The disposition and pharmacokinetics of ISIS 681257, a GalNAc3-conjugated ASO, were studied in monkeys. Following subcutaneous (SC) injection, ISIS 681257 was rapidly absorbed into the systemic circulation, with peak plasma levels observed within hours after dosing. After reaching Cmax, plasma concentrations rapidly declined in a multiexponential manner and were characterized by a dominant initial rapid distribution phase in which drug transferred to tissues from circulation, followed by a much slower terminal elimination phase (half-life of 4 weeks). Intact ISIS 681257 is the major full-length oligonucleotide species in plasma (≥70%). In tissues, the conjugated-GalNAc sugar moiety was rapidly metabolized, leaving the fully unconjugated form as the only full-length oligonucleotide detected at 48 h after dosing. Unconjugated ISIS 681257 cleared slowly from tissues with a half-life of 4 weeks. ISIS 681257 was highly bound to plasma proteins (>97% bound), which limited its urinary excretion. Disposition of ISIS 681257 in plasma and liver appeared nonlinear over the 1-40 mg/kg dose range studied. The plasma and liver tissue concentration data were well described by a population based mixed-effects modeling approach with Michaelis-Menten uptake from plasma to liver. Safety data from the study and the good exposure, as well as the extended half-life of the unconjugated ASO in the liver, support further development and less frequent dosing in Phase I clinical study.
Collapse
Affiliation(s)
- Rosie Z Yu
- Ionis Pharmaceuticals, Inc. , Carlsbad, California
| | - Rudy Gunawan
- Ionis Pharmaceuticals, Inc. , Carlsbad, California
| | - Noah Post
- Ionis Pharmaceuticals, Inc. , Carlsbad, California
| | | | - Shannon Hall
- Ionis Pharmaceuticals, Inc. , Carlsbad, California
| | | | - Tae-Won Kim
- Ionis Pharmaceuticals, Inc. , Carlsbad, California
| | | | | | - Punit P Seth
- Ionis Pharmaceuticals, Inc. , Carlsbad, California
| | | | | | | | - Yanfeng Wang
- Ionis Pharmaceuticals, Inc. , Carlsbad, California
| |
Collapse
|
43
|
Disposition and Pharmacology of a GalNAc3-conjugated ASO Targeting Human Lipoprotein (a) in Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e317. [PMID: 27138177 PMCID: PMC5014512 DOI: 10.1038/mtna.2016.26] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/27/2016] [Indexed: 01/12/2023]
Abstract
Triantennary N-acetyl galactosamine (GalNAc3)-conjugated antisense oligonucleotides (ASOs) have greatly improved potency via receptor-mediated uptake. In the present study, the in vivo pharmacology of a 2′-O-(2-methoxyethyl)-modified ASO conjugated with GalNAc3 (ISIS 681257) together with its unmodified congener (ISIS 494372) targeting human apolipoprotein (a) (apo(a)), were studied in human LPA transgenic mice. Further, the disposition kinetics of ISIS 681257 was studied in CD-1 mice. ISIS 681257 demonstrated over 20-fold improvement in potency over ISIS 494372 as measured by liver apo(a) mRNA and plasma apo(a) protein levels. Following subcutaneous (SC) dosing, ISIS 681257 cleared rapidly from plasma and distributed to tissues. Intact ISIS 681257 was the major full-length oligonucleotide species in plasma. In tissues, however, GalNAc sugar moiety was rapidly metabolized and unconjugated ISIS 681257 accounted > 97% of the total exposure, which was then cleared slowly from tissues with a half-life of 7–8 days, similar to the half-life in plasma. ISIS 681257 is highly bound to plasma proteins (> 94% bound), which limited its urinary excretion. This study confirmed dose-dependent exposure to the parent drug ISIS 681257 in plasma and rapid conversion to unconjugated ASO in tissues. Safety data and the extended half-life support its further development and weekly dosing in phase 1 clinical studies.
Collapse
|
44
|
Burel SA, Hart CE, Cauntay P, Hsiao J, Machemer T, Katz M, Watt A, Bui HH, Younis H, Sabripour M, Freier SM, Hung G, Dan A, Prakash TP, Seth PP, Swayze EE, Bennett CF, Crooke ST, Henry SP. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 2015; 44:2093-109. [PMID: 26553810 PMCID: PMC4797265 DOI: 10.1093/nar/gkv1210] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022] Open
Abstract
High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a panel of highly efficacious hepatotoxic or non-hepatotoxic LNA ASOs. We observed highly selective transcript knockdown in mice treated with non-hepatotoxic LNA ASOs, while the levels of many unintended transcripts were reduced in mice treated with hepatotoxic LNA ASOs. This transcriptional signature was concurrent with on-target RNA reduction and preceded transaminitis. Remarkably, the mRNA transcripts commonly reduced by toxic LNA ASOs were generally not strongly associated with any particular biological process, cellular component or functional group. However, they tended to have much longer pre-mRNA transcripts. We also demonstrate that the off-target RNA knockdown and hepatotoxicity is attenuated by RNase H1 knockdown, and that this effect can be generalized to high affinity modifications beyond LNA. This suggests that for a certain set of ASOs containing high affinity modifications such as LNA, hepatotoxicity can occur as a result of unintended off-target RNase H1 dependent RNA degradation.
Collapse
Affiliation(s)
| | | | | | - Jill Hsiao
- Isis Pharmaceuticals, Carlsbad, CA 921010, USA
| | | | | | - Andy Watt
- Isis Pharmaceuticals, Carlsbad, CA 921010, USA
| | | | | | | | | | - Gene Hung
- Isis Pharmaceuticals, Carlsbad, CA 921010, USA
| | - Amy Dan
- Isis Pharmaceuticals, Carlsbad, CA 921010, USA
| | - T P Prakash
- Isis Pharmaceuticals, Carlsbad, CA 921010, USA
| | | | | | | | | | | |
Collapse
|
45
|
Wertz MH, Sahin M. Developing therapies for spinal muscular atrophy. Ann N Y Acad Sci 2015; 1366:5-19. [PMID: 26173388 DOI: 10.1111/nyas.12813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy is an autosomal-recessive pediatric neurodegenerative disease characterized by loss of spinal motor neurons. It is caused by mutation in the gene survival of motor neuron 1 (SMN1), leading to loss of function of the full-length SMN protein. SMN has a number of functions in neurons, including RNA splicing and snRNP biogenesis in the nucleus, and RNA trafficking in neurites. The expression level of full-length SMN protein from the SMN2 locus modifies disease severity. Increasing full-length SMN protein by a small amount can lead to significant improvements in the neurological phenotype. Currently available interventions for spinal muscular atrophy patients are physical therapy and orthopedic, nutritional, and pulmonary interventions; these are palliative or supportive measures and do not address the etiology of the disease. In the past decade, there has been a push for developing therapeutics to improve motor phenotypes and increase life span of spinal muscular atrophy patients. These therapies are aimed primarily at restoration of full-length SMN protein levels, but other neuroprotective treatments have been investigated as well. Here, we discuss recent advances in basic and clinical studies toward finding safe and effective treatments of spinal muscular atrophy using gene therapy, antisense oligonucleotides, and other small molecule modulators of SMN expression.
Collapse
Affiliation(s)
- Mary H Wertz
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 2015; 87:90-103. [PMID: 25797014 DOI: 10.1016/j.addr.2015.03.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.
Collapse
|
47
|
Meadows JP, Guzman-Karlsson MC, Phillips S, Holleman C, Posey JL, Day JJ, Hablitz JJ, Sweatt JD. DNA methylation regulates neuronal glutamatergic synaptic scaling. Sci Signal 2015; 8:ra61. [PMID: 26106219 DOI: 10.1126/scisignal.aab0715] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enhanced receptiveness at all synapses on a neuron that receive glutamatergic input is called cell-wide synaptic upscaling. We hypothesize that this type of synaptic plasticity may be critical for long-term memory storage within cortical circuits, a process that may also depend on epigenetic mechanisms, such as covalent chemical modification of DNA. We found that DNA cytosine demethylation mediates multiplicative synaptic upscaling of glutamatergic synaptic strength in cultured cortical neurons. Inhibiting neuronal activity with tetrodotoxin (TTX) decreased the cytosine methylation of and increased the expression of genes encoding glutamate receptors and trafficking proteins, in turn increasing the amplitude but not frequency of miniature excitatory postsynaptic currents (mEPSCs), indicating synaptic upscaling rather than increased spontaneous activity. Inhibiting DNA methyltransferase (DNMT) activity, either by using the small-molecule inhibitor RG108 or by knocking down Dnmt1 and Dnmt3a, induced synaptic upscaling to a similar magnitude as exposure to TTX. Moreover, upscaling induced by DNMT inhibition required transcription; the RNA polymerase inhibitor actinomycin D blocked upscaling induced by DNMT inhibition. Knocking down the cytosine demethylase TET1 also blocked the upscaling effects of RG108. DNMT inhibition induced a multiplicative increase in mEPSC amplitude, indicating that the alterations in glutamate receptor abundance occurred in a coordinated manner throughout a neuron and were not limited to individual active synapses. Our data suggest that DNA methylation status controls transcription-dependent regulation of glutamatergic synaptic homeostasis. Furthermore, covalent DNA modifications may contribute to synaptic plasticity events that underlie the formation and stabilization of memories.
Collapse
Affiliation(s)
- Jarrod P Meadows
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mikael C Guzman-Karlsson
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Phillips
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cassie Holleman
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica L Posey
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John J Hablitz
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - J David Sweatt
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
48
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
49
|
Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms. PLoS One 2014; 9:e108625. [PMID: 25299183 PMCID: PMC4191969 DOI: 10.1371/journal.pone.0108625] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are most commonly designed to reduce targeted RNA via RNase H1-dependent degradation. In this paper we demonstrate that cellular proteins can compete for sites targeted by RNase H1-dependent ASOs. We further show that some ASOs designed to mediate RNase H1 cleavage can, in certain instances, promote target reduction both by RNase H1-mediated cleavage and by steric inhibition of binding of splicing factors at a site required for efficient processing of the pre-mRNA. In the latter case, RNase H cleavage was prevented by binding of a second protein, HSPA8, to the ASO/pre-mRNA heteroduplex. In addition, using a precisely controlled minigene system, we directly demonstrated that activity of ASOs targeting sites in introns is strongly influenced by splicing efficiency.
Collapse
|
50
|
Lima WF, Vickers TA, Nichols J, Li C, Crooke ST. Defining the factors that contribute to on-target specificity of antisense oligonucleotides. PLoS One 2014; 9:e101752. [PMID: 25072142 PMCID: PMC4114480 DOI: 10.1371/journal.pone.0101752] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022] Open
Abstract
To better understand the factors that influence the activity and specificity of antisense oligonucleotides (ASOs), we designed a minigene encoding superoxide dismutase 1 (SOD-1) and cloned the minigene into vectors for T7 transcription of pre-mRNA and splicing in a nuclear extract or for stable integration in cells. We designed a series of ASOs that covered the entire mRNA and determined the binding affinities and activities of the ASOs in a cell-free system and in cells. The mRNA bound known RNA-binding proteins on predicted binding sites in the mRNA. The higher order structure of the mRNA had a significantly greater effect than the RNA-binding proteins on ASO binding affinities as the ASO activities in cells and in the cell-free systems were consistent. We identified several ASOs that exhibited off-target hybridization to the SOD-1 minigene mRNA in the cell-free system. Off-target hybridization occurred only at highly accessible unstructured sites in the mRNA and these interactions were inhibited by both the higher order structure of the mRNA and by RNA-binding proteins. The same off-target hybridization interactions were identified in cells that overexpress E. coli RNase H1. No off-target activity was observed for cells expressing only endogenous human RNase H1. Neither were these off-target heteroduplexes substrates for recombinant human RNase H1 under multiple-turnover kinetics suggesting that the endogenous enzyme functions under similar kinetic parameters in cells and in the cell-free system. These results provide a blueprint for design of more potent and more specific ASOs.
Collapse
Affiliation(s)
- Walt F. Lima
- Isis Pharmaceuticals Inc., Carlsbad, California, United States of America
- * E-mail:
| | - Timothy A. Vickers
- Isis Pharmaceuticals Inc., Carlsbad, California, United States of America
| | - Josh Nichols
- Isis Pharmaceuticals Inc., Carlsbad, California, United States of America
| | - Cheryl Li
- Isis Pharmaceuticals Inc., Carlsbad, California, United States of America
| | - Stanley T. Crooke
- Isis Pharmaceuticals Inc., Carlsbad, California, United States of America
| |
Collapse
|